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Generalized Equivariant Cohomology and
Stratifications

Peter Crooks and Tyler Holden

Abstract. For T a compact torus and E∗T a generalized T-equivariant cohomology theory, we pro-
vide a systematic framework for computing E∗T in the context of equivariantly stratiûed smooth
complex projective varieties. _is allows us to explicitly compute H∗T(X) as an H∗T(pt)-module
when X is a direct limit of smooth complex projective TC-varieties. We perform this computation
on the aõne Grassmannian of a complex semisimple group.

1 Introduction

Generalized equivariant cohomology theories have received considerable attention
in the modern research literature. Particular emphasis has been placed on cohomol-
ogy computations in the presence of well-behaved equivariant stratiûcations. Indeed,
Atiyah and Bott [1] gave an inductive procedure for computing the equivariant co-
homology of a manifold in terms of the cohomologies of the strata in an equivari-
ant stratiûcation. Kirwan [8] then applied related ideas to a Morse-type stratiûcation
arising from the norm-square of a moment map. A paper by Harada, Henriques, and
Holm [5] subsequently broadened this Atiyah–Bott–Kirwan framework to include
generalized equivariant cohomology calculations via inûnite stratiûcations. _iswork
was partly motivated by a desire to develop a GKM-type theory for the partial �ag va-
rieties of Kac–Moody groups.

Our paper has two principal objectives. _e ûrst is to provide a straightforward,
self-contained account of how to perform generalized torus-equivariant cohomology
computations with a ûnite equivariant stratiûcation of a smooth complex projective
variety. While this is readily deducible from existing work, we believe it might serve
as a convenient reference for other authors. More importantly, however, it provides
the context for the second of our objectives—a computation of the generalized torus-
equivariant cohomology of a direct limit of smooth projective varieties with ûnitely
many T-ûxed points. More speciûcally, we will prove the following theorem.

_eorem 1.1 Suppose that T is a compact torus with complexiûcation TC. Let X0 ⊆
X1 ⊆ X2 ⊆ ⋅ ⋅ ⋅ be a sequence of equivariant closed embeddings of smooth complex projec-
tive TC-varieties, eachwith ûnitelymany T-ûxed points. Assume also that the restriction
maps H∗

T(Xn+1;Z) → H∗
T(Xn ;Z) are surjective. If we deûne X to be the direct limit of

Received by the editors July 30, 2015; revised February 26, 2016.
Published electronically June 22, 2016.
_e ûrst author was supported by NSERC CGS-D3 and OGS scholarships during the preparation of

this work.
AMS subject classiûcation: 55N91, 19L47.
Keywords: equivariant cohomology theory, stratiûcation, aõne Grassmannian.

483

https://doi.org/10.4153/CMB-2016-032-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-032-5


484 P. Crooks and T. Holden

the varieties Xn in their classical topologies, then

H∗
T(X;Z) ≅ ∏

x∈XT
H∗

T(pt;Z)

as H∗
T(pt;Z)-modules.

Whilemuch of our workwas inspired by [5], there are some important distinctions
to be made. In [5], the authors ûrst work in the context of a topological group G and
a fairly general stratiûed G-space X. Among other things, they provide some con-
ditions on the stratiûcation that explicitly determine the generalized G-equivariant
cohomology of X in terms of the cohomologies of the strata. By contrast, we deal
with stratiûcations only in the context of a compact torus T and a smooth complex
projective TC-variety Y . We instead try to emphasize that the task of computing the
generalized T-equivariant cohomology of Y (and also direct limits of varieties Y) is
especially simple.

Let us brie�y outline the structure of this paper. Section 2 begins with a brief
overview of T-ring spectra and how they give rise to generalized T-equivariant coho-
mology theories E∗T . Recognizing that our arguments make extensive use of equivari-
ant Euler classes, we include a short discussion of complex oriented theories. Also
included in Section 2 are brief descriptions of the three theories to which we will
sometimes restrict our attention: ordinary equivariant cohomology H∗

T , (complex)
equivariant K-theory K∗

T , and equivariant complex cobordism MU∗
T .

Section 3 is devoted to understanding the E∗T(pt)-module structure of E∗T(X),
where X is a T-space ûltered by smooth complex projective TC-varieties with ûnitely
many T-ûxed points. We begin with Subsection 3.1 in which _om–Gysin sequences
are used to compute the generalized T-equivariant cohomology of a ûnitely strati-
ûed smooth complex projective TC-variety. In 3.2, we specialize to the case where
our variety has ûnitely many T-ûxed points and E∗T is one of H∗

T , K
∗
T , and MU∗

T . We
conclude with Subsection 3.3, where we generalize to the case of direct limits of the
varieties considered in Subsection 3.2. _is results in _eorem 1.1.

In Section 4, we give an example of a T-space satisfying the hypotheses of _eo-
rem 1.1, namely the aõne Grassmannian of a simply-connected complex semisimple
group.

2 Generalized Equivariant Cohomology

2.1 General Overview

In the interest of clarity, we will begin with a brief overview of the pertinent parts of
a generalized equivariant cohomology theory. Let T denote a ûxed compact torus,
and deûne a T-space to be a compactly generated weak Hausdorò topological space
X endowed with a continuous action of T . _ese spaces form the objects of a category
CT , whose morphisms are T-equivariant continuous maps. While this is precisely the
category onwhichwewould like to deûne our generalized T-equivariant cohomology
theories, some of our arguments will be more transparent in the framework of the
homotopy category of T-equivariant spectra.
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Fix a complete T-universe, namely a real orthogonal T-representationU of count-
ably inûnite dimension, such that U contains inûnitely many copies of each ûnite-
dimensionalT-representation. Recall thatT-spectra indexed on1U (see [6,Deûnition
9.4.1]) form a category, TSU . Also, there is a suspension functor Σ∞∶ (CT)∗ → TSU ,
where (CT)∗ is the category of based T-spaces. In this way, based T-spaces yield T-
spectra, and we will sometimes make no distinction between a based T-space X and
its suspension spectrum Σ∞(X).

_e functor Σ∞ is one of a family of suspension functors (CT)∗ → TSU indexed
by ûnite-dimensional real T-representations. Let V be one such representation, and
denote by SV its one-point compactiûcation with base point at inûnity. Note that
the action of T on V extends to an action on SV that ûxes the basepoint. Smash-
ing against these spheres generalizes the usual suspension process, deûning a functor
ΣV ∶ (CT)∗ → (CT)∗ by

ΣV(X) ∶= SV ∧ X .
If V ⊆ W is an inclusion of ûnite dimensional T-representations, we deûne the

relative suspension of a based T-space X to be

(Σ∞V (X))(W) ∶= ΣV⊥(X),
where V⊥ is the orthogonal complement of V in W . If V does not include into W ,
we deûne (Σ∞V (X))(W) to be a point. _e spaces {(Σ∞V (X))(W)}W constitute a
T-prespectrum and therefore determine a T-spectrum Σ∞V (X). Furthermore, X ↦
Σ∞V (X) deûnes a functor Σ∞V ∶ (CT)∗ → TSU . One may use this functor to deûne
desuspensions of representation spheres:

S−V ∶= Σ∞V (S0).
IfW is another ûnite-dimensional T-representation, we set SW−V ∶= SW ∧ S−V . _is
gives us a T-spectrum Sα for each α in the representation ring RO(T ;U) (see [10]).

2.1.1 Cohomology via spectra

We have developed the machinery necessary to explain how generalized T-equivari-
ant cohomology theories arise from T-spectra. Denote by hTSU the stable homo-
topy category of T-spectra obtained by inverting the weak equivalences in TSU . Fix
a T-spectrum E, and deûne a functor Ẽ0

T ∶ hTSU → Z-mod by associating with each
T-spectrum F the abelian group [F , E] ∶= Hom(F , E) of morphisms in hTSU . One
can extend Ẽ0

T to an RO(T ;U)-graded functor by setting

(2.1) ẼαT(F) ∶= [S−α ∧ F , E], α ∈ RO(T ;U).
We will be primarily interested in the underlying Z-graded functor. More explic-

itly, if n ∈ Z, then Ẽn
T ∶ hTSU → Z-mod is deûned via (2.1) by setting α equal to the ap-

propriately signed ∣n∣-dimensional trivial T-representation. _e resulting Z-graded
functor Ẽ∗T then restricts to a reduced generalized T-equivariant cohomology theory
on (CT)∗, with the associated unreduced theory E∗T on CT given by

E∗T(X) ∶= Ẽ∗T(X+).
1We will henceforth assume that all T-spectra are indexed on U.
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Here, X+ is the T space formed by taking a disjoint union of X and an additional base
point.

If E is additionally a commutative T-ring spectrum [10, Chapter XII], then E∗T
take values in the category CRingZ ofZ-graded commutative rings. We then have the
following deûnition of a generalized T-equivariant cohomology theory suitable for
our purposes.

Deûnition 2.1 A generalized T-equivariant cohomology theory is a Z-graded con-
travariant functor E∗T ∶CT → CRingZ resulting from a commutative ring T-spectrum
E as indicated above.

2.1.2 Additional Structure

Given a commutative T-ring spectrum E and a T-space X, the map X → pt yields
a morphism E∗T(pt) → E∗T(X) of Z-graded commutative rings. _is map renders
E∗T(X) a module over the ring E∗T(pt).
A second consideration concerns equivariant _om and Euler classes and requires

that we take E∗T to be a complex oriented theory [3]. In more detail, suppose that ξ
is a T-equivariant complex vector bundle of rank n over a T-space X, and let Th(ξ)
denote the associated _om space. _ere exists a T-equivariant _om class uT(ξ) ∈
Ẽ2n

T (Th(ξ)) that shares many of the properties of its non-equivariant counterpart,
such as being natural under pullbacks and multiplicative over Whitney sums.
Associated to the_omclass is the Euler class, deûned as follows. If z∶X+ → Th(ξ)

is the zero section of the natural projection, deûne eT(ξ) ∈ E2n
T (X) as

eT(ξ) ∶= z∗(uT(ξ)) ∈ Ẽ2n
T (X+) = E2n

T (X).
Finally, one says that E∗T is a complex stable ring theory if for each ûnite-dimen-

sional complex T-representation V , there exists a class αV ∈ ẼdimR(V)
T (SV) with the

property that multiplication by αV deûnes an isomorphism Ẽ∗T(X) → Ẽ∗T(SV ∧ X)
for all T-spaces X. Setting X = S0 implies that Ẽ∗T(SV) is freely generated by αV as a
module over E∗T(pt).

We note that every complex oriented theory is a complex stable ring theory[3].

2.2 Important Examples

Despite having discussed generalized equivariant cohomology theories in the abstract,
wewill sometimes emphasize three important generalizedT-equivariant cohomology
theories: (ordinary) equivariant cohomology H∗

T , (complex) equivariant K-theory
K∗

T , and equivariant complex cobordism MU∗
T . With this in mind, it is prudent to

recall the following proposition.

Proposition 2.2 Assume that E∗T is one of H∗
T , K

∗
T , and MU∗

T . If V is a ûnite-
dimensional complex T-representation, then E∗T(SV) is free and of rank one as amodule
over E∗T(pt), and it vanishes in odd grading degrees.

We include a brief summary of those parts of each theory that will later prove
relevant.
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2.2.1 Ordinary Equivariant Cohomology

We denote by ET → ET/T = BT the universal principal T-bundle, characterized by
the property that ET is a contractible space on which T acts freely. If X is a T-space,
then the product X × ET carries a T-action and we may form the Borel mixing space

XT ∶= (X × ET)/T .

We then deûne the ordinary T-equivariant cohomology of X (with integer coeõ-
cients) to be

H∗
T(X) ∶= H∗(XT ;Z),

the integral cohomology of XT . Of course, H∗
T arises from the Eilenberg–MacLane

T-spectrum [10, Chapter XIII].
_ere is a natural ring isomorphism between the base ring H∗

T(pt) and
SymZ(X∗(T)), the symmetric algebra of the weight lattice X∗(T) of T . Indeed, a
weight µ∶T → S1 yields an associated line bundle

L(µ) ∶= ET ×C
(α, z) ∼ (tα, µ(t)z) → BT ,

where t ∈ T and (α, z) ∈ ET×C. _e ring isomorphism then associates to µ ∈ X∗(T)
the ûrst Chern class c1(L(µ)) ∈ H2(BT ;Z) = H2

T(pt).

2.2.2 Equivariant K-Theory

Our treatment follows that given in [14]. Recall that for a compact T-space X, K0
T(X)

is deûned to be the Grothendieck group of the category of T-equivariant complex
vector bundles over X. _e operation of taking the tensor product of equivariant vec-
tor bundles renders K0

T(X) a commutative ring. One extends the deûnition of K0
T

to a deûnition of Kn
T(X) for X locally compact and n any integer. By virtue of Bott

periodicity, there are natural Z-module isomorphisms Kn
T(X) ≅ Kn+2

T (X), n ∈ Z. In
particular, if n ∈ Z, then K2n

T (pt) is naturally isomorphic to (the underlying abelian
group of) the representation ringR(T) ofT . Note thatR(T) is freely generated overZ
by {eµ ∶ µ ∈ X∗(T)}, where eµ ∈ R(T) denotes the class of the one-dimensional com-
plex T-representation of weight µ. Furthermore, K2n+1

T (pt) = K−1
T (pt) = 0. Hence,

we shall identify K∗
T(pt) as a Z-graded abelian group with R(T)⊕2Z. If we multi-

ply elements in the grading components of the latter as elements of R(T), then this
becomes an isomorphism of Z-graded commutative rings.

It will later be necessary to discuss the T-equivariant K-theory of spaces that are
not locally compact. To encompass this larger class of spaces, we will deûne T-equi-
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variant K-theory via its ring T-spectrum [10, Chapter XIV].

2.2.3 Equivariant Complex Cobordism

Our discussion of the equivariant complex cobordism follows that of [10, 15]. As in
Section 2, ûx a complete T-universe U and let BUT(n) denote the Grassmannian of
complex linear n-planes inU. _is Grassmannian comes equippedwith a tautological
line bundle ξTn → BUT(n), which is well known to serve as a model for the universal
complex n-plane bundle. If V is a ûnite-dimensional complex T-representation, let
ξTV = ξTdimC(V). One then forms Th(U), an R(T)-indexed pre-spectrum whose V-th
entry is Th(ξTV). _e spectriûcation of Th(U) yields the spectrum MUT .

3 Cohomology and Stratifications

Herein we examine how to deduce the E∗T(pt)-module structure for spaces that ad-
mit equivariant stratiûcations. When there are only ûnitely many strata, the process
amounts to inductively adding strata and will terminate a�er ûnitely many steps. We
explore this case further in Section 3.2 using a natural stratiûcation of a smooth pro-
jective TC-variety admitting ûnitely many T-ûxed points.

Section 3.3 then provides a generalization of Section 3.2, replacing smooth projec-
tive TC-varieties with direct limits thereof.

3.1 Finite Stratifications

_roughout this section let T be a compact torus with complexiûcation TC, and as-
sume that E∗T is a complex oriented generalized equivariant cohomology theory.

Deûnition 3.1 Let X be a smooth complex projective variety on which TC acts
algebraically. A T-equivariant stratiûcation of X consists of a ûnite partially ordered
set B and a collection {Xβ}β∈B of pairwise disjoint smooth T-invariant locally closed
subvarieties of X satisfying

(i) X = ⋃β∈B Xβ , and
(ii) Xβ = ⋃γ≤β Xγ for all β ∈ B.

Example

Examples of Deûnition 3.1 include Bruhat cell decompositions of partial �ag varieties.
More precisely, suppose that TC is a maximal torus of a connected, simply-connected
complex semisimple group G. Suppose further that TC ⊆ B ⊆ P, where B and P are
Borel and parabolic subgroups of G, respectively. Let W denote the Weyl group and
WP the subgroup ofW associated with P. One has the partial �ag variety X = G/P, on
whichG acts algebraically by le�-multiplication. _e T-ûxed points of X are naturally
indexed by W/WP . Also, each B-orbit contains a unique T-ûxed point, giving the
Bruhat decomposition

X = ⊔
u∈W/WP

BuP/P.
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For each u ∈ W/WP , set Xu ∶= BuP/P. Endowing W/WP with the Bruhat order, one
has the closure relations

Xu = ⊔
v≤u

Xv .

Hence, {Xu}u∈W/WP is a T-equivariant stratiûcation of X.
Fix a smooth complex projective TC-variety X and let {Xβ}β∈B be a given equi-

variant stratiûcation. For each ûxed β ∈ B, let Nβ → Xβ denote the normal bundle of
Xβ in X and let d(β) denote its rank. _e bundle Nβ has a T-equivariant _om class
uT(β) ∈ Ẽ2d(β)

T (Th(Nβ)) and an associated Euler class eT(β) ∈ E2d(β)
T (Xβ).

_eorem 3.2 Assume that for each β ∈ B, E∗T(Xβ) is a free module over E∗T(pt), and
that eT(β) is not a zero-divisor in E∗T(Xβ). _ere is an isomorphism

E∗T(X) ≅ ⊕
β∈B
E∗T(Xβ)

of E∗T(pt)-modules.

Proof Following [1], we deûne a subset J ⊆ B to be open if whenever β ∈ J and γ ∈ B
satisfy β ≤ γ, we have γ ∈ J. _is deûnition has the desirable property that if J ⊆ B is
open, then

XJ ∶= ⋃
β∈J

Xβ

is an open subset of X.
Choose a maximal element β1 ∈ B and set J1 ∶= {β1}, an open subset of B.

We inductively deûne subsets Jk ⊆ B, k ∈ {2, . . . , ∣B∣}, by the condition that Jk =
{β1 , . . . , βk} with βk a maximal element of B ∖ Jk−1. By construction, Jk is open for
all k.

We have graded E∗T(pt)-module isomorphisms

(3.1) E∗T(XJk , XJk−1) ≅ E∗T(Th(Nβk)) ≅ E∗−2d(βk)
T (Xβk),

the second being the_om Isomorphism (see [10],_eorem 9.2). Using (3.1), the long
exact sequence of the pair (XJk , XJk−1) takes the form
(3.2)
⋅ ⋅ ⋅ Ð→ E i−2d(βk)

T (Xβk)
ϕÐ→ E i

T(XJk) Ð→ E i
T(XJk−1) Ð→ E i−2d(βk)+1

T (Xβk) Ð→ ⋅ ⋅ ⋅ .
If E i

T(XJk) → E i
T(βk) is the restriction map, the composition

E i−2d(βk)
T (Xβk)

ϕÐ→ E i
T(XJk) Ð→ E i

T(Xβk)
is equivalent to multiplication by the equivariant Euler class eT(βk). As eT(βk) is
not a zero divisor, the composition is injective, forcing ϕ to be injective. Hence, (3.2)
degenerates to the short exact sequence

(3.3) 0Ð→ E∗−2d(βk)
T (Xβk) Ð→ E∗T(XJk) Ð→ E∗T(XJk−1) Ð→ 0

of E∗T(pt)-modules. Using (3.3) and induction, we will prove that

(3.4) E∗T(XJk) ≅ ⊕
ℓ≤k
E∗T(Xβℓ)

for all k ∈ {2, . . . , ∣B∣}, from which the theorem will follow.
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In the base case k = 2, our short exact sequence is

0Ð→ E∗−2d(β2)
T (Xβ2) Ð→ E∗T(XJ2) Ð→ E∗T(Xβ1) Ð→ 0.

_is sequence splits by virtue of the fact that E∗T(Xβ1) is a free E∗T(pt)-module. Hence,

E∗T(XJ2) ≅ E∗T(Xβ1) ⊕ E∗T(Xβ2).

Assume now that (3.4) holds for some k ≤ ∣B∣ − 1 and replace k with k + 1 in (3.3)
to obtain the sequence

(3.5) 0Ð→ E∗−2d(βk+1)
T (Xβk+1) Ð→ E∗T(XJk+1) Ð→ E∗T(XJk) Ð→ 0.

By assumption, E∗T(XJk) is free, so (3.5) splits. Hence, (3.4) holds if we replace k with
k + 1, and our induction is complete.

Remark _e isomorphism in _eorem 3.2 does not respect the Z-gradings of
E∗T(X) and⊕β∈B E∗T(Xβ). To compensate for the degree-shi� of 2d(β) appearing in
(3.3), one can identify E∗T(Xβ) as an E∗T(pt)-module with the principal ideal ⟨eT(β)⟩
generated by eT(β). _is gives us an isomorphism

E∗T(X) ≅ ⊕
β∈B

⟨ eT(β)⟩

on the level of both E∗T(pt)-modules and Z-graded abelian groups.

3.2 The Case of Finitely Many Fixed Points

_e approach outlined in Section 3 can be combined with a suitable Białynicki–Birula
stratiûcation to yield the E∗T-module structure of a smooth complex projective TC-va-
riety with ûnitely many T-ûxed points. More explicitly, we will prove the following
theorem:

_eorem 3.3 Suppose that E∗T is one of H∗
T , K

∗
T , and MU∗

T . If X is a smooth
complex projective TC-variety with ûnitely many T-ûxed points, then E∗T(X) is a free
E∗T(pt)-module of rank ∣XT ∣.

For the duration of this section, we will assume that everything is as given in the
statement of _eorem 3.3.

Lemma 3.4 _ere exists a coweight λ∶C∗ → TC with the property that the ûxed
points of the resulting C∗-action on X are precisely the T-ûxed points.

Proof Choose a coweight λ such that for every w ∈ XT and weight µ∶TC → C∗ of
the isotropy representation TwX, the pairing ⟨λ, µ⟩ is non-zero. _is coweight yields
an algebraic action ofC∗ on X, and we suppose that Y is an irreducible component of
XC∗ . Note that Y is a smooth closed TC-invariant subvariety of X. By the Borel Fixed
Point_eorem, Y has a T-ûxed point y. Since TyY is precisely the trivial weight space
of the C∗-representation on TyX, our choice of λ implies that TyY = {0}. It follows
that Y = {y}, giving the inclusion XC∗ ⊆ XT .
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Now, select λ∶C∗ → TC as in Lemma 3.4. Givenw ∈ XC∗ = XT , one has the smooth
locally closed subvariety

Xw ∶= {x ∈ X ∶ lim
t→0

(λ(t) ⋅ x) = w} .

_e Xw constitute a Białynicki–Birula stratiûcation [2], a T-equivariant stratiûca-
tion of X. Furthermore, Xw is T-equivariantly homeomorphic to the T-submodule
(TwX)+ of TwX spanned by the weight vectors whose weights have strictly positive
pairing with λ. In particular, Xw equivariantly retracts onto its T-ûxed point {w} and
we have a ring isomorphism

rw ∶ E∗T(Xw)
≅Ð→ E∗T({w}).

If eT(w) ∈ E∗T(Xw) denotes the T-equivariant Euler class of the normal bundle of Xw
in X, then rw(eT(w)) is the T-equivariant Euler class of the quotient representation
Tw(X)/TwXw → {w}.

Lemma 3.5 Let V be a ûnite-dimensional complex T-representation such that V T =
{0}, viewed as a T-equivariant vector bundle over a point. If E∗T is H∗

T ,K
∗
T , or MU∗

T ,
then the T-equivariant Euler class eT(V) ∈ E∗T(pt) is not a zero divisor.

Proof Note that E∗T(pt) is an integral domain for each of the above three theories.
By virtue of the Whitney sum formula, it therefore suõces to prove that eT(V) is
non-zero when V is one-dimensional.

Let µ ∈ X∗(T) be the (non-zero) weight of V . If E∗T = H∗
T , then eT(V) is the or-

dinary Euler class of the associated bundle ET ×T V → BT . Under the usual ring iso-
morphism H∗(BT ;Z) ≅ SymZ(X∗(T)), this Euler class corresponds to the weight µ.

When E∗T = K∗
T , the equivariant Euler class of a complex T-representation is given

by the alternating sumof its exterior powers inK∗
T(pt)[10, Chapter XIV,_eorem3.2].

Hence, eT(V) = 1 − [V] ∈ K2
T(pt), which is identiûed with 1 − eµ under the isomor-

phism K2
T(pt) ≅ R(T). We thus see that eT(V) /= 0.

In the case of MU∗
T , we simply appeal to [15, _eorem 1.2].

Since the T-ûxed points in X are isolated, zero is not a weight of the representation
TwX/TwXw . By Lemma 3.5, we conclude that rw(eT(w)) is not a zero-divisor in
E∗T({w}), meaning that eT(w) is not a zero divisor. An application of _eorem 3.2
then yields an E∗T(pt)-module isomorphism

E∗T(X) ≅ ⊕
w∈XT

E∗T(Xw).

In particular, E∗T(X) is free of rank ∣XT ∣, proving _eorem 3.3.

3.3 Direct Limits of Projective Varieties

We now provide a generalization of our ûndings in Section 3.2, replacing projective
varieties with direct limits thereof. As before, T denotes a compact torus with com-
plexiûcation TC. For the simplicity of exposition, we will take E∗T to be H∗

T . Now,
suppose that

X0 ⊆ X1 ⊆ X2 ⊆ ⋅ ⋅ ⋅ ⊆ Xn ⊆ ⋅ ⋅ ⋅
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is a sequence of equivariant closed embeddings of smooth complex projective TC-va-
rieties with (Xn)T ûnite for each n ≥ 0. Assume also that each restriction map
H∗

T(Xn+1) → H∗
T(Xn) is surjective. For some context, this last assumption is sat-

isûed by the stratiûed T-spaces considered in [5].
Let X be the topological direct limit of the Xn in their analytic topologies, and

endow X with the induced direct limit topology. Note that X then carries a continuous
action of T . _e following theorem then generalizes _eorem 3.3.

_eorem 3.6 Under the conditions stated above, there is an H∗
T(pt)-module isomor-

phism
H∗

T(X) ≅ ∏
x∈XT

H∗
T(pt).

Proof Since each restriction map H∗
T(Xn+1) → H∗

T(Xn) is surjective, the inverse
system {H∗

T(Xn)}n ofH∗
T(pt)-modules has vanishingMilnor lim←Ð

1. Hence, the canon-
ical map H∗

T(X) → lim←Ðn
H∗

T(Xn) is an isomorphism[6]. It will therefore suõce to
prove that {H∗

T(Xn)}n and {⊕x∈(Xn)T H∗
T(pt)}n are isomorphic as inverse systems

of H∗
T(pt)-modules, where the maps in the latter system are precisely the projection

maps resulting from the inclusions (Xn)T ⊆ (Xn+1)T . We will do this by inductively
constructing H∗

T(pt)-module isomorphisms

ψn ∶H∗
T(Xn) Ð→ ⊕

x∈(Xn)T
H∗

T(pt),

making the diagrams

Dn ∶= H∗
T(Xn+1)

��

ψn+1 // ⊕
x∈(Xn+1)T

H∗
T(pt)

��
H∗

T(Xn)
ψn // ⊕

x∈(Xn)T
H∗

T(pt)

commute.
By _eorem 3.3, we have an H∗

T(pt)-module isomorphism

ψ0∶H∗
T(X0) Ð→ ⊕

x∈(X0)T
H∗

T(pt).

Assume now that we have constructed isomorphisms

ψk ∶H∗
T(Xk) Ð→ ⊕

x∈(Xk)T
H∗

T(pt)

for all k ≤ n so that the diagrams D0 , . . . ,Dn−1 commute. Since the restriction

πn ∶H∗
T(Xn+1) Ð→ H∗

T(Xn)

is surjective, the long exact sequence of the pair (Xn+1 , Xn) degenerates to a short
exact sequence

(3.6) 0Ð→ H∗
T(Xn+1 , Xn) Ð→ H∗

T(Xn+1)
πnÐ→ H∗

T(Xn) Ð→ 0
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of H∗
T(pt)-modules. _eorem 3.3 implies that H∗

T(Xn) is free, so that (3.6) admits
a splitting φn ∶H∗

T(Xn+1) → H∗
T(Xn+1 , Xn). In particular, H∗

T(Xn+1 , Xn) is projec-
tive and ûnitely generated as an H∗

T(pt)-module. Since H∗
T(pt) is a polynomial ring,

the Quillen–Suslin _eorem implies that H∗
T(Xn+1 , Xn) is actually free over H∗

T(pt).
Also, as H∗

T(Xn) and H∗
T(Xn+1) are free of respective ranks ∣(Xn)T ∣ and ∣(Xn+1)T ∣

(by_eorem 3.3), it follows that H∗
T(Xn+1 , Xn) has rank ∣(Xn+1)T ∖ (Xn)T ∣. We may

therefore choose an H∗
T(pt)-module isomorphism

θn ∶H∗
T(Xn+1 , Xn)

≅Ð→ ⊕
x∈(Xn+1)T∖(Xn)T

H∗
T(pt).

_e composite map

H∗
T(Xn+1)

(πn ,φn)ÐÐÐÐ→ H∗
T(Xn) ⊕H∗

T(Xn+1 , Xn)
ψn⊕θnÐÐÐ→ ⊕

x∈(Xn+1)T
H∗

T(pt)

is then an H∗
T(pt)-module isomorphism that we will call ψn+1. By construction, Dn

commutes for this choice of ψn+1, and this completes the proof.

4 The Affine Grassmannian

_e aõne Grassmannian Gr is a space of great interest to geometric representation
theorists (see, for instance, [7, 11]). It is also very closely linked to the study of (alge-
braic) based loop groups (discussed in [9, 12, 13]). Using the work done in the afore-
mentioned papers, we can show that Gr is the perfect candidate for an application of
_eorem 3.6.

4.1 Definition and Filtration

Let G be a connected, simply-connected complex semisimple group. Fix a maximal
torus TC ⊆ G with compact real form TR, as well as a Borel subgroup B containing
TC. TakeW = NG(TC)/TC to be the associated Weyl group.

Let X∗(TC) ∶= Hom(TC ,C∗) and X∗(TC) ∶= Hom(C∗ , TC) be the weight and
coweight lattices, respectively, endowed with their usual pairing

⟨ ⋅ , ⋅ ⟩∶X∗(TC) ⊗Z X∗(TC) Ð→ Z.

_e choice of Borel subgroup yields dominant weights X∗(TC)+ ⊆ X∗(TC) and dom-
inant coweights X∗(TC)+ ⊆ X∗(TC). Take ∆ ⊆ X∗(TC) to be the collection of roots,
and Π ⊆ ∆ to be the subset of simple (positive) roots.

We shall assume that G admits a ûnite-dimensional, faithful, irreducible represen-
tation V(α) of highest weight α ∈ X∗(TC)+. _is allows us to realize G as a Zariski-
closed subgroup of GL(V(α)).
Consider theC-algebrasO ∶= C[t] andK ∶= C[t, t−1], lettingG(O) andG(K) de-

note the O andK-valued points of G, respectively. Set-theoretically, the aõne Grass-
mannian of G is deûned to be the coset space Gr ∶= G(K)/G(O).

Note that the C-vector space V(α) ⊗K admits the ûltration

⋅ ⋅ ⋅ ⊆ V(α) ⊗ t2O ⊆ V(α) ⊗ tO ⊆ V(α) ⊗O ⊆ V(α) ⊗ t−1O ⊆ V(α) ⊗ t−2O ⊆ ⋅ ⋅ ⋅ .
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We thus deûne a function val∶V(α) ⊗K→ Z by

val(u) ∶= max{ k ∈ Z ∶ u ∈ V(α) ⊗ tkO} .

As G(K) acts on V(α) ⊗K by virtue of the inclusion of G into GL(V(α)), we may
deûne Val∶G(K) → Z by

Val(g) ∶= min{val(g ⋅ v) ∶ v ∈ V(α)}.

Given n ∈ Z≥0, we set

G(K)n ∶= { g ∈ G(K) ∶ Val(g) ≥ −n} ,

yielding a ûltration

G(O) = G(K)0 ⊆ G(K)1 ⊆ G(K)2 ⊆ ⋅ ⋅ ⋅ ⊆ G(K)

ofG(K). Note that G(K)n is invariant under the right-multiplicative action ofG(O)
on G(K). Accordingly, we deûne

(4.1) Grn ∶= G(K)n/G(O),

a smooth ûnite-dimensional projective scheme overC. By exhibiting the aõneGrass-
mannian as inductive limit of the schemes {Grn}n∈Z≥0 , we can realizeGr as a projective
ind-scheme. (For a treatment of ind-schemes, the reader might consult the appendix
of [4].)

Of course, we will endow Gr with a topology other than the one it inherits as an
ind-scheme. Namely, we will regard Gr as the direct limit of the varieties {Grn}n∈Z≥0
in their classical topologies.

4.2 The Action of C∗

_ere is a natural “loop rotation” action ofC∗ onG(K). Indeed, the le�-multiplicative
action of C∗ on itself yields a C∗-action on Hom(C∗ ,G) = G(K) by group auto-
morphisms. More concretely, the inclusion G ⊆ GL(V(α)) associates to each point
γ ∈ G(K) an expansion γ = ∑ j∈Z γ j t j , where γ j ∈ End(V(α)) for all j. _e action of
s ∈ C∗ on γ is then given by

s∶∑
j∈Z

γ j t j z→∑
j∈Z

γ j(st) j .

It follows that G(K)n is C∗-invariant for n ∈ Z≥0. In particular, Gr0 = G(O) is
C∗-invariant and theC∗-action descends to an action on Gr that preserves each sub-
variety Grn .

4.3 The Generalized Torus-Equivariant Cohomology of Gr

Consider the compact torus T ∶= TR × S1, where TR is the compact torus ûxed in
Section 4.1. As T is a subgroup of TC × C∗, and the latter torus acts on Gr via the
commuting actions of TC and C∗, we obtain an action of T on Gr.

Note that (4.1) is thus a T-equivariant ûltration. With _eorem 3.6 in mind, it
remains to prove that (Grn)T is ûnite for all n ≥ 0. To this end, let λ ∈ X∗(TC) be a
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coweight, and consider the point in G(K) given by the composition

(4.2) C∗ λÐ→ TC ↪ G ,

where TC ↪ G is the inclusion. Let tλ ∈ Gr denote the class of (4.2) in the aõne
Grassmannian. It turns out (see [11]) that the T-ûxed points of Gr are precisely the tλ ,
for λ ∈ X∗(TC), leading us to prove the following lemma.

Lemma 4.1 For n ≥ 0,

(Grn)T = { twλ ∶ w ∈W , λ ∈ X∗(TC)+ , ⟨λ,w0α⟩ ≥ −n} ,
where w0 ∈W is the longest element. In particular, (Grn)T is ûnite.

Proof Since Grn is G-invariant, one has an induced action of W on (Grn)TC . Be-
cause the actions of G and C∗ commute, theW-action leaves (Grn)TC×C∗ = (Grn)T

invariant. Hence, if µ ∈ X∗(TC) is W-conjugate to λ ∈ X∗(TC)+, then tµ ∈ (Grn)T

if and only if tλ ∈ (Grn)T . Our task is therefore to prove that if λ ∈ X∗(TC)+, then
tλ ∈ (Grn)T if and only if ⟨λ,w0α⟩ ≥ −n.

Suppose that λ ∈ X∗(TC)+, and let v ∈ V(α) be a vector of weight ξ ∈ X∗(TC).
Note that for all t ∈ C∗,

λ(t) ⋅ v = ξ( λ(t))v = t⟨λ ,ξ⟩v .

Hence, if we regard λ as a point in G(K), then
λ ⋅ v = v ⊗ t⟨λ ,ξ⟩ ∈ V(α) ⊗ t⟨λ ,ξ⟩O.

Since V(α) has a basis of weight vectors, it follows that Val(λ) is the minimum of
⟨λ, ξ⟩, where ξ ranges over the weights of V(α). Noting thatw0α is the lowest weight
of V(α), we conclude that Val(λ) = ⟨λ,w0α⟩. _erefore, λ ∈ G(K)n if and only if
⟨λ,w0α⟩ ≥ −n. _is completes the proof.

We can thus apply _eorem 3.6 to compute the module structure of H∗
T(Gr). In-

deed, we have
H∗

T(Gr) ≅ ∏
λ∈X∗(TC)

H∗
T(pt)

as H∗
T(pt)-modules.
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