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We study the flow past a cylinder whose axis undergoes prescribed oscillations, translating
uniformly in a direction transverse to the oncoming flow. We consider modest Reynolds
numbers (Re < 100), for which the flow is two-dimensional; when the cylinder is fixed,
vortices are shed periodically in a so-called 2S pattern. We choose the period of the
prescribed oscillation to be identical to the period of the vortex shedding for a fixed
cylinder. At a fixed Reynolds number of Re = 100, an increase in the amplitude of the
oscillations leads to a change in the topology of the shed vortices: the 2S pattern becomes
a P+S pattern. We employ a space—time discretisation to directly compute time-periodic
solutions of the Navier—Stokes equations and thus demonstrate that the transition between
the two vortex shedding patterns arises through a spatio-temporal symmetry-breaking
bifurcation of the time-periodic 2S solution. The P+S solution exists only for a finite
range of amplitudes, however, and eventually reconnects with the 2S solution branch via
a second symmetry-breaking bifurcation. There are ranges of amplitudes over which the
system is bistable and both 2S and P+S could, in principle, be seen in experiments. As the
Reynolds number is reduced, the 2S and P+S branches disconnect, but a bistable region
remains until the isolated P+S solutions ultimately disappear, leaving only the 2S solution.
The inferred stability of the various time-periodic solution branches is confirmed through
time integration of the Navier—Stokes equations. Finally, we illustrate the evolution of the
vorticity field along the solution branches.
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1. Introduction

It is common to observe that an increase in the Reynolds number causes fluid flows to
pass through a sequence of distinct regimes, the transition between which is accompanied
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(or even defined) by the appearance of new features in the flow field. Such transitions can
arise via one of two scenarios: (i) the evolution of a single solution of the Navier—Stokes
equations that leads to quantifiable, discrete changes to the topology of its (possibly
‘complicated’) flow field; or (ii) bifurcations of the Navier—Stokes equations through
which additional solutions with distinct new features arise, disappear or change stability
(see, e.g. Crawford & Knobloch 1991). The distinction between these different scenarios
is not just of theoretical interest but can also be exploited in practical applications.

Examples of scenario (i) include the development of a ‘recirculation zone’ in the centre
of a fluid-filled cylinder with a rotating endwall (see, e.g. Escudier 1984; Tsitverblit 1993;
Gelfgat, Bar-Yoseph & Solan 1996), and the onset of flow separation in the flow past a
stationary circular cylinder (see, e.g. Brgns ef al. 2007). Examples of scenario (ii) include
symmetry breaking in the flow through a channel with a sudden expansion where the
symmetric flow becomes unstable and the flow attaches to one of the sidewalls (see, e.g.
Fearn, Mullin & Cliffe 1990). A second example is the occurrence of a symmetry-breaking
Hopf bifurcation in the flow past a stationary cylinder, which ultimately leads to the
formation of the famous von Kdrman vortex street in which vortices are shed periodically
behind the cylinder. The fact that this transition arises via scenario (ii) explains why the use
of splitter plates (which suppress the symmetry breaking, and thus stabilise the otherwise
unstable steady symmetric flow) can delay the onset of vortex shedding (Bearman 1965;
Unal & Rockwell 1988).

The flow past a cylinder is a case in which the transition between different flow
regimes with an increase in the Reynolds number is particularly well documented (see,
e.g. Barkley & Henderson 1996; Williamson 1996a,b; Jackson 1987). The problem is of
practical interest because the periodic vortex shedding causes the cylinder to experience
an alternating lift force which acts transverse to the flow direction (Koopmann 1967). If
the cylinder is elastic the resulting fluid—structure interaction can cause large-amplitude
oscillations which can be highly detrimental to engineering structures (see, e.g. Blevins
(1977) or Williamson & Govardhan (2004) for reviews), although they can also be used
constructively for energy harvesting from a flow (Antoine, de Langre & Michelin 2016).

A large number of studies have investigated the effect of different types of imposed
oscillations: transverse oscillations (Bishop & Hassan 1964; Koopmann 1967; Morse &
Williamson 2009); streamwise oscillations (Griffin & Ramberg 1976; Cetiner & Rockwell
2001; Al-Mdallal, Lawrence & Kocabiyik 2007); and rotary oscillations (Li, Sherwin &
Bearman 2002; Nobari & Ghazanfarian 2009). A key finding from all of these studies is
that cylinder oscillations can result in the formation of so-called ‘exotic’ wakes which have
much more complicated structures than those observed in the von Karmdn vortex street.
The flow exhibits a sequence of distinct regimes (characterised by the vortex shedding
patterns) as the control parameters (which here include the amplitude .4 and the period, 7,
of the cylinder oscillation) are varied. However, it is not always clear whether the transition
between these different regimes occurs via scenario (i) or (ii).

In a landmark paper, Williamson & Roshko (1988) conducted the first comprehensive
experimental exploration of exotic wakes that develop behind a transversely oscillating
cylinder in a tow tank. The authors identified different vortex shedding patterns in (7, A)
parameter space, and explained the transition between these regimes by analysing the
motion of individual vortices and the interactions between them. This approach could
be interpreted as viewing the transition between the different regimes as arising through a
simple evolution of the flow field; scenario (i).

In the current paper, we revisit the problem of vortex shedding in the flow past
a transversely oscillating cylinder at a modest Reynolds number where the flow is
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Figure 1. (a) Region of parameter space explored by Leontini et al. (2006), and logarithmically spaced
contours of the (b) 2S vorticity field computed for (7,A) = (1,0.5) and (¢) P+S vorticity field for
(T,A) = (1, 1.2). Here, T = 7,/7; is the ratio of the period of the cylinder motion to the period at which
vortices are shed in the flow past a stationary cylinder, and A = A/D is the amplitude of the oscillation,
non-dimensionalised with the diameter of the cylinder. The snapshots in (b,c) show the vorticity field at
the instant when the centre of the cylinder is at the centreline and moves upwards. Red and green contours
correspond to regions of negative and positive vorticity, respectively. The yellow boxes highlight the vortices
shed in a single period. The map in (a) was redrawn using data from Leontini et al. (2006); note the reversed
labelling along the horizontal axis. All results are for Re = 100.

two-dimensional (i.e. independent of the coordinate along the cylinder axis). Leontini et al.
(2006) studied the flow in this regime by solving the unsteady Navier—Stokes equations as
an initial value problem and continuing their computations until a time-periodic solution
was reached. The main focus of their study was to analyse the energy transfer between
the flow and the cylinder but their computations also allowed them to construct a phase
diagram (redrawn in figure 1a) around the region of primary synchronisation where the
period of the cylinder oscillation, 7, is close to the period of vortex shedding behind a
stationary cylinder, 7Z;. In their study, Leontini e al. (2006) identified a spatio-temporally
symmetric wake mode at moderate amplitudes, characterised by the shedding of two
single, counter-rotating vortices per period (2S; illustrated in figure 1b), one above the
centreline and one below, similar to the pattern observed in the von Karmén vortex street.
At larger amplitudes they observed an asymmetric wake mode which features the shedding
of a pair of vortices (P) below the centreline and a single vortex (S) above it, in each
period of the oscillation (P+S; illustrated in figure 1¢). The authors identified the parameter
regimes where 2S and P+S wake modes were observed, as well as the boundary between
these two regimes.

The fact that the transition from the 2S to the P+S mode breaks a symmetry of the
time-periodic flow implies that the transition between these vortex shedding patterns
must occur via a bifurcation. In this paper, we adopt a numerical approach that allows
us to directly compute stable and unstable time-periodic solutions of the Navier—Stokes
equations to identify and analyse the character of this bifurcation and show that the
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transition between the vortex shedding regimes is more complicated than suggested by
figure 1(a).

2. Problem formulation

We study the flow generated by a cylinder that is towed at constant horizontal speed
U along a finite-width channel, while performing imposed transverse oscillations (of
amplitude A and period 7,) about the channel’s centreline. We consider the problem in
a frame of reference moving with the horizontal velocity of the cylinder (as illustrated in
figure 2). All lengths are scaled on the diameter of the cylinder, D, time on the period
of the imposed oscillation, 7,, the velocities on U and the pressure on the associated
viscous scale uld /D, where u is the fluid viscosity. The flow is then governed by the
non-dimensional Navier—Stokes equations

9
Re (Sta—l; (- V)u> — Vp+V2% and V-.u=0, 2.1a,b)

where u and p are the velocity and pressure, respectively, and the Reynolds and Strouhal
numbers are
o UD D

Re = —, St=—, 2.2 ,b
e " UT, (2.2a,b)

where p is the density of the fluid. We impose a uniform inflow, apply no-slip boundary
conditions on the channel walls, and enforce a (pseudo-)traction-free outflow so that

u=1, v=0, atx=—Ljandy==+H/2,

—p+0u/dx=0, 0v/dx=0, atx= Louier- 2.3)
In the moving frame, the centre of the cylinder is located at
Ry (t) = Asin(2mt)ey, 2.4)
and we impose the no-slip condition
u=0, v=2nAStcos(2ni), (2.5)

on its surface. We wish to find time-periodic solutions (with the period of the cylinder
oscillation) of (2.1a,b)—(2.5) and analyse how the flow field evolves with changes in the
amplitude A.

3. Numerical solution

We obtained numerical solutions to the problem described in § 2 using two complementary
finite-element-based approaches, both of which were implemented in our open-source
multi-physics finite-element library oomph-lib (Heil & Hazel 2006). In this section
we briefly employ index notation ((x,y) = (x1,x2); u = (u, v) = (u1, u2)) to keep the
notation compact.

3.1. Approach 1: time integration
The first approach is based on time stepping the governing equations, discretised with
quadrilateral Taylor—-Hood elements in which piecewise linear and quadratic interpolation
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Figure 2. Illustration of the computational domain with the boundary conditions in the moving domain:
tow-tank boundary conditions are employed by enforcing uniform inflow, traction-free outflow and no-slip
boundary conditions on the cylinder and side-walls. The lengths are non-dimensionalised on the cylinder
diameter and time is non-dimensionalised on the period of the cylinder oscillation. The origin of the coordinate
system coincides with the centre of the cylinder when it is on the channel’s centreline.

are used to represent the pressure and the two velocity components as

9 4
ui =y U@y (s1.52) and p =) Py (s1. 52, (3.1a,b)

j=1 j=1

where Uj; and P; represent the time-dependent nodal values of the velocities and pressure,
respectively. The elements’ local coordinates, (s1, s2), are linked to the global Eulerian
coordinates via the isoparametric mapping

9
xi =y X v (s1,52). (3.2)

J=1

Computations were performed on a moving, body-fitted mesh where we adjusted the
nodal positions X;;(7) via an algebraic node update procedure, controlled by the imposed
motion of the cylinder. The mesh motion was incorporated into the governing equations
via an arbitrary Lagrangian—Eulerian formulation, and the time derivatives of the discrete
velocities were discretised with a second-order backward differentiation formula (BDF2).
We employed a standard Galerkin discretisation in which the basis functions xpj[U] and wj[P]
were also used as test functions for the momentum and continuity equations, respectively.
The resulting system of nonlinear algebraic equations arising at each time step was solved
by Newton’s method, using GMRES, preconditioned by oomph-lib’s implementation of
the least-squares commutator (LSC) preconditioner (Elman, Silvester & Wathen 2014), to
solve the associated linear systems. The inversion of a block-diagonal approximation of
the momentum block and the solution of two other smaller linear systems required during
each application of the LSC preconditioner was performed using MUMPS (Amestoy,
Duff & L’Excellent 1998). With this strategy, GMRES typically converges within 20-30
iterations. A solution was judged to be time periodic when the L? norms of the differences
in pressure and the two velocity components at ¢ and ¢ — T all had relative errors less than
10~° per cent.
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Figure 3. Illustration of a space—time mesh with N; = 95 space—time slabs, produced by ‘extruding’ the
time-integration mesh with N,,s = 3 spatial refinements. Panel (b) illustrates how the cylinder motion is taken
into account.

3.2. Approach 2: direct computation of the time-periodic solutions

The second approach is based on the direct computation of the time-periodic solution on
a three-dimensional space—time mesh which we created by extruding the two-dimensional
mesh used for the time integration, taking the motion of the cylinder into account, and
partitioning it into N, space—time slabs by uniformly subdividing the (non-dimensional
unit) time domain into N, sub-intervals; see figure 3. We expanded the velocities and the
pressure as

18 8
ui=y Uj¥"s1,52.53) and p =2 P (s1. 52, 5), (33ab)
j=1 j=1

where Uj; and P; now represent the nodal values of the velocities and pressure in the
space—time mesh. An isoparametric mapping is used to express the global space—time
coordinates in terms of the elements’ local coordinates as

18 18
U U
xi=> X0 s1s2.53). 1= 10150, 53), (3.4a.b)
j=1 j=1
where the (Xj;, T;) are the space—time nodal coordinates. The spatio-temporal basis
functions lI/j[U] and lI/j[P] were constructed by forming tensor products between the

Taylor—-Hood basis functions in the (s, s2)-coordinates, and piecewise linear, globally
continuous basis functions in the s3-coordinate, which align with the spatial and temporal
directions, respectively.

We used a Petrov—Galerkin discretisation in which the spatio-temporal test functions
differ from the spatio-temporal basis functions in the s3 (i.e. temporal) coordinate
direction; in this direction, we used discontinuous, piecewise constant interpolation
(Bonnerot & Jamet 1977; Frederiksen & Watts 1981; Aziz & Monk 1989; Schieweck 2010).
The resulting discretisation is similar to the implicit Crank—Nicolson scheme.

The structure of the space—time mesh allows us to enumerate the degrees of freedom
by their respective temporal position. The matrix resulting from the application of the
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Newton method is then block lower triangular and has non-zero blocks only on the
diagonal and subdiagonal, resulting in a ‘backward-looking” block structure that respects
the directionality of time.

In addition to the boundary conditions (2.3) and (2.5), time periodicity was enforced by
setting

ux,t=1)=ulx,t=0) and px,t=1)=px,t=0), (3.5a,b)

for all nodes on the final time boundary. The imposition of time-periodic boundary
conditions introduces an additional block into the top-right corner of the space-time
system matrix.

This discretisation yields a very large system of nonlinear algebraic equations (involving
up to 16 million unknowns) that were again solved using Newton’s method. The associated
linear systems were solved using GMRES, preconditioned by a block lower triangular
approximation, formed by neglecting the block introduced through the application of
time-periodic boundary conditions. The solution of each of the N; subsidiary systems
involved in the application of this preconditioner was obtained using MUMPS. This
strategy is extremely effective, and typically resulted in the convergence of GMRES
within 25-30 iterations, and enabled us to directly compute the time-periodic solution
at a computational cost that is comparable to that of performing time integration over a
single period.

To obtain the time-periodic solution at the desired Reynolds number we first performed
a computation at a small non-zero Reynolds number and then increased the Reynolds
number in small increments until we reached the target value. This solution was then used
as the starting point for further parameter variations. Certain computations required the
use of a ‘displacement-control’-type approach, discussed in Appendix A.

We characterise the flow by its vorticity field which we computed using the patch-based
flux-recovery technique described in Heil ef al. (2017). Mesh convergence studies were
performed to ensure that all features in the solution were fully resolved; see Appendix B.

4. Results

We revisit the transition between the 2S and P+S vortex shedding patterns in the parameter
regime considered by Leontini et al. (2006). Initially, we set the Reynolds number to
be 100. We focus on the region of primary synchronisation by setting the period of the
imposed cylinder oscillation, 7, to the period at which vortices are shed in the flow past a
stationary cylinder, 7. To determine the corresponding value of the Strouhal number, we
use the Reynolds-Strouhal relationship in Williamson (1988), i.e. St = A/Re + B + CRe,
where A = —3.3265, B = 0.1816 and C = 1.6000 x 10~*. For Re = 100 this results in
a Strouhal number of St = 0.1643. All computations were performed in a channel with
dimensions H = 20, Ly = 10 and L,1.; = 30.

4.1. The transition from 28 to P+S vortex shedding

Figure 4 shows snapshots of the time-periodic vorticity fields computed for three different
amplitudes: A = 1.2 (a—), A = 1.07 (d—f) and A = 0.5 (g—i). These snapshots, and all
other vorticity fields shown in this paper, correspond to the instant when the centre of the
cylinder is at the centreline and moves upwards. The figures in (a,d,g) were computed
using time integration of the initial value problem, continued until our convergence
criterion was met. For A = (.5 the vorticity field shows the characteristic features of the
2S mode; at an amplitude of A = 1.2, the vorticity field adopts the P+S mode. Attempts to
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Figure 4. Contours of the vorticity fields obtained using time integration (a,d,g) and the space—time
methodology (b,e,h and c, f;i).

compute the time-periodic solution at A = 1.07 (i.e. close to the boundary between the
2S and P+S regime; cf. figure 1) were prohibitively expensive — our convergence criterion
was still not satisfied after 200 periods.

Figure 4(b,e,h) shows the corresponding snapshots of the vorticity field obtained using
our space—time discretisation. These solutions were computed using the data from the
solution of the initial value problem at A = 1.2 as the initial guess for the Newton iteration.
The solution at this amplitude value was then used as the initial guess for the Newton
iteration at a slightly smaller value of A. We continued this process, which we denote by
A |, until we reached an amplitude of A = 0.5; see Appendix A for details. As expected, for
A =1.2and A = 0.5, the vorticity fields are identical to those obtained by time integration.
However, the computation based on the space—time discretisation does not suffer from
the presence of the long transients. It was therefore possible to obtain the solution at
the intermediate amplitude of A = 1.07, and figure 4(e) shows that at that amplitude the
vorticity field displays the characteristic features of the P+S mode.

Finally, figure 4(c,f,i) shows snapshots of the vorticity field computed using the
space—time discretisation, but this time performing the continuation process in the
opposite direction, i.e. starting at an amplitude of A = 0.5 and ending at A = 1.2; we refer
to this procedure as A1. At A = 1.07, the vorticity field obtained by the A1 procedure
retains the characteristic features of the 2S solution and clearly differs from the solutions
obtained from the two other computations. Hence, above a particular amplitude, A, there
are multiple time-periodic solutions at the same value of A, implying the occurrence of a
bifurcation. The fact that the 2S solutions obtained from our space—time discretisation for
A > At (e.g. those shown in figure 4c, f) are not observed when solving the initial value
problem suggests that these solutions are unstable.

4.2. The nature of the bifurcation

We will now show that the existence of multiple time-periodic solutions for A > A
arises through an (anti-)symmetry-breaking pitchfork bifurcation at A = A.;. In the
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Figure 5. Sketch of the (a,d) 2S vortex pattern at an instant when (@) the cylinder crosses the x-axis while
moving upwards, and (d) half a period later. The arrows indicate the cylinder’s instantaneous velocity. The
vorticity field at time ¢+ 1/2 is equivalent to that at time 7, if we flip it about the x-axis and reverse the
direction of the vortices (i.e. change the sign of the vorticity). Also shown are illustrations of the vortex pattern
associated with the (b,e) P+S ~, and (c,f) P+S wake mode as the cylinder crosses the centreline and moves
upwards (b,c) and the corresponding vortex patterns resulting from the application of the 2S flip-and-shift
anti-symmetry (e.f). Matching vortex patterns are highlighted in the same colour.

following, we will refer to the 2S wake mode as the base state and denote the corresponding
time-periodic vorticity field by wags. If the P+S solution emerges from this base state via a
symmetry-breaking pitchfork bifurcation, it is possible to write the time-periodic vorticity
field w(x, y, 1), for a given amplitude A, as

wx,y, t;A) = ws(x,y, 1, A) £ €, (A)f(x,y, 1, A), 4.1

where f,, describes the spatio-temporal form of the symmetry-breaking perturbation.
Assuming that f;, is suitably normalised such that ||f,|| = 1, €,(A) then represents the
magnitude of the symmetry-breaking perturbation and we expect that €,(A) =0 for
A < Acis.

To characterise the spatio-temporal symmetry of the 2S base state, we show an
illustration of the associated vortex shedding pattern in figure 5(a,d) at the instant when
(a) the cylinder crosses the x-axis while moving upwards, and (d) half a period later. From
this sketch it is clear that at a given time ¢ the vortex pattern is identical to that half a period
later (‘shift’), if we reflect the vorticity field about the x-axis (‘flip’) and change its sign
(corresponding to an anti-symmetry), implying that the 2S mode has the ‘shift-and-flip’
(anti-)symmetry (Barkley, Tuckerman & Golubitsky 2000; Blackburn, Marques & Lopez
2005)

wys (x,y, 6, A) = —wps (x, —y, t+1/2; A). 4.2)

It is also clear that the P+S solution does not possess this spatio-temporal anti-symmetry
since the reflection of the vorticity field about the x-axis would move the pair of vortices
to the other side of the centreline (see figure 5(b,e), for an illustration). However, we note
that for every time-periodic P+S solution in which the pair of vortices happens to be shed
below the centreline (a pattern we shall refer to as P+S™), there must be another conjugate
time-periodic solution in which the pair is shed above; we denote the latter as P+S*.
Which of these two time-periodic solutions is actually realised depends on the history of
the cylinder motion; for instance, reversing the motion of the cylinder so that it initially
moves downwards rather than upwards will result in a time-periodic solution with a P+S™,
rather than the equivalent P+S™, vorticity pattern.
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The two conjugate solutions are sketched in figure 5(b,c; top row) at the instant when
the cylinder crosses the line y = 0 while moving upwards. figure 5(e, f; bottom row) show
sketches of these vorticity fields when subjected to the ‘shift-and-flip’ anti-symmetry
transformation: each vortex is translated half a wavelength downstream, its position is
flipped about the x-axis, and its direction of rotation is reversed. As mentioned above, this
transformation does not return the vorticity field to its original state. However, the resulting
vorticity field is identical to that of the original state in the conjugate solution, i.e.

wp, g6y, 15 A) = —wp, (X, =y, 1+ 1/2; A), (4.3a)
Wp o s(r 1, 15 A) = —wf, g, =y, 1+ 1/2; A), (4.3b)
where a);r s and wp, ¢ denote the vorticity fields associated with the P+S™ and P+S™

solutions, respectively.
The two conjugate P+S solutions are both described by (4.1), so

wp, (.Y, 1 A) = wos(x,y. 1) £ € (A) fu(x. v, £ A), (4.4)
which implies that
f(l)(x’y’ tyA) :fw(x, _yvt_l_l/z! A) (45)

This shows that the perturbation f;, breaks the ‘shift-and-flip’ anti-symmetry of the 2S
base state by being ‘shift-and-flip” symmetric.
Combining (4.1), (4.2) and (4.5) gives

leafoll =5 lCx,y, : A) + o, =y, 14 1/2: Al (4.6)

so if we normalise f,, such that ||f,| = 1, the amplitude of the (anti-)symmetry breaking
perturbation is given by

(@) = Lo, y, 1; A) + o(x, —y, t + 1/2; )|, (4.7)

which provides a method for computing €,(A) by post-processing the computational
results.

The velocity components, # and v, and the pressure p, can be shown to satisfy
relationships similar to (4.1). Specifically, their constituent parts have the ‘shift-and-flip’
symmetries and anti-symmetries

us (X, v, t; A) = ups (x, =y, t+1/2; Ay, fulx,y,t; A) = —fu(x, =y, t + 1/2; A),

v2s (-xa ya tv A) = —U2s§ (-x’ —)’7 t + 1/25 A) ) fv(x» yv t7 A) =fl)(xv _ya t+ 1/27A)a

pas (X, y, t; A) = pas (x, =y, 1+ 1/2; A), fp(x, y, 5 A) = —fp(x, =y, 1+ 1/2; A).
(4.8)

The magnitude of their symmetry- or anti-symmetry-breaking perturbations can also be
computed from the numerical solution using

€u(A) = £ |l ulx,y, t; A) —u(x, =y, t+ 1/2; A) ||, (4.9a)
€A =1 vy, 5A) + v, =y, 1+ 1/2A) ||, (4.9b)
(A) = i% lp(x,y,t; A) — p(x, =y, t +1/2; A) ||, (4.9¢)

where the + signs correspond to the P+S* branches.
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Figure 6. Bifurcation diagram illustrating the regions of bistability (light grey); regions R and R, occupy the
amplitude ranges [Ap;, Ap1] =~ [1.0680, 1.0855] and [Af2, Apa] & [1.3160, 1.5000], respectively. Black dots
show the locations of bifurcations. Stability properties are indicated using the letters ‘S’ and ‘U’, which denote
stable and unstable solution branches, respectively.

Figure 6 shows a plot of ¢, as a function of the amplitude A. As expected, for
small values of A there is only a single stable 2S solution which is characterised
by €, =0. At A =Ap; ~ 1.0855 two unstable, conjugate branches of P+S solutions
emerge via a subcritical pitchfork bifurcation, with the typical square-root behaviour
€.(A) ~ (Ap; — A)'/2 near the bifurcation. Sufficiently far along each bifurcating branch,
for Ap; &~ 1.0680, a fold bifurcation occurs which results in a change in the stability of the
time-periodic solution. This is consistent with the observation that in our time-dependent
simulations we were unable to obtain time-periodic solutions along the portions of the
P+S branches that lie between the pitchfork and limit points, confirming that the solution
there is unstable. This behaviour, which is also seen in other problems possessing this
bifurcation structure (see, e.g. Henderson & Barkley 1996; Kuznetsov 2013), implies that a
quasi-steady variation in the bifurcation parameter (here the amplitude A) leads to a ‘jump’
from one stable time-periodic solution to another. Furthermore, this indicates that the
transition between the 2S and P+S regimes cannot be characterised by a sharp boundary
(as was implied by the phase diagram of Leontini ef al. 2006 in figure 1). Instead we expect
there to be a region of bistability (/R 1; indicated by the light grey shading in figure 6) within
which stable 2S and P+S wake modes may be observed. Which of these wake patterns is
actually realised depends on the initial conditions.

Leontini et al. (2006) explored amplitude values up to A = 1.2 and identified the vortex
shedding patterns above their transition boundary as P+S solutions. This is consistent with
our bifurcation diagram which shows that in the regime Ap; = 1.0680 < A < 1.2 the P+S
solutions are stable. However, as we increase the amplitude yet further we reach a second
limit point at A = Apy ~ 1.5000. This leads to additional (unstable) branches of P+S™
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and P+S™ solutions for A < Ap,. They reconnect with the 2S solution branch via a second
(subcritical) pitchfork bifurcation at an amplitude value of A = Apy ~ 1.3160; beyond this
point the 2S solution regains stability. Thus there exists a second, much wider band of
amplitude values (R, again identified by light grey shading in figure 6) where stable 2S
and P+S solutions coexist. More importantly, the bifurcation diagram implies that there
are no P+S solutions for A > Aps.

4.3. The evolution of the vorticity field

Having shown that the transition between the 2S and P+S vortex shedding patterns
arises through an (anti-)symmetry-breaking pitchfork bifurcation of the time-periodic
2S solution, we now illustrate how the vorticity field evolves along the various solution
branches in the bifurcation diagram. Specifically, we will show how a repositioning and
reorientation of the vortices leads to the transition between the different vortex shedding
patterns. To facilitate the explanation, we will connect the groups of vortices that are shed
during the same period with white lines and label them with uppercase Roman numerals.

4.3.1. The 28 wake mode

Figure 7 contains snapshots of the vorticity field for several amplitude values along the
2S solution branch, with an indication of the corresponding position in the bifurcation
diagram shown on the right. Filled white circles mark the position of relevant extrema in
the vorticity. Furthermore, we label vortices of particular interest with lowercase Roman
numerals. The same labels are used here and in figure 8 below.

For an amplitude of A = 0.5 (figure 7a) the vorticity field has the characteristic features
of the von Kdrman vortex street behind a stationary cylinder, with two counter-rotating
vortices being shed per period. We refer to these vortices as the primary vortices and use
slightly thicker solid lines to connect them.

As the amplitude of the cylinder oscillation increases, the centres of these primary
vortices move closer to the centreline and the vortices elongate in the cross-stream
direction. Furthermore, the narrow band of vorticity that connects the first clockwise
rotating (red) detached vortex to the cylinder becomes increasingly stretched (as indicated
by the white arrow in figure 7a) and a local extremum in the vorticity develops within
it. This newly created vortex (labelled (i) in figure 7b) detaches from the cylinder and is
advected downstream while its strength decays. In figure 7(b), the labels (ii) and (iii) mark
the position of this vortex one and two periods later, respectively. Vortices (iv) and (v) are
the counterparts of vortices (i) and (ii) below the centreline. Since the vortices below the
centreline have been advected further than their counterparts above (having been created
half a period earlier), the equivalent of vortex (iii) has already decayed so much that its
magnitude has dropped below the threshold used for the visualisation of the vorticity. The
rate at which the vortices decay increases as the amplitude A increases, and in figure 7(c)
only vortex (i) and its counterpart (iv) are still visible.

In the near wake this process results in the formation of a 2P-like vortex structure (using
the classification of Williamson & Roshko 1988) where two pairs of local extrema in the
vorticity (comprising the primary vortices near the centreline and the two weaker ones
above and below) are created per period. In the terminology of Nielsen (2021), the wake
in figure 7(b) therefore has a (2P)2(2S)* vortex pattern, where the vortices shed in the
most recent two periods produce a 2P-like structure and the remaining vortices have a 2S
structure. (However, we note that all the vortices decay at some large-but-finite distance
downstream of the cylinder (see, e.g. Heil ef al. (2017) for the analysis of the von Karmén
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I v

Figure 7. Contours of the vorticity field at different points along the 2S solution branch: (a) A =0.5;
(b) A =1.2; (c) A =1.45. The line graph on the right replicates the upper half of the bifurcation diagram
in figure 6 for the same range of amplitude values (A € [0.50, 1.60]), but only for €,,(A) > 0. The blue markers
and labels show the parameter values associated with the vorticity snapshots (a—c) in the bifurcation diagram.

vortex street behind a stationary cylinder). Therefore, strictly speaking, the vortex street is
not infinitely long, as implied by ‘c0’.)

We note that the 2P-like vortex pattern in the near wake still obeys the shift-and-flip
symmetry of the 2S wake mode, implying that €,(A) = 0. The transition between the
2S and 2P-like vortex structure in the near wake is therefore not associated with any
(symmetry-breaking) bifurcation but simply arises through a continuous evolution of the
vorticity field (i.e. it occurs via scenario (i) discussed in § 1).

4.3.2. P+S wake mode

We now describe the evolution of the vorticity field as we move along the P+S branches.
figure 8(a) shows the vorticity field shortly after the loss of stability (see the corresponding
label in the bifurcation diagram in figure 8g). At this point the structure is still very
similar to that observed on the 2S branch (cf. figure 7b) but as we move further along
the P+S solution branch (figure 8a—c), there is an anti-clockwise reorientation of the
entire 2P-like group of vortices just downstream of the cylinder (group I). Both of its
primary vortices drop below the centreline and rotate relative to each other so that
the clockwise-rotating (red) vortex moves underneath its anti-clockwise rotating (green)
counterpart. Simultaneously, vortex (i) (above the centreline) moves upstream while its
counterpart (iv) (below the centreline) merges with the primary anti-clockwise rotating
(green) vortex and disappears (figure 8d,e). The overall reconfiguration of this group of
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Figure 8. (a—f) Contours of the vorticity field at different points along the P+S~ solution branch. The line
graph at the bottom replicates the upper half of the bifurcation diagram in figure 6, but only for A € [1.00, 1.60]
and €,(A) > 0. The blue markers and labels show the parameter values associated with the vorticity snapshots
(a-f) in the bifurcation diagram.

four vortices continues as it is advected downstream. For A = 1.48 (figure 8d) vortex (ii)
in group II has moved so far upstream that, superficially, it seems to be part of the vortex
group I that was created one period later. The single vortices above the centreline move
much closer together than the corresponding pairs of primary vortices below it and persist
for much longer than in the 2S configuration. This creates the characteristic P+S pattern
with a pair of counter-rotating vortices (which used to be the primary vortices) below the
centreline, and a single vortex above.

For an amplitude of A = 1.48, the rotation of the anti-clockwise rotating (green) primary
vortex around its clockwise rotating (red) counterpart is so significant that in figure 8(d)
the counter-clockwise rotating (green) primary vortex in group III (which was created two
periods earlier) appears to be completely isolated, having moved into what, at a glance,
looks like a gap between groups II and III. Figure 8(d) shows the vorticity field close
to its maximum departure from the 2S solution (as assessed by the magnitude of ¢,).
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The transformation of the vorticity field then reverses as we follow the unstable part of the
P+S solution branch back towards the second pitchfork bifurcation (figure 8e, f) where the
configuration of the vortices returns to that observed on the 2S branch.

4.4. Changes to the bifurcation structure under variations in Re — the creation of the
P+S vortex shedding pattern

The results presented so far were all obtained for a Reynolds number of Re = 100 —
the value used in the two-dimensional time-dependent simulations of Leontini et al.
(2006). We now consider the effect of changing its value by performing additional
simulations at different Reynolds numbers. When performing these computations we
adjusted the value of the Strouhal number according to the formula in Williamson
(1988) so that the frequency of the cylinder oscillation remained close to the shedding
frequency in the corresponding flow past a stationary cylinder. Given that in the limit
Re — 0, where the Navier—Stokes equations become linear, we only have a single, unique
solution, we expect all but one of the solution branches in the bifurcation diagram
shown in figure 6 to disappear as we reduce the Reynolds number. An increase in
the Reynolds number ultimately triggers the onset of three-dimensional instabilities
(see, e.g. Leontini, Thompson & Hourigan 2007) which cannot be captured with our
current setup.

Figure 9(a) shows that, as the Reynolds number is decreased, the two pitchfork
bifurcations connecting the 2S and P+S branches move closer together. They both remain
subcritical and coalesce at (Re, A) &~ (82.0938, 1.3173). Following this coalescence, the
P+S solution branches detach from the 2S solution, resulting in isolated branches
of solutions (‘isolas’) between the two limit points at Ap; and App while the 2S
solution remains stable over the entire range of amplitudes shown. As the Reynolds
number is decreased yet further, the isolas shrink, and finally disappear (at (Re, A) =
(Retrc, Atrc) ~ (77.7049, 1.4248)) in an ‘isola formation centre’ which is associated
with a codimension-2 bifurcation (Janovsky & Plechac¢ 1992; Avitabile, Desroches &
Rodrigues 2012).

Figure 9(b) illustrates this process in more detail by showing how the amplitudes Apj 2
and Afy 2, at which the two pitchfork and fold bifurcations occur, vary with the Reynolds
number. For amplitudes between Ap; and Ap, (red hashed region) the 2S solution is
unstable; for amplitudes between Ar; and Ap; (blue hashed region) there are stable P+S
solutions. The yellow region between the two curves indicates the region of bistability
where two distinct stable vortex shedding patterns exist. The ‘isola formation centre’
corresponds to the point where the limit points coalesce and then vanish, i.e. where
AFI — AF2 g AIFC as Re \ Relpc.

To help describe the process by which the stable and unstable P+S solutions approach
each other as we move towards the ‘isola formation centre’, figure 10 illustrates the
evolution of the vorticity field as we perform a clockwise loop around the P+S isola at
a Reynolds number of Re = 80 > Rejpc (the dashed line in figure 9a). In each of the four
panels, we show in cyan the vorticity field for the parameter value identified by the square
cyan symbol on the isola (shown underneath). For clarity we do not show contour levels
of the vorticity but simply shade regions where the magnitude of the vorticity exceeds
the threshold above which we plotted contour levels in all previous plots (Jw| > 0.225).
In order to indicate how the vortices move and re-orient themselves as we move around
the isola, the grey shaded regions show the same regions at a previous point (identified by
the grey diamond-shaped symbol) on the isola. An animation of this process is provided
in the supplementary material available at https://doi.org/10.1017/jfm.2021.358.
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Figure 9. Illustration of the effect of varying the Reynolds number on (a) the bifurcation diagram, and () the
positions of the pitchfork (thick solid red line) and fold (thick dashed blue line) points. Black dots in (a) show
the locations of bifurcations. The blue hatched region in (b) shows the region where stable P+S solutions exist,
the red hatched region shows where the 2S solution is unstable and the yellow shaded region shows regions of
bistability (i.e. where stable 2S and P+S solution can be found).

Figure 10(a) shows that, as discussed in §4.3.2, an increase in amplitude along the
stable P+S™ branch (moving from A to B) causes the primary vortices to move further
away from the centreline while rotating (in the anti-clockwise direction) around each other.
This process leads to an increase in the asymmetry norm €, which at point B is close to its
maximum value. As we follow the isola further along (from B to C and D; see figure 10b,¢)
we reach the unstable part of the solution branch along which, at larger Reynolds numbers,
the flow field returned to the (now disconnected) 2S solution at the second pitchfork
bifurcation. The general behaviour along this branch remains qualitatively similar to what
we observed in §4.3.2: the two primary vortices move towards the centreline and the
asymmetry norm decreases, with its value at point D being close to its minimum along
the isola. Finally, we return to the stable portion of the solution branch as we move along
the isola from D to A, following the branch that at larger Reynolds number emanated from
the first pitchfork bifurcation on the 2S solution branch. As in that case, the motion and
reorientation of the primary vortices is the opposite of that observed on the downward
portion of the loop: the primary vortices now move away from the centreline and rotate
around each other in the opposite direction; this process is accompanied by an increase in
the asymmetry norm €,.

Overall, the vortices can be seen to perform an oscillatory motion as we move around
the isola. As the Reynolds number decreases, the isola shrinks, causing the amplitude of
this oscillatory motion to decrease and approach zero as Re \( Rejrc, at which point the
stable and unstable P+S solutions all coalesce and then spontaneously disappear. Viewed
from the perspective of an increase in Reynolds number, the P+S vortex shedding mode
spontaneously appears as a time-periodic solution of the Navier—Stokes equations when
the Reynolds number reaches Rejpc. At that particular value of the Reynolds number the
P+S™* and P+S™ solutions exist only for the specific amplitude of A = Ajgc. For Re >
Rerrc, four P+S solutions (two stable, two unstable) exist over a finite range of amplitudes,
Afr1(Re) < A < Apa(Re).
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D
Figure 10. Illustration of the evolution of the vorticity field as we move around the isola representing stable
and unstable P+S solutions for Re = 80 (the dashed line in figure 9a). In each panel the cyan region shows
the vorticity field at the point identified by the cyan square on the isola (shown underneath); the grey region
shows the vorticity at the previous point, identified by the grey diamond. The shaded regions show where the
magnitude of the vorticity exceeds the threshold |w| > 0.225. This is where we plotted contour levels of the
vorticity in all previous plots of the vorticity field.

5. Conclusion

We have investigated the transition from the 2S to the P+S wake mode in the
two-dimensional flow past a transversely oscillating cylinder. We showed that at Re = 100
the transition between these wake modes arises via a spatio-temporal symmetry-breaking
subcritical pitchfork bifurcation of the time-periodic 2S solution when the amplitude of the
cylinder oscillation reaches a critical value, Apj. The bifurcation leads to the generation of
two additional (spatio-temporal symmetry-broken) time-periodic solution branches along
which the vortex shedding pattern changes from the 2S mode to the P+S pattern. Because
of the subcritical character of the bifurcation, the transition between the two wake modes is
hysteretic so that, following the loss of stability of the 2S solution, the flow will ‘jump’ (via
a transient, non-time-periodic transition) towards the fully developed stable P+S mode. A
subsequent reduction in amplitude then leads to a reverse ‘jump’ towards the 2S solution
branch at a slightly lower value, A = Ap; < Ap; where the P+S solution branch reaches a
limit point. Because the P+S solution is unstable along this part of the solution branch,
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it cannot be observed in experiments or in direct numerical simulations based on the
time-integration of the Navier—Stokes equations.

By following the solutions to larger amplitudes, we revealed the existence of a second
limit point on the P+S solution branch at Ap;. The solution branch reconnects with the
28 solution branch at a second subcritical pitchfork bifurcation. This occurs at A = Apy <
Ar>, above which the 2S solution regains stability. Beyond A = Ap», the P+S solution
ceases to exist. This bifurcation structure creates a second, much wider region of bistability
where stable 2S and P+S solutions co-exist.

As the Reynolds number is reduced the two pitchfork bifurcations coalesce and the P+S
solutions become disconnected from the now completely stable 2S solution branch. At
an even smaller Reynolds number the P+S solutions disappear altogether when the isola
shrinks to a point. Below this value, we obtain a single solution of 2S type.

The ‘jump’-like transitions between the stable 2S and P+S solutions explains why the
two vortex shedding patterns can easily be identified in experiments or in time-dependent
numerical simulations. The vorticity field evolves continuously from the 2S to P+S
shedding pattern (as analysed in § 4.3), but this continuous transition occurs along unstable
solution branches. Since these cannot be realised in experiments or in time-dependent
numerical simulations, one can only ever observe fully developed 2S or P+S shedding
patterns. However, the hysteretic nature of the transition (or conversely, the bistability
of the solutions in certain parameter ranges) implies that the boundaries between these
regimes are not sharp.

At Re = 100, the first region of bistability is so narrow that small changes to parameters
(such as the channel height or the oscillation period, both of which were kept constant
here) may suffice to change the criticality of the first pitchfork bifurcation from subcritical
to supercritical. The transition from 2S to P+S shedding would then occur continuously,
but over a very small range of amplitudes.

Motivated by the results of existing time-dependent simulations of the transition
between the two vortex shedding regimes (such as those of Leontini et al. 2006), we
restricted our analysis to solutions that are entrained by the motion of the cylinder, so
that the flow field is time periodic with the same period as that of the cylinder’s imposed
motion. The identification of stable and unstable branches in the bifurcation diagram
does therefore only assess their stability with respect to perturbations with the same
period. However, we employed time-integration-based simulations to confirm that all
the branches that we explicitly labelled as being stable were indeed also stable to other
perturbations.

However, when performing time-dependent simulations at even larger amplitudes
(specifically at values beyond the second limit point), we occasionally observed
time-periodic solutions with larger periods, which are likely to have occurred via a
Neimark—Sacker or torus bifurcation. In fact, it is not inconceivable that the system also
has non-periodic solutions, and the phase diagram shown by Williamson & Roshko (1988)
already contains regions labelled as ‘no synchronised pattern observed’ — albeit at a larger
value of the Reynolds number where the vortex shedding has three-dimensional features.
The computational framework developed for the current study is being extended to study
the transition to such regimes.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2021.358.
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Appendix A. Asymmetry-control continuation

The space—time discretisation of the governing equation leads to a very large system of
nonlinear algebraic equations. We solved these equations by Newton’s method which
requires the provision of a good initial guess for the solution. The basic approach described
in § 4.1 is appropriate for computing the stable part of the 2S solution branch along which
the solution for a given amplitude can be used as the initial guess for a slightly different,
but nearby value. Tracing out the P+S solution branch is more complicated because the
subcritical pitchfork bifurcation implies the existence of multiple solutions with the same
value of the amplitude. Furthermore, following the early parts of the P+S branch actually
requires a reduction in amplitude, while ensuring that the solution remains on the P+S
branch, and does not jump back onto the nearby 2S solution; see figure 6. To compute
these solution branches we employed a ‘displacement control’-type approach which is
widely used in solid mechanics. For this purpose we augmented the residual equations
arising from the space—time discretisation

r(z;A) =0, (A1)

where z € RV is the vector containing the N discrete unknowns from the space—time
discretisation of the Navier—Stokes equations, with the asymmetry-control equation

Fac(z) = €u(z) — €,"%" =0, (A2)

where the constant el * is the prescribed (target) value of the asymmetry norm, and we
treat the amplitude A as an additional unknown. The solution of the (N + 1) equations
(A1)-(A2) by Newton’s method requires the repeated solution of the bordered linear

systems of the form
J b sz \ _( r
(o *)(5)-(0) a3

Here, J is the Jacobian of the original (unbordered) system and

or 07 4¢
b=—, c¢c= .
0A 0z
The entries of the bordering column vector b were computed using a finite-difference
approximation and the entries of the bordering row vector ¢ were computed analytically.
To solve the bordered system in (A3), we used GMRES, preconditioned by the block

upper triangular preconditioner
P:(P” b), (A5)

(Ada,b)

o

where o = cTPl;lb, which can be computed with a single application of the block lower
triangular preconditioner Pj described in § 3. With this strategy, GMRES converged
in 25-30 iterations, i.e. roughly the same number of iterations as it took to solve the
unbordered system.
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Figure 11. The vorticity field in the cylinder wake, computed via time integration at A = 1.2 for successively
more refined meshes; from (a) N,,r = 3 up to (e) N,y = 7 uniform spatial refinements.
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Appendix B. Mesh convergence tests

Figure 11 illustrates the vorticity field for a Reynolds number of 100 and an oscillation
amplitude of A = 1.2, computed using time integration with a mesh obtained with N,,r =
3,...,7 uniform spatial refinements. There are no qualitative differences in the vorticity
field computed with N,,r =35, 6 and 7 uniform refinements. The results shown in this
paper were therefore computed on a mesh with N,,r = 5 uniform spatial refinements,
corresponding to 174,622 unknowns for the time-integration-based simulations, and
16 589 090 unknowns for the space—time simulation (with N; = 95 time slabs).
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