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A characterization of the product of the
rational numbers and complete Erdős space

Rodrigo Hernández-Gutiérrez and Alfredo Zaragoza

Abstract. Erdős spaceE and complete Erdős spaceEc have been previously shown to have topological
characterizations. In this paper, we provide a topological characterization of the topological space
Q × Ec , whereQ is the space of rational numbers. As a corollary, we show that the Vietoris hyperspace
of finite sets F(Ec) is homeomorphic to Q × Ec . We also characterize the factors of Q × Ec . An
interesting open question that is left open is whether σEω

c , the σ-product of countably many copies of
Ec , is homeomorphic to Q × Ec .

1 Introduction

All spaces will be assumed to be separable and metrizable. We denote the set of
positive integers by N, the set of natural numbers by ω = N ∪ {0}, and the space of
rational numbers by Q. Erdős space is defined to be the space

E = {(xn)n∈ω ∈ �2∶ ∀i ∈ ω, x i ∈ Q},

and complete Erdős space is the space

Ec = {(xn)n∈ω ∈ �2∶ ∀i ∈ ω, x i ∈ {0} ∪ {1/n ∶ n ∈ N}},

where �2 is the Hilbert space of square-summable sequences of real numbers. These
two spaces were introduced by Erdős in 1940 in [6] as examples of totally disconnected
and nonzero-dimensional spaces.

It was soon noticed that some interesting Polish spaces are homeomorphic to Ec
(see [7]). Due to the interest in these two spaces, Dijkstra and van Mill obtained
topological characterizations of Ec and E (see [2, 3], respectively), and applied them
to show that some other noteworthy spaces are homeomorphic to either one of
these two. Notice that Ec is Polish, but E is an absolute Fσ δ , so Ec and E are not
homeomorphic. We also mention thatEω

c is not homeomorphic toEc , as it was proved
in [4]. A characterization of Eω

c was given in [1].
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88 A characterization of Q ×Ec

The objective of this paper is to continue this line of research by providing a
topological characterization of Q ×Ec ; this is Theorem 3.3 below. Since Q ×Ec is not
Polish, it is not homeomorphic to Ec or Eω

c . As it is easy to see, Q ×Ec is both an
absolute Gδσ and an absolute Fσ δ (see Remark 2.2 below). Since it is known that E is
not Gδσ (see Remark 5.5 in [3]), we obtain that Q ×Ec is not homeomorphic to E.
Thus, this space is different from the ones studied before.

In fact, we give two characterizations of Q ×Ec : one extrinsic and the other
intrinsic. The choice of these two terms follows the idea of [3]. By extrinsic, we mean
that Q ×Ec is homeomorphic to a subset of the graph of a upper semicontinuous
(USC) function defined on the Cantor set that has certain characteristics. By intrinsic,
we mean a characterization given by topological properties of Q ×Ec itself. Our
extrinsic characterization is defined in terms of a class σL of USC functions, and our
intrinsic characterization is given by a class σE of spaces; both of these are defined in
Section 3.

The statement of the characterization (Theorem 3.3) is given in Section 3, but the
hard part of the proof is done in Section 4. We also give a concrete application of our
characterizations: in Section 5, the Vietoris hyperspace of finite nonempty subsets of
Ec is shown to be homeomorphic toQ ×Ec (Corollary 5.3). This result is connected to
previous work of the second-named author, who proved that the Vietoris symmetric
products of Ec are homeomorphic to Ec (see [14]) and that the Vietoris hyperspace
of nonempty finite sets of E is homeomorphic to E (see [14, 15]). In Section 6, we
consider the σ-product of ω copies of Ec . At first, it seemed that this space would also
be homeomorphic to Q ×Ec . However, we were not able to prove or disprove this, so
we leave this as an open problem. In Section 7, we give a characterization of factors of
Q ×Ec . Finally, in Section 8, we consider dense embeddings of Q ×Ec .

2 Preliminaries

Following the example of van Douwen, we call a space crowded if it has no isolated
points. The definitions and equivalences that we will use here can be found in [3]. The
notation X ≈ Y means that X and Y are homeomorphic topological spaces.

A C-set in a topological space is an intersection of clopen sets. A topological space
is almost zero-dimensional if it has a neighborhood basis consisting of C-sets. Given
a topological space ⟨X ,T⟩ and A ⊂ X, we write T ↾ A = {U ∩ A∶U ∈ T}.

Definition 2.1 Let ⟨X ,T⟩ be a topological space, and let ⟨Z ,W⟩ be a zero-
dimensional space such that X ⊂ Z. We will say that ⟨Z ,W⟩ witnesses the almost
zero-dimensionality of ⟨X ,T⟩ if W ↾ X ⊂ T and there is a neighborhood basis of
⟨X ,T⟩ that consists of sets that are closed in W.

It easily follows that a topological space ⟨X ,T⟩ is almost zero-dimensional if and
only if there is a zero-dimensional topology W in X that witnesses the almost zero-
dimensionality of ⟨X ,T⟩ (see [3, Remark 2.4]).

Let X be a space, and let A be a collection of subsets of X. The space X is called
A-cohesive if every point of the space has a neighborhood that does not contain
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nonempty clopen subsets of any element of A. If A = {X}, we simply say that X is
cohesive.

Let φ∶ X → [0,∞). We say that φ is USC if, for every t ∈ (0,∞), the set
f←[(−∞, t)] is open. Let

M(φ) = sup ({∣φ(x)∣∶ x ∈ X} ∪ {0}) ,

where the supremum is taken in [0,∞]. We define

Gφ
0 = {⟨x , φ(x)⟩∶ x ∈ X , φ(x) > 0} and

Lφ
0 = {⟨x , t⟩∶ x ∈ X , 0 ≤ t ≤ φ(x)}.

We say that φ is a Lelek function if X is zero-dimensional, φ is USC, {x ∈ X∶φ(x) > 0}
is dense in X, and Gφ

0 is dense in Lφ
0 . The existence of Lelek functions with domain

equal to the Cantor set 2ω follows from Lelek’s original construction [9] of what is
now called the Lelek fan.

We will need to extend USC functions. Assume that X is a space, Y ⊂ X, and φ∶Y →
[0,∞) is a USC function. Then there is a canonical extension extX(φ)∶ X → [0,∞);
we will not need its definition (which can be found in [3, p. 12]) but only the following
property.

Lemma 2.1 [3, Lemma 4.8] Let X be a zero-dimensional space, let Y be a dense subset
of X, let ψ∶Y → [0,∞) be a USC function, and let φ = extX(ψ). Then φ is USC, ψ ⊂ φ,
and the graph of ψ is dense in the graph of φ.

As mentioned in the introduction,Ec is a cohesive almost zero-dimensional space.
An extrinsic characterization of Ec is given by Lelek functions as follows: if φ∶ 2ω →
[0,∞) is a Lelek function, then Gφ

0 is homeomorphic to Ec (see [7]). An intrinsic
characterization of Ec was given in [2]. We make the following remark about the
descriptive complexity of Q ×Ec .

Remark 2.2 Q ×Ec is an absolute Gσ δ and an absolute Fδσ .

Proof To see that Q ×Ec is an absolute Gδσ , it is sufficient to notice that Q ×Ec is
a countable union of Polish spaces.

Next, assume that Q ×Ec ⊂ X where X is any separable metrizable space. For each
q ∈ Q, let Fq = {q} ×Ec . Then G = X ∖⋃{Fq ∶ q ∈ Q} is a Gδ in X.

Fix q ∈ Q. Since Fq is Polish, we know that Fq ∖ Fq is a countable union of sets that
are closed in Fq , and thus in X. But closed sets in separable metrizable spaces are Gδ .
Thus, Fq ∖ Fq is Gδσ in X.

Since X ∖ (Q ×Ec) = G ∪ (⋃{Fq ∖ Fq ∶ q ∈ Q}), we obtain that the complement
of Q ×Ec is a Gδσ , so Q ×Ec itself is Fσ δ in X. ∎
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3 Classes σL and σE

In this section, we define the two classes of spaces σL and σE that we will use to
characterizeQ ×Ec . These definitions are made in the spirit of the class CAP(X) from
[12] and classes SLC and E from [3].

Definition 3.1 We define σL to be the class of all triples ⟨C , X , φ⟩ such that C is
a compact, zero-dimensional, crowded metrizable space (thus, a Cantor set), φ∶C →
[0, 1) is a USC function and X = ⋃{Xn ∶ n ∈ ω} is a dense subset of C such that, for
each n ∈ ω, the following hold:
(a) Xn is a closed, crowded subset of C,
(b) Xn ⊂ Xn+1,
(c) φ ↾ Xn is a Lelek function, and
(d) Gφ↾Xn

0 is nowhere dense in Gφ↾Xn+1
0 .

We will say that a space E is generated by ⟨C , X , φ⟩ if E is homeomorphic to Gφ↾X
0 .

As mentioned in the previous section, by the extrinsic characterization of Ec

from [7], in Definition 3.1, we will have that Gφ↾Xn
0 is homeomorphic to Ec for each

n ∈ ω. So, indeed, E is a countable increasing union of nowhere dense subsets, each
homeomorphic to complete Erdős space.

Definition 3.2 We define σE to be the class of all separable metrizable spaces E such
that there exists a topology W on E that is witness to the almost zero-dimensionality
of E, a collection {En ∶ n ∈ ω} of subsets of E, and a basis β of neighborhoods of E such
that
(a) E = ⋃{En ∶ n ∈ ω},
(b) for each n ∈ ω, En is a crowded nowhere dense subset of En+1,
(c) for each n ∈ ω, En is closed in W,
(d) E is {En ∶ n ∈ ω}-cohesive, and
(e) for each V ∈ β, V ∩ En is compact in W ↾ En for each n ∈ ω.

By the intrinsic characterization of Ec from [2], we have that, in Definition 3.2, En
is homeomorphic to Ec for every n ∈ ω. So, again, E is a countable increasing union
of nowhere dense subsets, each homeomorphic to complete Erdős space.

We first prove that the space that we want to characterize is an element of σE and
then, that spaces from σE can be generated by triples from σL.

Lemma 3.1 Q ×Ec ∈ σE.

Proof By (2), in [2, Theorem 3.1], there exists a topology W1 on Ec , witness of the
almost zero-dimensionality ofEc , such thatEc has a neighborhood basis β0 of subsets
that are compact in W1. Let W be the product topology of Q × ⟨Ec ,W1⟩. Let β be the
collection of all sets of the form V × B, where V is nonempty and clopen in Q, and
B ∈ β0. Choose a sequence {Fn ∶ n ∈ ω} of compact subsets ofQ such that (i) Fn ⊂ Fn+1
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for every n ∈ ω, (ii) Fn+1 ∖ Fn is countable discrete, and dense in Fn+1 for every n ∈ ω,
and (iii) Q = ⋃{Fn ∶ n ∈ ω}.

Let En = Fn ×Ec for every n ∈ ω. We claim that the topology W, the collection
{En ∶ n ∈ ω}, and β satisfy the conditions in Definition 3.2 for Q ×Ec .

First, notice that W witnesses that Q ×Ec is almost zero-dimensional. Conditions
(a)–(c) follow directly from our choices.

Next, we prove (d). Let ⟨x , y⟩ ∈ Q ×Ec , and let m = min{k ∈ ω∶ x ∈ Fk}. SinceEc is
cohesive, there exists an open set U ofEc such that x ∈ U and U contains no nonempty
clopen subsets. Let V be open in Q such that x ∈ V and V ∩ Fk = ∅ if k < m. Define
W = V × U . Let n ∈ ω, and we argue that W ∩ En contains no nonempty clopen sets.
This is clear if n < m, so consider the case when n ≥ m. Assume that O ⊂ W ∩ En is
clopen and nonempty, and consider ⟨a, b⟩ ∈ O. Then ({a} ×Ec) ∩ O is a nonempty
clopen subset of {a} ×Ec such that ({a} ×Ec) ∩ O ⊂ {a} × U . This is a contradiction
to our choice of U. We conclude that (d) holds.

Finally, let us prove (e). Let V × B ∈ β and n ∈ ω. Then (V × B) ∩ En = (V ∩ Fn) ×
B, which is compact. Moreover, it is clear that β is a basis for the topology of Q ×Ec .
This completes the proof of this result. ∎

Proposition 3.2 If E ∈ σE, then there exists ⟨C , X , φ⟩ ∈ σL that generates E.

Proof From Definition 3.2, let us consider for E the witness topology W, the basis
β of neighborhoods, and the collection {En ∶ n ∈ ω}.

We may assume that β is countable. For every B ∈ β, let BB be a countable
collection of clopen subsets of ⟨E ,W⟩ such that B = ⋂BB . Then, by a standard
Stone space argument, there exists a compact, zero-dimensional, and metric space C
containing ⟨E ,W⟩ as a dense subspace and such that clC(O) is clopen in C for every
O ∈ ⋃{BB ∶B ∈ β}. For every n ∈ ω, let Xn = clC(En); notice that Xn ∩ E = En since
En is closed in W. Define X = ⋃{Xn ∶ n ∈ ω}.

We claim that X is witness to the almost zero-dimensionality of E; we will prove
that B is closed in X for every B ∈ β. It is enough to prove that if m ∈ ω and B ∈ β are
fixed, then

(⋂{clC(O) ∶ O ∈ BB}) ∩ Xm = B ∩ Xm . (∗).

The right side of (∗) is contained in the left side by the definition of BB . So take z ∈ C
that is not on the right side of (∗), and we will prove that it is not on the left side.

We may assume that z ∈ Xm . By the choice of β, we know that B ∩ Xm is compact.
So there is an open set U of C such that z ∈ U and clC(U) ∩ (B ∩ Xm) = ∅. Let F =
clC(U) ∩ Em . Notice that F is closed in ⟨Em ,W ↾ Em⟩, and thus in ⟨E ,W⟩. Moreover,
since U ∩ Xn is open in Xn , En is dense in Xn and z ∈ U ∩ Xn , then it easily follows
that z ∈ clC(F). Finally, F is disjoint from B because F ∩ B = (clC(U) ∩ Em) ∩ B =
clC(U) ∩ (B ∩ Em) = clC(U) ∩ (B ∩ Xm) = ∅. Then F and B are two disjoint closed
subsets in ⟨E ,W⟩, so there exists O ∈ BB such that O ∩ F = ∅. Since clC(O) is open
in K and disjoint from F, it is also disjoint from clC(F). But z ∈ clC(F), so z ∉ clC(O).
This shows that z is not on the left side of (∗).

We have proved that X is witness to the almost zero-dimensionality of E. By Lemma
4.11 of [3], there exists a USC function ψ0∶ X → [0, 1) such that ψ←0 (0) = X ∖ E and the
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function h0∶E → Gψ0
0 defined by h0(x) = ⟨x , ψ0(x)⟩ is a homeomorphism. By con-

dition (d) in Definition 3.2, we know that Gψ0
0 is {Gψ0↾Xn

0 ∶ n ∈ ω}-cohesive. Moreover,
{x ∈ Xn ∶ψ0(x) > 0} = En is dense in Xn for every n ∈ ω. Lemma 5.9 of [3] tells us that
we can find a USC function ψ1∶ X → [0, 1) such that ψ1 ↾ Xn is a Lelek function for
each n ∈ ω, and the function h1∶Gψ0

0 → Gψ1
0 given by h1(⟨x , ψ0(x)⟩) = ⟨x , ψ1(x)⟩ is a

homeomorphism. Now, let φ = extC(ψ1)∶C → [0, 1). Then ⟨C , X , φ⟩ can be easily seen
to be an element of σL and h1 ○ h0∶E → Gφ↾X

0 is a homeomorphism.This completes
the proof of this result. ∎

Our main result will be the following.

Theorem 3.3 Let E be a space. Then the following are equivalent:
(i) E ∈ σE,
(ii) there exists ⟨C , X , φ⟩ ∈ σL that generates E, and
(iii) E is homeomorphic to Q ×Ec .

The proof of Theorem 3.3 will be given as follows. First, notice that, by Proposition
3.2, (i) implies (ii). That (iii) implies (i) is Lemma 3.1. Moreover, by Lemma 3.1, σE is
nonempty, so σL is nonempty as well. Thus, in order to prove that (ii) implies (iii), it
is enough to show that any two spaces generated by triples of σL are homeomorphic.
This will be the content of Section 4.

Given a separable metrizable space X, in [12], CAP(X) is defined to be the class
of separable metrizable spaces Y = ⋃{Xn ∶ n ∈ ω} such that Xn is closed in X, Xn is a
nowhere dense subset of Xn+1, and Xn ≈ X for each n ∈ ω. So σE ⊂ CAP(Ec), but we
do not know whether the other inclusion holds.

Question 3.4 Is σE = CAP(Ec)?

4 Uniqueness theorem

In this section, we give the proof of Theorem 3.3. Let φ, ψ∶ X → [0,∞) be USC
functions. In Chapter 6 of [3], φ and ψ are defined to be m-equivalent if there is a
homeomorphism h∶ X → Y and a continuous function α∶ X → (0,∞) such that ψ ○
h = α ⋅ φ. It follows that when φ and ψ are m-equivalent, then Gφ

0 is homeomorphic
to Gψ

0 . So, according to the discussion at the end of the previous section, in order to
prove Theorem 3.3, it is sufficient to prove the following statement.

Proposition 4.1 Let ⟨C , X , φ⟩, ⟨D, Y , ψ⟩ ∈ σL. Then there exists a homeomorphism
h∶C → D and a continuous function α∶C → (0,∞) such that f [X] = Y and ψ ○ h =
α ⋅ φ.

The rest of this section will consist on a proof of Proposition 4.1. The construction
of the homeomorphism h will require us to use two different techniques and mix
them. First, we need the tools used in [3] to extend homeomorphisms using Lelek
functions.
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Theorem 4.2 [3, Theorem 6.2, p. 26] If φ∶C → [0,∞) and ψ∶ D → [0,∞) are Lelek
functions with C and D compact, and t > ∣log (M(ψ)/M(φ))∣, then there exists a
homeomorphism h∶C → D and a continuous function α∶C → (0,∞) such that ψ ○ h =
α ⋅ φ and M(log ○α) < t.

Theorem 4.3 [3, Theorem 6.4, p. 28] Let φ∶C → [0,∞) and ψ∶ D → [0,∞) be Lelek
functions with C and D compact. Let A ⊂ C and B ⊂ D be closed such that Gφ↾A

0 and
Gψ↾B

0 are nowhere dense in Gφ
0 and Gψ

0 , respectively. Let h∶A → B be a homeomorphism
and α∶A → (0,∞) a continuous function such that ψ ○ h = α ⋅ (φ ↾ A). If t ∈ R is
such that t > ∣log (M(ψ)/M(φ))∣ and M(log ○α) < t, then there is a homeomorphism
H∶C → D and a continuous function β∶C → (0,∞) such that H ↾ A = h, β ↾ C = α,
ψ ○ H = β ⋅ φ, and M(log ○β) < t.

Theorem 4.2 is called the Uniqueness Theorem for Lelek functions; Theorem 4.3 is
the Homeomorphism Extension Theorem for Lelek functions.

The second tool we will need is that of Knaster–Reichbach covers (KR-covers). KR-
covers were used by Knaster and Reichbach [8] to prove homeomorphism extension
results in the class of all zero-dimensional spaces. The term KR-cover was first used
by van Engelen [5] who proved their existence in a general setting. However, in this
paper, we will not need the existence of KR-covers in general. We will only need the
following straightforward result which is a specific case of KR-covers.

Lemma 4.4 Fix a metric on 2ω . Let F ⊂ 2ω be closed, and assume that U = {Un ∶ n ∈
ω} is a partition of 2ω ∖ F into clopen sets such that, for every ε > 0, the set {n ∈ ω ∶
diam(Un) ≥ ε} is finite. Assume that h∶ 2ω → 2ω has the following properties;
(1) h is a bijection,
(2) h ↾ F = idF ,
(3) for each n ∈ ω, h[Un] = Un , and
(4) for each n ∈ ω, h ↾ Un ∶Un → Un is a homeomorphism.

Then h is a homeomorphism.

We then remark that our proof will be an amalgamation of the Dijkstra–van Mill
proof of Theorem 7.5 from [3] and the van Engelen proof of Theorem 3.2.6 from [5].
The functions h and α in the statement of Proposition 4.1 will be uniform limits of
functions. The following discussion can be found in [13].

Let X and Y be compact metrizable spaces, and let ρ be a metric on Y. In the set
C(X , Y) = { f ∈ Y X ∶ f is continuous}, we define the uniform metric ρ by ρ( f , g) =
sup{ρ( f (x), g(x))∶ x ∈ X}, when f , g ∈ C(X , Y). It is known that this metric is
complete, so we may construct complicated continuous functions using Cauchy
sequences of simpler continuous functions.

For a compact space X, H(X) denotes the subset of C(X , X) consisting of
homeomorphisms. However, even though Cauchy sequences of homeomorphisms
will converge to continuous functions, they will not necessarily converge to a home-
omorphism. In order to achieve this, we will use the Inductive Convergence Criterion.
We present the statement of this criterion as it appears in [5].
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Theorem 4.5 [5, Lemma 3.2.5] Let X be a zero-dimensional compact metric space
with metric ρ, and for each n ∈ ω, let hn ∶ X → X be a homeomorphism. If for every
n ∈ ω we have that ρ(hn+1 , hn) < εn , where

εn = min{2−n , 3−n ⋅ min{min{ρ(h i(x), h i(y))∶ x , y ∈ X , ρ(x , y) ≥ 1/n} ∶ i ≤ n}},

then the uniform limit h = limn→∞ hn is a homeomorphism.

The exact values of the numbers εn in the statement of Theorem 4.5 are not
important. What we will use is that εn is a positive number than can be calculated
once the first n + 1 homeomorphisms h0 , . . . , hn have been defined.

Before we continue with the proof of Proposition 4.1, we stop to give two final
ingredients in the proof.

Lemma 4.6 If ⟨C , X , ψ⟩ ∈ σL, then there exists a Lelek function φ∶C → [0, 1] such
that ⟨C , X , φ⟩ ∈ σL, φ ↾ X = ψ ↾ X and the graph of φ ↾ X is dense in the graph of φ.

Proof Let d0 be a metric for C, and consider the metric d(⟨x , y⟩, ⟨z, w⟩) =
d0(x , z) + ∣y − w∣ defined on C × [0, 1]. Define φ = extC(ψ ↾ X).

We show that φ is a Lelek function. Let p ∈ C with φ(p) > 0, t ∈ (0, φ(p)), and ε >
0, and we want to find q ∈ Gφ

0 such that d(q, ⟨p, t⟩) < ε. By Lemma 2.1, we know that
the graph of ψ ↾ X is dense in the graph of φ, so there exists k ∈ ω and x ∈ Xk such that
d(⟨x , ψ(x)⟩, ⟨p, φ(p)⟩) < ε/2. We may also assume that ψ(x) > t. Since ψ ↾ Xk is a
Lelek function, there is z ∈ Xk such that d(⟨z, ψ(z)⟩, ⟨x , t⟩) < ε/2. So let q = ⟨z, ψ(z)⟩.
We know that ψ(z) = φ(z), so q ∈ Gφ

0 . Then

d(q, ⟨p, t⟩) = d0(z, p) + ∣ψ(z) − t∣
≤ d0(z, x) + d0(x , p) + ∣ψ(z) − t∣
= d(⟨z, ψ(z)⟩, ⟨x , t⟩) + d0(x , p)
≤ d(⟨z, ψ(z)⟩, ⟨x , t⟩) + d(⟨x , ψ(x)⟩, ⟨p, φ(p)⟩)
< ε/2 + ε/2
= ε.

This shows that φ is a Lelek function. The remaining condition holds directly from
Lemma 2.1. ∎

The constant function with value 1 will be denoted by 1.

Lemma 4.7 Let F ⊂ 2ω be closed, and let {Vn ∶ n ∈ ω} be a partition of 2ω ∖ F into
clopen nonempty subsets. Assume that α∶ 2ω → (0,∞) has the following properties:
(1) α ↾ F = 1 ↾ F,
(2) l imn→∞M(log ○(α ↾ Vn)) = 0, and
(3) α ↾ Vn is continuous for each n ∈ ω.

Then α is continuous.

Proof It is enough to prove that if ⟨x i ∶ i ∈ ω⟩ is a sequence contained in 2ω ∖ F such
that x = limi→∞ x i ∈ F, then limi→∞ α(x i) = 1.
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Let ε > 0. By the continuity of the exponential function, there is δ > 0 such that if
t ∈ (−δ, δ), then e t ∈ (1 − ε, 1 + ε). By condition (2), there exists N ∈ ω such that if n ≥
N , then ∣M(log ○(α ↾ Vn))∣ < δ. On the other hand, there exists k ∈ ω such that if i >
k, then x i ∈ ⋃{Vn ∶ n ≥ N}. If i ≥ k, we obtain that ∣log (α(x i))∣ < δ, so log(α(x i)) ∈
(−δ, δ). Thus, α(x i) ∈ (1 − ε, 1 + ε), so ∣α(x i) − 1∣ < ε. ∎

We now prove our main result. In our proof, we will use the tree ω<ω of finite
sequences of natural numbers. This includes the concatenation s⌢ i where s ∈ ω<ω

and i ∈ ω, that is, the unique sequence with dom(s⌢ i) = dom(s) + 1, s ⊂ s⌢ i, and
(s⌢ i)(dom(s)) = i.

Proof of Proposition 4.1 Without loss of generality, we assume that C = D = 2ω ,
and we fix some metric ρ on 2ω . By an application of Lemma 4.6, we can assume that
φ and ψ are Lelek functions, that the graph of φ ↾ X is dense in the graph of φ, and
that the graph of ψ ↾ Y is dense in the graph of ψ. After this, apply Theorem 4.2, so
we may assume that φ = ψ. Then ⟨2ω , X , φ⟩, ⟨2ω , Y , φ⟩ ∈ σL, so there are collections
{Xn ∶ n ∈ ω} and {Yn ∶ n ∈ ω} that satisfy the conditions in Definition 3.1. Notice that
since the graphs of φ ↾ X and φ ↾ Y are dense in the graph of φ, it is easy to see that

(∗) if U ⊂ X is open, then

M(φ ↾ U) = sup{M(φ ↾ U ∩ X i)∶ i ∈ ω} = sup{M(φ ↾ U ∩ Yi)∶ i ∈ ω}.

Given s ∈ ω<ω , we construct clopen sets Us and Vs of 2ω , closed nowhere dense
sets Ds and Es of X and Y, respectively, and for every m ∈ ω, a continuous function
βm ∶ 2ω → (0, 1) and a homeomorphism hm ∶ 2ω → 2ω . We abbreviate the composition
hn ○ ⋯ ○ h0 = fn for all n ∈ ω. We will use the Inductive Convergence Criterion
(Theorem 4.5) to make the homeomorphisms converge, so at Step n, we may calculate
the corresponding εn > 0. Our construction will have the following properties:
(a) U∅ = V∅ = 2ω .
(b) For each s ∈ ω<ω , Ds ⊂ Us and Es ⊂ Vs .
(c) For every n ∈ ω and s ∈ ωn , {Us⌢ i ∶ i ∈ ω} is a partition of Us ∖ Ds and {Vs⌢ i ∶ i ∈

ω} is a partition of Vs ∖ Es .
(d) For every n ∈ ω, Xn ⊂ ⋃{Ds ∶ s ∈ ω≤n} and Yn ⊂ ⋃{Es ∶ s ∈ ω≤n}.
(e) For every n ∈ ω and s ∈ ωn+1, diam(Us) ≤ 2−n and diam(Vs) ≤ min{2−n , εn}.
(f) For every n ∈ ω and s ∈ ωn , fn[Ds] = Es .
(g) For every n ∈ ω and s ∈ ωn , hn+1 ↾ Es = idEs .
(h) For every n ∈ ω and s ∈ ωn+1, fn[Us] = Vs .
(i) For every n, k ∈ ω, {s ∈ ωn ∶diam(Us) ≥ 2−k} is finite.
(j) For every n ∈ ω and x ∈ 2ω , ∣log(βn+1(x)/βn(x))∣ < 2−n .
(k) For every n ∈ ω, φ = (βn ⋅ φ) ○ f −1

n .
Let us assume that we have finished this construction, and we claim that f =

limn→∞ fn exists and is a homeomorphism, and f [X] = Y .
First, let x ∈ 2ω and n ∈ ω. If x ∈ ⋃s∈ωn Ds , then fn(x) = fn+1(x) by conditions (f)

and (g). Thus, ρ( fn(x), fn+1(x)) = 0. Otherwise, by (c), there exists t ∈ ωn+1 with x ∈
Ut . By (h), fn(x) ∈ Vt . If x ∈ Dt , by (f) and (b), fn+1(x) ∈ Et ⊂ Vt . Otherwise, by (c),
there is i ∈ ω with x ∈ Ut⌢ i , so by (h), fn+1(x) ∈ Vt⌢ i ⊂ Vt . In any case, we obtain that
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fn+1(x) ∈ Vt . So ρ( fn(x), fn+1(x)) < εn by the second part of (e). Thus, ρ( fn , fn+1) <
εn , and we can apply the Inductive Convergence Criterion to conclude that f is well
defined and, in fact, a homeomorphism.

Next, let x ∈ X, so x ∈ Xm for some m ∈ ω. Thus, by (d), there exists s ∈ ω≤m such
that x ∈ Ds . Then fdom(s)(x) ∈ Es ⊂ Y by (f). By (g), it inductively follows that fn(x) =
fdom(s)(x) for every n ≥ dom(s). This implies that f (x) ∈ Y . A completely analogous
argument shows that if y ∈ Y , then there is x ∈ X such that f (x) = y. This shows that
f [X] = Y .

By (j), we know that {βn ∶ n ∈ ω} is a Cauchy sequence with the uniform metric,
so β = limn→∞ βn exists and is a continuous function. Using the first part of (e), it is
possible to prove that { f −1

n ∶ n ∈ ω} is also a Cauchy sequence and converges to f −1; this
proof is completely analogous to the proof that f = limn→∞ fn , so we omit it. Then, by
uniform continuity, we infer that limn→∞ βn ○ f −1

n = β ○ f −1. So, using that φ is USC
and (k), we obtain the following:

β(x) ⋅ φ(x) = lim
n→∞

βn(x) ⋅ φ(x)

= lim
n→∞

φ( fn(x))

≤ φ( f (x))
= lim

n→∞
φ( fn( f −1

n ( f (x))))

= lim
n→∞

βn( f −1
n ( f (x))) ⋅ φ( f −1

n ( f (x)))

≤ β(x) ⋅ φ(x).

Thus, φ ○ f = β ⋅ φ. This argument is completely analogous to the one in [3,
Theorem 7.5].

Now, we carry out the construction. Let γ∶ω<ω ∖ {∅} → ω be any function such
that γ ↾ ωm+1 is injective for all m ∈ ω.

Step 0. Let U∅ = V∅ = 2ω , as in condition (a). From (∗), we infer that there exists
k∅ ∈ ω such that

log (M(φ)) − log (M(φ ↾ Xk∅)) < 1 and

log (M(φ)) − log (M(φ ↾ Yk∅)) < 1.

Define D∅ = Xk∅ and E∅ = Yk∅ . Then φ ↾ D∅ and φ ↾ E∅ are Lelek functions, and
∣log(M(φ ↾ E∅)/M(φ ↾ D∅))∣ < 1, so we may apply Theorem 4.2 to obtain a home-
omorphism ĥ∅∶ D∅ → E∅ and a continuous function α∅∶ D∅ → (0,∞) such that
φ ○ ĥ∅ = (φ ↾ D∅) ⋅ α∅ and M(log ○α∅) < 1. After this, apply Theorem 4.3 to find a
homeomorphism h0∶ 2ω → 2ω and a continuous function β0∶ 2ω → (0,∞) such that
h0 ↾ D∅ = ĥ∅, β0 ↾ D∅ = α∅, φ ○ h0 = φ ⋅ β0, and M(log ○α0) < 1.

Notice that since h0 = f0, this implies (k) for n = 0. Let {Vn ∶ n ∈ ω} be a partition
of E∅ into clopen sets with their diameters converging to 0. We may assume that
diam(Vn) < min{ε0 , 1} for every n ∈ ω. We define Un = h←0 [Vn] for each n ∈ ω.
Without loss of generality, we may assume that for all n ∈ ω, diam(Un) < 1. With this,
we have finished Step 0 in the construction.
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Inductive step: Assume that we have constructed the sets Ds , Es for s ∈ ω≤m , the
sets Us , Vs for s ∈ ω≤m+1, the homeomorphisms h i for i ≤ m, and the continuous
functions β i for i ≤ m. Notice that by condition (c), it inductively follows that
⋃{Ds ∶ s ∈ ω≤m} and ⋃{Es ∶ s ∈ ω≤m} are closed because their complement is ⋃{Us ∶
s ∈ ωm+1}, and ⋃{Vs ∶ s ∈ ωm+1}, respectively.

Fix t ∈ ωm+1. First, notice that by (∗) we have that there exists kt ∈ ω such that

log (M(φ ↾ Vt)) − log (M(φ ↾ Vt ∩ Yk t)) < 2−(m+γ(t)).

Notice that φ ↾ Vt ∩ Yk t is a Lelek function.
Recall that (k) says that φ = (βm ⋅ φ) ○ f −1

n . In particular, this implies that φ ↾ Vt =
(βm ⋅ φ) ↾ Ut ○ f −1

n ↾ Vt ; from this, we infer the following. First, using (∗), we may
assume that kt ∈ ω is such that

log (M(φ ↾ Vt)) − log (M(φ ↾ Vt ∩ fm[Xk t ])) < 2−(m+γ(t)).

Moreover, φ ↾ Vt ∩ fm[Xk t ] is a Lelek function.
So define Dt = Vt ∩ fm[Xk t ] and Et = Vt ∩ Yk t . Then φ ↾ Dt and φ ↾ Et are Lelek

functions, and ∣log(M(φ ↾ Et)/M(φ ↾ Dt))∣ < 2−(m+γ(t)), so we may apply Theorem
4.2 to obtain a homeomorphism ĥt ∶ Dt → Et and a continuous function α̂t ∶ Dt →
(0,∞) such that φ ○ ĥt = φ ⋅ α̂t and M(log ○α̂t) < 2−(m+γ(t)). Then apply Theorem
4.3 to find a homeomorphism ht ∶Vt → Vt and a continuous function αt ∶Vt → (0,∞)
such that ht ↾ Dt = ĥt , αt ↾ Dt = t̂t , φ ○ ht = φ ↾ Vt ⋅ αt and M(log ○αt) < 2−(m+γ(t)).

Let Em = ⋃{Es ∶ s ∈ ω≤m}. Then define

hm+1 = idEm ∪⋃{hs ∶ s ∈ ωm+1},

and by Lemma 4.4, it follows that hm+1 is a homeomorphism. Moreover, define

αm+1 = 1 ↾ Em ∪⋃{αs ∶ s ∈ ωm+1},

and βm+1(x) = αm+1( fm(x)) ⋅ βm(x) for all x ∈ 2ω . By Lemma 4.7, αm+1 is continu-
ous, so βm+1 is continuous.

Now, fix t ∈ ωm+1 again. Write Vt ∖ Et as a union of a countable, pairwise disjoint
collection of clopen sets, all diameters of which are smaller than min{εm , 2−m} and
converge to 0. Let {Vt⌢ i ∶ i ∈ ω} be such partition, and for each i ∈ ω, let Ut⌢ i =
f←m+1[Vt⌢ i]. Without loss of generality, we may assume that for i ∈ ω, diam(Ut⌢ i) <
2−m .

We leave the verification that all conditions (a)–(k) hold in this step of the
induction to the reader. This concludes the inductive step and the proof of this
result. ∎

5 The hyperspace of finite sets of Ec

For a space X, K(X) denotes the hyperspace of nonempty compact subsets of X with
the Vietoris topology. For any n ∈ N, Fn(X) is the subspace of K(X) consisting of
all nonempty subsets that have cardinality less than or equal to n, and F(X) is the
subspace of K(X) of finite nonempty subsets of X.
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Given n ∈ N and subsets U0 , . . . , Un of a topological space X, ⟨⟨U0 , . . . , Un⟩⟩
denotes the collection {F ∈ K(X)∶ F ⊂ ⋃n

k=0 Uk , F ∩ Uk ≠ ∅ for k ≤ n}. Recall that
the Vietoris topology on K(X) has as its canonical basis all the sets of the form
⟨⟨U0 , . . . , Un⟩⟩, where Uk is a nonempty open subset of X for each k ≤ n.

For each n ∈ N, let πn ∶ Xn → Fn(X)be defined by πn(x0 , . . . , xn−1) = {x0 , . . . , xn−1}.
It is known that this function is continuous, finite-to-one, and in fact it is a quotient
[11, Proposition 2.4, part 3].

Lemma 5.1 [15] Let X be a space that is {As ∶ s ∈ S}-cohesive, witnessed by a basis B
of open sets. Consider the following collection of subsets of F(X):

A = {πn[As1 ×⋯× Asn ]∶ n ∈ N, ∀i ∈ {1, . . . , n} (s i ∈ S)}.

Then F(X) is A-cohesive, and the open sets that witness this may be taken from the
collection C = {⟨⟨U1 , . . . , Un⟩⟩∶ ∀i ∈ {1, . . . , n} (U i ∈ B)}.

Before starting the proof, we remind the reader that if X is separable and metriz-
able, then K(X) is also separable and metrizable (see [11, Proposition 4.5, part 2],
[11, Theorem 4.9, part 13]). Thus, with the Vietoris topology, we are not leaving our
self-imposed universe of discourse.

Proposition 5.2 F(Ec) ∈ σE.

Proof According to (2) in [2, Theorem 3.1], there is a witness topology W0 for Ec
and a basis β0 forEc of sets that are compact inW0. LetW1 be the Vietoris topology in
K(Ec ,W0), and defineW = W1 ↾ F(Ec). Let β be the collection of all sets of the form
⟨⟨U0 , . . . , Un⟩⟩ ∩ F(Ec) where n ∈ ω and U j ∈ β0 for each j ≤ n. Moreover, for every
n ∈ ω, let En = Fn+1(Ec). We will now check that these choices satisfy the conditions
in Definition 3.2.

By [11, Proposition 4.13, part 1], we know that W1 is zero-dimensional, so W is also
zero-dimensional. In [14, Proposition 2.2], it was proved that W witnesses that F(Ec)
is almost zero-dimensional. Condition (a) clearly holds.

For (b), fix n ∈ ω. Since Ec is crowded and Fn+1(Ec) is a continuous image of
En+1

c (under the function πn+1 defined above), then Fn+1(Ec) is crowded. Recall
that Fn(X) is always closed in K(X) for any topological space X and all n ∈ N [11,
Proposition 2.4, part 2]. Thus, we only need to show that Fn+2(Ec) ∖ Fn+1(Ec) is
dense in Fn+2(Ec); this is well known, but for the reader’s convenience, we give a
short proof. Since Ec has no isolated points, then the set D of all x ∈ En+2

c such that
if i , j ≤ n + 2 and i ≠ j, then x(i) ≠ x( j) is easily seen to be dense in En+2

c . Then
πn+2[D] = Fn+2(Ec) ∖ Fn+1(Ec) is dense in Fn+2(Ec). This proves (b).

Moreover, Fn+1(Ec) is W-closed in F(Ec) for all n ∈ ω, which implies (c). Let
S = {0} and A0 = Ec . The collection A from Lemma 5.1 is equal to {Fn+1(Ec)∶ n ∈
ω}. Thus, by Lemma 5.1, we obtain (d). Finally, it was proved [14, Proposition 3.4]
that if U ∈ β and n ∈ ω, then U ∩Fn+1(Ec) is compact in W ↾ Fn+1(Ec), which
implies (e). ∎

Corollary 5.3 F(Ec) ≈ Q ×Ec .
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Here, it is natural to ask about F(Q ×Ec), and we will prove that this space is
homeomorphic to Q ×Ec as well.

Proposition 5.4 Let E ∈ σE. If n ∈ N, then Fn(E) ∈ σE.

Proof Let W, {En ∶ n ∈ ω}, and β be witnesses of E ∈ σE. By [14, Proposition 2.2],
the Vietoris topology W0 of Fn(E ,W) witnesses the almost zero-dimensionality of
Fn(E). For each m ∈ ω, let Zm = πm[En

m]. We define β0 to be the collection of the sets
of the form ⟨⟨U0 , . . . , Uk⟩⟩ where k < ω and U i ∈ β for every i ≤ k. We claim that W0,
{Zm ∶ m ∈ ω}, and β0 witness that Fn(E) ∈ σE.

Conditions (a)–(c) are easily seen to follow. By Lemma 5.1, we infer that Fn(E) is
{Fn(Em)∶m ∈ ω}-cohesive, which is (d). Now, let U = ⟨⟨U0 , . . . , Uk⟩⟩ ∈ β0 and m ∈ ω.
Notice that U ∩ Zm ⊂ ⟨⟨U0 ∩ Em , . . . , Uk ∩ Em⟩⟩. Now, by the choice of β, we know
that U i ∩ Em is compact in W for every i ≤ k. Thus, the set ⟨⟨U0 ∩ Em , . . . , Uk ∩ Em⟩⟩
is compact in W0. Since U ∩ Zm is closed in W0, it is also compact. This proves (e)
and completes the proof. ∎

Proposition 5.5 If E ∈ σE, then F(E) ∈ σE.

Proof Let W, {En ∶ n ∈ ω}, and β be witnesses of E ∈ σE. Let W0 be the Vietoris
topology of F(E ,W). For each m ∈ ω, let Zm = πn[Em

m]. We define β0 to be the
collection of the sets of the form ⟨⟨U0 , . . . , Uk⟩⟩ where k < ω and U i ∈ β for every
i ≤ k. The proof that W0, {Zm ∶ m ∈ ω}, and β0 witness that F(E) ∈ σE is completely
analogous to the proof of Proposition 5.4, and we will leave it to the reader. ∎

Corollary 5.6 If n ∈ N, then Fn(Q ×Ec) ≈ Q ×Ec . Moreover, F(Q ×Ec) ≈ Q ×Ec .

6 The σ-product of Ec

Given a space X, a cardinal κ, and e ∈ X, the support of x with respect to e is the set
suppe(x) = {α ∈ κ∶ x(α) ≠ e}. Then the σ-product of κ copies of X with basic point e
is σ(X , e)κ = {x ∈ Xκ∶ ∣suppe(x)∣ < ω} as a subspace of Xκ. It is known that σ(X , e)κ
is dense in Xκ.

Now, consider X = Ec . Since Ec is homogeneous, the choice of the point e is
irrelevant. Denote σ(Eω

c , e) = σEω
c . Since σEω

c is separable and metrizable, it is
natural to ask the following.

Question 6.1 Is σEc
ω homeomorphic to Q ×Ec?

We were unable to answer this question, but we make some comments. At first,
it seems that it would be possible to prove that σEc

ω ∈ σE using the following
stratification. Given n ∈ ω, define σnEc = {x ∈ Eω

c ∶ suppe(x) ⊂ n}. It is easy to see that
σnEc is closed in Eω

c and homeomorphic to En
c for each n ∈ ω; so, in fact, it is a closed

copy of Ec if n ≠ 0. In fact, using an argument similar to the one in [3, Remark 5.2,
p. 21], it is possible to prove the following.

Lemma 6.2 σEc
ω is {σnEc ∶ n ∈ N}-cohesive.
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Furthermore, a natural witness topology for σEω
c can be obtained by using the

restriction of the product topology of the witness topology for Ec . The reader will not
find it difficult to prove that properties (a)–(d) of Definition 3.2 hold, but property
(e) does not hold. Thus, it is possible that σEω

c is a different type of space from
Q ×Ec . Notice that a negative answer to Question 6.1 implies a negative answer to
Question 3.4.

7 Factors of Q ×Ec

Recall that a space X is a factor of a space Y if there is another space Z such that
X × Z ≈ Y . In [2], the factors of Ec were characterized, and in [3], the factors of E
were characterized. So we found it natural to try to characterize the factors of Q ×Ec .

Lemma 7.1 (a) Q ×Ec does not contain any closed subspace homeomorphic to Eω
c .

(b) Q ×Ec does not contain any closed subspace homeomorphic to E.

Proof Assume that e∶Eω
c → Q ×Ec is a closed embedding. Choose some enumer-

ation Q = {qn ∶ n ∈ ω}. Notice that Fn = e←[{qn} ×Ec] is a closed subset of Eω
c for

every n ∈ ω. By the Baire category theorem, there exists m ∈ ω such that Fm has
nonempty interior in Eω

c . Recall that every open subset of Eω
c has a closed copy of Eω

c
(see the proof of [4, Corollary 3.2]). Thus, this implies that there is a closed copy of Eω

c
in {qm} ×Ec . However, Eω

c is cohesive by [3, Remark 5.2], and every closed cohesive
subset of Ec is homeomorphic to Ec by [2, Theorem 3.5]. This is a contradiction to [4,
Corollary 3.2]. Thus, (a) holds.

Now, assume that e∶E → Q ×Ec is a closed embedding. Again, let Q = {qn ∶ n ∈ ω}
be an enumeration, and let Fn = e←[{qn} ×Ec] for every n ∈ ω. Since e is a closed
embedding, for every n ∈ ω, Fn is homeomorphic to a closed subset of Ec , so it is
completely metrizable. This implies that E is an absolute Gδσ , and this contradicts [3,
Remark 5.5]. This completes the proof of (b). ∎

Theorem 7.2 For a nonempty space E, the following are equivalent:
(1) E × (Q ×Ec) is homeomorphic to Q ×Ec ,
(2) E is a (Q ×Ec)-factor,
(3) there are a topology W on E witnessing that E is almost zero-dimensional, a col-

lection of W-closed nonempty subsets {En ∶ n ∈ ω}, and a basis of neighborhoods
β such that

Proof Condition (1) clearly implies (2).
Next, we prove that (2) implies (3). Since E is a Q ×Ec-factor, there is a space Z

such that E × Z ≈ Q ×Ec . Let W, {Xn ∶ n ∈ ω}, and β be witnesses of E × Z ∈ σE as in
Definition 3.2. Fix a ∈ Z, and let A = E × {a}; we may choose a in such a way that A∩
E0 ≠ ∅. We define En = Xn ∩ A for every n ∈ ω, W0 =W ↾ A, and β0 = {U ∩ A∶U ∈
β}. It is not hard to prove that these sets have the corresponding properties (i)–(iii)
replacing E for A.

Finally, we prove that (3) implies (1). Let W0, {En ∶ n ∈ ω}, and β0 as in item (3)
for E. Let W, {Xn ∶ n ∈ ω}, and β witness that Q ×Ec , as in Lemma 3.1. Let W1 be
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the product topology of ⟨E ,W0⟩ × ⟨Q ×Ec ,W⟩. Notice that En × Xn is W1-closed for
every n ∈ ω. Thus,W1 clearly witnesses that E × (Q ×Ec) is almost zero-dimensional.
Finally, let β1 = {U × V ∶U ∈ β0 , V ∈ β1}.

We claim that W1, {En × Xn ∶ n ∈ ω}, and β1 witness that E × (Q ×Ec) ∈ σE.
Conditions (a)–(c) are easily checked. By [3, Remark 5.2], we obtain that E × (Q ×Ec)
is {En × Xn ∶ n ∈ ω}-cohesive. Finally, given U × V ∈ β1 and n ∈ ω, since U ∩ En is
compact in W0 and V ∩ Xn is compact in W, then (U × V) ∩ (En × Xn) is compact
in W1. This concludes the proof. ∎

Question 7.3 Can we remove the mention of the zero-dimensional witness topology
in Theorem 7.2 by adding the following statement? (4) E is a union of a countable
collection of C-sets, each of which is a Ec-factor.

Lipham has informed us that, however, if we change “C-sets” to “closed sets” in
(4) of Question 7.3, the resulting statement is not equivalent to E being a (Q ×Ec)-
factor. This is because, in [10], he gave an example of an Fσ subset of Ec that is not an
E-factor.

Corollary 7.4 (i) Every Ec-factor is a (Q ×Ec)-factor.
(ii) The space Q is a (Q ×Ec)-factor but is not an Ec-factor.
(iii) Every (Q ×Ec)-factor is an E-factor.
(iv) The space E is an E-factor that is not a (Q ×Ec)-factor.
(v) The space Eω

c is an E-factor that is not a (Q ×Ec)-factor.

Proof For (i), let X be an Ec-factor. By [2, Theorem 3.2], X ×Ec ≈ Ec . Thus, X ×
(Q ×Ec) ≈ Q × (X ×Ec) ≈ Q ×Ec . For (ii), notice that since Q ×Q ≈ Q, then Q is
a (Q ×Ec)-factor, but it is not an Ec-factor because it is not Polish. For (iii), let X
be a (Q ×Ec)-factor. By [3, Proposition 9.1], Ec ×Qω ≈ E. Thus, X ×E ≈ X × (Ec ×
Qω) ≈ X × (Q ×Ec) ×Qω ≈ (Q ×Ec) ×Qω ≈ Ec ×Qω ≈ E. For (iv), it is clear thatE
is an E-factor. However, E is not a (Q ×Ec)-factor because in that case Q ×Ec would
have a closed copy of E and we have proved that this is impossible in Lemma 7.1. For
(v), recall that Eω

c is an E-factor by [3, Corollary 9.3] and it cannot be a (Q ×Ec)-
factor, again by Lemma 7.1. ∎

8 Dense embeddings of Q ×Ec

In this section, we consider when Q ×Ec can be embedded in almost zero-
dimensional spaces as dense subsets. Since every countable dense subset of Ec is
homeomorphic to Q and E2

c ≈ Ec , we obtain the following.

Example 8.1 There is a dense Fσ subset of Ec that is homeomorphic to Q ×Ec .

Moreover, using an analogous argument,Eω
c can be shown to contain dense subsets

that are homeomorphic to Q ×Eω
c , so they are nonhomeomorphic to Q ×Ec by

Lemma 7.1. Thus, we make the following questions.
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Question 8.2 Let X ⊂ Ec be dense and a countable union of nowhere dense C-sets.
If X is cohesive, is it homeomorphic to Q ×Ec?

Question 8.3 Is there a dense Fσ subset of Eω
c that is homeomorphic to Q ×Ec?

Notice that Question 8.2 is related to Question 3.4. Moreover, a positive answer
to Question 6.1 implies a positive answer to Question 8.3. We recall that it is still
unknown whether the hyperspaceK(Ec) is homeomorphic toEc orEω

c (see Question
5.5 of [14]), but now, we know that it has a dense copy of Q ×Ec by Corollary 5.3.
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