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Abstract

Plants are complex systems made up of many interacting components, ranging from architec-
tural elements such as branches and roots, to entities comprising cellular processes such as
metabolic pathways and gene regulatory networks. The collective behaviour of these compo-
nents, along with the plant’s response to the environment, give rise to the plant as a whole.
Properties that result from these interactions and cannot be attributed to individual parts
alone are called emergent properties, occurring at different time and spatial scales. Deepening
our understanding of plant growth and development requires computational tools capable
of handling a large number of interactions and a multiscale approach connecting properties
across scales. There currently exist few methods able to integrate models across scales, or
models capable of predicting new emergent plant properties. This perspective explores current
approaches to modelling emergent behaviour in plants, with a focus on how current and future
tools can handle multiscale plant systems.

1. Introduction

What does it mean to say that plants are complex systems? Is the number of components the
sole determinant of a system’s complexity? A mechanical clock, made up of many gears, cogs
and springs, is a good example of a system with a large number of interacting components. The
function of a clock is to keep time, carried out through the rotation of its hands, and the manner
in which its components are assembled enable this designed function. To determine whether a
clock is a complex system, we can consider the set of core features proposed to define complex
systems, which include hierarchical organisation, feedback, nonlinearity, spontaneous order,
robustness without central control, and emergence (Ladyman et al., 2013). When we evaluate
clocks based on these features, it becomes clear that they would fail on most of these (with
the possible exception of hierarchical organisation). Therefore, we can say that clocks are not
complex systems.

Plants, on the other hand, do contain all of the core features of complex systems outlined
above. They are decentralised systems that self-assemble their components across different
temporal and spatial scales. There are many non-linear interactions, both within the plant and
between the plant and its environment. Plants need to maintain homeostasis of water, gases,
temperature and nutrients often within highly changeable environments, and this is achieved by
buffering and feedback regulation. Although plants do have great phenotypic plasticity (Sultan,
2003), meaning a single genotype can result in varying phenotypes based on environmental
factors such as nutrient and water availability, and stressors, many features of plant structure are
remarkably consistent. Hierarchical organisation is a characteristic feature of biology, which is
full of multilevel hierarchies from small molecules to macromolecules, to functional complexes,
to subcellular compartments, to cells; from simple multicellular organisms to highly complex
forms (Vanchurin et al., 2022). But what about the last of the core features outlined by Ladyman
et al. (2013): emergence. What exactly is emergence?

Emergence describes any phenomenon of a system that cannot be predicted through the
study of its individual parts, but is explainable by the collective activity of its parts (Long &
Boudaoud, 2019). So, returning to the clock example, whilst it is possible that there might be
other configurations of the clock components that would also make the clock hands rotate,
it is unlikely that they would do so in time intervals that correspond to seconds, minutes and
hours. Most configurations of the clock components will likely do nothing at all. We thus have the
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Figure 1. The growth and form of plants are influenced by interconnected processes that occur at different temporal and

spatial scales. For instance, the growth of roots is affected by local factors such as soil composition, water and nutrient

availability, as well as plant properties like the location of primordia, growth rates, and root growth angle. These

interactions result in the formation of the root structure, which in turn affects the transport of water and nutrients, and

shapes the overall plant structure and form, including the shape of individual cells. This structure also affects

photosynthesis through factors such as the availability of chloroplasts and shading. On a cellular level, processes like gene

expression and metabolism have an impact on photosynthesis and cell-to-cell communication. This limited example

illustrates how the emergent properties of plants arise from underlying interactions and how these properties can further

impact the interactions that gave rise to them.
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case of a rather unique configuration with the functionality of
a clock among many possible other configurations that do not
have this property. Additionally, the function of a clock could be
predicted using mechanics and kinematics if the configuration of
all the components were known. Whilst the resulting position of
the hands is a consequence of the clock components and their
interactions, we wouldn’t say that the function emerges.

As modellers, we are interested in reproducible patterns and in
trying to understand how these patterns arise, often with the goal
of predicting them. Whereas predicting emergent properties from
their components alone is impossible, prediction from knowledge
of the components and their interactions is possible, at least in
principle. Doing this requires definition of the ‘local rules’ that
underly particular system behaviours. For example, reproducing
the complex formation of microtubule structure has been achieved
through the use of simulations based on simple local rules defining
microtubule behaviour after collisions, in which shallow contacts
favour coalignment (‘zippering’) and steeper collisions tend to
result in depolymerisation (Dixit & Cyr, 2004; Sambade et al.,
2012). Many emergent patterns and structures of plant systems,
such as cell size, cell arrangement, microtubule formation, gene reg-
ulatory network (GRN) dynamics, and gradients of morphogens,
have been characterised and modelled by defining the local rules
that underlie them (Long & Boudaoud, 2019). However, determin-
ing the local rules that result in emergent phenomena in plants
is a significant undertaking for plant biologists and often requires
extensive experimentation (Roeder, 2021).

One major challenge for plant modellers is how to link together
models of different temporal and spatial scales, in order to obtain
an integrated view of plant development and function. Many plant
properties can be categorised as being emergent, from the shape
and structure of each cell, which arise from interactions between
factors across different scales, such as the plant DNA, and inter-
nal and external signals such as hormone gradients, light, the
cytoskeleton, the plant wall, and space limitations from neighbour-
ing cells (Kondorosi et al., 2000). The interactions between plant
cells then produce new emergent properties, such as tissue and
organ formation, regulation of plant development, and response to
external stresses such as nutrient or water restriction. Each spatial
scale of a plant is composed of emergent properties arising from the
interactions of properties from a smaller scale, each of which can
also be viewed as emergent properties of the level below (Figure 1).
Given this, the notion of attempting to track a single genotypic
perturbation through the resulting individual plant phenotype, and
potentially, up to the organisation of many such plants across a
landscape displaying heterogeneity in soil type and weather pat-
terns seems nigh on impossible.

Creating integrated models with the ability to capture multiscale
emergent properties can be simplified through the development
of generalisable modelling formalisms. Many models involving
complex systems or behaviours are designed to answer specific
questions that cannot be addressed using more traditional tech-
niques, rather than for the advancement of general theory. This
was something highlighted over 20 years ago by Volker Grimm,
which he termed as a need for a ‘paradigmatic’ rather than ‘prag-
matic’ approach (Grimm, 1999). Such a focus of models on specific
biological questions has also been proposed to be a barrier to
progress in plant modelling (Louarn & Song, 2020). The main focus
in this perspective is therefore on models and formalisms able to
characterise general rules for emergence in plant systems, and as
such, I will be limiting its scope to the mathematical formalisms
and software able to advance general theory of plant emergent

properties. This is not intended to be an exhaustive review of
models relating to plant emergence, as that would be far beyond
the scope of a single paper, but will rather highlight some recent
key studies on modelling formalisms at two scales of plant systems:
plant architecture and plant cell processes. In addition, I will discuss
multiscale models that have successfully linked together differ-
ent existing models, highlighting the strengths and weaknesses of
such approaches. Finally, the discussion will examine collabora-
tions designed to facilitate the integration of models, as well as
highlighting how a recent organism-centric perspective aimed at
characterising living systems could be utilised to integrate plant
components across scales, in order to both characterise existing and
predict new emergent plant properties.

2. Modelling emergent properties in plants

The selection of an appropriate modelling tool depends upon the
plant system of interest, the question to be addressed, and the
relevant time and spatial scales. Different modelling formalisms
exist aimed at representing plants at specific scales, and here, we
look at those aimed firstly at representing how plant architecture
both influences, and is influenced by, plant development, and sec-
ondly, the interactions between cellular processes and the plant as a
whole.

2.1. Plant architecture as an emergent property

The structure and function of plants, like any living system, are
closely linked. Plants construct themselves through the process of
morphogenesis, driven by the interactions between plant compo-
nents and processes, their environment, and their genetic code
(Zahadat et al., 2018). Additionally, plant growth and development
take place in dynamic and often harsh environments, where plants
exhibit remarkable adaptability in response to external factors such
as resource competition, stress from pathogens, herbivores, and
weather (Sultan, 2003). This raises questions about the balance
between a plant’s predetermined genetic code and its development
through interactions with its surroundings. Thus, models of plant
morphogenesis must account for the interplay between the physical
and biological processes driving development across scales, as well
as the plant’s response to the environment.

Creating generalised models of the interplay between plant
architecture and plant function requires formalisms able to simplify
the wide range of complexity and diversity of plant shapes. Here, I
only focus on those approaches best suited to generalised applica-
tions, and a more full description of the established mathematical
paradigms for the formal representation of plant shape can be
found in Pałubicki et al. (2019). Models that account for plant archi-
tecture and how it impacts and is impacted by plant processes such
as growth and development are known as functional-structural
plant models (FSPMs) (Letort et al., 2020). FSPMs represent plant
architecture as interconnected plant components and can explicitly
handle spatial distribution of both environmental and biological
processes (Godin & Sinoquet, 2005), allowing them to incorporate
feedback-loops between plant structure, function, and the environ-
ment (Bongers, 2020). FSPMs allow for questions relating to the
interplay between plant development and plant environment to be
addressed, and are able to handle variability between individual
plant components. A complete review and history of FSPMs can
be found in Louarn and Song (2020).

One major consideration when developing an FSPM is how to
represent the plant architecture. A commonly used formalism that
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can describe a wide range of plant features and types is an L-system.
L-systems, short for Lindenmayer systems, are defined through
a rewriting language able to generate complex patterns through
repeated application of a set of production rules to a starting string
(Lindenmayer, 1968). Each L-system consists of an alphabet of
symbols, a set of production rules, and the initial string. L-systems
are powerful tools for generating complex patterns that exhibit
self-similarity and fractal properties, and have been used to model
the growth of branches, roots and flowers (Leitner et al., 2010).
Different extensions of the L-system language can allow for more
dynamic integration of plant structure and function. Parametric
L-systems have parameters associated with each rule, and can be
updated according to a model of the plant physiological properties
run in parallel. In addition, stochastic L-systems and context-
sensitive L-systems choose rules based on random values and local
contexts, such as developmental triggers, respectively (Green et al.,
2020). Another formalism based on a rewriting language, relational
growth grammars (RGGs) were proposed to address some of the
limitations of L-systems, such as their inability to represent the rela-
tionships between symbols, and that an additional step is required
in order to create the geometry (Hemmerling et al., 2008). RGGs
are rewriting systems that are applied in parallel to graphs, with
the nodes of the graphs being objects, such as plant organs, allow-
ing for complete model information such as structure, geometry
and internal state, to be accessible within a single representation
(Hemmerling et al., 2008). RGGs are implemented in the modelling
environment GroIMP, which was recently used to quantify the
increase in photosynthetic rates for bent shoots compared with
upright shoots in cut-rose production, while demonstrating that
there was no impact on the quality of the harvestable flowers from
the plants with bent shoots (Zhang et al., 2020).

Information about plant structure can also be encoded in a
simple and general manner using multiscale tree graphs (MTGs)
(Godin & Caraglio, 1998). MTGs are built upon the concept that
plants can be regarded as modular organisms composed of dis-
tinct units or modules with similar characteristics. Each module
within an MTG represents a specific part or component of the
plant, and by capturing the similarities among these modules, the
MTG provides a structured and scalable representation of plant
architecture. L-systems and MTGs have been used as the basis
for different dynamic plant modelling software packages able to
represent emergent plant growth and development, by incorpo-
rating plant architectural models with plant system feedbacks and
environmental conditions. The Virtual Laboratory (vlab / L-studio)
is a plant visualisation and simulation tool based on L-systems
(Federl & Prusinkiewicz, 1999; Karwowski & Prusinkiewicz, 2004;
Prusinkiewicz et al., 2000), recently used to study phyllotactic
patterns in flower heads (Prusinkiewicz et al., 2022; Zhang et al.,
2021). MTGs have been used in software such as OpenAlea (Pradal
et al., 2008; 2013; 2015) and AMAPstudio (Griffon & de Coligny,
2012) (Figure 2). One recent study using OpenAlea investigated
canopy formation in grapevine, demonstrating that representing
light interception and gas exchange for individual leaves, based on
leaf nitrogen content and position in the canopy, more accurately
reproduces the daily pattern of gas exchange for different canopy
architectures of grapevines than using a single rate for the entire
canopy (Prieto et al., 2020).

Whilst the software described above has focussed on the above
ground parts of plants, OpenSimRoot is an example of a package
designed to simulate plant root growth. Descriptions of the root
simulations are held in XML files, and include information about
the plant parameters, such as locations of root tips (primordia),

root growth rates, direction and plasticity, as well as environmental
conditions such as nutrient and water availability, and soil type
(Postma et al., 2017). Different plant species can be defined by
changes to these parameters, and the overall root shape emerges
from the interactions between each growing root and its environ-
ment. A similar approach, although following an object oriented
design can be found in CRootBox (Schnepf et al., 2018), a C++
implementation of the MATLAB application, RootBox (Leitner
et al., 2010). Whilst RootBox was based on an L-system formalism,
the choice of a move to an object-oriented approach for CRootBox
was motivated by both technical and conceptual considerations.
An object-oriented approach allows for inclusion of code reuse
and encapsulation, making the code easier to read and understand.
Additionally, it facilitates connection of the CRootBox root model
to shoot models, allowing for the development of an integrated
plant system able to represent the complex interplays and trade-
offs faced by plants during their growth and development (Schnepf
et al., 2018). Integration with other models was further enabled
by inclusion of Python bindings allowing coupling with other
models, including soil and environmental models. CRootBox was
demonstrated to successfully predict the response of a root with a
known structure under different phosphate and water conditions
(De Bauw et al., 2020).

Individual-based modelling (IBM), also known as agent-based
modelling, is a computational approach that focuses on simulating
the behaviour and interactions of individual entities, or agents,
within a system. Each agent within an individual-based model has
a set of rules, behaviours, and interactions with other agents and
its environment. The model then simulates these behaviours and
interactions over time, allowing the properties of the system to
emerge. IBMs allow researchers to investigate complex systems in
which variation between individuals influences the system dynam-
ics. Such variation between individuals could be random, based
on genetic mutation, arise due to differences in resources such as
light or nutrients, or be based on the state of neighbours, such as
hormones, or RNA expression.

A recent study developed an IBM representing wheat spikelet
growth as the addition of individual units of either shoot, veg-
etative, inflorescence, or meristem blocks, which contained the
initiation sites for both the vegetative and floral units (Backhaus
et al., 2022) (Figure 3). The authors were testing a hypothesis based
on their experimental data suggesting that this delayed transition
could be attributed to the presence of opposing gradients of two
specific genes, and the IBM was able to demonstrate that these
assumptions were indeed sufficient to produce the previously unex-
plained lanceolate shape of developing wheat spikes. In the model,
each newly formed meristem adheres to the same set of rules but
can give rise to either a leaf, spikelet, or both based on the current
gene profile of the two distinct classes. The individual variation
observed among meristem agents is therefore influenced by the
states of their neighbouring agents and the progression of time,
as gene expression is influenced by the initiation of flowering. In
this way, IBMs provide an excellent iterative tool for the testing
and refining of hypotheses concerning emergent properties, in
concert with experimental validation. For example, insight into
the mechanisms behind experimental observations on how the
light/gibberellin signalling pathway affects the properties of micro-
tubules required to reorient growth was explored through the use
of an IBM (Sambade et al., 2012). In addition, the emergence
of plant root structure has been simulated with an IBM (Zaha-
dat et al., 2018). Their Vascular Morphogenesis Controller algo-
rithm, inspired by the distribution of common resources between
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Figure 2. Formalisms such as L-systems and MTGs allow for the generation of complex plant shapes and fields of individual plants. (a) L-systems enable the encoding of a

complex structure within simple, iterative rules, as demonstrated by this monopodial tree-like structure and plant. Tree and plant rendered in Blender, using the lsystem add-on

(https://github.com/krljg/lsystem). Script for defining these systems taken from code based on Prusinkiewicz and Lindenmayer (1990) (b) Interactions between the underlying

rules for the structure development and environmental conditions can allow for different structures to emerge, such as for the squash (left) and bean (right) root systems

generated with OpenRootSim (Postma et al., 2017), rendered in Blender. Entire fields (d) can be generated based on a single plant (c) with AMAPstudio (Griffon & de Coligny,

2012).

the branches of plant, uses an individual-based representation of
interaction between competing branches. Each branch explores its
environment and produces auxin in response to light. This auxin
flows towards the roots, adjusting the quality of its vessels along its
way. In this way, there is positive feedback to paths that successfully
transport auxin, and the system of vessel paths self-organises in
a dynamic way, with nodes both being created and destroyed.
Although this was a biologically inspired approach designed and
tested for artificial systems, it could be applied to the development
of real plant root systems, and their response to environmental
stimulus, such as light and nutrients.

One current challenge for FSPMs is integrating across the whole
plant. Most current ‘virtual’ plants focus either on the functions of
the shoot or the root, and do not include the interplays between
these two parts of a plant that become critical when adapting to
stressful conditions (Louarn & Song, 2020). Whole plant modelling
was the ambitious aim of a recent study that linked together a

reactive transport model for variably saturated media (Min3P;
Mayer et al., 2012), a root architectural model (ArchiSimple; Pagès
et al., 2014), and a shoot FPSM implemented in GroImp (Evers
& Bastiaans, 2016), to explore the impact of soil water availability
on plant development (Braghiere et al., 2020). This was a chal-
lenging undertaking, as the models were developed in different
computing languages, on different platforms, and by different teams
from different disciplines. Linking together models in this way
requires careful handling of parameters and variables, ensuring that
variables being passed between different models represent the same
plant characteristic, of timescales, and also of updates in terms of
whether variables are updated synchronously or asynchronously,
and whether updates are frequent enough. Their model was able
to successfully predict plant–plant competition and regulation on
stomatal conductance to drought when parameterised under dif-
ferent growing conditions, demonstrating the potential for such
integrated approaches for FSPMs in the future.
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Figure 3. Individual-based models provide a perfect, iterative testing ground for hypotheses based on experimental data. An IBM developed in the agent-based modelling

environment, Netlogo (Wilensky, 1999), demonstrates how spikelet initiation depends upon the expression of two classes of genes: SEP and SVP (Backhaus et al., 2022). The

model uses expression of SEP and SVP class genes to predict when meristems (red) produce leaf tissue (green) and when they switch to producing spike tissue (yellow). SVP

suppresses SEP expression, with SVP expression itself starting to decrease once flowering is triggered, allowing SEP expression to increase (top-right graph). The middle and

bottom graphs depict the gradients of SEP and SVP expression, respectively, from the basal to the apical spikelets. Leaf initiation rates are suppressed by SEP, whereas spikelet

initiation requires SEP. The opposing gradients of these two genes result in delayed vegetative to floral transition of the basal spikelets.

2.2. Emergence of cells and their functions

“. . .in its complexity and functionality even the simplest, tiniest cell
dwarfs everything humankind has ever been able to engineer. . .”

(Wolkenhauer & Hofmeyr, 2007)

The previous section explored methods for representing the
interplay between plant architecture and plant growth and devel-
opment, and we now turn our attention to the emergence of the
cell, and those processes resulting in its own fabrication, and its
integration and response to the rest of the plant system.

Plant cells contain complex signalling networks, involving
thousands of molecules, which have evolved to allow plants to
respond to daily biotic and abiotic stressors (Struk et al., 2019).
Defining the state of a cell requires knowledge of not only its
size and shape, but also its components, intracellular reactions
and interactions with the environment (Luthey-Schulten, 2021),
which vary over space and time. ‘Whole cell’ approaches aim to
represent all, or at least, the most important of these processes and
interactions within an individual cell. These approaches have been
proposed to have several potential benefits, such as the integration
of heterogeneous datasets, prediction and understanding of
multi-network phenotypes, development of new hypotheses and
identification of knowledge gaps for experimental design, and the
generation of frameworks for the design of genetically modified
organisms (Carrera & Covert, 2015). Core cellular components,
such as cellulose, starches, proteins, fats and RNA, are often

represented using particle-based reaction diffusion (PBRD).
This requires implementation decisions based on the features
of interest, the computational cost, and the available toolbox
(Schöneberg et al., 2014). Difficulties in obtaining experimental
data, combined with the challenges of simulating such systems
on biologically relevant timescales necessitate decisions such as
whether to use free (no boundaries) or confined particle diffusion,
whether the particles are represented as points, or have specific
volumes (allowing for crowding, etc.), and whether to include
particle–particle interactions and potentials (Schöneberg et al.,
2014). Examples of tools for cell simulations of this kind include
E-Cell (Tomita et al., 1999), which has been mostly used for
human and animal cells (Nishino et al., 2013; Okubo et al.,2013;
Shimo et al., 2015), but could be applied to plant cells and
MCell (https://github.com/mcellteam/mcell). MCell uses spatially
realistic 3D cellular models and specialised Monte Carlo algorithms
to simulate the movements and reactions of molecules within and
between cells. MCell has recently been integrated into Blender,
a free and open-source 3D computer graphics software toolset,
within CellBlender (Figure 4), allowing for robust and reproducible
simulations and visualisations of cell models.

While whole cell modelling has shown some success for
minimal bacterial cells (Luthey-Schulten, 2021), simulating all
molecules and interactions within plant cells is not compu-
tationally tractable, due to the number of particles involved.
For example, it has been estimated that an average Arabidopsis
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Figure 4. The CellBlender module for Blender can be used for the fast creation of simplified 3D cell models represent a limited number of relevant reactions. This screenshot is

taken from the example model ‘Organelle’, and shows the interaction between surface and internal molecules of two organelles. At the start of the simulation, molecule A (dark

blue) is located within the cell, outside of the organelles, and molecule B (light blue) is within organelle 2 (right). A molecules can be transported into organelle 2, through

interactions with a surface molecule (green), where they interact with B molecules to produce C molecules (pink). C molecules can then interact with the surface molecule to be

translocated into the cell. CellBlender development is supported by the NIGMS-funded (P41GM103712) National Center for Multiscale Modeling of Biological Systems

(MMBioS).

mesophyll cell contains about 25 billion protein molecules
(Heinemann et al., 2020). It has also been suggested that whole
cell modelling could miss the point of mathematical modelling,
which is not to realistically reproduce all molecular interactions,
but to discover the general principles that determine experimental
measurements (Wolkenhauer & Hofmeyr, 2007). In this regard,
studying the intricate networks of molecular interactions within
a cell can provide insights into the functioning of the cell as a
whole. By focusing on these interconnected networks, researchers
can gain a deeper understanding of the underlying principles that
drive cellular functions and behaviours, rather than aiming for a
comprehensive representation of every molecular detail.

Complex GRNs within a plant determine its final form and
dynamic response to the external environment (Long et al., 2008).
There are countless examples of how the study of specific GRNs
has improved our knowledge of plant sub-systems, including salt-
response (Wu et al., 2021), and the development and physiological
mechanisms that regulate floral transitions (Jaeger et al., 2013;
Madrid et al., 2021). GRNs aim to represent condition specific
interactions of gene expression with the expression of target genes
(Tripathi & Wilkins, 2021). Representing the complete inventory
of gene regulatory events in a cell would require a multitude of
spatially and temporally resolved GRNs, plus all their interactions
and output. The Arabidopsis genome has over 30,000 loci, meaning
that a complete inventory of transcriptional regulation would have
over 30,000 nodes. If each gene were controlled by 10–100 TFs,

then such a network would have between 3 ⋅105 and 3 ⋅106 edges,
excluding the contribution of miRNAs (Mejia-Guerra et al., 2012).
Representing this number of connections is not computationally
tractable, and so partial approaches or computational methods are
needed to make predictions (Tripathi & Wilkins, 2021).

One method that can be used to predict emergent properties
of GRNs is through investigation of random Boolean networks
(RBNs) (Socolar & Kauffman, 2003). RBNs consist of a set of
nodes, each of which can be in one of two states: ‘on’ or ‘off ’,
represented by the Boolean values ‘true’ or ‘false’. These nodes are
connected by randomly assigned links, and each node is assigned
a Boolean function that determines their state in the next time
step as a function of their neighbouring nodes. The Boolean
functions are assigned randomly, meaning that the rules determin-
ing the behaviour of the network are unpredictable and nonlinear.
As a result, RBNs can exhibit complex dynamics, including the
emergence of patterns, self-organisation, and phase transitions.
RBNs provide a simple yet powerful framework for studying
the behaviour of complex systems, such as GRNs, and have
contributed significantly to our understanding of features such as
criticality (Torres-Sosa et al., 2012), robustness (Siegal & Bergman,
2002), and evolutionary capacitance (Bergman & Siegal, 2003)
all of which have been proposed to be emergent properties of
GRNs.

Coupling GRNs with FSPMs can allow for integration between
cellular-level processes and plant phenotypic development.
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Chew et al. (2014) linked four different models—a carbon dynamic
model (CDM), an FSPM describing individual leaf growth and how
each leaf contributes to light capture, a photothermal model (PTM)
that predicted the timing of flowering based on temperature,
and a photoperiodism model (PPM), which is a gene dynamic
model of the circadian clock—into a multiscale mathematical
model of Arabidopsis. This multilevel model was able to make
multilevel predictions, from individual plant components such
as leaf biomass, to the level of processes, such as the flexibility
of photosynthetic control, up to entire phenotypes, such as those
shown by a developmentally misregulated transgenic line. Such
an approach is therefore not only able to represent changes to
emergent properties resulting from changes to individual system
components, but also allows for investigation into plant function
and development across scales. However, linking together different
models in this way is not a simple task. Even though the models
were written in the same language (MATLAB), and had been
developed by the same two labs, linking them together required
careful consideration of decisions such as choosing a standardised
time-step, and connecting variables between models—for example,
a simple ratio in one model was replaced with a more complex
allocation from another model. Parameterising the combined
model also requires careful handling; in order to avoid overfitting,
they tried to retain the original model parameters as much as
possible.

3. Discussion

“The purpose of a model is to capture the essence of a problem and
to explore different solutions of it.” (Grimm, 1999)

The phenotype, function, and response of plants are the result
of intricate interactions among cells, networks and architecture.
These interactions, which occur across various temporal and spatial
scales, give rise to emergent properties in a decentralised and robust
complex system (Figure 5). In this perspective, I have introduced
formalisms and technologies that can effectively represent these
emergent properties of plants. However, the integration of plant
emergent properties across scales remains a significant challenge
for plant modellers, highlighting its continued importance in the
field.

Connecting multiple models as modules across spatial and
temporal scales is a non-trivial undertaking. Even models written
in the same language, as in Chew et al. (2014), require careful
consideration and handling of time units, model parameters,
and differences in the way the same variables are characterised
in different models. One key problem is ensuring that the data
used for validation of each model are quantitatively comparable, as
recalibrating parameter values for models at different scales is time-
consuming and would require coordination of data acquisition
between researchers from different groups, and possibly even
different disciplines (Chew et al., 2014). Although packages with
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Montévil and Mossio (2015).

the capability of linking together models written in different
languages have been developed (Lang, 2019), differences in model
formalisms and implementations are likely to complicate such
integrations. Progress in modular, multiscale model development
could be assisted by standardising biological computational
model formulation and communication, which is the aim of
the Computational Modelling in Biology Network (COMBINE)
(Hucka et al., 2015). COMBINE promotes a number of standard
formats for model description and analysis, such as CellML, an
XML-based format for the encoding of mathematical models,
Systems Biology Graphical Notation (SBGN), Systems Biology
Markup Language (SBML), and BioPAX (Demir et al., 2010), a
language for the representation of biological pathways.

Some researchers have proposed that the development of inte-
grated models starts with the development of an integrated per-
spective. One such proposed perspective—The Theory of Organ-
isms (ToO)—has already shown great potential in the field of
animal modelling. The fundamental principles of ToO include the
definition of a default cell state, which includes proliferation with
variation and motility, combined with the principle of organisation
by closure of constraints (Carvalho, 2022; Longo et al., 2015; Soto
et al., 2016). For a model to be closed with respect to its constraints,
each component must impact, and be impacted by, at least one
other component (Figure 6). Constraint closure emphasises the
interconnectedness and interdependencies between the various
components of the model. In other words, no component within
the model is isolated or independent; instead, they are linked
through a network of constraints. This closure ensures that changes
or perturbations in one component can propagate and affect other
components, maintaining a cohesive and integrated behaviour of
the model as a whole. The concept of constraint closure helps
capture the complexity and dynamic nature of interactions between
components, enabling a more comprehensive understanding of the
system being modelled.

Models developed from a ToO perspective require the ability
to represent individual differences in their components, often at
the level of individual cells. Both IBMs and cellular automata have
proven to be successful formalisms for building ToO models. For
example, an IBM study investigating mammary ductal morpho-
genesis revealed the influence of mechanical forces between cells
and collagen fibres, with the organisation of collagen fibres impact-
ing cell mobility and reproductive capabilities (Montévil & Soto,
2023). Surprisingly, the model predicted occasional branching, a
phenomenon observed in living organisms during mammary gland
development, demonstrating the emergence of novel properties
without explicit implementation of local rules. Cellular automata

have been employed to develop ToO 2D models of single-layered
cell cultures. These models have explored the effects of culture
geometries on tissue growth (Carvalho, 2023) and the influence
of cell bioelectric properties on tumour growth (Carvalho, 2022).
For instance, the latter model demonstrated how the default cell
state of proliferation and motility, combined with simple rules gov-
erning bioelectric properties can shape the organisation of bioelec-
tric properties across the cell population, ultimately determining
organism size and shape.

While not yet tested extensively in plant models, ToO could
be applied to well-characterised plant processes occurring across
scales, such as circadian rhythms, responses to external stimuli
(defence, nutrient starvation, temperature), and inflorescence tim-
ing. One of the defining principles of ToO includes motility, and
while plants are sessile organisms, they still exhibit motion over a
wide range of sizes and time scales (Forterre, 2013). Through pro-
cesses such as the generation of turgor pressure and osmosis, plants
can grow towards light, open and close stomata, and induce rapid
movements in response to stimuli such as the detection of insects.

Developing models from a multilevel perspective and investi-
gating how emergent properties interact across scales holds great
potential for understanding plant development and response, it
is important to remember that modelling is not an attempt to
recreate realism. It might appear that a logical next step would be
to work towards a complete virtual plant system, with each prop-
erty emerging from its underlying model components, but such a
model system seems both unachievable and undesirable. Devel-
oping multiscale models involves trade-offs between the increase
in model completeness, with a corresponding increase in com-
plexity, and loss of precision (Fish et al., 2021). Therefore, model
design should include consideration of whether the addition of
multiscale interactions are essential to represent the features of
interest. Determining the appropriate level of resolution can be
achieved through a scaling-down process, starting from a coarse
model designed to explain some pattern or observation of interest.
If the model is either unable to reproduce the data, or fails to capture
the parameters of interest, then the model can be extended step
by step on a modular basis, with checks being carried out after
each extension, to ensure that it still produces the same output in a
similar fashion to each previous model (Grimm, 1999). Moreover,
as with any experimental design, it is important to have a clear idea
of how the model data will be collected, analysed and validated.
Another important factor is the scope or range of applicability of
the model. Model design should seek to establish the experimental
conditions that the model should cover (and with what acceptable
accuracy), which conditions might be considered desirable rather
than essential, and which cases are out of scope.

Finally, some of the formalisms described here involve com-
plex models, which have their own technical considerations. For
instance, individual-based models have been described as being
doubly complex, as they simulate complex systems using computer
code that is itself complex (Vedder et al., 2021). Structural con-
siderations then extend from the essential system components to
the software and hardware platforms on which they are run, and
to how the output is stored and communicated. The many recent
advances both in image analysis and sequencing technologies have
paved the way for simulation methods able to incorporate complex
and detailed datasets. Quantitative modelling pipelines that start
from experimental data and live imaging and allow researchers
to test hypotheses across scales hold great potential for generat-
ing causative links between genotype to phenotype and beyond.
Whether the chosen approach is modular, or organism-centric,
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understanding the interactions between emergent plant properties
requires a fully integrated view of a plant system incorporating
complexity across spatial and temporal scales.
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