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Abstract
This work delves into advancements in wireless power transfer (WPT) and radiofrequency
(RF) energy harvesting (EH), focusing on on-demand beamforming and wide-dynamic power
range technologies. These innovations promise significant improvements in efficiency and
adaptability for wireless energy systems. For transmitting RF power, on-demand beamforming
enhances power delivery precision by accurately targeting specific devices, minimizing energy
waste, and maximizing received power. This technology is particularly useful in dynamic
environments with constantly changing device positions, ensuring stable power levels and
effective real-time power transfer, such as for mobile device charging. For receiving RF
power, wide-dynamic power range implementation allows EH and WPT systems to adjust
power output across a broad spectrum, optimizing energy use and extending device lifes-
pan. This capability supports scalability, accommodating devices with varied power needs,
also enabling new applications in consumer electronics, healthcare, smart homes, and cities,
and enhancing energy management in smart infrastructures. Additionally, this study explores
three-dimensional (3D)-printable antennas and RF circuitries for battery-free applications.
The versatility of 3D printing allows the creation of complex, efficient, and customizable RF
components, fostering innovative battery-free solutions. Integrating on-demand beamforming
and wide-dynamic power range technologies in EH systems promise improved energy transfer
efficiencies, reduced losses, and sustainable, cost-effective wireless power systems.

Introduction

Thenext generation of Internet-of-Things (IoT) devices, and in general wireless sensor networks
(WSNs), are composed ofmany sensors dealing with low power consumption requirements [1].
In this scenario, where devices need to be kept alive as long as possible to avoid unnecessary bat-
tery waste, radiofrequency (RF) energy harvesting (EH) is one of themost promising factors for
future WSNs [2–4]. Literature has already presented in past years many solutions based on EH
systems to correctly supply sensors or devices for applications such as biomedical [5], structural
and ambient monitoring [6], and factory management [7]. In outdoor or dynamic scenarios,
devices often need to communicate over varying distances and through different environments,
leading to fluctuations in signal strength. In that sense, rectifiers are key components to convert
RF power into direct current (DC), and preview the possibility to broaden the power operat-
ing range according to the environmental conditions; they are usually composed of diodes and
microstrip matching sections [8–10], where circuit parameters are designed by using harmonic
balance (HB)-based computer-aided design (CAD)methods. Due to microstrips’ narrow-band
behavior and the rectifiers’ nonlinear effects, common RF EH systems exhibit optimal perfor-
mance only for a prescribed power range. Consequently, high values of the RF-to-DC power
conversion efficiency (PCE) can be effectively observed when the received power from the har-
vester is confined within a limited range. For this reason, the adoption of topologies capable of
extending the operating region of the rectifier is crucial.

For what concerns far-field wireless power transfer (WPT) systems, power is transferred
via radiative electromagnetic (EM) waves between two or more radiating elements, and it can
cover long distances typically involving low power levels. Focusing on the transmitting sec-
tion of these systems, time-modulated arrays (TMAs) are advanced radiating architectures that
utilize harmonic contributions from modulating the RF input signal of each antenna element
with user-defined pulses. Introduced in paper [11], TMAs have attracted scientific interest
due to their numerous benefits and applications, overcoming traditional phased array limi-
tations, achieving non-uniform excitation, and improving side lobe levels without complex
feeding networks [12]. They use simple switches to control the amplitude and phase of the
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input signal, avoiding the need for expensive phase shifters or
hybrid couplers.The consequent time-dependent regime is respon-
sible formulti-harmonic radiation, which can be beneficial for har-
monic beamforming [13], harmonic beam steering [14], direction
finding [15], and WPT itself [16].

Also, frequency-diverse arrays (FDAs) are cutting-edge antenna
systems in which a frequency diversity scheme is introduced
among the signals radiated by the array elements [17]. This mech-
anism creates a dynamic radiation pattern, with intrinsic scanning
capabilities [18]. FDAs are particularly useful for applications like
localization [19] andWPT [20], as they can achieve high accuracy
and control in radiation without requiring complex and expensive
components like phase shifters.

Nevertheless, another critical aspect to consider is the fabrica-
tion process of RF antennas and circuitries: in that sense, the advent
of three-dimensional (3D) printing, also known as additive man-
ufacturing (AM), has significantly impacted many engineering
research fields, enablingmore flexible, efficient, wasteless, and cost-
effective manufacturing processes. By simply creating 3D physical
models using 3D CAD software, AM simplifies the production of
complex geometries and engineered structures that are otherwise
difficult to achieve with traditional manufacturing methods, still
with high precision and affordable materials.

These aspects have become very attractive for many applica-
tions such as aerospace and automotive engineering, where 3D
printing provides high-precision, fast, massive-scale production
of miniaturized components whose structural weight is reduced
without compromising the required structural properties [21].This
also reduces fuel consumption and carbon emissions, as compared
with the conventional injection molding process, also dropping
the production costs. Moreover, the benefits of AM have signif-
icantly boosted the research in medicine and biomedical device
applications. As a result of the population aging, the increasing
prevalence of chronic diseases, and the technological advances, the
global financial outlay of the healthcare industry toward biomedi-
cal device design and development is growing at a remarkable rate,
catalyzing significant progress with regard to biomedical materi-
als for tissue engineering, drug delivery, surgical and diagnostic
tools, implants and prosthetics, optoelectronics, sensing compo-
nents, wireless communication hardware, and battery technology
[22, 23].

Enhanced power range technologies for RF EH

Thedevelopment of circuit topologies able to increase the dynamic
range of rectifiers for RF EH applications has stimulated high inter-
est given the high application variety of rectifiers. Microwave rec-
tifiers, which are composed of Schottky diodes or transistors, offer
nonlinear complex input impedances, which are strictly dependent
on the input power levels. Schottky diodes provide a low resis-
tive and capacitive reactive input impedance [24]. As the input
power increases, the nonlinear effects increase too, resulting in a
change of the reactive part of the input impedance (Zin), and in
general of the complex Zin. Figure 1 shows the reactive part of
the Zin of three different commercial Schottky diodes (SMS7630,
SMS7621, and SMS3922, manufactured by Skyworks), frequently
adopted in the design of microwave EH systems. As the input
power increases, the capacitive reactance tends to decrease, show-
ing the strong nonlinear relation between Zin and voltage across
the diode junction.

Typically, an RF-EH system is composed of a receiving antenna
and a nonlinear device, where the conjugate matching between

Figure 1. Nonlinear imaginary part of the input impedance for three different
commercial Schottky diodes.

Figure 2. Block schematic of an RF-EH system.

the antenna and the rectifier is actuated by means of lumped or
distributed elements, such as microstrips, as shown in Fig. 2.

In general, the linear subnetwork must be optimized together
with the rectifying circuit and the rectenna load to efficiently con-
vert the RF power incident on the receiving antenna intoDCpower
(PDC) delivered to the load. The PCE represents one of the key fig-
ures of merit of rectifiers for EH applications and it is calculated by
the following equation:

𝜂RF−DC = PDC
PRF

(1)

where PRF is the RF power at the rectifier input port.
Single matching sections even though are a good solution for

limited power-range solutions, present critical performance when
a wide power range is desired. To extend the operating range of
EH rectifiers, the key idea is to combine multiple rectifiers, and
consequently multiple matching sections, each one optimized to
operate and maximize the PCE in a specific input power range.
Many solutions have been presented in the literature proposing
different approaches to increase the operating range of RF har-
vester. Two main categories can be distinguished: passive adaptive
networks and active adaptive networks. The first category relies
on the design of multiple matching sections, which are specifi-
cally designed to offer the correct conjugate matching depending
on the input power level. The active matching networks, on the
contrary, exploit nonlinear devices, such as single-pole double-
through (SPDT) and field-effect transistors (FET), to correctly
distribute the input power in the most accurate branch.

Passive adaptive networks

The enhancement of the dynamic range is often achieved by the
implementation of passive adaptive networks and multiple recti-
fier branches. The key idea is to design two or more harvesters,
carefully designed in specific operating input power ranges, by
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Figure 3. (a) Desired input impedance for different power ranges; (b) multiple and (c) common load topologies for wide dynamic range rectifiers based on passive network
distribution technique.

tuning the matching branches to present power-dependent con-
jugate matching. Usually, a low-power and a medium-high-power
branch are adopted. By adjusting the matching branch parameters,
such as the width and length of the microstrip lines, it is possi-
ble to correctly present a conjugate matching of the branch, for a
specific power range. In this way, when low input power levels are
present at the input port of the RF EH system, only the low-power
branch is correctly matched with the RF source, while the high-
power branch, offering a high-mismatch impedance, is deactivated.
Similar considerations can be derived for high-power levels present
at the input port of themulti-branch rectifier. Figure 3(a) shows the
operating principle of the common passive adaptive distribution
network technique for enhanced power range rectifiers. Adaptive
distribution-based rectifiers which employ the usage of carefully
designed input impedance compensation networks can be divided
into twomain categories:multiple load rectifiers and common load
rectifiers. Figures 3(b) and 3(c) show the typical topology based
on passive distribution networks for multiple loads and common
load rectifiers, respectively. Usually, multiple load-based solutions
offer higher PCEs compared to the shared load rectifiers. Indeed,
rectifiers operating in different input power level regions rely on
different matching sections to maximize the power transfer at the
output. To do that, the output resistive load plays an important role,
being part of the optimization variables set of the harvester [24].
On the other hand, common load solutions, adopt a simpler topol-
ogy, where less components are needed, resulting in decreasing
sizes of the designs.

In paper [25], a wide-range rectifier operating at 2.4 GHz,
adopting amultiple load solution is reported.TheRF signal is auto-
matically routed to the most suitable branch employing a compen-
sation microstrip network. To maintain an efficient rectification,
for low input power levels, only one of the diodes rectifies the RF

signal, while for the high input power region, both diodes rectify
the RF signal cooperatively. In this way, a PCE higher than 50% is
maintained from −6 to 26.5 dBm of the input power level. Similar
topologies based on passive compensation networks are presented
in papers [26–28]. In paper [26], a wide-range rectifier operating
at 2.4 GHz with a PCE higher than 50% from −1.5 to 24.4 dBm is
reported, where the overall dynamic operating range is 40 dB.

Wide dynamic range rectifiers adopting common loads are pre-
sented in papers [29–33]. In paper [29], an integrated impedance
compression network is adopted to improve the matching between
the RF source and two diodes in parallel connection with no
impedance limitation. This solution, operating at 2.45 GHz,
exhibits a PCE higher than 70% for an 18-dB power range. In paper
[30], a common load approach is adopted to design and fabri-
cate a polarization-independent rectifier working in the 1–2.7 GHz
and for an input power range of 18.5 dB. Through a six-port
coupling network and four parallel-connected rectifiers, the sys-
tem can maintain a stable PCE over different polarizations of the
incident field. Anyway, the solution is not suitable for low-power
applications due to the near-zero PCE below −10 dBm present at
the input port of the rectifier. An X-band rectifier using capaci-
tive compensation to extend the input power range is reported in
paper [32]. Two diodes are adopted to cancel the imaginary parts
of each other’s impedance. Moreover, the two nonlinear devices
share the sameDC output voltage.With the proposed architecture,
the rectifier, operating at 9.7 GHz, exhibits a PCE higher than 50%
for approximately 15 dB of input power range. Given the higher
operating frequency and the common load topology, the dimen-
sions of the fabricated prototype are below 500 mm2. Anyway, as
most of the previously reported literature works, the rectifier can-
not operate efficiently in low-power applications since the lowest
reported input level is 5 dBm.
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Active adaptive networks

Wide dynamic range rectifiers based on active adaptive networks
exploit nonlinear devices, such as FETs or RF switches, to direct
the RF power flow in the correct branch. As for the passive com-
pensation networks, for active network-based solutions multiple
rectifiers, working in different power ranges, are designed.The two
main topologies present in the literature to achieve the correct dis-
tribution of the input power flow are depicted in Fig. 4. In Fig. 4(a),
the topology presented in paper [34] is reported, where the wide
dynamic range capabilities are achieved using SPDT switches con-
trolled by a low-power central processing unit (CPU). The input
RF signal is injected into a directional coupler, which conveys a
portion of the RF flow to a power monitoring unit, which controls
the SPDT switches and selects the appropriate rectifier automati-
cally. Using a three-stage rectifier, the system can operate from 5
to 45 dBm of input power. As a result, the system has over 30 dB
range of input power with an efficiency greater than 25%. Despite
the solution presented in paper [34] was the first attempt to exploit
active devices to enhance the dynamic range of rectifiers, the adop-
tion of multiple circuits, such as CPU and power monitors, indeed
produces a decrease in the total PCE of the harvesting device.

In Fig. 4(b), the circuit scheme of the solution presented in
paper [35] is reported. Starting from the idea presented in papers
[36, 37], a three-stage rectifier with a wide dynamic operating
range is presented. The system is composed of a parallel connec-
tion of three rectifier branches, each optimized for a specific power
range; these rectifiers are automatically and sequentially activated
based solely on the incoming RF power, without necessitating any
external control mechanisms. This unique feature is achieved by
directly connecting the three rectifiers to a floating-gate unbi-
ased high-electron-mobility transistor (HEMT). Additionally, ad
hoc designed switching networks are incorporated into the recti-
fiers’ DC paths to facilitate the activation and deactivation of the
branches by adjusting the rectifiers’ DC loads.

Three rectifiers are designed for different operating ranges: a
low-power branch from −20 to 0 dBm, a medium-power branch
from 0 to 10 dBm, and a high-power branch from 10 to 24 dBm.
When the power level present at the input port is lower than 0
dBm, all the RF power is directed in the low-power branches,
which are deactivated using the high impedance of HEMTs in the
RF paths. When the system operates in a large-signal regime, the
self-polarization phenomenon can be exploited to create DC con-
tributions from the even order responses and to automatically turn
on the two self-biasedHEMTs. To prevent the breakdown of diodes
working in thewrong operating ranges, decoupling networks based
on HEMTs in DC configurations are adopted. In this way, only
one rectifier is active for each input power level, enhancing the
dynamic range of the circuit. Due to low-power applications on
which RF energy harvesters are required to work, the system is
specifically designed to provide a sufficient PCE for very low input
power. Compared to other topologies reported in the literature, for
both passive and active distribution techniques, the work reported
in paper [34] demonstrates the feasibility of a modular topology,
enabling the straightforward addition of branches to accommo-
date a higher dynamic range, if necessary. The performance of the
wide dynamic range three-stage rectifier of paper [35] is reported
in Fig. 5, where the measured PCE and open-load DC output volt-
age are reported. From both simulations and measurements, the
wide operating range can be noticed. An overview of the wide
dynamic range rectifier solutions adopting both passive and active
power distribution networks is reported in Table 1.

Real-time and on-demand beam-steering power
transmission via time and frequency diversity schemes

Different solutions have been proposed in the literature for the
increase of the overall link efficiency in WPT applications, such as
the exploitation on the transmitting side of a retrodirective array
for target tracking of the receiving rectenna [38], or the usage
of Rotman lenses on the receiving side for wide angular cover-
age still maintaining a high gain [39]. To the authors’ opinion,
these solutions represent steps forward, but still lack real-time
reconfigurability that will be a compulsory feature for future WPT
scenarios.

In the following, two classes of extremely promising trans-
mitting architectures owing to the envisaged dynamic radiation
mechanism are described.

Time-modulated arrays

Most work on TMAs has focused on optimization schemes and
algorithms that use duty-cycle and delay of the control switches
as design variables, such as binary optimized time sequences [40],
pulse shifting [41], and subsectional optimized time steps [42].
In paper [43], by preprocessing the rectangular pulses with the
sinusoid-based control signal, harmonic beams are independently
steerable. However, there is a notable limitation in the literature;
despite the effectiveness of these synthesis methods, little effort
has been made toward the practical implementation of the con-
trol network. This becomes a significant issue with a large number
of radiating elements, crucial for high-directivity applications like
selective WPT operations. While the problem is manageable for
a linear TMA, there are no practical guidelines or implementa-
tions for time-controlling a 2D array. This gap can be filled by a
simple multi-spoke planar TMA that exploits circular symmetry
that allows a high number of antennas (24 patches operating at
2.45 GHz) to be easily controlled by only a few switches (8, for the
present case) [44].

Let us consider an array of ideal isotropic elements that lay
on M different rings arranged in N different spokes, as shown in
Fig. 6(a). Definedwithmnth the element associated to themth ring
in the nth spoke, and ideally considering a switch for each antenna
element, the total transmitted signal in the far field of the TMA can
be expressed as follows:

x (t)

=
M−1

∑
m=0

N−1

∑
n=0

∞

∑
h= −∞

Cmn
h exp{j2𝜋 (f0 + hFp) (t − 𝜏mn − Rmn

c )}

(2)

whereRm is the distance between themnth element and the generic
far-field point P(r,θ,ϕ), Ch

mn is the complex Fourier coefficient, Fp
is the modulation frequency and 𝜏mn is the delay of the modulating
periodic pulse. Equation (2) highlights the very well know TMA
radiation mechanism for which for h = 0 a broadside radiation is
ensured, while for h ≠ 0 the beam steering is ensured as a function
of the delay values.

Due to the complexity of handling M × N switches, especially
for highly directive WPT radiators, a solution can be individuated
by arranging the radiating elements into N groups ofM elements,
each group aligned along a spoke to form a series-fed antenna
array.This allows each spoke to be controlled by a single RF switch,
exploiting therefore a highly symmetric layout, and significantly
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Figure 4. (a) Topology of the wide dynamic range rectifier based on an active distribution technique with external input and (b) without external input.

reducing the complexity of the control network. To this aim, a
radial layout with 24 elements (N = 8 spokes withM = 3 elements
each) resonating at 2.45 GHz realized on a multilayer stack-up

of Rogers RO4350B of 1.524 mm thickness and RO4360G2 of
0.610 mm thickness has been designed, realized, and is shown
in Fig. 6(b).
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Figure 5. (a) Measured and simulated PCE of the three-stage wide dynamic range rectifier presented in paper [35], and (b) corresponding open-load DC output voltage.
© 2023 IEEE.

Table 1. Comparison of wide dynamic range EH solutions

Work
Frequency

(GHz)
RF input power

(dBm)
Dynamic range

(dB)
Suitable for low-power
applications Power distribution technique

[25] 2.4 −10 to 30 40 No Passive cooperative structure

[26] 2.4 −10 to 30 40 No Passive adaptive distribution
network

[27] 2.4 −10 to 30 40 No Passive adaptive distribution
network

[28] 2.45 −10 to 35 45 No Passive adaptive distribution
network

[29] 2.45 −10 to 20 30 No Passive integrated compres-
sion network

[30] 1 ÷ 3 −10 to 30 40 No Passive dual-polarized
coupling network

[31] 1.4 ÷ 2.6 −25 to 15 40 No Passive wideband compression
network

[32] 9.7 5 to 5 20 N/A Capacitive self-compensation
network

[33] 0.889 −25 to 5 30 Yes Passive adaptive distribution
network

[34] 2.4 5 to 45 40 No Active distribution network
with ext. control input

[35] 2.45 −20 to 24 44 Yes HEMT-based active distribution
network

A simple example of optimization is provided to demonstrate
the ease of real-time reconfigurability in terms of high directivity
bidimensional beam steering of the desired harmonics despite the
reduced set of optimization variables, with the goal of having the
maximum of the first harmonic (h = ± 1) only 4 dB less than the
fundamental one, to steer it in θt = 20∘ for ϕ = 0∘ and to reduce
the amplitude of the higher harmonics (h ≠ ± 2) of at least 10 dB
in terms of power with respect to the first one.

The excitation sequences depicted in Fig. 7(a) achieve the opti-
mization goals, as evidenced by Fig. 7(b) and 7(c). The first har-
monic points in the desired direction with a directivity of 12.4
dB, which is only 4 dB lower than the fundamental frequency.
Figure 7(c) illustrates the maximum directivity (in dB) for the first
three symmetric harmonics, each oriented in different directions.
Notably, for the second harmonic, there is a reduction of approxi-
mately 12 dB compared to the first harmonic and 16 dB compared
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Figure 6. (a) Scheme of the radial topology with N spokes and M rings; (b) top and bottom view of the multilayer prototype of the radial TMA operating at 2.45 GHz [44].
© 2024 IEEE.

Figure 7. (a) Optimized control sequence; (b) directivity in the ϕ = 0 plane for the fundamental and the first harmonic; (c) maximum directivity at different harmonics [44].
© 2024 IEEE.

Figure 8. (a) Linear FDA layout and normalized transmitted FDA beam pattern: (b) standard FDA and superimposed pulse (dashed line), (c) pulsed FDA [51]. © 2023 IEEE.

to the fundamental frequency. Additionally, due to the circular
symmetry, any sequence for a pointing direction (θt, ϕt) can be
rotated to a point in the same θt, but on a different plane p∙45∘ + ϕt,
just circularly shifting of p positions the ports, reducing signif-
icantly the number of optimized control sequences needed by a
factor of 8.

Frequency diverse arrays

In recent decades, FDAs have attracted scientific interest for their
unique radiation properties. Each element in an FDA system
radiates at a slightly different frequency based on a predefined
distribution rule [45]. This creates a radiation pattern with joint

time-angle-range dependency, as shownby equation (3) for a linear
FDA withM elements, as in Fig. 8(a).

AF (t, 𝜗, r) =
M−1

∑
m=0

exp(j2𝜋f0 (m ⋅ l sin (𝜗)
c ))

⋅ exp(j2𝜋Δfm (t − r0
c )) (3)

where fm denotes the operating frequency of the mth element, f0
is the carrier frequency, and Δf is the constant frequency offset
between consecutive antennas of the array.

This kind of pattern is affected by a time-angle coupling that
implies an automatic steering of the main beam over time. This
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Table 2. Comparison between different architectures

Architecture Beamforming capability Hardware design Pattern reconfigurability Signal generation

Rotman lens [52] Single and multi-beam Complex feeding network Moderate Single carrier

Butler Matrix [52] Single and multi-beam Hybrid couplers and phase
shifters

Moderate Single carrier

Time-modulated arrays Multi-beam in symmetric
directions

Switch at each antenna port High Single carrier

Pulsed FDA Single and multi-beam Multi-tone generation +
switches

Excellent Multi-carrier

feature is a strong limitationwhenever a precise and angle-confined
transmission is required, such as for far-field powering purposes.
For this reason, research has focused on improving FDA radiation
accuracy and control for applications like WPT [46]. In paper
[47] a logarithmic increasing frequency offset has been introduced
among the array elements to replace the traditional S-shape pat-
tern of linear FDAswith an almost dot-shape pattern. Interestingly,
this method allows to cancel the space and time periodicity typi-
cal of traditional FDAs thanks to the logarithmic distribution of
the frequencies. Then, other works focused on the implementa-
tion of the FDA principle to advanced array layouts. For example,
in paper [48] a planar rectangular array and in paper [49] a pla-
nar array with circular symmetry have been proposed.These array
geometries show great potentialities in terms of radiation accuracy
and control, enabling the generation of a dot-shape beam pattern.
However, from a practical point of view, all these alternatives intro-
duce a high level of complexity either for the signal’s generation or
for the array architecture, which is unaffordable.

Recently, a new system called pulsed FDA has been proposed as
an effective solution to these problems, relying on a pulse modula-
tion of the sinusoidal signals at each antenna port. This radiation
control transfers the complexity to the piloting part of the sys-
tem, which can be easily handled using a software-defined radio,
as demonstrated for the first time in paper [50]. Furthermore, a
crucial step forward has been conducted in paper [51], in which
a novel harmonic analysis of the pulsed FDA has been carried
out. Let us consider the same linear array of Fig. 8(a), with linear
frequency distribution fm = f 0 + mΔf.

Modulating each transmitted signal with a periodic pulsed
waveform of frequency Fp, it is possible to define the total trans-
mitted signal as follows:

x (t) =
M−1

∑
m=0

∞

∑
h=−∞

Chexp (j2𝜋 (fm + hFp) t) exp (j2𝜋hFp𝜏) (4)

where Ch represents the complex Fourier coefficient of order h of
the modulating pulse. If this strategy is applied, the S-shape pat-
tern of the standard FDA is replaced in favor of a confined spot
in the direction correlated to the ON-time of the pulse. The size
and direction of the radiated spot in an FDA can be easily adjusted
by varying the pulse duty cycle d and delay 𝜏. By selecting specific
pulse parameters, a pulsed FDA can restrict the standard S-shape
pattern (Fig. 8(b)) to a confined angular sector, creating a dot-shape
radiation (Fig. 8(c)). Varying the pulse delay enables on-demand
beam steering.This system behaves like a phased array without the
need of expensive phase shifters, but using simple switches at each
antenna port, making the design simple and affordable. In Table 2
a comparison between pulsed FDA, TMAs, and other solutions
proposed in the literature is shown.

Table 3. Ploss levels (duty cycle: 0.1, Bw = 100 MHz)

Pulse Simulation Measurement

Rect (Fp = 20 MHz) 53.31% 54.58%

Rect (Fp = 5 MHz) 9.09% 10.32%

Tri (Fp = 5 MHz) 5.43% 5.91%

RC (Fp = 5 MHz) 0.48% 0.76%

Despite architectures based on Rotman lens or on ButlerMatrix
have advanced beamforming capabilities, they require very com-
plex and expensive feeding networks adopting distributed hybrid
couplers and phase shifters. On the other hand, the great advantage
of TMAs and pulsed FDA stands in their high level of reconfigura-
bility obtained with a reduced design complexity.

However, the pulse modulation strategy, adopted in pulsed
FDA, generates infinite harmonic products due to the intermodu-
lation of the carrier signals with the pulse frequency Fp.The impact
of those harmonics on the radiating performance of the array can
be described through a figure of merit named “power loss” (Ploss),
computed as the percentage of the harmonics that falls outside of
the interested bandwidth respect to the total harmonics generated
by the system.

This parameter requires a careful analysis to preserve the effec-
tiveness of the pulsed FDA for WPT applications. If power trans-
mission is the only concern, the harmonics generation can be
positively exploited by maximizing the distribution of those supe-
rior tones inside the operating bandwidth of the system. It must
be underlined that, for powering purposes, in-band interference is
not an issue and the higher the number of harmonics involved the
better the efficiency of the transmitter. In this context, a linear array
of M = 4 monopole antennas are considered with f 0 = 1.8 GHz,
Δf = 5 MHz. A valid use case for WPT is found setting Fp = Δf,
so that the FDA periodicity (1/Δf ) is equal to the pulse period-
icity, and a unique radiation direction within the FDA period is
guaranteed. The pulse duty cycle is set to 0.1, to generate a selec-
tive and precise spot of radiation, and its delay is τ = 0 ns to ensure
broadside radiation. Given this reference case, the pulsed FDA
performance for different control pulses has been derived numeri-
cally and then validated through a measurement campaign, whose
results are presented in Table 3, considering an available bandwidth
Bw = 100 MHz.

As can be evinced from the results the choice Fp = Δf is a
valuable solution to minimize the amount of power lost out of
the bandwidth. Indeed, the intrinsic pulse harmonics are posi-
tively exploited for powering purposes, preserving the effectiveness
of pulsed FDA for WPT applications. In particular, the pulsed
FDA based on a raised cosine pulse (RC) with roll-off factor equal
to 1, guarantees the lower levels of Ploss in the entire frequency

https://doi.org/10.1017/S1759078724001065 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078724001065


International Journal of Microwave and Wireless Technologies 9

range. Instead, from the radiation accuracy perspective, the trian-
gular pulse (Tri) control can generate the most accurate beam spot
thanks to its waveform selectivity. Overall, the pulsed FDA sys-
tem based on triangular pulse modulation is considered the most
promising choice for WPT, because it fulfills the trade-off between
highly selective radiation and minimized Ploss.

3D-printable antennas and RF circuitries for battery-free
applications

The development of antennas and RF circuitries for battery-free
biomedical devices can be considered one of the most emerging
applications, within the framework of far-field radiative WPT.
These innovative systems harness the principle of harvesting
energy from surrounding environmental sources allowing them
to operate without the need for conventional batteries, hence
avoiding their maintenance and/or surgical interventions for their
replacement [53]. This capability makes these systems ideal for
implantable and/or wearable medical applications, where the
primary requirements include being lightweight, miniaturized,
and noninvasive. As a result, devices such as wearable straps, pads,
wristbands, or skin conformal tattoos [54] offer greater comfort
to patients, being less intrusive, and enable continuous, long-term
monitoring or therapeutic functions without the need for surgical
replacements or external power management, facilitating early
diagnosis and treatment of diseases and leading to improved
patient outcomes and long-term reductions in healthcare
costs [55].

Conventional materials commonly implemented for these
kinds of planar electronic devices are inorganic, and their high
elasticity Young modulus, brittle mechanical properties are inher-
ently ill-suited for bio-integration. Therefore, with the advent of
AM and nanotechnology [56], a great effort has been dedicated
towards the development of soft materials with mechanical char-
acteristics close to those of tissues such as flexibility, stretchability,
ultra-thinness, and lightweight to ensure mechanical deformabil-
ity of the wearable/implantable bioelectronics and its conformal
contact onto soft curved surfaces and tissues such as brain, heart,
and skin, in order tomeasure high-quality bio-signals, deliver real-
time feedback treatments, and provide long-term biocompatibility
in vivo. Any sufficiently thin material is flexible since bending
strains decrease linearly with thickness: a siliconwafer is brittle and
rigid, but nanoscale ribbons, wires, or membranes of silicon are
flexible [57]. Thus, electronic metals and semiconductor materials
can be patterned in micro-structured and nanostructured forms
such as carbon nanomaterials, buckled nanoribbons, serpentine
nanowires and wavy, mesh structures, intimately integrated with
elastomeric substrates and encapsulants, such as polydimethyl-
siloxane, polyimide, or parylene, yielding systems to flex, stretch
and compress with a uniform distribution of deformation-induced
stress and minimized strain. Many different printing methods
are used for patterning nanocomposites including inkjet print-
ing and extrusion 3D printing, soft lithography methods (mold
casting, transfer printing, stencil printing), and light-based lithog-
raphy methods (photolithography, stereolithography, and laser
cutting) [56].

Moreover, when dealing with flexible system-on-package
designs it is crucial to ensure reliable wideband performance, min-
imum parasitic losses, compact modules, and robust mechanical
flexibility for seamless conformity to various conformal platforms
[58]. In this sense, conventional interconnections between ICs and
the packaging substrate or printed circuit board (PCB) are typically

realized with thermosonic ribbon or wire bonds, that could intro-
duce parasitic inductances at high frequencies or accidentally cause
radiation losses due to their arching nature.Therefore, inkjet print-
ing and 3D-printed interconnects offer a more robust, planar, and
adaptable structures, resulting in enhanced RF performance and
providing on-demand packaging with various materials and the
rapid creation and assembly of diverse, customized components
in a conformal layout that integrates printed interconnections,
printed insulating layers, and printed conductive traces. In paper
[58], ramp interconnects are partly inkjet printed with SU8 dielec-
tric ink for the ramp base and partly with silver nanoparticle ink
for the conductive interconnects to build the connection between
the die and microstrip lines.These ramps are engineered to deliver
outstanding and dependable performance for flexible packaging
within the 20–40 GHz frequency range achieving a superior S21
performance with an insertion loss below 1.16 dB per interconnect
throughout the whole operation range, even under tested bending
conditions of curved mounting platforms.

Furthermore, to address the need for flexible and deformable
communication systems, particularly in applications such as wear-
able electronics, soft robotics, and biomedical devices, antennas
must be designed to maintain performance under mechanical
strain, offering adaptability in dynamic environments.

Stretchable antennas based on these patterned conductive
films on elastomeric substrates have been previously designed
in literature using open-mesh, serpentine structure layouts
[59−62].

As an example, in paper [59] an extensive analysis of the mate-
rial behaviours regarding stretchablemechanics in relation to three
crucial factors (substrate thickness, copper pattern width, and cop-
per thickness) in antenna designs has been assessed; a figure of
merit named average effective modulus has been introduced tak-
ing into account the averaged slope of the stress-strain curves in
the initial strain region and evaluated for different configurations
to consider their effective wearability.

In paper [60], a stretchable sensor skin for soft object sur-
face wireless monitoring has been designed exploiting a space-
filling curve pattern at a large-scale, with a meandered contour
in microscale; this showed the ability to maintain its shape under
stretch up to 35% due to this double-scale meanderings.

Strategies for converting rigid planar microwave systems to
stretchable systems using serpentinemesh layouts have been inves-
tigated in order to find the best trade-off between mechanical
stretchability andmicrowave power dissipation, thatmay be caused
by impedance changes along the mesh layout directly related
to changes in the curvature and morphology of the serpentine
traces [63].

Besides, 3D printing also presents numerous advantages in
the selection and custom design of the supporting flexible bio-
plastic materials used as substrates of battery-free wearables, pro-
viding an easy and rapid prototyping and fabrication with cost-
effectiveness, and the possibility to produce intricate geometries
and heterogeneous soft functional materials tailored to specific
biomedical requirements. With this regard, low-cost biocompati-
ble and biodegradable 3D printable polymers such as thermoplas-
tics (nylon, acrylonitrile butadiene styrene [ABS], polylactic acid
[PLA], polyethylene terephthalate, polyetherimide, etc.), are not
conventionally used in the fabrication of flexible wearable health-
monitoring devices because of their bulky interfaces, rigid nature,
lowbending stiffness, and,more importantly, their poor EMdielec-
tric characteristic (dielectric relative permittivity εr and loss tan-
gent tan(δ)) which make them not suitable to be implemented as
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substrates for antennas and RF circuitries, compared to special-
ized stiff RF materials. When dealing with 3D-printed dielectrics,
it is crucial to first measure the dielectric properties of several
test samples, since different printer settings, as nozzle width and
temperature, extrusion speed, sample thickness and material infill
percentage, can impact the frequency response and loss tangent.
For this reason, different EMdielectric characterization techniques
allow to derive the specific sample’s EM characteristics in a fre-
quency range that varies depending on the application. One of
the simplest methods providing wideband dielectric characteri-
zation is the microstrip T-resonator method [64] that consists in
the fabrication of a microstrip line connected to an open stub,
of a length that determines its periodic resonating frequencies,
whose scattering parameters (S-matrix) are first measured; then
the same structure is reproduced on a CAD software and full-
wave iteratively simulated for varying relative dielectric constant
and conductivity values, with the goal of broadband matching the
S-parameter measurements.

For instance, this technique has been previously used for the EM
dielectric characterization of the most common materials used in
fused filament fabrication, ABS and PLA, revealing an εr ∼ 2.45
and a tan(δ) ∼ 0.005 in the frequency range 2–60 GHz of the for-
mer, and an εr ∼ 2.65 and tan(δ) ∼ 0.03 in the frequency range up
to 10GHzof the latter [65−67].However, in recent years, numerous
researchers have demonstrated the EM advantages of 3D engi-
neered materials and structures for the fabrication of antennas,
in the place of traditional costly and time-consuming subtractive
manufacturing methods, such as etching and machining, leading
to the production of more cost-effective, efficient, and lightweight
3D printable devices for low-cost and energy-autonomous health-
monitoring wearables. In this sense, the almost unlimited degrees
of freedom offered by AMmaterial synthesis allow for the creation
of intricate internal structures tailored for specific dielectric prop-
erties, namely, the variation of εr across two or even three axes,
and the reduction of tan(δ) responsible for the intrinsic losses,
affecting EM propagation and radiation. The material engineer-
ing is achieved by regulating the material infill percentage and
the empty/full pattern ratio simultaneously accounting for the
resulting EM and mechanical properties aiming at making these
materials suitable for high-performance RF circuits and anten-
nas design. This concept has been widely employed even for the
design of ultrawideband microwave flat gradient index lenses, as
described in paper [68], where the empty/full ratio of 3D-printed
ABS is gradually and radially varied to modify locally the refrac-
tive index profile to manipulate the ray paths providing broadband
gain improvement of open-ended waveguide sources. In the same
way, drawing inspiration from contemporary manufacturing prac-
tices in the aerospace, shipbuilding, and automotive industries,
sandwich structures represent an optimal choice for the antenna
substrate design, providing both good EM properties, structural
lightweight, and mechanical robustness [69]. This structure fea-
tures an engineered core typically designed as honeycomb, truss,
and foam patterns to absorb bending movements and transverse
shear forces, flanked at the top and bottom by thin sheets of mate-
rial. These various core shapes have been derived from a thorough
study of living organisms such as honeycombs, glass sponges, bee-
tle forewings, and bamboo, which exhibit exceptional low weight
and damage resistance [70, 71].

The mixture of air and 3D-printed material resulting from this
structural engineering can be characterized as an artificial dielec-
tric with effective properties defined by the properties of the two

Figure 9. Stack-up of the structure realized on a 3D-printed PLA substrate made up
of a honeycomb core with octagonal cells [66]. © 2023 IEEE.

constituent materials and their fractional volumes: this mixture
can be considered and discretized as homogeneous inclusions
embedded in another homogeneous medium. Thus, an effective
permittivity (εeff) can be derived if it is assumed that the mixture
responds to EM excitation as if it were homogeneous.This homog-
enization theory of heterogeneous media is valid until the size of
the inclusions in the mixture and the spatial correlation length of
the permittivity function are small with respect to the wavelength
(∼λ/10) [72].

As an example for this technique, it is worth noticing that in
paper [66] the top and bottom sheets of the engineered struc-
ture are made of two 300 μm-thick layers of PLA enclosing a
1.4 mm-thick central core that is designed with the shape of a hon-
eycomb with octagonal air-filled cells. The ideal balance between
high EM radiation performance and mechanical durability has
been achieved by optimizing the octagonal shape, size, and inter-
octagonal spacing (details in Fig. 9).

The optimal design for the working frequency of 2.45 GHz is
4-mm-radius octagonal cells, which meets two objectives: mini-
mizing the amount of PLA and hence the intrinsic propagation
losses and preserving a rigid PLA structure. The octagonal air cav-
ities in this optimized pattern have a proportion of 52% of air
and 48% of PLA and are joined by plastic inclusions. Effective EM
parameters that take into consideration the field propagating in
both materials and the related boundary conditions resulting from
the material pattern are required to depict this mixture of air and
plastic material.

This work also proposes an innovative two-port antenna struc-
ture engineered with the abovementioned 3D structure, to code-
sign a novel advanced microwave wearable system (i.e., an energy-
autonomouswearable tag) that can generate a quasi-ultrawideband
(q-UWB) signal for indoor localization exploiting the technique
reported in paper [73], while also performing EH activities, for
feeding, for example, a low-power microcontroller unit or an iner-
tial sensor. In order to do this, the dual-port rectenna is intended to
be used for the reception of a RF multitone signal excitation in the
ultra-high frequency (UHF) band at 2.47 GHz, which can both be
converted into DC for EH and be backscattered as a q-UWB pulse;
the latter is produced by collecting the higher harmonic intermod-
ulation (IM) products generated by the nonlinear component of
the rectifier (i.e., a Schottky diode), and can be exploited for the
abovementioned localization purposes.

It has been possible to demonstrate a q-UWB pulse power peak
of approximately 82 nW with a total received power of –15 dBm,

https://doi.org/10.1017/S1759078724001065 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078724001065


International Journal of Microwave and Wireless Technologies 11

Figure 10. Power spectral lines backscattered by the rectenna and received by the horn associated to the quasi-UWB backscattered signal (total available power of –15
dBm), near the (a) second, (b) third, and (c) fourth harmonics [66]. © 2023 IEEE.

evenly distributed over 8 tones separated by 1 MHz. The observed
spectral power lines close to the second, third, and fourth har-
monics of the multi-sine excitation are shown in Fig. 10. These
lines were registered by a broadband horn antenna (TX-RX dis-
tance: 1 meter) connected to a spectrum analyzer with a resolution
bandwidth equal to 3 kHz, and they were backscattered by the
UWB antenna. The spectral intensity and shape similarity of the
observed received spectramatched the predicted transmitted ones,
indicating that the EM/nonlinear codesign technique used for the
presented system was correct.

A flexible 3D-printable material is also exploited in paper [74];
in this case, the EM properties of a plastic material, namely the
Flexible 80A (a low-cost 3D-printable photopolymer resin mate-
rial), have been characterized by means of the T-resonator method
in the frequency range up to 6 GHz considering the nonlin-
ear rectenna design, in order to have an understanding of the
wave propagation even at higher harmonics. At the operational

frequency of 2.45 GHz the resulting εr is 2.67 and tan(δ) is 0.086,
with electrical conductivity σ equal to 5.36 × 10−3 S/m.

With the final goal of realizing an efficient rectenna, the radia-
tive element has been engineered through the stack-up that is
shown in Fig. 11 with pillars made of Flexible 80A and the space
surrounding the patch filled by air; simulations showed a radia-
tion efficiency of 57% compared to a 6% of radiation efficiency
if a full Flexible 80A solution was considered, whereas the mea-
sured gain of the antenna is approximately 3.8 dBi. As regards
the rectifying part, composed by lumped elements and a couple
of Schottky diodes, it is linked to the antenna through a coplanar
waveguide to further reduce losses.The overall performance of the
rectenna demonstrates a satisfying RF-to-DCPCE of 50% at 0 dBm
of input power (see Fig. 12), adopting a voltage doubler rectifier and
employing the conjugate matching technique instead of including
a matching network with distributed elements that could lead to
higher losses.
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Figure 11. Layout and stack-up of the 2.45 GHz coplanar-fed patch antenna realized on Flexible 80A, with the transversal section showing the air/substrate engineered
structure [74]. © 2022 EuMA.

Figure 12. (a) Rectifier output voltage, with optimum load (blue) and open circuit (red); (b) rectifier and rectenna efficiency for the presented work [74]. © 2022 EuMA.

Conclusion

This work delves into the intricacies and advancements in WPT
and RF EH with a focus on on-demand beamforming and wide-
dynamic power range technologies. The presented works demon-
strate the significant potential and practical applications of these
technologies in enhancing the efficiency and flexibility of wireless
energy systems.

On-demand beamforming has been shown to significantly
improve the precision and efficiency of power delivery. By direct-
ing energy beams precisely toward target devices, this technology
minimizes energy wastage and maximizes the power received by
the devices. This is especially beneficial in dynamic environments
where the positions of the receiving devices are constantly chang-
ing. The ability to adaptively steer the energy beam ensures that

devices receive consistent power levels regardless of their location
or movement. This adaptability is crucial for maintaining efficient
power transfer in real-time scenarios, such as inmobile or portable
device charging.

Moreover, the implementation of a wide-dynamic power range
allows WPT and EH systems to adjust the power output over a
broad spectrum. This flexibility ensures that devices receive the
appropriate amount of power based on their specific needs and
operational conditions, which is essential for optimizing energy
use and extending device lifespan. Also, wide-dynamic power
range technology enables scalability in WPT and EH systems,
allowing them to support a diverse kind of devices with varying
power requirements. This capability is particularly important for
applications ranging from small IoT sensors to larger electronic
devices.
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Finally, the last part of the work explores the design, fabrication,
and application of 3D-printable antennas and RF circuitries for
battery-free biomedical applications. By leveraging the versatility
of 3D printing, complex, efficient, and customizable RF compo-
nents can be created, that pave the way for innovative solutions in
battery-free systems.

In conclusion, the integration of on-demand beamforming and
wide-dynamic power range in WPT and EH systems represent a
significant leap forward inwireless energy technologies. Continued
advancements could lead to even higher energy transfer efficien-
cies, reducing energy losses and making wireless power systems
more sustainable and cost-effective. As these technologies become
more refined and affordable, their adoption is expected to increase
across various industries and applications, driving innovation and
improving energy management solutions. These innovations not
only enhance the efficiency and flexibility of power delivery but
also pave the way for a future where wireless energy becomes an
integral part of our technological landscape. The continuous evo-
lution of these technologies promises to unlock new potentials and
drive further advancements in wireless power applications.
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