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Abstract
The Eichler–Selberg trace formula expresses the trace of Hecke operators on spaces of cusp forms as weighted sums
of Hurwitz–Kronecker class numbers. We extend this formula to a natural class of relations for traces of singular
moduli, where one views class numbers as traces of the constant function 𝑗0 (𝜏) = 1. More generally, we consider
the singular moduli for the Hecke system of modular functions

𝑗𝑚 (𝜏) � 𝑚𝑇𝑚 ( 𝑗 (𝜏) − 744).

For each 𝜈 ≥ 0 and 𝑚 ≥ 1, we obtain an Eichler–Selberg relation. For 𝜈 = 0 and 𝑚 ∈ {1, 2}, these relations are
Kaneko’s celebrated singular moduli formulas for the coefficients of 𝑗 (𝜏). For each 𝜈 ≥ 1 and 𝑚 ≥ 1, we obtain a
new Eichler–Selberg trace formula for the Hecke action on the space of weight 2𝜈 + 2 cusp forms, where the traces
of 𝑗𝑚 (𝜏) singular moduli replace Hurwitz–Kronecker class numbers. These formulas involve a new term that is
assembled from values of symmetrized shifted convolution L-functions.
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1. Introduction and statement of results

Let 𝑗 (𝜏) be the usual modular function for SL2(Z) with Fourier expansion

𝑗 (𝜏) = 𝑞−1 + 744 + 196884𝑞 + 21493760𝑞2 + · · · ,

where 𝑞 � 𝑒2𝜋𝑖𝜏 . Its values at imaginary quadratic arguments in the upper-half of the complex plane
are examples of singular moduli [34]. They are algebraic integers that generate Hilbert class fields of
imaginary quadratic fields, in addition to serving as isomorphism class invariants of elliptic curves with
complex multiplication. Well-known examples of these values include

𝑗

(
1 +

√
−3

2

)
= 0, 𝑗 (𝑖) = 1728, and 𝑗

(
1 +

√
−15

2

)
=
−191025 − 85995

√
5

2
.

We consider the sequence of modular functions 𝑗0(𝜏) � 1, 𝑗1(𝜏) � 𝑗 (𝜏) − 744, . . . that satisfy

𝑗𝑚(𝜏) = 𝑞−𝑚 +𝑂 (𝑞).

Each 𝑗𝑚(𝜏) is a monic degree m polynomial in Z[ 𝑗 (𝜏)], and the set { 𝑗𝑚(𝜏) : 𝑚 ≥ 0} is a basis of 𝑀 !
0,

the space of weakly holomorphic modular functions on SL2 (Z). The first examples are 𝑗0(𝜏) = 1 and

𝑗1(𝜏) = 𝑗 (𝜏) − 744 = 𝑞−1 + 196884𝑞 + · · · ,
𝑗2(𝜏) = 𝑗 (𝜏)2 − 1488 𝑗 (𝜏) + 159768 = 𝑞−2 + 42987520𝑞 + · · · ,
𝑗3(𝜏) = 𝑗 (𝜏)3 − 2232 𝑗 (𝜏)2 + 1069956 𝑗 (𝜏) − 36866976 = 𝑞−3 + 2592899910𝑞 + · · · .

In terms of the Hecke operators 𝑇𝑚 (see [28, Ch. VII] and [34]), for positive integers m, we have

𝑗𝑚(𝜏) = 𝑞−𝑚 +
∞∑
𝑛=1
𝑐𝑚 (𝑛)𝑞𝑛 = 𝑚𝑇𝑚 ( 𝑗 (𝜏) − 744). (1.1)

We shall derive infinitely many relations for the singular moduli of these functions. To make this
precise, for positive integers d with −𝑑 ≡ 0, 1 (mod 4), we let Q𝑑 be the set of integral positive definite
binary quadratic forms 𝑄(𝑋,𝑌 ) = [𝐴, 𝐵, 𝐶] � 𝐴𝑋2 + 𝐵𝑋𝑌 + 𝐶𝑌2 with discriminant −𝑑 = 𝐵2 − 4𝐴𝐶.
The group Γ � PSL2 (Z) acts on Q𝑑 by(

𝑄 ◦
(
𝑎 𝑏
𝑐 𝑑

))
(𝑋,𝑌 ) � 𝑄(𝑎𝑋 + 𝑏𝑌, 𝑐𝑋 + 𝑑𝑌 )

and does so with finitely many orbits, the number of which is the discriminant −𝑑 class number. For
each 𝑄 ∈ Q𝑑 , we let 𝛼𝑄 ∈ H be a root of 𝑄(𝜏, 1) = 0. The numbers 𝑗𝑚(𝛼𝑄) are its singular moduli.

We study the weighted traces of these values which are defined as follows. If we let Γ𝑄 be the
stabilizer of Q in Γ, then it is well known that

#Γ𝑄 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3 if 𝑄 ∼ 𝑎(𝑋2 + 𝑋𝑌 + 𝑌2),
2 if 𝑄 ∼ 𝑎(𝑋2 + 𝑌2),
1 if otherwise.
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Following Zagier [34], the trace functions we consider are

t𝑚(𝑑) �
∑

𝑄∈Q𝑑/Γ

𝑗𝑚(𝛼𝑄)
#Γ𝑄

. (1.2)

For 𝑚 = 0, where 𝑗0(𝜏) = 1, we obtain the Hurwitz–Kronecker class numbers 𝐻 (𝑑) � t0(𝑑). These
numbers are prominent in the Eichler–Selberg trace formula (for example, see [32]) for the trace Tr(𝑛; 2𝑘)
of the action of the Hecke operators 𝑇𝑛 on 𝑆2𝑘 , the complex vector space of weight 2𝑘 cusp forms on
SL2 (Z).

Theorem (The Eichler–Selberg trace formula). For integers 𝑘 ≥ 2, we have

Tr(𝑛; 2𝑘) = −1
2

∑
𝑟 ∈Z

𝑝2𝑘 (𝑟, 𝑛)t0(4𝑛 − 𝑟2) − 𝜆2𝑘−1(𝑛), (1.3)

where 𝜆𝑘 (𝑛) � 1
2
∑
𝑑 |𝑛 min(𝑑, 𝑛/𝑑)𝑘 and

𝑝𝑘 (𝑟, 𝑛) =
∑

0≤ 𝑗≤ 𝑘
2 −1

(−1) 𝑗
(
𝑘 − 2 − 𝑗

𝑗

)
𝑛 𝑗𝑟𝑘−2−2 𝑗 = Coeff𝑋 𝑘−2

(
1

1 − 𝑟𝑋 + 𝑛𝑋2

)
. (1.4)

We generalize these formulas to traces of singular moduli, where (1.3) are the 𝑚 = 0 cases of a
doubly infinite suite of formulas in 𝑚 ≥ 0 and 𝜈 ≥ 0. The general formulas involve the trace functions
t𝑚(4𝑛 − 𝑟2). To make this precise, for every 𝜈 ≥ 0 and 𝑚 ≥ 0, we define the generating function

G𝑚,𝜈 (𝜏) � −1
2

∑
𝑛
−∞

∑
𝑟 ∈Z

𝑝2𝜈+2(𝑟, 𝑛)t𝑚(4𝑛 − 𝑟2)𝑞𝑛, (1.5)

where for 𝑑 ≤ 0, we let

t𝑚(𝑑) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝜎1 (𝑚) if 𝑑 = 0,
−𝜅 if 𝑑 = −𝜅2 and 𝜅 | 𝑚,
0 if otherwise.

(1.6)

By (1.3), each Tr(𝑛; 2𝑘) is essentially the nth coefficient of G0,𝑘−1 (𝜏). Therefore, we refer to any explicit
formula for G𝑚,𝜈 (𝜏) as an Eichler–Selberg relation for m and 𝜈.

Our first result establishes that these generating functions are weakly holomorphic modular forms,
meromorphic modular forms whose poles (if any) are supported at cusps. For convenience, we let 𝑀 !

𝑘
denote the space of such weight k forms on SL2 (Z).

Theorem 1.1. If 𝜈 ≥ 0 and 𝑚 ≥ 1, then we have that G𝑚,𝜈 (𝜏) ∈ 𝑀 !
2𝜈+2.

The 𝜈 = 0 Eichler–Selberg relations only involve derivatives of the 𝑗𝑚(𝜏), as they generate 𝑀 !
2 due

to the absence of holomorphic modular forms. For convenience, we let 𝐷 � 1
2𝜋𝑖

d
d𝜏 = 𝑞 d

d𝑞 .

Theorem 1.2. For positive integers 𝑚, the following are true.
1) We have

G𝑚,0 (𝜏) = −1
2

∑
𝜅 |𝑚

∑
0<𝑟<𝜅

𝜅

𝑟 (𝜅 − 𝑟) · 𝐷 𝑗𝑟 (𝜅−𝑟 ) (𝜏).

https://doi.org/10.1017/fms.2024.126 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.126


4 Y. Deng, T. Matsusaka and K. Ono

2) If n is a positive integer, then we have∑
𝑟 ∈Z

t𝑚(4𝑛 − 𝑟2) = 𝑛
∑
𝜅 |𝑚

∑
0<𝑟<𝜅

𝜅

𝑟 (𝜅 − 𝑟) 𝑐𝑟 (𝜅−𝑟 ) (𝑛).

Example. Theorem 1.2, with 𝑚 ∈ {1, 2}, gives Kaneko’s identities [16]∑
𝑟 ∈Z

t1(4𝑛 − 𝑟2) = 0 and
∑
𝑟 ∈Z

t2(4𝑛 − 𝑟2) = 2𝑛𝑐1 (𝑛),

which he used to derive his well-known singular moduli formula for the coefficients of 𝑗 (𝜏)

𝑐1 (𝑛) =
1
𝑛

{∑
𝑟 ∈Z

t1(𝑛 − 𝑟2) +
∑

𝑟 ≥1 𝑜𝑑𝑑

(
(−1)𝑛t1(4𝑛 − 𝑟2) − t1(16𝑛 − 𝑟2)

)}
.

Such formulas have been extended to higher levels N in subsequent works [18, 19, 25]. Finally, as a
different kind of generalization, Theorem 1.2 (2) shows how to express the coefficients of each 𝑗𝑚 (𝜏)
in terms of traces of singular moduli.

For 𝜈 > 0, there are holomorphic modular forms, and so the relations have richer structure. To make
this precise, we recall the weight 2𝑘 modular Poincaré series [4, Ch. 6.3]

𝑃2𝑘,ℎ (𝜏) �
∑

𝛾∈Γ∞\Γ
𝑞ℎ |2𝑘𝛾, (1.7)

where |2𝑘 is the slash operator, Γ = PSL2(Z), and Γ∞ is the stabilizer for the cusp infinity. The usual
Eisenstein series is 𝑃2𝑘,0 (𝜏) = 𝐸2𝑘 (𝜏), and for negative integers −ℎ, we have the weakly holomorphic

𝑃2𝑘,−ℎ (𝜏) = 𝑞−ℎ +
∞∑
𝑛=1
𝑐2𝑘,−ℎ (𝑛)𝑞𝑛. (1.8)

For small 𝜈, when there are no cusp forms, we obtain the following Eichler–Selberg relations.

Theorem 1.3. If 𝜈 ∈ {1, 2, 3, 4, 6}, then for every positive integer m, the following are true.
1) We have that

G𝑚,𝜈 (𝜏) =
∑
𝜅 |𝑚

∑
0<𝑟 ≤𝜅

𝑟2𝜈+1𝑃2𝜈+2,−𝑟 (𝜅−𝑟 ) (𝜏).

2) If n is a positive integer, then we have∑
𝑟 ∈Z

𝑝2𝜈+2(𝑟, 𝑛)t𝑚(4𝑛 − 𝑟2) = −2
∑
𝜅 |𝑚

∑
0<𝑟 ≤𝜅

𝑟2𝜈+1𝑐2𝜈+2,−𝑟 (𝜅−𝑟 ) (𝑛).

Remark. The Poincaré series in Theorem 1.3 are easily described in terms of the Eisenstein series

𝐸4 (𝜏) = 1 + 240
∞∑
𝑛=1
𝜎3(𝑛)𝑞𝑛 and 𝐸6(𝜏) = 1 − 504

∞∑
𝑛=1
𝜎5(𝑛)𝑞𝑛.

https://doi.org/10.1017/fms.2024.126 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.126


Forum of Mathematics, Sigma 5

For 𝑘 ∈ {4, 6, 8, 10, 14}, we have

𝑃𝑘,−1(𝜏) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸4 (𝜏) · ( 𝑗 (𝜏) − 984) if 𝑘 = 4,
𝐸6 (𝜏) · ( 𝑗 (𝜏) − 240) if 𝑘 = 6,
𝐸2

4 (𝜏) · ( 𝑗 (𝜏) − 1224) if 𝑘 = 8,
𝐸4 (𝜏)𝐸6(𝜏) · ( 𝑗 (𝜏) − 480) if 𝑘 = 10,
𝐸2

4 (𝜏)𝐸6(𝜏) · ( 𝑗 (𝜏) − 720) if 𝑘 = 14.

Generalizing (1.1), for 𝑚 > 1, we have the Hecke formula

𝑃𝑘,−𝑚(𝜏) = 𝑚−𝑘+1 · 𝑇𝑚𝑃𝑘,−1 (𝜏).

Example. For positive integers 𝑛, Theorem 1.3 with 𝜈 = 1 and 𝑚 = 1 implies that∑
𝑟 ∈Z

𝑟2t1(4𝑛 − 𝑟2) = −480𝜎3 (𝑛).

Cusp forms arise in the general case. Special values of symmetrized shifted convolution L-functions,
and Petersson norms control these cusp forms in these Eichler–Selberg relations. Throughout, we let
𝑑2𝑘 denote the dimension of 𝑆2𝑘 , the space of weight 2𝑘 cusp forms on SL2(Z).
Theorem 1.4. If 𝜈 ≥ 1 and 𝑚 ≥ 1, then we have

G𝑚,𝜈 (𝜏) =
∑
𝜅 |𝑚

∑
0<𝑟 ≤𝜅

𝑟2𝜈+1𝑃2𝜈+2,−𝑟 (𝜅−𝑟 ) (𝜏) −
𝑑2𝜈+2∑
𝑗=1

(
24𝜎1 (𝑚) −

Γ(2𝜈 + 1)
(4𝜋)2𝜈+1

�̂�( 𝑓 𝑗 , 𝑚; 2𝜈 + 1)
‖ 𝑓 𝑗 ‖2

)
𝑓 𝑗 ,

where the 𝑓 𝑗 ’s are normalized Hecke eigenforms of 𝑆2𝜈+2 and

�̂�( 𝑓 , 𝑚; 𝑠) �
∞∑
𝑛=1

𝑐 𝑓 (𝑛)𝑐 𝑓 (𝑛 + 𝑚)
𝑛𝑠

−
∞∑
𝑛=1

𝑐 𝑓 (𝑛)𝑐 𝑓 (𝑛 − 𝑚)
𝑛𝑠

.

Example. Example 1 of [22] gives �̂�(Δ , 1; 11) = −33.383 . . . and �̂�(Δ , 2; 11) = 266.439 . . . , which
arise in Theorem 1.4 when 𝜈 = 5 and 𝑚 ∈ {1, 2}. By brute force computation, we have

G1,5 (𝜏) = 𝐸12(𝜏) −
82104

691
Δ (𝜏),

G2,5 (𝜏) = 𝑃12,−1 (𝜏) + 2049𝐸12 (𝜏) −
(
𝛼 − 1746612

691

)
Δ (𝜏),

where

𝑃12,−1 (𝜏) = Δ (𝜏) ( 𝑗2(𝜏) + 24 𝑗1 (𝜏) + 324 + 𝛼) = 𝑞−1 + 𝛼𝑞 + · · · ,

with 𝛼 = 1842.894 . . .. Using ‖Δ ‖2 = 〈Δ ,Δ〉 = 0.0000010353 . . . , these numerics illustrate
Theorem 1.4

82104
691

= 24 + 65520
691

= 24 − Γ(11)
(4𝜋)11

(−33.383 . . .)
‖Δ ‖2 ,

𝛼 − 1746612
691

= 24 · 3 − Γ(11)
(4𝜋)11

(266.439 . . .)
‖Δ ‖2 .

Theorem 1.4 gives a doubly infinite family of modified Eichler–Selberg trace formulas, where Hecke
eigenvalues are weighted by shifted convolution L-values and where traces of singular moduli t𝑚 (4𝑛−𝑟2)
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replace the Hurwitz–Kronecker class numbers t0(4𝑛 − 𝑟2) = 𝐻 (4𝑛 − 𝑟2). To make this precise, we let

Tr𝑚(𝑛; 2𝑘) � Γ(2𝑘 − 1)
(4𝜋)2𝑘−1

𝑑2𝑘∑
𝑗=1

�̂�( 𝑓 𝑗 , 𝑚; 2𝑘 − 1)
‖ 𝑓 𝑗 ‖2 · 𝑐 𝑓𝑗 (𝑛), (1.9)

where, as above, 𝑐 𝑓𝑗 (𝑛) is the eigenvalue of 𝑇𝑛 for the Hecke eigenform 𝑓 𝑗 ∈ 𝑆2𝑘 .

Corollary 1.5. If 2𝑘 ∈ 2Z+ \ {2, 4, 6, 8, 10, 14} and m is a positive integer, then we have

Tr(𝑛; 2𝑘) = 1
24𝜎1 (𝑚)

· ���Tr𝑚 (𝑛; 2𝑘) + 1
2

∑
𝑟 ∈Z

𝑝2𝑘 (𝑟, 𝑛)t𝑚(4𝑛 − 𝑟2) +
∑
𝜅 |𝑚

∑
0<𝑟 ≤𝜅

𝑟2𝑘−1𝑐2𝑘,−𝑟 (𝜅−𝑟 ) (𝑛)
���.

To obtain these results, we adapt Zagier’s novel (unpublished) proof [32] of the Eichler–Selberg
trace formula. In Section 2, we recall his proof and his work on traces of singular moduli, and we
prove Theorems 1.1–1.3. The proof of Theorem 1.4 is more involved, as we make use of the theory of
vector-valued Poincaré series, the arithmetic of half-integral weight Kloosterman sums, Rankin–Cohen
bracket operators and symmetrized shifted convolution L-functions. In Section 3, we recall important
formalities regarding vector-valued modular forms that transform according to the Weil representation.
In Section 4, we relate the Fourier coefficients of half-integral weight Maass–Poincaré series to traces
of singular moduli, and finally, in Section 5, we assemble these facts to prove Theorem 1.4.

2. Zagier’s work and the proofs of Theorems 1.1–1.3

In unpublished notes [32], Zagier gave a novel proof of the Eichler–Selberg trace formula using harmonic
Maass forms (see [7] or [4] for background on harmonic Maass forms). Saad and the third author [26]
obtained further such formulas by modifying his argument. We adapt his argument in a different aspect.

2.1. Zagier’s Proof

We begin by sketching his proof, which relies on the following theorem.

Theorem (Zagier [33]). We have that

H(𝜏) � − 1
12

+
∑
𝑑>0

𝑑≡0,3 (mod 4)

𝐻 (𝑑)𝑞𝑑 + 1
8𝜋

√
υ
+ 1

4
√
𝜋

∞∑
𝑛=1
𝑛Γ

(
−1

2
; 4𝜋𝑛2υ

)
𝑞−𝑛

2

is a harmonic Maass form of weight 3/2 on Γ0 (4), where 𝜏 = 𝑢 + 𝑖υ and Γ(𝑠; 𝑥) is the incomplete
Gamma function. Its holomorphic part is the Fourier series

H+(𝜏) � − 1
12

+
∑
𝑑>0

𝑑≡0,3 (mod 4)

𝐻 (𝑑)𝑞𝑑 .

Zagier uses a sequence of modular forms he constructs from H(𝜏) and Jacobi’s weight 1/2 theta
function

𝜃 (𝜏) �
∑
𝑛∈Z

𝑞𝑛
2
= 1 + 2𝑞 + 2𝑞4 + · · · . (2.1)
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To define these modular forms, he requires Atkin’s U-operator defined by

( 𝑓 |𝑈𝑚) (𝜏) �
1
𝑚

𝑚−1∑
𝑗=0

𝑓

(
𝜏 + 𝑗
𝑚

)
(2.2)

and the Rankin–Cohen bracket differential operators. For modular forms f and g (possibly non-
holomorphic), with weights k and l, respectively, these operators are defined by

[ 𝑓 , 𝑔]𝜈 �
∑
𝑟 ,𝑠≥0
𝑟+𝑠=𝜈

(−1)𝑟 Γ(𝑘 + 𝜈)Γ(𝑙 + 𝜈)
𝑠!Γ(𝑘 + 𝑟)𝑟!Γ(𝑙 + 𝑠)𝐷

𝑟 ( 𝑓 )𝐷𝑠 (𝑔), (2.3)

where 𝐷 = 1
2𝜋𝑖

d
d𝜏 = 𝑞 d

d𝑞 = 1
2𝜋𝑖

1
2

(
𝜕
𝜕𝑢 − 𝑖 𝜕𝜕υ

)
. These functions are weight 2𝜈 + 𝑘 + 𝑙 (possibly non-

holomorphic) modular forms, which one can project to obtain a holomorphic modular form via an
integral map 𝜋hol.

Zagier studies the resulting sequence of modular forms 𝜋hol ([H, 𝜃]𝜈 |𝑈4), where 𝜈 ≥ 1. He computes
them in two ways. The first method is combinatorial, and it uses the identity (for example, see [20, 21])

𝜋hol ([H, 𝜃]𝜈 |𝑈4) = [H+, 𝜃]𝜈 |𝑈4 + 2
(
2𝜈
𝜈

) ∞∑
𝑛=1
𝜆2𝜈+1(𝑛)𝑞𝑛.

A straightforward brute force calculation with (2.3) gives

[H+, 𝜃]𝜈 |𝑈4 =

(
2𝜈
𝜈

) ∞∑
𝑛=0

(∑
𝑟 ∈Z

𝑝2𝜈+2(𝑟, 𝑛)𝐻 (4𝑛 − 𝑟2)
)
𝑞𝑛. (2.4)

Therefore, the nth coefficient of 𝜋hol([H, 𝜃]𝜈 |𝑈4) is(
2𝜈
𝜈

) (∑
𝑟 ∈Z

𝑝2𝜈+2(𝑟, 𝑛)𝐻 (4𝑛 − 𝑟2) + 2𝜆2𝜈+1(𝑛)
)
. (2.5)

As an alternate calculation, Zagier combines (for example, see [13, Theorem 5.5]) the Rankin–Cohen
bracket operators with Hecke–Petersson theory. As each 𝜋hol ([H, 𝜃]𝜈 |𝑈4) is a cusp form, we have

𝜋hol ([H, 𝜃]𝜈 |𝑈4) =
𝑑2𝜈+2∑
𝑗=1

𝑎 𝑗 𝑓 𝑗 ,

where the 𝑓 𝑗 ’s form a basis of Hecke eigenforms for 𝑆2𝜈+2. In particular, we have𝑇𝑛 𝑓 𝑗 = 𝑐 𝑓𝑗 (𝑛) 𝑓 𝑗 ,where

𝑓 𝑗 (𝜏) = 𝑞 +
∑
𝑛≥2

𝑐 𝑓𝑗 (𝑛)𝑞𝑛.

To compute the 𝑎 𝑗 , he expresses H(𝜏) in terms of Eisenstein series (see [26, Section 2.2] or
[14, Ch. 2]), which allows him to use the method of unfolding and the Rankin–Selberg method to derive
the Petersson inner product identity (for example, see [4, Ch. 6.3])

𝑎 𝑗 〈 𝑓 𝑗 , 𝑓 𝑗〉 = 〈𝜋hol([H, 𝜃]𝜈 |𝑈4), 𝑓 𝑗〉 = −2
(
2𝜈
𝜈

)
〈 𝑓 𝑗 , 𝑓 𝑗〉.

For each j, this gives 𝑎 𝑗 = −2
(2𝜈
𝜈

)
. Therefore, the nth coefficient of 𝜋hol([H, 𝜃]𝜈 |𝑈4) is −2

(2𝜈
𝜈

)
· Tr(𝑛;

2𝜈 + 2), which when equated with (2.5) gives the Eichler–Selberg trace formula.
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2.2. Proofs of Theorems 1.1–1.3

Zagier’s proof begins with the fact that H+(𝜏) is the holomorphic part of a weight 3/2 harmonic Maass
form. In 2002, Zagier [34] greatly generalized this fact.

Theorem 5 of [34]. For positive integers m, we have that

𝑔𝑚 (𝜏) � −
∑
𝜅 |𝑚

𝜅𝑞−𝜅
2 + 2𝜎1(𝑚) +

∑
𝑑>0

𝑑≡0,3 (mod 4)

t𝑚(𝑑)𝑞𝑑 (2.6)

is a weakly holomorphic modular form of weight 3/2 on Γ0(4).

Proof of Theorem 1.1. Emulating Zagier’s proof of the Eichler–Selberg trace formula, we replaceH+(𝜏)
in (2.4) with the 𝑔𝑚 (𝜏). Namely, we define

G𝑚,𝜈 (𝜏) � − 1
2
(2𝜈
𝜈

) · [𝑔𝑚, 𝜃]𝜈 |𝑈4.

By the combinatorial calculation that gave (2.4), we obtain the earlier definition (1.5)

G𝑚,𝜈 (𝜏) = −1
2

∑
𝑛
−∞

∑
𝑟 ∈Z

𝑝2𝜈+2(𝑟, 𝑛)t𝑚(4𝑛 − 𝑟2)𝑞𝑛.

Furthermore, the theory of Rankin–Cohen brackets in this setting (see [13, Theorem 5.5]) implies that
G𝑚,𝜈 (𝜏) is a weakly holomorphic modular form in 𝑀 !

2𝜈+2. �

Proof of Theorem 1.2. The space of weight 2 holomorphic modular forms is 𝑀2 = {0} and

𝐷 𝑗−𝑛 (𝜏) = 𝑛𝑞𝑛 +𝑂 (𝑞) ∈ 𝑀 !
2.

Therefore, we have

G𝑚,0 (𝜏) +
1
2

∑
−𝑚2

4 ≤𝑛<0

1
𝑛

(∑
𝑟 ∈Z

t𝑚(4𝑛 − 𝑟2)
)
𝐷 𝑗−𝑛 (𝜏) = 0.

The first claim follows from (1.6). By comparing the nth coefficients, the second claim is obtained. �

Proof of Theorem 1.3. For 𝜈 > 0, we note that

G𝑚,𝜈 (𝜏) +
1
2

∑
−𝑚2

4 ≤𝑛≤0

∑
𝑟 ∈Z

𝑝2𝜈+2(𝑟, 𝑛)t𝑚(4𝑛 − 𝑟2)𝑃2𝜈+2,𝑛 (𝜏) (2.7)

is a cusp form. We are merely cancelling the poles at infinity with Poincaré series that satisfy (1.8), and we
capture the constant term with Eisenstein series 𝑃2𝜈+2,0(𝜏) = 𝐸2𝜈+2(𝜏) = 1+ · · · . For 𝜈 ∈ {1, 2, 3, 4, 6},
the space of cusp forms 𝑆2𝜈+2 = {0} is trivial. Therefore, the theorem follows from the identity

𝑝2𝜈+2

(
𝑟,
𝑟2 − 𝜅2

4

)
=

(𝜅 − 𝑟)2𝜈+1 + (𝜅 + 𝑟)2𝜈+1

22𝜈+1𝜅
. (2.8)

�
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3. Vector-valued modular forms

The proof of Theorem 1.4 is much more involved than the proofs of Theorems 1.2 and 1.3. Nevertheless,
its proof is still based on Theorem 1.1, and the aim is to understand the Fourier expansion of G𝑚,𝜈 (𝜏)
arithmetically in terms of traces of Hecke operators and shifted convolution L-functions. These calcula-
tions shall depend on the arithmetic of half-integral weight vector-valued modular forms that transform
with respect to the Weil representation. To this end, here we recall essential preliminaries.

3.1. The Weil representation

Let O(H) be the set of all holomorphic functions 𝜙 : H → C. For 𝑧 ∈ C \ {0}, we take the principal
branch of 𝑧1/2 as arg(𝑧1/2) ∈ (−𝜋/2, 𝜋/2]. For an integer 𝑘 ∈ Z, we put 𝑧𝑘/2 = (𝑧1/2)𝑘 . For 𝑛 ∈ Z≥0, we
put 𝑥𝑛 � Γ(𝑥+𝑛)/Γ(𝑥) = 𝑥(𝑥+1) · · · (𝑥+𝑛−1), and 𝑥𝑛 � Γ(𝑥+1)/Γ(𝑥−𝑛+1) = 𝑥(𝑥−1) · · · (𝑥−𝑛+1).

The metaplectic group Mp2(R) is a group defined by

Mp2(R) �
{
(𝛾, 𝜙(𝜏)) : 𝛾 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ SL2(R), 𝜙 ∈ O(H) satisfying 𝜙(𝜏)2 = 𝑐𝜏 + 𝑑

}
,

where the group operation is (𝛾1, 𝜙1(𝜏)) · (𝛾2, 𝜙2(𝜏)) � (𝛾1𝛾2, 𝜙1(𝛾2𝜏)𝜙2(𝜏)).
As usual, we have 𝛾𝜏 � 𝑎𝜏+𝑏

𝑐𝜏+𝑑 , and for any 𝛾 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ SL2(R), we define 𝑗 (𝛾, 𝜏) = 𝑐𝜏 + 𝑑 and

�̃� =
( (
𝑎 𝑏
𝑐 𝑑

)
, 𝑗 (𝛾, 𝜏)1/2) ∈ Mp2(R). Let Mp2(Z) be the inverse image of SL2 (Z) under the projection

Mp2(R) → SL2 (R). As usual, we let 𝑇 �
( 1 1

0 1
)

and 𝑆 �
( 0 −1

1 0
)
. It is well known that Mp2(Z) is

generated by 𝑇 and 𝑆, (see [6, p.16]) and its center is generated by

−̃𝐼 = 𝑆2 = (𝑆𝑇)3 =

((
−1 0
0 −1

)
, 𝑖

)
.

Moreover, we let Γ̃∞ � 〈𝑇〉 × 〈−̃𝐼〉, representing the metaplectic stabilizer for the cusp at infinity.
We recall the Weil representation,1 the unitary representation 𝜌 : Mp2 (Z) → GL2 (C) defined by

𝜌(𝑇) �
(
1 0
0 𝑖

)
and 𝜌(𝑆) � 1

√
2𝑖

(
1 1
1 −1

)
. (3.1)

We note that 𝜌(−̃𝐼) = 𝜌(𝑆2) = −𝑖𝐼. We let 𝜌∗ : Mp2(Z) → GL2(C) be the dual representation of 𝜌

𝜌∗((𝛾, 𝜙)) � 𝑡 𝜌((𝛾, 𝜙))−1 = 𝜌((𝛾, 𝜙)).

We recall an explicit formula for 𝜌(�̃�), which is easily derived from work of both Shintani [29,
Proposition 1.6] and Bruinier [6, Proposition 1.1], where for odd integers d, we let

𝜖𝑑 �

{
1 if 𝑑 ≡ 1 (mod 4),
𝑖 if 𝑑 ≡ 3 (mod 4).

(3.2)

Proposition 3.1. For 𝑐 ≥ 0, we have

𝜌(�̃�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜖𝑐
1 + 𝑖

( 𝑎
𝑐

) ( 1 𝑖𝑐𝑑

𝑖𝑎𝑐 −𝑖 (𝑎+𝑑)𝑐

)
if 𝑐 ≡ 1 (mod 2),

𝜖−1
𝑎

( 𝑐
𝑎

) (0 𝑖𝑎𝑏
1 0

)
if 𝑐 ≡ 2 (mod 4),

𝜖−1
𝑎

( 𝑐
𝑎

) (1 0
0 𝑖𝑎𝑏

)
if 𝑐 ≡ 0 (mod 4).

1For more general settings, see Bruinier [6, Ch. 1] and Borcherds [3]. As mentioned in the Bruinier’s book, this representation
is essentially the Weil representation associated with the discriminant group 𝐿′/𝐿 � Z/2Z, where L is a certain lattice with a
quadratic form. For specific settings, refer to [9, Section 2].
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We now give the definition of a vector-valued modular form that transforms under the Weil repre-
sentation. If 𝑘 ∈ 1

2Z and 𝑓 : H→ C2. For (𝛾, 𝜙(𝜏)) ∈ Mp2 (Z), then we define the slash operator

( 𝑓 |𝑘,𝜌 (𝛾, 𝜙)) (𝜏) � 𝜙(𝜏)−2𝑘 𝜌((𝛾, 𝜙))−1 𝑓 (𝛾𝜏).

We say that 𝑓 : H→ C2 is a weight k (vector-valued) modular form with respect to 𝜌 if

𝑓 |𝑘,𝜌 (𝛾, 𝜙) = 𝑓

for every (𝛾, 𝜙) ∈ Mp2(Z). We define them for 𝜌∗ in a similar manner.

3.2. Jacobi’s theta functions

For later use, we recall the Jacobi theta functions (for example, see [13, Section 5]) in this context. If
we set 𝜁 � e(𝑧), where e(𝑧) � 𝑒2𝜋𝑖𝑧 , we have

𝜃0 (𝜏, 𝑧) �
∑
𝑟 ∈Z

𝑟≡0 (2)

𝑞𝑟
2/4𝜁𝑟 𝑎𝑛𝑑 𝜃1 (𝜏, 𝑧) �

∑
𝑟 ∈Z

𝑟≡1 (2)

𝑞𝑟
2/4𝜁𝑟 (3.3)

and Θ(𝜏, 𝑧) �
(
𝜃0 (𝜏,𝑧)
𝜃1 (𝜏,𝑧)

)
. The specialization Θ(𝜏, 0) is a weight 1/2 vector-valued modular form with

respect to 𝜌, and in general is a (vector-valued) Jacobi form, which for (𝛾, 𝜙) ∈ Mp2(Z), in this case,
means that

(Θ|1/2,1,𝜌 (𝛾, 𝜙)) (𝜏, 𝑧) � 𝜙(𝜏)−1e
(
−𝑐𝑧2

𝑐𝜏 + 𝑑

)
𝜌((𝛾, 𝜙))−1Θ

(
𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑 ,

𝑧

𝑐𝜏 + 𝑑

)
= Θ(𝜏, 𝑧). (3.4)

4. Maass–Poincaré series and traces of singular moduli

The proof of Theorem 1.4 relies on Maass–Poincaré series that transform with respect to the Weil
representation. We construct these series following [6], and we relate them to traces of singular moduli.
The goal of this section, Theorem 4.5, can be immediately derived as a special case of Alfes’ result
[1, Theorem 4.3], which applies the Kudla–Millson theta lift ([7]) to integer weight Poincaré series.
However, we will also provide a direct proof that requires minimal advanced prior knowledge below.

4.1. The Whittaker functions

Let 𝑀𝜇,𝜈 (𝑧) and𝑊𝜇,𝜈 (𝑧) be the Whittaker functions (for example, see [30, Ch. 16] and [17, 24]). The
next two lemmas are crucial for constructing Maass–Poincaré series.

Lemma 4.1 [17, 7.2.1], [24, 13.15.19]. For positive integers 𝑛, we have

d𝑛

d𝑧𝑛
(
𝑒−𝑧/2𝑧−𝜈−1/2𝑀𝜇,𝜈 (𝑧)

)
= (−1)𝑛 (𝜇 + 𝜈 + 1/2)𝑛

(2𝜈 + 1)𝑛
𝑒−𝑧/2𝑧−𝜈−𝑛/2−1/2𝑀𝜇+𝑛/2,𝜈+𝑛/2 (𝑧).

Lemma 4.2 [17, 7.5.1], [24, 13.23.1]. For Re(𝜈 + 𝛼 + 1/2) > 0 and 2 Re(𝑧) > 𝛽 > 0, we have

∫ ∞

0
𝑒−𝑧𝑡 𝑡𝛼−1𝑀𝜇,𝜈 (𝛽𝑡)d𝑡 =

𝛽𝜈+1/2Γ
(
𝜈 + 𝛼 + 1

2

)
(
𝑧 + 𝛽

2

)𝜈+𝛼+1/2 · 2𝐹1

(
𝜈 − 𝜇 + 1

2
, 𝜈 + 𝛼 + 1

2
; 2𝜈 + 1;

2𝛽
𝛽 + 2𝑧

)
,

where 2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) is the Gaussian hypergeometric function.

https://doi.org/10.1017/fms.2024.126 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.126


Forum of Mathematics, Sigma 11

For 𝑛 ∈ Z, 𝑘 ∈ 1
2Z, 𝑦 > 0, and 𝑠 ∈ C, we define the modified Whittaker functions

M𝑘,𝑛 (𝑦, 𝑠) �
{
Γ(2𝑠)−1(4𝜋 |𝑛|𝑦)−𝑘/2𝑀sgn(𝑛) 𝑘

2 ,𝑠−1/2(4𝜋 |𝑛|𝑦) if 𝑛 ≠ 0,
𝑦𝑠−𝑘/2 if 𝑛 = 0,

(4.1)

W𝑘,𝑛 (𝑦, 𝑠) �
⎧⎪⎪⎨⎪⎪⎩
Γ(𝑠 + sgn(𝑛) 𝑘2 )

−1 |𝑛|𝑘−1 (4𝜋 |𝑛|𝑦)−𝑘/2𝑊sgn(𝑛) 𝑘
2 ,𝑠−1/2(4𝜋 |𝑛|𝑦) if 𝑛 ≠ 0,

(4𝜋)1−𝑘 𝑦1−𝑠−𝑘/2

(2𝑠 − 1)Γ(𝑠 − 𝑘/2)Γ(𝑠 + 𝑘/2) if 𝑛 = 0.
(4.2)

The special values of these functions at 𝑠 = 𝑘/2 play a crucial role in the construction of the Maass–
Poincaré series. To this end, for 𝑛 < 0, we have

M𝑘,𝑛

(
𝑦,
𝑘

2

)
= Γ(𝑘)−1𝑒−2𝜋𝑛𝑦 . (4.3)

As for the W-function, we have

W𝑘,𝑛

(
𝑦,
𝑘

2

)
=

{
Γ(𝑘)−1𝑛𝑘−1𝑒−2𝜋𝑛𝑦 if 𝑛 > 0,
0 if 𝑛 ≤ 0

(4.4)

(see [17, 7.2.4]). Moreover, we note that, ([17, 7.6.1], [24, 13.14]),

𝑊𝜇,𝜈 (𝑦) ∼ 𝑒−𝑦/2𝑦𝜇 (𝑦 → ∞),
𝑀𝜇,𝜈 (𝑦) = 𝑦𝜈+1/2(1 +𝑂 (𝑦)) (𝑦 → 0).

(4.5)

4.2. Kloosterman sums

The Fourier expansions of the Maass–Poincaré series require Kloosterman sums, which we recall here.
For 𝑘 ∈ 1

2Z\Z,𝑚, 𝑛 ∈ Z, and 𝑐 > 0 with 𝑐 ≡ 0 (mod 4), we define the half-integral weight Kloosterman
sum by

𝐾𝑘 (𝑚, 𝑛, 𝑐) �
∑
𝑑 (𝑐)∗

( 𝑐
𝑑

)
𝜖2𝑘
𝑑 e
(
𝑚𝑑 + 𝑛𝑑

𝑐

)
, (4.6)

where 𝑑 ∈ Z/𝑐Z satisfies that 𝑑𝑑 ≡ 1 (mod 𝑐). The condition 𝑑 (𝑐)∗ means that d runs over 𝑑 ∈ Z/𝑐Z
such that (𝑐, 𝑑) = 1. We note that the Kloosterman sums satisfy

𝐾𝑘+2(𝑚, 𝑛, 𝑐) = 𝐾𝑘 (𝑚, 𝑛, 𝑐) and 𝐾3/2(𝑚, 𝑛, 𝑐) = −𝑖𝐾1/2(−𝑚,−𝑛, 𝑐). (4.7)

We now relate the Weil representation to such Kloosterman sums. For notational convenience, we let

𝜌(�̃�) =
(
𝜌(�̃�)00 𝜌(�̃�)01
𝜌(�̃�)10 𝜌(�̃�)11

)
.

Then the following sum formula holds for each entry of 𝜌(�̃�).
Proposition 4.3. If 𝛼, 𝛽 ∈ {0, 1} and m and n satisfy 𝑚 ≡ −𝛼 (mod 4) and 𝑛 ≡ −𝛽 (mod 4), then for
every positive integer c, we have

1
4

(
1 +

(
4
𝑐

))
𝐾3/2(𝑚, 𝑛, 4𝑐) =

∑
𝑑 (𝑐)∗

𝜌(�̃�)𝛼𝛽e
(
𝑚𝑎 + 𝑛𝑑

4𝑐

)
,

where we take any 𝛾 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ SL2 (Z) for which (𝑐, 𝑑) forms its bottom row.
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Proof. First, we check that the right-hand side is well defined. Let 𝑅𝛼𝛽 (𝛾) denote its summand. It
suffices to show that 𝑅𝛼𝛽 (𝑇 𝑗𝛾𝑇 𝑙) = 𝑅𝛼𝛽 (𝛾) holds for any 𝑗 , 𝑙 ∈ Z. Since �𝑇 𝑗𝛾𝑇 𝑙 = 𝑇 𝑗 �̃�𝑇 𝑙 holds, we
have

𝑅𝛼𝛽 (𝑇 𝑗𝛾𝑇 𝑙) = 𝑖𝛼 𝑗+𝛽𝑙𝜌(�̃�)𝛼𝛽e
(
𝑚𝑎 + 𝑛𝑑

4𝑐

)
e
(
𝑚 𝑗 + 𝑛𝑙

4

)
= 𝑅𝛼𝛽 (𝛾).

Next, for each 𝛾 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ SL2 (Z) with 𝑐 > 0, we prove the refined equation

𝜌(�̃�)𝛼𝛽 =
1
4

(
1 +

(
4
𝑐

)) ∑
𝛿 (4𝑐)
𝛿≡𝑑 (𝑐)
𝛿≡1 (2)

( 𝑐
𝛿

)
𝜖−1
𝛿 e
(
𝑎 − 𝛿

4𝑐

)𝛼
e
(
𝑑 − 𝛿

4𝑐

)𝛽
, (4.8)

where 𝛿 is the inverse of 𝛿 in (Z/4𝑐Z)×. This immediately implies the proposition.
To confirm (4.8), let 𝛿 = 𝑑 𝑗 � 𝑑 + 𝑐 𝑗 and 𝑏 𝑗 � 𝑏 + 𝑎 𝑗 ( 𝑗 = 0, 1, 2, 3). For simplicity, let 𝜌′′(𝛾)𝛼𝛽

denote the right-hand side of (4.8) and show that 𝜌′′(𝛾)𝛼𝛽 = 𝜌(�̃�)𝛼𝛽 . If 𝛿 is odd, then we can easily
check that

𝛿 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑎(1 + 𝑏 𝑗𝑐) if 𝑐 ≡ 1 (mod 2) and 𝑎 ≡ 1 (mod 2),
(𝑎 + 𝑐) (1 + (𝑏 𝑗 + 𝑑 𝑗 )𝑐) if 𝑐 ≡ 1 (mod 2) and 𝑎 ≡ 0 (mod 2),
𝑎(1 − 𝑎𝑏 𝑗𝑐𝑑 𝑗 ) if 𝑐 ≡ 2 (mod 4),
𝑎(1 − 𝑏 𝑗𝑐) if 𝑐 ≡ 0 (mod 4).

We prove the case where 𝑐 ≡ 1 (mod 2) and 𝑎 ≡ 1 (mod 2), leaving the others to the reader. We have

𝜌′′(𝛾)𝛼𝛽 =
1
2

∑
0≤ 𝑗≤3
𝑑 𝑗≡1 (2)

(
𝑐

𝑑 𝑗

)
𝜖−1
𝑑 𝑗

e
(−𝑎𝑏 𝑗

4

)𝛼
e
(
− 𝑗
4

)𝛽
=
𝑖−𝑎𝑏𝛼

2

(
𝑑

𝑐

) ∑
0≤ 𝑗≤3
𝑑 𝑗≡1 (2)

(−1)
(𝑐−1) (𝑑𝑗−1)

4 𝜖−1
𝑑 𝑗
𝑖− 𝑗 (𝛼+𝛽) .

Since the value of the sum depends only on 𝑐, 𝑑 (mod 4), a direct calculation yields

𝜌′′(𝛾)𝛼𝛽 =
𝑖−𝑎𝑏𝛼

2

(
𝑑

𝑐

)
2𝜖𝑐
1 + 𝑖 ×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (𝛼, 𝛽) = (0, 0),
𝑖𝑐𝑑 if (𝛼, 𝛽) = (0, 1), (1, 0),
(−1)𝑑−1 if (𝛼, 𝛽) = (1, 1).

Combining simple calculations with Proposition 3.1, one obtains 𝜌(�̃�)𝛼𝛽 . �

4.3. The Maass–Poincaré series

Using the two previous subsections, we now construct the Maass–Poincaré series. We let 𝔢0 �
( 1

0
)

and
𝔢1 �

( 0
1
)
. Assume that 𝑘 ∈ 1

2Z satisfies 2𝑘 ≡ 3 (mod 4). For 𝛼 ∈ {0, 1} and 𝑚 ≡ −𝛼 (mod 4), we
define the Maass–Poincaré series of weight k with respect to 𝜌∗ by

𝑃 (𝛼,𝑚)
𝑘,𝜌∗ (𝜏, 𝑠) �

∑
(𝛾,𝜙) ∈Γ̃∞\Mp2 (Z)

M𝑘,𝑚

(υ
4
, 𝑠
)
e
(𝑚𝑢

4

)
𝔢𝛼

����
𝑘,𝜌∗

(𝛾, 𝜙) (4.9)

=
∑

𝛾∈Γ∞\Γ
M𝑘,𝑚

(υ
4
, 𝑠
)
e
(𝑚𝑢

4

)
𝔢𝛼

����
𝑘,𝜌∗

�̃�.
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This series converges absolutely and uniformly on compact subsets in Re(𝑠) > 1 [6, p.29], and we note
that M𝑘,𝑚(υ/4, 𝑠)e(𝑚𝑢/4)𝔢𝛼 is invariant under |𝑘,𝜌∗ (𝛾, 𝜙) for any (𝛾, 𝜙) ∈ Γ̃∞ as 2𝑘 ≡ 3 (mod 4).

The Fourier expansions of the functions involve the Bessel functions (see [17, Ch. 3] and [30, Ch. 17])

𝐼𝜈 (𝑧) �
∞∑
𝑚=0

(𝑧/2)𝜈+2𝑚

𝑚!Γ(𝜈 + 𝑚 + 1) , 𝐽𝜈 (𝑧) �
∞∑
𝑚=0

(−1)𝑚(𝑧/2)𝜈+2𝑚

𝑚!Γ(𝜈 + 𝑚 + 1) .

Proposition 4.4. For Re(𝑠) > 1, we have

𝑃 (𝛼,𝑚)
𝑘,𝜌∗ (𝜏, 𝑠) = M𝑘,𝑚

(υ
4
, 𝑠
)
e
(𝑚𝑢

4

)
𝔢𝛼 +

∑
𝛽∈{0,1}

∑
𝑛∈Z

𝑛≡−𝛽 (4)

𝑏
(𝛽)
𝑚,𝑘 (𝑛, 𝑠)W𝑘,𝑛

(υ
4
, 𝑠
)
e
(𝑛𝑢

4

)
𝔢𝛽 ,

where

𝑏
(𝛽)
𝑚,𝑘 (𝑛, 𝑠) = 2𝜋𝑖−𝑘

∑
𝑐>0

(
1 +

(
4
𝑐

))
𝐾3/2(𝑚, 𝑛, 4𝑐)

4𝑐

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|𝑚𝑛|
1−𝑘

2 𝐽2𝑠−1

(
𝜋
√
|𝑚𝑛|
𝑐

)
if 𝑚𝑛 > 0,

|𝑚𝑛|
1−𝑘

2 𝐼2𝑠−1

(
𝜋
√
|𝑚𝑛|
𝑐

)
if 𝑚𝑛 < 0,

2𝑘−1𝜋𝑠+𝑘/2−1 |𝑚 + 𝑛|𝑠−𝑘/2 (4𝑐)1−2𝑠 if 𝑚𝑛 = 0, 𝑚 + 𝑛 ≠ 0,
22𝑘−2𝜋𝑘−1Γ(2𝑠) (8𝑐)1−2𝑠 if 𝑚 = 𝑛 = 0.

Proof. Dividing the sum of the Poincaré series into the identity class and the remaining part, we have

𝑃 (𝛼,𝑚)
𝑘,𝜌∗ (𝜏, 𝑠) = M𝑘,𝑚

(υ
4
, 𝑠
)
e
(𝑚𝑢

4

)
𝔢𝛼 +

∑
𝛾=
(
𝑎 𝑏
𝑐 𝑑

)
∈Γ∞\Γ

𝑐>0

M𝑘,𝑚

(υ
4
, 𝑠
)
e
(𝑚𝑢

4

)
𝔢𝛼

����
𝑘,𝜌∗

�̃�.

Let 𝐻 (𝛼,𝑚)
𝑘,𝜌∗ (𝜏, 𝑠) denote the sum of the second term. By following the exact same argument as in the

proof of Theorem 1.9 in Bruinier’s book [6], we obtain the Fourier expansion,

𝐻 (𝛼,𝑚)
𝑘,𝜌∗ (𝜏, 𝑠) =

∑
𝛽∈{0,1}

∑
𝑛∈Z

���
∑
𝑐>0

∑
𝑑∈(Z/𝑐Z)×

𝜌(�̃�)𝛼𝛽e
(
𝑚𝑎 + 𝑛𝑑

4𝑐

)
𝐼𝑚(𝑛)

���e
(𝑛𝑢

4

)
𝔢𝛽 ,

where 𝐼𝑚(𝑛) is given by

𝐼𝑚(𝑛) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2𝜋𝑖−𝑘

𝑐
|𝑚𝑛|

1−𝑘
2 𝐽2𝑠−1

(
𝜋
√
|𝑚𝑛|
𝑐

)
W𝑘,𝑛 (υ/4, 𝑠) if 𝑚𝑛 > 0,

2𝜋𝑖−𝑘

𝑐
|𝑚𝑛|

1−𝑘
2 𝐼2𝑠−1

(
𝜋
√
|𝑚𝑛|
𝑐

)
W𝑘,𝑛 (υ/4, 𝑠) if 𝑚𝑛 < 0,

41+𝑘/2−2𝑠𝜋𝑠+𝑘/2𝑖−𝑘 |𝑚 + 𝑛|𝑠−𝑘/2

𝑐2𝑠 W𝑘,𝑛 (υ/4, 𝑠) if 𝑚𝑛 = 0, 𝑚 + 𝑛 ≠ 0,
4−3𝑠+𝑘+1𝜋𝑘 𝑖−𝑘

𝑐2𝑠 Γ(2𝑠)W𝑘,0(υ/4, 𝑠) if 𝑚 = 𝑛 = 0.

By combining this with Proposition 4.3, we obtain Proposition 4.4. �
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4.4. Traces of singular moduli

The coefficients of these functions are related to traces of singular moduli, as shown in several previous
works (for example, see [5, 8, 12]). To make this precise, we consider weight 3/2 modular forms h on
Γ0 (4) satisfying

ℎ(𝜏) =
∑

𝑛≡0,3 (4)
𝑐𝑛 (υ)𝑞𝑛. (4.10)

We define ℎ𝑖 (𝜏) =
∑
𝑛≡−𝑖 (4) 𝑐𝑛 (υ/4)𝑞𝑛/4 for 𝑖 ∈ {0, 1}, and then we have that

𝐻 (𝜏) �
(
ℎ0 (𝜏)
ℎ1 (𝜏)

)
(4.11)

is a weight 3/2 vector-valued modular form with respect to 𝜌∗ (see [13, Section 5] and [4, Ch. 2]).
We relate the 𝑔𝑚 (𝜏) in (2.6) and 𝑔0 (𝜏) � H(𝜏) to the Maass–Poincaré expressions

𝐺𝑚(𝜏, 𝑠) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 1

12
𝑃 (0,0)

3/2,𝜌∗ (𝜏, 𝑠) if 𝑚 = 0,

−
√
𝜋

2

∑
𝑛 |𝑚

𝑛𝑃 (𝛼,−𝑛2)
3/2,𝜌∗ (𝜏, 𝑠) + 2𝜎1 (𝑚)𝑃 (0,0)

3/2,𝜌∗ (𝜏, 𝑠) if 𝑚 > 0,
(4.12)

where 𝛼 ≡ 𝑛2 (mod 4) for each n. To be precise, we have the following theorem.
Theorem 4.5. If m is a nonnegative integer, then we have

lim
𝑠→3/4

𝐺𝑚(𝜏, 𝑠) =
(
𝑔𝑚,0 (𝜏)
𝑔𝑚,1 (𝜏)

)
.

Remark. We note that the case of 𝑚 = 0 was stated by Williams [31, Example 5.1].
Sketch of the Proof. This result is standard, and so we sketch the proof. We first recall facts about
Niebur–Poincaré series 𝐹𝑚 (𝜏, 𝑠) (see [23] or [12, Section 4]), which are defined for Re(𝑠) > 1, and give
alternative expressions for the 𝑗𝑚(𝜏). Specifically, as described in [12, (4.10)], it is known that

Res
𝑠=1

𝐹0 (𝜏, 𝑠) =
3
𝜋

and

lim
𝑠→1

𝐹−𝑚(𝜏, 𝑠) = 𝑗𝑚(𝜏) + 24𝜎1 (𝑚) (𝑚 > 0). (4.13)

For nonnegative integers m, the trace functions

Tr𝑑 (𝐹−𝑚 (·, 𝑠)) �
∑

𝑄∈Q𝑑/Γ

𝐹−𝑚 (𝛼𝑄, 𝑠)
#Γ𝑄

have a direct connection to the coefficients of the earlier Maass–Poincaré series. Indeed, by combining
the result of Duke, Imamoḡlu and Tóth in [12, Proposition 4] with our Proposition 4.4, for Re(𝑠) > 1,
𝑚 ≥ 0, and 𝑑 > 0 with 𝑑 ≡ 0, 3 (mod 4), we obtain that

Tr𝑑 (𝐹−𝑚 (·, 𝑠)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝑑1/2

∑
𝑛 |𝑚

𝑛𝑏
(𝛽)
−𝑛2 ,3/2

(
𝑑,
𝑠

2
+ 1

4

)
if 𝑚 > 0,

−2𝑠−2𝜋−𝑠/2−1𝑑1/2𝜁 (𝑠)𝑏 (𝛽)0,3/2

(
𝑑,
𝑠

2
+ 1

4

)
if 𝑚 = 0.
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Therefore, (4.13) implies that

t𝑚(𝑑) = lim
𝑠→3/4

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−𝑑1/2

∑
𝑛 |𝑚

𝑛𝑏
(𝛽)
−𝑛2 ,3/2 (𝑑, 𝑠) +

4𝑑1/2
√
𝜋
𝜎1(𝑚)𝑏 (𝛽)0,3/2(𝑑, 𝑠) if 𝑚 > 0,

− 𝑑
1/2

6
√
𝜋
𝑏
(𝛽)
0,3/2(𝑑, 𝑠) if 𝑚 = 0.

(4.14)

By applying (4.3) and (4.4), we thereby conclude the proof of the theorem. �

Remark. We note that subtle technicalities arise in the proof of Theorem 4.5, which have been addressed
in the aforementioned works but deserve commentary. The 𝐺𝑚(𝜏, 𝑠) are defined for Re(𝑠) > 1, where
they enjoy the Fourier series expansion in Proposition 4.4. As we can only be analytically continued up
to Re(𝑠) > 3/4, care is required when letting 𝑠→ 3/4. In fact, the Fourier coefficients 𝑏 (𝛽)−𝑚2 ,3/2(−𝑛

2, 𝑠)
have a simple pole at 𝑠 = 3/4, which cancels out with a zero from W3/2,−𝑛2 (υ/4, 𝑠), (for example, see
[12, Lemma 3]). This issue is addressed by examining the growth of the Fourier coefficients of𝐺𝑚(𝜏, 𝑠),
including Tr𝑑 (𝐹−𝑚 (·, 𝑠)), as 𝑑 → ∞ and the behavior as 𝑠→ 3/4. We refer the reader to [8, 11, 12] for
these details.

5. Proof of Theorem 1.4

We have constructed the Poincaré series 𝐺𝑚(𝜏, 𝑠) whose Fourier coefficients give the traces of singular
moduli. We turn to the problem of providing the Hecke decomposition of G𝑚,𝜈 (𝜏). Specifically, we
compute the Petersson inner product 〈G𝑚,𝜈 , 𝑓 〉 with a normalized Hecke eigenform f of 𝑆2𝜈+2. We first
recall useful facts about Jacobi forms to relate the Rankin–Cohen brackets to these Poincaré series.

5.1. Jacobi forms and the modified heat operator

For a function 𝜑 : H×C→ C, 𝛾 ∈ SL2 (Z), and positive integers 𝑘, 𝑚 ∈ Z>0, we define the slash operator

(𝜑|𝑘,𝑚𝛾) (𝜏, 𝑧) � (𝑐𝜏 + 𝑑)−𝑘e
(
−𝑐𝑚𝑧2

𝑐𝜏 + 𝑑

)
𝜑

(
𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑 ,

𝑧

𝑐𝜏 + 𝑑

)
,

and the weighted heat operator

𝐿𝑘,𝑚 � −𝐷 − 1
16𝜋2𝑚

(
𝜕2

𝜕𝑧2 + 2𝑘 − 1
𝑧

𝜕

𝜕𝑧

)
,

where 𝐷 = 1
2𝜋𝑖

d
d𝜏 = 1

2𝜋𝑖
1
2

(
𝜕
𝜕𝑢 − 𝑖 𝜕𝜕υ

)
. Then, we have

𝐿𝑘,𝑚 (𝜑|𝑘,𝑚𝛾) = (𝐿𝑘,𝑚𝜑) |𝑘+2,𝑚𝛾 (5.1)

for any 𝛾 ∈ SL2(Z) (see [13, (11) in Section 3]). For simplicity, we put 𝐿𝑘 � 𝐿𝑘,1.

Lemma 5.1. For a Poincaré series defined by

𝐺 (𝜏) =
∑

(𝛾,𝜙) ∈Γ̃∞\Mp2 (Z)

(
𝜓0 (𝜏)
𝜓1 (𝜏)

)����
3/2,𝜌∗

(𝛾, 𝜙),

with test functions 𝜓0, 𝜓1 : H→ C, we have

𝑡Θ(𝜏, 𝑧)𝐺 (𝜏) =
∑

𝛾∈Γ∞\Γ
(𝜃0 (𝜏, 𝑧)𝜓0(𝜏) + 𝜃1 (𝜏, 𝑧)𝜓1(𝜏)) |2,1𝛾.
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Proof. By a direct calculation with (3.4), we have

𝑡Θ(𝜏, 𝑧)𝐺 (𝜏) =
∑

(𝛾,𝜙) ∈Γ̃∞\Mp2 (Z)

𝜙(𝜏)−4e
(
−𝑐𝑧2

𝑐𝜏 + 𝑑

)
𝑡Θ
(
𝛾𝜏,

𝑧

𝑐𝜏 + 𝑑

)
𝑡 𝜌((𝛾, 𝜙))−1𝜌∗((𝛾, 𝜙))−1

(
𝜓0 (𝛾𝜏)
𝜓1 (𝛾𝜏)

)
.

Since 𝑡 𝜌((𝛾, 𝜙))−1𝜌∗((𝛾, 𝜙))−1 = 𝐼 and 𝜙(𝜏)−4 = (𝑐𝜏 + 𝑑)−2, we obtain the result. �

We require the following proposition for the 𝑝𝑘 (𝑟, 𝑛) in the Eichler–Selberg trace formula.

Proposition 5.2. For 𝜈, 𝑙 ∈ Z≥0 and 𝑟 ∈ Z, we define the differential operator by

𝑝2𝜈+2(𝑟, 𝐷, 𝑙) �
∑

0≤ 𝑗≤𝜈
(−1) 𝑗

(
2𝜈 + 2𝑙 − 𝑗

𝑗

) (2𝑙
𝑙

) (𝜈+𝑙− 𝑗
𝑙

)(2𝜈+2𝑙− 𝑗
𝑙

) (𝜈+𝑙
𝑙

) 𝑟2𝜈−2 𝑗𝐷 𝑗 . (5.2)

Then, for a function : H→ C, we have the Taylor expansion

𝐿2𝜈 ◦ · · · ◦ 𝐿2 𝑓 (𝜏) (𝜁𝑟 + 𝜁−𝑟 ) = 2
∞∑
𝑙=0
𝑝2𝜈+2(𝑟, 𝐷, 𝑙) 𝑓 (𝜏)

(2𝜋𝑖𝑟𝑧)2𝑙

(2𝑙)! .

In particular, letting 𝑝𝑘 (𝑟, 𝑛) as in (1.4), we have that 𝑝2𝜈+2(𝑟, 𝐷, 0) = 𝑝2𝜈+2(𝑟, 𝐷) and

lim
𝑧→0

𝐿2𝜈 ◦ · · · ◦ 𝐿2 𝑓 (𝜏) (𝜁𝑟 + 𝜁−𝑟 ) = 2𝑝2𝜈+2(𝑟, 𝐷) 𝑓 (𝜏).

Proof. We check that the Taylor coefficients of 𝐿2𝜈 ◦ · · · ◦ 𝐿2 𝑓 (𝜏) (𝜁𝑟 + 𝜁−𝑟 ) and the sequence (5.2)
satisfy the same recursion. The claim is clear for 𝜈 = 0. For 𝜈 > 0, let

𝑆𝜈,𝑙, 𝑗 � (−1) 𝑗
(
2𝜈 + 2𝑙 − 𝑗

𝑗

) (2𝑙
𝑙

) (𝜈+𝑙− 𝑗
𝑙

)(2𝜈+2𝑙− 𝑗
𝑙

) (𝜈+𝑙
𝑙

) 𝑟2𝜈−2 𝑗𝐷 𝑗 .

Then 𝑆𝜈,𝑙, 𝑗 satisfies the recursion

𝑆𝜈,𝑙, 𝑗 = −𝐷𝑆𝜈−1,𝑙, 𝑗−1 +
𝑟2

4

(
1 + 4𝜈 − 1

2𝑙 + 1

)
𝑆𝜈−1,𝑙+1, 𝑗 ,

for 𝜈 ≥ 1 and 0 ≤ 𝑗 ≤ 𝜈 with 𝑆𝜈,𝑙,−1 = 0, which implies that

𝑝2𝜈+2(𝑟, 𝐷, 𝑙) = −𝐷𝑝2𝜈 (𝑟, 𝐷, 𝑙) +
𝑟2

4

(
1 + 4𝜈 − 1

2𝑙 + 1

)
𝑝2𝜈 (𝑟, 𝐷, 𝑙 + 1).

One can check that the Taylor coefficients also satisfy this recursion. �

We use this proposition to understand the combinatorial properties of the Rankin–Cohen bracket
operators, which is a slight generalization of [13, Theorem 5.5].

Proposition 5.3. Let 𝜈 ≥ 0 be a nonnegative integer. For a modular form h of weight 3/2 on Γ0(4) of
the form (4.10), we have

[ℎ, 𝜃]𝜈 |𝑈4 =

(
2𝜈
𝜈

) ∑
𝑛∈Z

∑
𝑟 ∈Z

𝑝2𝜈+2(𝑟, 𝐷)𝑐4𝑛−𝑟2 (υ/4)𝑞𝑛 =

(
2𝜈
𝜈

)
lim
𝑧→0

𝐿2𝜈 ◦ · · · ◦ 𝐿2
𝑡Θ(𝜏, 𝑧)𝐻 (𝜏).
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Proof. By definition, we have

[ℎ, 𝜃]𝜈 |𝑈4 =
∑
𝑟 ,𝑠≥0
𝑟+𝑠=𝜈

(−1)𝑟 Γ(3/2 + 𝜈)Γ(1/2 + 𝜈)
𝑠!Γ(3/2 + 𝑟)𝑟!Γ(1/2 + 𝑠)𝐷

𝑟���
∑

𝑛≡0,3 (4)
𝑐𝑛 (υ)𝑞𝑛

���𝐷𝑠

(∑
𝑚∈Z

𝑞𝑚
2

)
|𝑈4.

A direct calculation implies that

𝐷𝑟
���
∑

𝑛≡0,3 (4)
𝑐𝑛 (υ)𝑞𝑛

���𝐷𝑠

(∑
𝑚∈Z

𝑞𝑚
2

)
|𝑈4 =

∑
𝑁 ∈Z

∑
𝑚∈Z

𝑚2𝑠 (4𝐷 − 𝑚2)𝑟 𝑐4𝑁−𝑚2 (υ/4)𝑞𝑁

and ∑
𝑟 ,𝑠≥0
𝑟+𝑠=𝜈

(−1)𝑟 Γ(3/2 + 𝜈)Γ(1/2 + 𝜈)
𝑠!Γ(3/2 + 𝑟)𝑟!Γ(1/2 + 𝑠)𝑚

2𝑠 (4𝐷 − 𝑚2)𝑟 =
(
2𝜈
𝜈

)
𝑝2𝜈+2(𝑚, 𝐷).

The last equation immediately follows from Proposition 5.2. �

For each 𝑛 ≥ 0 and 𝜈 ≥ 0, we define

Φ𝑛,𝜈 (𝜏, 𝑠) � lim
𝑧→0

𝐿2𝜈 ◦ · · · ◦ 𝐿2
𝑡Θ(𝜏, 𝑧)𝑃 (𝛼,−𝑛2)

3/2,𝜌∗ (𝜏, 𝑠). (5.3)

Combining Theorem 4.5 and Lemma 5.3, for 𝑚 ≥ 1, we obtain the following key expressions:

G𝑚,𝜈 (𝜏) = − 1
2
(2𝜈
𝜈

) · [𝑔𝑚, 𝜃]𝜈 |𝑈4 = −1
2

lim
𝑠→3/4

���−
√
𝜋

2

∑
𝑛 |𝑚

𝑛Φ𝑛,𝜈 (𝜏, 𝑠) + 2𝜎1(𝑚)Φ0,𝜈 (𝜏, 𝑠)
���. (5.4)

The order of limits of s and z is interchanged, which is justified by the Remark at the end of Section 4.4.

5.2. The Selberg–Poincaré series

To prove Theorem 1.4 using (5.4), we must calculate Φ𝑛,𝜈 (𝜏, 𝑠) and 〈Φ𝑛,𝜈 (·, 𝑠), 𝑓 〉 at 𝑠 = 3/4 for
Hecke eigenforms f. To this end, we use Selberg’s generalization [27] of the Poincaré series in (1.7).
For integers 𝑘 ≥ 2 and 𝑚 ∈ Z, they are defined by

𝑃𝑘,𝑚 (𝜏, 𝑠) �
∑

𝛾∈Γ∞\Γ
υ𝑠𝑞𝑚 |𝑘𝛾. (5.5)

This series converges absolutely and uniformly on compact subsets for Re(𝑠) > 1 − 𝑘/2 and admits
meromorphic continuation. In particular, it is known that 𝑃𝑘,𝑚(𝜏, 𝑠) is holomorphic at 𝑠 = 1− 𝑘/2. This
fact follows from comparing it with the Maass–Poincaré series defined by∑

𝛾∈Γ∞\Γ
M𝑘,𝑚(υ, 𝑠 + 𝑘/2)e(𝑚𝑢) |𝑘𝛾 (Re(𝑠) > 1 − 𝑘/2).

Indeed, from (4.5), we have

(4𝜋 |𝑚 |υ)𝑠 − Γ(2𝑠 + 𝑘)M𝑘,𝑚(υ, 𝑠 + 𝑘/2) = 𝑂 (υRe(𝑠)+1).

Thus, for Re(𝑠) > −𝑘/2, the poles of these two types of Poincaré series agree. However, the Fourier
expansion of the Maass–Poincaré series (see [15, Theorem 3.2]) and the Weil bound for the Kloosterman
sums imply its holomorphy at 𝑠 = 1 − 𝑘/2.
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The next lemma describes the Petersson inner product of cusp forms with these series.

Lemma 5.4. For 𝑓 ∈ 𝑆𝑘 and 𝑚 > 0, we have

〈𝑃𝑘,𝑚 (·, 𝑠), 𝑓 〉 �
∫
Γ\H

𝑃𝑘,𝑚 (𝜏, 𝑠) 𝑓 (𝜏)υ𝑘
d𝑢dυ
υ2 =

Γ(𝑠 + 𝑘 − 1)
(4𝜋𝑚)𝑠+𝑘−1 𝑐 𝑓 (𝑚).

Proof. It follows from the classical unfolding argument (see [4, Ch. 10.1], for instance). �

5.3. The case of 𝑛 = 0

Here, we calculate 〈Φ0,𝜈 (·, 𝑠), 𝑓 〉 at 𝑠 = 3/4 for a normalized Hecke eigenform f. To this end, we
decompose Φ0,𝜈 (𝜏, 𝑠) in terms of the Selberg–Poincaré series.

Proposition 5.5. We have that

Φ0,𝜈 (𝜏, 𝑠) = 4−𝑠+3/4
∑

0≤𝑙≤𝜈

(𝑠 − 3/4)𝑙

(4𝜋)𝑙

(
2𝜈 + 1
2𝑙 + 1

)∑
𝑟 ∈Z

𝑟2𝜈−2𝑙𝑃2𝜈+2,𝑟2

(
𝜏, 𝑠 − 3

4
− 𝑙
)
.

Proof. By applying (5.1), Lemma 5.1 and Proposition 5.2,

Φ0,𝜈 (𝜏, 𝑠) = lim
𝑧→0

∑
𝛾∈Γ∞\Γ

∑
𝑟 ∈Z

𝑟≡0 (2)

(
𝐿2𝜈 ◦ · · · ◦ 𝐿2

(υ
4

)𝑠−3/4
𝑞𝑟

2/4𝜁𝑟
)����

2𝜈+2,1
𝛾

= 4−𝑠+3/4
∑

𝛾∈Γ∞\Γ

∑
𝑟 ∈Z

𝑝2𝜈+2 (2𝑟, 𝐷)υ𝑠−3/4𝑞𝑟
2
����
2𝜈+2

𝛾.

The summand is calculated as

𝑝2𝜈+2(2𝑟, 𝐷)υ𝑠−3/4𝑞𝑟
2
=
∑

0≤ 𝑗≤𝜈
(−1) 𝑗

(
2𝜈 − 𝑗
𝑗

)
(2𝑟)2𝜈−2 𝑗𝐷 𝑗

(
υ𝑠−3/4𝑞𝑟

2
)
.

Then the claim follows from the Leibniz rule, where 𝐷υ𝑠−3/4 = −1
4𝜋

d
dυυ

𝑠−3/4, and the fact that∑
𝑙≤ 𝑗≤𝜈

(−1) 𝑗22(𝜈− 𝑗)
(
2𝜈 − 𝑗
𝑗

) (
𝑗

𝑙

)
= (−1)𝑙

(
2𝜈 + 1
2𝑙 + 1

)
.

�

The next result provides a formula for the Petersson norm of a cusp form f.

Theorem 5.6. For a normalized Hecke eigenform 𝑓 ∈ 𝑆2𝜈+2, we have

lim
𝑠→3/4

〈Φ0,𝜈 (·, 𝑠), 𝑓 〉 = 24‖ 𝑓 ‖2.

Proof. First, we note that the Fourier coefficients of a normalized Hecke eigenform are real. By
Lemma 5.4 and Proposition 5.5, we find that

〈Φ0,𝜈 (·, 𝑠), 𝑓 〉 = 4−𝑠+3/4
∑

0≤𝑙≤𝜈

(𝑠 − 3/4)𝑙

(4𝜋)𝑙
Γ(2𝜈 + 𝑠 + 1/4 − 𝑙)

(4𝜋)2𝜈+𝑠+1/4−𝑙

(
2𝜈 + 1
2𝑙 + 1

)
· 2

∞∑
𝑟=1

𝑐 𝑓 (𝑟2)
𝑟2𝑠+2𝜈+1/2 .

https://doi.org/10.1017/fms.2024.126 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.126


Forum of Mathematics, Sigma 19

As in [10, Lemma 11.12.6], let

𝐵( 𝑓 , 𝑠) �
∞∑
𝑛=1

𝑐 𝑓 (𝑛2)
𝑛𝑠

=
1

𝜁 (2(𝑠 − 2𝜈 − 1)) 𝐿(Sym2 ( 𝑓 ), 𝑠)

for 𝑓 ∈ 𝑆2𝜈+2. Then, it is known that 𝐵( 𝑓 , 𝑠) admits the meromorphic continuation to the whole C-
plane, and 𝐿(Sym2( 𝑓 ), 𝑠) has no poles (see [10, Remark 11.12.8]). In particular, 𝐵( 𝑓 , 2𝑠 + 2𝜈 + 1/2)
has no pole at 𝑠 = 3/4. Therefore, by [10, Corollary 11.12.7], we have

lim
𝑠→3/4

〈Φ0,𝜈 (·, 𝑠), 𝑓 〉 =
Γ(2𝜈 + 1)
(4𝜋)2𝜈+1 (2𝜈 + 1)2𝐵( 𝑓 , 2𝜈 + 2)

=
2(2𝜈 + 1)!
(4𝜋)2𝜈+1

6
𝜋2
𝜋

2
(4𝜋)2𝜈+2

(2𝜈 + 1)! 〈 𝑓 , 𝑓 〉

= 24‖ 𝑓 ‖2. �

5.4. The cases of 𝑛 > 0

We turn to the case of positive 𝑛. Again, we first decompose Φ𝑛,𝜈 (𝜏, 𝑠).

Proposition 5.7. For 𝑛 > 0, we have

Φ𝑛,𝜈 (𝜏, 𝑠) =
1

Γ(2𝑠)
∑
𝑟 ∈Z

𝑟≡𝑛 (2)

∑
𝑖1 ,𝑖2≥0
𝑖1+𝑖2≤𝜈

(−1)𝑖1
𝑖1!𝑖2!

(
𝑛2

4

) 𝑖1+𝑖2
𝑄𝜈,𝑖1+𝑖2 (𝑛, 𝑟)

(𝑠 − 3/4)𝑖1 (𝑠 − 3/4)𝑖2

(2𝑠)𝑖2
𝑃𝑖1 ,𝑖2𝑛,𝑟 (𝜏, 𝑠),

where we let

𝑄𝜈,𝑖 (𝑛, 𝑟) �
∑
𝑖≤ 𝑗≤𝜈

(−1) 𝑗
(
2𝜈 − 𝑗
𝑗

)
𝑟2𝜈−2 𝑗 𝑗!

( 𝑗 − 𝑖)!

(
𝑟2 − 𝑛2

4

) 𝑗−𝑖
,

𝑃𝑖1 ,𝑖2𝑛,𝑟 (𝜏, 𝑠) �
∑

𝛾∈Γ∞\Γ
(𝜋𝑛2υ)−3/4−𝑖1−𝑖2/2𝑀−3/4+𝑖2/2,𝑠−1/2+𝑖2/2(𝜋𝑛2υ)e

(
𝑟2 − 𝑛2

4
𝑢

)
𝑒−

𝜋𝑟2υ
2

����
2𝜈+2

𝛾.

Proof. Arguing as above, by applying (5.1), Lemma 5.1 and Proposition 5.2, we obtain

Φ𝑛,𝜈 (𝜏, 𝑠) = lim
𝑧→0

∑
𝛾∈Γ∞\Γ

∑
𝑟 ∈Z

𝑟≡𝑛 (2)

(
𝐿2𝜈 ◦ · · · ◦ 𝐿2M3/2,−𝑛2

(υ
4
, 𝑠
)
e
(
−𝑛2𝑢

4

)
𝑞𝑟

2/4𝜁𝑟
)����

2𝜈+2,1
𝛾

=
∑

𝛾∈Γ∞\Γ

∑
𝑟 ∈Z

𝑟≡𝑛 (2)

𝑝2𝜈+2(𝑟, 𝐷)M3/2,−𝑛2

(υ
4
, 𝑠
)
e
(
−𝑛2𝑢

4

)
𝑞𝑟

2/4
����
2𝜈+2

𝛾.
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The summand is calculated as

𝑝2𝜈+2 (𝑟, 𝐷)M3/2,−𝑛2

(υ
4
, 𝑠
)
e
(
−𝑛2𝑢

4

)
𝑞𝑟

2/4

=
1

Γ(2𝑠)
∑

0≤ 𝑗≤𝜈
(−1) 𝑗

(
2𝜈 − 𝑗
𝑗

)
𝑟2𝜈−2 𝑗𝐷 𝑗

[
(𝜋𝑛2υ)𝑠−3/4 · (𝜋𝑛2υ)−𝑠𝑀−3/4,𝑠−1/2 (𝜋𝑛2υ)𝑒−

𝜋𝑛2υ
2 · 𝑞

𝑟2−𝑛2
4

]
=

1
Γ(2𝑠)

∑
0≤ 𝑗≤𝜈

(−1) 𝑗
(
2𝜈 − 𝑗
𝑗

)
𝑟2𝜈−2 𝑗

×
∑

𝑖1 ,𝑖2 ,𝑖3≥0
𝑖1+𝑖2+𝑖3= 𝑗

𝑗!
𝑖1!𝑖2!𝑖3!

𝐷𝑖1 (𝜋𝑛2υ)𝑠−3/4 · 𝐷𝑖2
[
(𝜋𝑛2υ)−𝑠𝑀−3/4,𝑠−1/2 (𝜋𝑛2υ)𝑒−

𝜋𝑛2υ
2

]
· 𝐷𝑖3𝑞

𝑟2−𝑛2
4 .

Similar to the case of 𝑛 = 0, direct calculation utilizing 𝐷 𝑓 (υ) = −1
4𝜋

d
dυ 𝑓 (υ) yields

𝐷𝑖1 (𝜋𝑛2υ)𝑠−3/4 =

(
−𝑛

2

4

) 𝑖1
(𝑠 − 3/4)𝑖1 (𝜋𝑛2υ)𝑠−3/4−𝑖1 ,

𝐷𝑖3𝑞
𝑟2−𝑛2

4 =

(
𝑟2 − 𝑛2

4

) 𝑖3
𝑞

𝑟2−𝑛2
4 .

For the second term, by Lemma 4.1, we find that

𝐷𝑖2
[
(𝜋𝑛2υ)−𝑠𝑀−3/4,𝑠−1/2 (𝜋𝑛2υ)𝑒−

𝜋𝑛2υ
2

]
=

(
𝑛2

4

) 𝑖2 (𝑠 − 3/4)𝑖2

(2𝑠)𝑖2
𝑒−

𝜋𝑛2υ
2 (𝜋𝑛2υ)−𝑠−𝑖2/2𝑀−3/4+𝑖2/2,𝑠−1/2+𝑖2/2(𝜋𝑛2υ).

The claim follows by combining these results. �

We split the sum defining Φ𝑛,𝜈 (𝜏, 𝑠) into Φ+
𝑛,𝜈 (𝜏, 𝑠) and Φ−

𝑛,𝜈 (𝜏, 𝑠), based on the inequalities 𝑟2 > 𝑛2

or 𝑟2 ≤ 𝑛2. We consider them as 𝑠 → 3/4. By (4.5), the summand of the Poincaré series 𝑃𝑖1 ,𝑖2𝑛,𝑟 (𝜏, 𝑠)
satisfies

υ−3/4−𝑖1−𝑖2/2𝑀−3/4+𝑖2/2,𝑠−1/2+𝑖2/2(𝜋𝑛2υ)e
(
𝑟2 − 𝑛2

4
𝑢

)
𝑒−

𝜋𝑟2υ
2 = 𝑂 (υRe(𝑠)−3/4−𝑖1)

as υ→ 0. Therefore, for Re(𝑠) > −𝜈 + 𝑖1 + 3/4, the Poincaré series is holomorphic (in s). In particular,
𝑃𝑖1 ,𝑖2𝑛,𝑟 (𝜏, 𝑠) is holomorphic at 𝑠 = 3/4 for 0 ≤ 𝑖1 < 𝜈. Regarding the case of 𝑖1 = 𝜈, by a similar argument
as in Section 5.2 – that is, by comparing it with the Selberg–Poincaré series or the Maass–Poincaré
series – we see that it is also holomorphic at 𝑠 = 3/4. Therefore, we have

lim
𝑠→3/4

Φ−
𝑛,𝜈 (𝜏, 𝑠) =

1
Γ(3/2)

∑
𝑟 ∈Z

𝑟≡𝑛 (2)
𝑟2≤𝑛2

𝑄𝜈,0 (𝑛, 𝑟)𝑃0,0
𝑛,𝑟 (𝜏, 3/4).

Since 𝑄𝜈,0(𝑛, 𝑟) = 𝑝2𝜈+2(𝑟, (𝑟2 − 𝑛2)/4) and 𝑃0,0
𝑛,𝑟 (𝜏, 3/4) = 𝑃2𝜈+2, 𝑟2−𝑛2

4
(𝜏), by (2.8), we have

lim
𝑠→3/4

Φ−
𝑛,𝜈 (𝜏, 𝑠) =

4
𝑛
√
𝜋

∑
0<𝑟 ≤𝑛

𝑟2𝜈+1𝑃2𝜈+2,−𝑟 (𝑛−𝑟 ) (𝜏). (5.6)
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As a counterpart to Theorem 5.6, the Petersson inner product of Φ+
𝑛,𝜈 (𝜏, 𝑠) with a Hecke eigenform

is expressed in terms of the symmetrized shifted convolution L-functions.

Theorem 5.8. For a normalized Hecke eigenform 𝑓 ∈ 𝑆2𝜈+2, we have

lim
𝑠→3/4

〈Φ+
𝑛,𝜈 (·, 𝑠), 𝑓 〉 =

4
𝑛
√
𝜋

Γ(2𝜈 + 1)
(4𝜋)2𝜈+1

∑
𝑑 |𝑛
𝜇(𝑑) �̂�( 𝑓 , 𝑛/𝑑; 2𝜈 + 1).

Proof. By Proposition 5.7, we have

〈Φ+
𝑛,𝜈 (·, 𝑠), 𝑓 〉

=
1

Γ(2𝑠)
∑
𝑟 ∈Z

𝑟≡𝑛 (2)
𝑟2>𝑛2

∑
𝑖1 ,𝑖2≥0
𝑖1+𝑖2≤𝜈

(−1)𝑖1
𝑖1!𝑖2!

(
𝑛2

4

) 𝑖1+𝑖2
𝑄𝜈,𝑖1+𝑖2 (𝑛, 𝑟)

(𝑠 − 3/4)𝑖1 (𝑠 − 3/4)𝑖2

(2𝑠)𝑖2
〈𝑃𝑖1 ,𝑖2𝑛,𝑟 (·, 𝑠), 𝑓 〉.

The unfolding argument, combined with Lemma 4.2, gives

(𝜋𝑛2)
3
4+𝑖1+

𝑖2
2 〈𝑃𝑖1 ,𝑖2𝑛,𝑟 (·, 𝑠), 𝑓 〉

=
∞∑
𝑚=1

𝑐 𝑓 (𝑚)
∫ ∞

0

∫ 1

0
υ2𝜈− 3

4−𝑖1−
𝑖2
2 𝑀− 3

4+
𝑖2
2 ,𝑠−

1
2+

𝑖2
2
(𝜋𝑛2υ)e

((
𝑟2 − 𝑛2

4
− 𝑚

)
𝑢

)
𝑒
−2𝜋

(
𝑟2
4 +𝑚

)
υd𝑢dυ

= 𝑐 𝑓

(
𝑟2 − 𝑛2

4

) ∫ ∞

0
𝑒
−𝜋
(
𝑟2− 𝑛2

2

)
υ
υ2𝜈− 3

4−𝑖1−
𝑖2
2 𝑀− 3

4+
𝑖2
2 ,𝑠−

1
2+

𝑖2
2
(𝜋𝑛2υ)dυ

= 𝑐 𝑓

(
𝑟2 − 𝑛2

4

) (𝜋𝑛2)𝑠+
𝑖2
2 Γ
(
𝑠 + 2𝜈 + 1

4 − 𝑖1
)

(𝜋𝑟2)𝑠+2𝜈+ 1
4−𝑖1

· 2𝐹1

(
𝑠 + 3

4
, 𝑠 + 2𝜈 + 1

4
− 𝑖1; 2𝑠 + 𝑖2;

𝑛2

𝑟2

)
.

By changing variables 𝑟 = 2𝑚 + 𝑛 for 𝑟 > 𝑛 and 𝑟 = −2𝑚 − 𝑛 for 𝑟 < −𝑛, we have

〈Φ+
𝑛,𝜈 (·, 𝑠), 𝑓 〉

=
2

Γ(2𝑠)
∑
𝑖1 ,𝑖2≥0
𝑖1+𝑖2≤𝜈

(−1)𝑖1
𝑖1!𝑖2!

(
𝑛2

4

) 𝑖1+𝑖2 (𝑠 − 3/4)𝑖1 (𝑠 − 3/4)𝑖2

(2𝑠)𝑖2
(𝜋𝑛2)𝑠−

3
4−𝑖1Γ

(
𝑠 + 2𝜈 + 1

4
− 𝑖1

)

×
∞∑
𝑚=1

𝑄𝜈,𝑖1+𝑖2 (𝑛, 2𝑚 + 𝑛)𝑐 𝑓 (𝑚(𝑚 + 𝑛))
(𝜋(2𝑚 + 𝑛)2)𝑠+2𝜈+ 1

4−𝑖1
2𝐹1

(
𝑠 + 3

4
, 𝑠 + 2𝜈 + 1

4
− 𝑖1; 2𝑠 + 𝑖2;

𝑛2

(2𝑚 + 𝑛)2

)
,

where we note that 𝑄𝜈,𝑖 (𝑛,−𝑟) = 𝑄𝜈,𝑖 (𝑛, 𝑟) holds. For a normalized Hecke eigenform 𝑓 ∈ 𝑆2𝜈+2, since

𝑐 𝑓 (𝑚(𝑚 + 𝑛)) =
∑

𝑑 | (𝑚,𝑚+𝑛)
𝜇(𝑑)𝑑2𝜈+1𝑐 𝑓

(𝑚
𝑑

)
𝑐 𝑓

(𝑚 + 𝑛
𝑑

)
,

the last sum becomes∑
𝑑 |𝑛
𝜇(𝑑)𝑑2𝜈+1

∞∑
𝑚=1

𝑄𝜈,𝑖1+𝑖2 (𝑛, 2𝑑𝑚 + 𝑛)𝑐 𝑓 (𝑚)𝑐 𝑓 (𝑚 + 𝑛/𝑑)
(𝜋(2𝑑𝑚 + 𝑛)2)𝑠+2𝜈+ 1

4−𝑖1

× 2𝐹1

(
𝑠 + 3

4
, 𝑠 + 2𝜈 + 1

4
− 𝑖1; 2𝑠 + 𝑖2;

𝑛2

(2𝑑𝑚 + 𝑛)2

)
.
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Then, this Dirichlet series is holomorphic at 𝑠 = 3/4. Indeed, since 𝑄𝜈,𝑖1+𝑖2 (𝑛, 2𝑑𝑚 + 𝑛) has degree
2(𝜈 − 𝑖1 − 𝑖2) in m, it suffices to show that

∞∑
𝑚=1

𝑐 𝑓 (𝑚)𝑐 𝑓 (𝑚 + 𝑛/𝑑)
𝑚2(𝑠+𝜈+1/4+𝑖2)

(conditionally) converges at 𝑠 = 3/4. This can be seen by partial summation using the estimate∑
1≤𝑚≤𝑥

𝑐 𝑓 (𝑚)𝑐 𝑓 (𝑚 + 𝑛/𝑑) � 𝑥2𝜈+2−𝛿 ,

with some 𝛿 > 0, (see [2, Corollary 1.4]). Therefore, all terms corresponding to nonzero (𝑖1, 𝑖2) vanish
as 𝑠→ 3/4, and we obtain

lim
𝑠→3/4

〈Φ+
𝑛,𝜈 (·, 𝑠), 𝑓 〉 =

4
√
𝜋
Γ(2𝜈 + 1)

∑
𝑑 |𝑛
𝜇(𝑑)𝑑2𝜈+1

×
∞∑
𝑚=1

𝑄𝜈,0(𝑛, 2𝑑𝑚 + 𝑛)𝑐 𝑓 (𝑚)𝑐 𝑓 (𝑚 + 𝑛/𝑑)
(𝜋(2𝑑𝑚 + 𝑛)2)2𝜈+1 2𝐹1

(
3
2
, 2𝜈 + 1;

3
2

;
𝑛2

(2𝑑𝑚 + 𝑛)2

)
.

Since we have

1
𝑟2(2𝜈+1) 2𝐹1

(
3
2
, 2𝜈 + 1;

3
2

;
𝑛2

𝑟2

)
=

1
(𝑟2 − 𝑛2)2𝜈+1

and 𝑄𝜈,0(𝑛, 𝑟) = 𝑝2𝜈+2(𝑟, (𝑟2 − 𝑛2)/4) with (2.8) again, the proof is complete as

lim
𝑠→3/4

〈Φ+
𝑛,𝜈 (·, 𝑠), 𝑓 〉 =

4
𝑛
√
𝜋

Γ(2𝜈 + 1)
(4𝜋)2𝜈+1

∑
𝑑 |𝑛
𝜇(𝑑)

∞∑
𝑚=1

𝑐 𝑓 (𝑚)𝑐 𝑓 (𝑚 + 𝑛/𝑑)
(

1
𝑚2𝜈+1 − 1

(𝑚 + 𝑛/𝑑)2𝜈+1

)
.

�

5.5. Proof of Theorem 1.4

We apply the results from the two previous subsections. For 𝑚 > 0 and 𝜈 ≥ 0, let

Φ(𝜏, 𝑠) �
√
𝜋

4

∑
𝑛 |𝑚

𝑛Φ𝑛,𝜈 (𝜏, 𝑠) − 𝜎1(𝑚)Φ0,𝜈 (𝜏, 𝑠).

As stated in (5.4), we have

lim
𝑠→3/4

Φ(𝜏, 𝑠) = G𝑚,𝜈 (𝜏).

However, from (5.6), the minus part

lim
𝑠→3/4

Φ−(𝜏, 𝑠) � lim
𝑠→3/4

√
𝜋

4

∑
𝑛 |𝑚

𝑛Φ−
𝑛,𝜈 (𝜏, 𝑠) =

∑
𝑛 |𝑚

∑
0<𝑟 ≤𝑛

𝑟2𝜈+1𝑃2𝜈+2,−𝑟 (𝑛−𝑟 ) (𝜏).
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For the plus part, by Theorem 5.6 and Theorem 5.8 and the Möbius inversion formula, we have

lim
𝑠→3/4

〈Φ+(·, 𝑠), 𝑓 〉 =
∑
𝑛 |𝑚

Γ(2𝜈 + 1)
(4𝜋)2𝜈+1

∑
𝑑 |𝑛
𝜇(𝑑) �̂�( 𝑓 , 𝑛/𝑑; 2𝜈 + 1) − 24𝜎1 (𝑚)‖ 𝑓 ‖2

=
Γ(2𝜈 + 1)
(4𝜋)2𝜈+1 �̂�( 𝑓 , 𝑚; 2𝜈 + 1) − 24𝜎1 (𝑚)‖ 𝑓 ‖2.

Combining these facts, we are pleased to obtain the conclusion of the theorem

lim
𝑠→3/4

Φ(𝜏, 𝑠) =
∑
𝑛 |𝑚

∑
0<𝑟 ≤𝑛

𝑟2𝜈+1𝑃2𝜈+2,−𝑟 (𝑛−𝑟 ) (𝜏) −
𝑑2𝜈+2∑
𝑗=1

(
24𝜎1 (𝑚) −

Γ(2𝜈 + 1)
(4𝜋)2𝜈+1

�̂�( 𝑓 , 𝑚; 2𝜈 + 1)
‖ 𝑓 𝑗 ‖2

)
𝑓 𝑗 .
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