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108.40 A surprising coincidence between Pythagorean triples
and an Euler-Cauchy differential equation

In this Note we shall discuss an unexpected aspect of an Euler-Cauchy
second order linear differential equation

x2y″ − bxy′ + cy = 0 (b ≥ 0, c > 0) (1)
having a regular singular point . For more information about the
Euler-Cauchy differential equation and differential equations with a regular
singular point (see [1, pp. 128 and 192]). Specifically, we will show when
given certain Pythagorean triples (see [2, p. 41]), their values may be used in
solving (1) with integer exponents provided the conditions on  and  are
satisfied. We shall be examining triples  where . Our
first step is to assume a solution of the form . Substituting this in
(1) yields

x = 0

b c
(u, v, w) w − v = 1

y (x) = xr

r (r − 1) x2xr − 2 − brxxr − 1 + cxr = 0. (2)
Dividing (2) by  yields the quadratic equationxr

r2 − (b + 1) r + c = 0. (3)
Solving (3), yields two solutions  and .r s

r =
(b + 1) + (b + 1)2 − 4c

2
 and  s =

(b + 1) − (b + 1)2 − 4c
2

.

Now there could be two real roots, double roots, or two complex roots.
When the roots are distinct, the general solution is given by

f (x) = Axr + Bxs.
When there is a double root, the general solution is

g (x) = Axr + Bxr ln (x) .
In general, the solutions to (1) are not analytic for . In the case of
Pythagorean triples, however, the solutions are positive integral powers of .
We now show the conditions when the two roots are positive integers
derived from a Pythagorean triple  where . In addition,
we show there is a 1-1 correspondence between these triples and the
coefficients  and . First we illustrate this by the following two examples
below.

x = 0
x

(u, v, w) w − v = 1

b c

Example 1:

x2y″ − 4xy′ + 4y = 0.
Here  and . The solutions to (3) are b = 4 c = 4

1
2

(4 + 1) ±
1
2

(4 + 1)2 − 4 × 4 =
5
2

±
3
2

.
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So the general solution to (1) is

g (x) = Ax + Bx4.
The Pythagorean triple is (3, 4, 5) where ,  and

.
w = b + 1 v = 2 c

u = (b + 1)2 − 4c = w2 − v2

Example 2:

x2y″ − 12xy′ + 36y = 0.
In this case, (5, 12, 13) is the Pythagorean triple and the general solution to
(1) is therefore

g (x) = Ax9 + Bx4.

Remark 1: We see under these conditions  and .r = 1
2 (w + u) s = 1

2 (w − u)

Remark 2: These triples are created using two consecutive positive integers
 and . Specifically, ,

 and . This shows we
have an infinite set of Pythagorean triples that are generated by any two
consecutive positive integers which are directly linked to the exponents of
the solution to (1) under suitable conditions on the coefficients.

m n = m + 1 w = m2 + n2 = 2m2 + 2m + 1
v = 2mn = 2m (m + 1) u = n2 − m2 = 2m + 1

Remark 3: Consider the case when  and . The corresponding
triple is (13, 84, 85 ) which generates the differential equation

m = 6 n = 7

x2y″ − 84xy′ + 1764 = 0. (4)
Thus,  and . So the general
solution of (4) is

r = 1
2 (85 + 13) = 49 s = 1

2 (85 − 13) = 36

y (x) = Ax36 + Bx49.
Remark 4: There are also other solutions to (1) that do not follow this
pattern. For example the equation

x2y″ − 148xy′ + 4900y = 0

gives rise to exponents  and . The Pythagorean triple in this
instance is (51, 140, 149).

r = 100 s = 49

What we have shown is this coincidence between a certain set of
Pythagorean triples and a specific Euler differential equation occurs
infinitely often.
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108.41 Diophantine approximations for a class of recursive
sequences

Introduction: The canonical example of a divergent sequence is .
It is arguably the simplest example of a sequence  for which we can
explicitly compute that , where we recall that

the limit superior and limit inferior are defined, respectively, by
 and . Two closely related

divergent sequences are given by  and , .
Similarly, we have , but these calculations are

not nearly as simple as the ones for the canonical example  since
they essentially rely on a deeper fact regarding the equi-distribution modulo

 of the positive integers.

{(−1)n}n ≥ 1
{xn}n ≥ 1

lim⎯⎯⎯

n → ∞
xn = 1 ≠ −1 = lim

⎯n → ∞
xn

lim⎯⎯⎯

n → ∞
xn = lim

n → ∞ (sup
m ≥ n

xm) lim
⎯n → ∞

xn = lim
n → ∞ ( inf

m ≥ n
xm)

cn = cos (n) sn = sin (n) n ≥ 1
lim⎯⎯⎯

n → ∞
cn = 1 ≠ −1 = lim

⎯n → ∞
cn

{(−1)n}n ≥ 1

2π
A natural way to re-write the divergence of a bounded sequence such as

 is by considering a slightly modified version of it that behaves
monotonically. For example, let us define recursively the sequence
by

{cn}n ≥ 1
{un}n ≥ 1

un + 1 = max {un, cn} ,  n ≥ 1, (1)
with  some fixed value. Proving the convergence of the recursive
sequence (1) is a straightforward exercise found in the calculus textbook [1,
Exercise 106, p. 505]. Clearly, if , the sequence is constant and equal
to , hence convergent to . Assuming , we see that  is non-
decreasing and bounded above by 1, therefore convergent by the Monotone
Convergence Theorem. The really interesting question however, which is
not asked in [1], is finding out precisely which value does the sequence

 converge to. On a closer inspection, we discover that computing the
exact value of  propels us into the wonderful world of Diophantine

approximations, the area of mathematics concerned with the approximation
of real numbers by rational ones.

u1 ∈ �

u1 ≥ 1
u1 u1 u1 < 1 un

{un}n ≥ 1
lim

n → ∞
un

https://doi.org/10.1017/mag.2024.124 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.124

