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This paper derives the upper bound on heat transport in supergravitational
turbulent thermal convection analytically and numerically. Using a piecewise
background profile, the functional inequality analysis delivers a suboptimal bound
Nu � −(3

√
3/2)(η ln(η)/(1 − η2)) Ra1/2 as Ra → ∞, where Nu is the Nusselt

number, η is the radius ratio of the inner cylinder to the outer cylinder (0 <

η < 1), and Ra is the Rayleigh number. A variational problem yielded from
Doering–Constantin–Hopf formalism is solved asymptotically and numerically, which
delivers a better upper bound than the piecewise background profile. The asymptotic
analysis and numerical data indicate that the current best bound is given by
Nu � −0.106(η ln(η)/((1 − η)(1 + √

η)2)) Ra1/2. Both analytical and numerical results
demonstrate that the upper bound can be significantly reduced by the curvature effect.
Unlike the traditional Rayleigh–Bénard turbulence, in which the optimal perturbation
yielded from the variational problem is always two-dimensional, the present study
shows that three-dimensional perturbations, annular perturbations and axisymmetric
perturbations can be induced by the curvature effect simultaneously. However, we show
that the bound yielded from the three-dimensional variational problem is very close to the
axisymmetric situation as η increases and Ra increases.

Key words: variational methods

1. Introduction

The Rayleigh–Bénard convection between two parallel plates has been the paradigm for
exploring the scaling laws in thermal turbulence as the driving parameter approaches
infinity (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Ecke & Shishkina 2023;
Lindborg 2023). A classical scaling law for heat transport proposed by Malkus (1954)
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Z. Ding

is still competing with the ‘ultimate scaling’, which was proposed by Kraichnan (1962).
Experiments and current direct numerical simulations (DNS) seem to support the classical
scaling (Urban, Musilová & Skrbek 2011; Bouillaut et al. 2019; Iyer et al. 2020). But there
are some competing claims of the existence of ultimate scaling (He et al. 2012; Zhu et al.
2018). The debate over the classical and ultimate scalings stems from two factors: it is
difficult to push the driving parameter higher but keep the other parameters constant in
experiments; and the formidable DNS are limited by current computational power.

Recently, Sun and his collaborators proposed a novel experimental study of thermal
turbulence between two co-rotating cylinders (Jiang et al. 2020, 2022), in which the
non-Oberbeck–Boussinesq effects are negligible. The inner cylinder is cooled while the
outer cylinder is heated, while they are rotating at the same angular speed. The centrifugal
force can drive turbulent convection more efficiently than buoyancy in traditional
Rayleigh–Bénard convection, which is referred to as supergravitational convection. Jiang
et al. (2022) reported that transition to the ultimate regime in the supergravitational
convection occurs at Ra ∼ 1011 (where Ra is the Rayleigh number). They observed the
scaling Nu ∼ Ra0.4 in the range Ra ∈ [1011, 4 × 1012] (where Nu is the Nusselt number,
measuring the ratio between total heat transport and that by pure conduction), which is
clearly higher than Malkus’s classical scaling. Wang et al. (2022) further examined the
influence of curvature on the heat transfer, and reported that heat transfer is generally
inhibited by curvature, and Zhong, Wang & Sun (2023) investigated the influence of
an imposed shear flow on the heat transfer. However, Wang et al. (2022) focused on
relatively lower Ra flow, and they did not give an analytical expression for the geometrical
dependence. Moreover, there is no report on curvature’s influence on the ultimate regime
scaling. In addition, it would be interesting to ask if the supergravitational convection can
transport more heat beyond Kraichnan’s scaling.

A potential way to provide insights into the above questions is to derive an upper bound
on heat transfer in supergravitational convection. The upper bound is usually derived from
a variational problem, which has its root in Malkus (1954). Turbulence was hypothesized
to maximize heat transfer in traditional Rayleigh–Bénard convection, resulting in a
maximization problem (Howard 1963; Busse 1969). A multi-α technique was used to
solve the maximization problem, which was very tedious. A complementary minimization
problem was proposed by Doering & Constantin (1996), which was built upon the
so-called background field method. The background field method is also referred to as
Doering–Constantin–Hopf formalism (Wen et al. 2015), which has a superb advantage
compared to the maximization problem because it can yield an upper bound even for
a trial background field. The current best upper bound on traditional Rayleigh–Bénard
convection for arbitrary Prandtl number (Pr) yielded from Doering–Constantin–Hopf
formalism was delivered by Plasting & Kerswell (2003). Ding & Kerswell (2020) proved
that it is impossible to improve (lower) the upper bound by considering a high-dimensional
background field. Note that the upper bound given by Plasting & Kerswell (2003) (∼Ra1/2)
is actually much higher than in the DNS and experimental data (∼Ra1/3) since it uses only
partial information from equations of motion. The 1/2 scaling can be improved (lowered)
if more constraints from equations of motion can be imposed. For instance, Whitehead &
Doering (2011), Wen et al. (2015) and Ding & Wen (2020) showed that the bound can
be lowered to ∼Ra5/12 in two-dimensional (2-D) traditional Rayleigh–Bénard convection
with stress-free boundary conditions when the vorticity equation is added as an additional
constraint. When the Prandtl number is infinity, more constraints can be derived from
the Stokes equations, and the bound on heat transport in traditional Rayleigh–Bénard
convection between no-slip walls can be improved to Ra1/3 with logarithmic corrections
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Supergravitational turbulent thermal convection

(Plasting & Ierley 2005; Ierley, Plasting & Kerswell 2006; Otto & Seis 2011). Choffrut,
Nobili & Otto (2016) proved that the 1/3 scaling with logarithmic correction is also the
upper bound for finite but large Prandtl number flows as Pr � (Ra ln(Ra))1/3. In this study,
we aim to derive an upper bound on heat transport in supergravitational convection of
arbitrary Prandtl number. The influence of the geometry, i.e. the radius ratio, on the upper
bound will be examined. It will be interesting to explore if an analytical expression of
geometrical dependence can be derived.

Usually, the analytical result for an upper bound can be derived from the functional
inequality analysis (Doering & Constantin 1996; Whitehead & Doering 2011; Ding
& Wen 2020; Kumar 2022). Two different routes can be used to find the analytical
upper bound: a direct method proposed by Seis (2015), and an auxiliary functional
method by Chernyshenko et al. (2014). Their relationship is established by Chernyshenko
(2022). The direct method does not apply the background field decomposition, while
the quadratic auxiliary functional method is equivalent to the Constantin–Doering–Hopf
formalism (Chernyshenko et al. 2014; Rosa & Temam 2022). Indeed, Chernyshenko
(2022) showed that the direct method and background field method can yield same
analytical upper bound. In the present work, we will apply the Constantin–Doering–Hopf
formalism to derive the analytical bound. However, the functional inequality analysis of
the Constantin–Doering–Hopf formalism often delivers a suboptimal bound, and the best
upper bound can be obtained only by solving an Euler–Lagrange system that ensued from
Constantin–Doering–Hopf formalism numerically. But numerical solution cannot deliver
an analytical expression for the geometrical dependence. Kumar (2022) showed that in
Taylor–Couette flow, an analytical expression of geometrical dependence can be obtained
by solving a one-dimensional Euler–Lagrange system. This inspires us to examine if the
Kumar (2022) approach can be extended to the present supergravitational convection.
Furthermore, it will be interesting to examine if the DNS data by Wang et al. (2022)
follow the analytical geometrical dependence once it is obtained.

Hence this paper is organized as follows. Section 2 formulates the upper bound
problem of supergravitational convection. An analytical suboptimal bound is derived
using a piecewise background field in § 3. The Euler–Lagrange equations that ensued
from the upper bound problem are presented in § 4. A one-dimensional version of the
Euler–Lagrange equations is solved asymptotically in § 4.1 by dropping the constraint of
the continuity equation, which delivers an analytical expression of geometrical dependence
for the upper bound in supergravitational convection. Fully numerical results for the
Euler–Lagrange equations are presented in § 4.2. Comparison with the DNS data by Wang
et al. (2022) is made in § 4.3. Discussion and conclusion are given in § 5.

2. Mathematical formulation of the upper bound problem

2.1. Governing equations
We consider an annular liquid layer bounded by two infinitely long concentric co-rotating
cylinders with constant angular speed ω. The inner cylinder is of radius Ri, and the outer
cylinder is of radius Ro. The liquid is Newtonian of constant kinematic viscosity ν and
thermal diffusivity κ . A high temperature To is imposed on the outer cylinder, while a
lower temperature Ti is imposed on the inner cylinder. Using the same scales for length
(d = Ro − Ri), velocity (free-fall velocity is U =

√
αω2(Ro + Ri)d/2, and α is the thermal

expansion coefficient), pressure (ρU2) and temperature (�T = To − Ti) as in Jiang et al.
(2020, 2022) and Wang et al. (2022), we start from the dimensionless governing equations
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Z. Ding

of the supergravitational convection (Wang et al. 2022):

∇ · u = 0, (2.1)

∂tu + u · ∇u + Ro−1 u × ω ez + ∇p −
√

Pr
Ra

∇2u + 2
1 − η

1 + η
Tr er = 0, (2.2)

∂tT + u · ∇T − 1√
Pr Ra

∇2T = 0, (2.3)

where u = uer + veφ + wez is the velocity, T is the temperature, Pr = ν/κ is
the Prandtl number, Ra = αω2(Ri + Ro)�T d3/(2νκ) is the Rayleigh number,
Ro = √

α �T (Ri + Ro)/(2d)/2 is the Rossby number, and η = Ri/Ro (0 < η < 1) is the
radius ratio.

There is no slip or penetration at the inner and outer cylinders:

u = 0 at r = Ri/d = ri, r = Ro/d = ro. (2.4)

Note that ri = η/(1 − η) and ro = 1/(1 − η).
The dimensionless temperatures at the cylinders are

T = 0 at r = ri, T = 1 at r = ro. (2.5a,b)

2.2. The Nusselt number
We define a temporal-surface average as

•̄ = lim
t∗→∞
L→∞

1
2πLt∗

∫ t∗

0

∫ L/2

−L/2

∫ 2π

0
• dφ dz dt. (2.6)

Then the temporal-volume average is defined as

〈•〉 = 2
r2

o − r2
i

∫ ro

ri

r •̄ dr. (2.7)

Taking the temporal-surface average on the thermal equation (2.3), we obtain

d
dr

(
r

dT̄
dr

−
√

Pr Ra r uT
)

= 0. (2.8)

Hence the total heat flux is defined as

J = r
dT̄
dr

− r
√

Pr Ra uT. (2.9)

The heat flux J is thus independent of r as dJ/dr = 0. At the conduction state, we have
Jcon = −1/ ln(η).
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Supergravitational turbulent thermal convection

To quantify the heat flux, the Nusselt number Nu can be defined as

Nu = J
Jcon

=
r

dT̄
dr

− r
√

Pr Ra uT

Jcon
. (2.10)

Multiplying by r on both sides of (2.10) and integrating over the domain r ∈ [ri, ro] yields

Nu = ln(η) 〈
√

Pr Ra ruT − r ∂rT〉. (2.11)

Multiplying by T in the thermal equation (2.3) and taking the temporal-volume average
of it gives

r2
o − r2

i
2

〈|∇T|2〉 = r
dT̄
dr

∣∣∣∣
r=ro

, (2.12)

where the boundary conditions of u and T at the two walls are used. Note that
r(dT̄/dr)|r=ro is the thermal flux J at the outer cylinder. Hence the Nusselt number Nu
can also be defined as

Nu = r2
o − r2

i
2

〈|∇T|2〉
Jcon

. (2.13)

The Nusselt number is the key quantity to be investigated in the present work, and we are
going to explore the upper bound on Nu and its dependence on η and Ra.

2.3. The background method
Now we apply the background method and decompose the temperature field as follows:

T = τ(r) + θ. (2.14)

Here, we assumed that the background velocity field is zero while the background
temperature τ is one-dimensional. The background field τ carries the boundary conditions
of T at r = ri, ro, while the perturbation field θ satisfies the homogeneous boundary
conditions. Ding & Kerswell (2020) showed that a one-dimensional background field is the
optimal choice for traditional Rayleigh–Bénard convection. In fact, the zero background
velocity field can be established using symmetry reduction (Fantuzzi, Arslan & Wynn
2022): the solution should be invariant in azimuthal (φ) and axial (z) directions under a
‘flow reversal operation’.

Substituting the background decomposition (2.14) into the momentum equation (2.2)
and heat equation (2.3) gives

M := ∂tu + u · ∇u + Ro−1 u × ω ez + ∇p −
√

Pr
Ra

∇2u + 2
1 − η

1 + η
(τ(r) + θ)r er = 0,

(2.15)

H := ∂tθ + u · ∇θ + u
dτ

dr
− 1√

Pr Ra
∇2θ − 1√

Pr Ra

(
d2τ

dr2 + 1
r

dτ

dr

)
= 0. (2.16)

Dotting u on the momentum equation (2.15) and taking the temporal-volume average on it
gives the kinetic energy balance constraint√

Pr
Ra

〈|∇u|2〉 + 2
1 − η

1 + η
〈r(τ + θ)u〉 = 0. (2.17)
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Z. Ding

Multiplying θ on the heat equation (2.16) and taking the temporal-volume average on it
gives the thermal energy balance condition〈

1√
Pr Ra

|∇θ |2 + uθ
dτ

dr
+ 1√

Pr Ra

dτ

dr
∂θ

∂r

〉
= 0. (2.18)

We also rewrite the definitions of Nusselt number (2.10) and (2.11) using the background
field decomposition:

Nu = ln(η) 〈
√

Pr Ra ru(θ + τ) − r ∂r(τ + θ)〉, (2.19)

Nu = r2
o − r2

i
2

〈|∇T|2〉
Jcon

= − ln(η)
r2

o − r2
i

2
〈|∇(θ + τ)|2〉. (2.20)

Now we can combine the constraints (2.17)–(2.18) together with the definition of Nu in
(2.20):

− Nu
ln(η)

= r2
o − r2

i
2

{
〈|∇(θ + τ)|2〉 − a

√
Pr Ra

(√
Pr
Ra

〈|∇u|2〉 + 2
1 − η

1 + η
〈r(τ + θ)u〉

)

− 2b
√

Pr Ra
〈

1√
Pr Ra

|∇θ |2 + uθ
dτ

dr
+ 1√

Pr Ra

dτ

dr
∂θ

∂r

〉}
. (2.21)

The free parameter a is to impose the energy balance condition, and the free parameter b
is to impose the balance of heat flux (Ding & Wen 2020). However, Ding & Wen (2020)
showed that including the free parameter b improves the prefactor of the upper bound only
very slightly in the classical Rayleigh–Bénard convection (less than 1 %). Hence in the
present work, we follow Whitehead & Doering (2011) and Wen et al. (2015), and choose
to fix b = 1, which simplifies the computation of the bound. Fixing b = 1, however, means
that our background field formulation is no longer optimal.

Using (2.19), we can eliminate the term ((1 − η)/(1 + η))〈r(τ + θ)u〉 in (2.21):

− Nu
ln(η)

=
∫ ro

ri

r
(

dτ

dr

)2

dr − a
r2

o − r2
i

2

×
(

Pr 〈|∇u|2〉 + 2
1 − η

1 + η

(
Nu

ln(η)
+
〈
r

∂(θ + τ)

∂r

〉))

− r2
o − r2

i
2

〈
2

√
Pr Ra θu

dτ

dr
+ |∇θ |2

〉
. (2.22)

Note that (r2
o − r2

i )((1 − η)/(1 + η)) = 1 when substituting ro = 1/(1 − η) and ri =
η/(1 − η) into this term.

Rearranging (2.22) gives the equation

− Nu
ln(η)

= 1
1 − a

∫ ro

ri

r
(

dτ

dr

)2

− 2a
1 − η

1 + η
r2 dτ

dr
dr − 1

1 − a
G , (2.23)

where

G := r2
o − r2

i
2

〈
a Pr |∇u|2 + |∇θ |2 + 2

√
Pr Ra θu

dτ

dr
+ 2a

1 − η

1 + η
r

∂θ

∂r︸ ︷︷ ︸
linear term

〉
. (2.24)
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Supergravitational turbulent thermal convection

Hence for 0 < a < 1, the upper bound on −Nu/ ln(η) is given by

− Nu
ln(η)

≤ 1
1 − a

∫ ro

ri

r
(

dτ

dr

)2

− 2a
1 − η

1 + η
r2 dτ

dr
dr − 1

1 − a
min

u,θ s.t. BCs
∇·u=0

G , (2.25)

where ‘BCs’ stands for boundary conditions of u and θ . The linear term in G can be
removed by defining the following shifted fluctuation field:

u = 0 + û, θ = −a
2

1 − η

1 + η
(r2 − r2

i ) − a
2 ln(η)

ln(r/ri) + θ̂ , (2.26a,b)

in which ¯̂u = ¯̂
θ = 0. We take this shift because the linear term in G will cause a non-zero

contribution to (1/(1 − a))
∫ ro

ri
r(dτ/dr)2 − 2a((1 − η)/(1 + η))r2(dτ/dr) dr in (2.25).

This particular shift can be sought by constructing a minimization problem for G (see
Appendix A).

By using the shifted fluctuations, we rewrite G as

G = r2
o − r2

i
2

H − a2

4

(
1

1 + η
+ ri + 1

ln(η)

)
, (2.27)

where

H =
〈
a Pr |∇u|2 + |∇θ |2 + 2

√
Pr Ra θu

dτ

dr

〉
. (2.28)

Here, we drop the hat on θ and u for simplicity; and if we rescale the velocity u by defining√
Pr u = u∗, then the Prandtl number will not appear in H . Thus the Prandtl number does

not affect the bound in supergravitational convection. This is so because we are interested
only in the minimum of H over a linear space of velocity and temperature fields, and the
rescaling amounts to a reparametrization of the optimization variables that does not affect
the upper bound on Nu. Now the upper bound on −Nu/ ln(η) can be stated as

− Nu
ln(η)

� nu − 1
1 − a

min
u,θ s.t. BCs

∇·u=0

r2
o − r2

i
2

H , (2.29)

where

nu = 1
1 − a

∫ ro

ri

r
(

dτ

dr

)2

− 2a
1 − η

1 + η
r2 dτ

dr
dr + a2

4(1 − a)

(
1

1 + η
+ ri + 1

ln(η)

)
,

H =
〈
a |∇u|2 + |∇θ |2 + 2

√
Ra θu

dτ

dr

〉
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.30)
The ∗ on u is omitted for simplicity here. Since H is a homogeneous quadratic functional,
the upper bound problem (2.29) is equivalent to

− Nu
ln(η)

� nu, if H � 0 and 0 < a < 1. (2.31)

The semidefinite constraint on H should hold for all admissible u and θ .
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The positive semidefinite constraint on H is equivalent to requiring that all eigenvalues
λ of the following eigenvalue problem are non-positive:

λu = 2a ∇2u − 2
√

Ra θ
dτ

dr
er − ∇p, (2.32)

∇ · u = 0, (2.33)

λθ = 2 ∇2θ − 2
√

Ra u
dτ

dr
. (2.34)

For a given background temperature field τ , we should check if all eigenvalues are
non-positive (Doering & Constantin 1996; Ding & Kerswell 2020). An analytical
suboptimal bound can be derived from the given tested background profile by functional
inequality analysis. The numerical optimal bound can be obtained by constructing a
variational problem and minimizing nu subject to the spectral constraint. The background
field and the eigenvalue problem should be numerically solved together, and the ‘spectral’
constraint should be exactly satisfied such that no spurious solutions exist (Fantuzzi et al.
2022). Kumar (2022) hypothesized and showed that the suboptimal bound may yield
the same geometrical dependence as the variational problem in Taylor–Couette flow. He
tested a background field that looks similar to the optimal background field obtained from
numerical results, which showed that the analytical result is in good agreement with the
numerical results. In fact, we observed that the geometrical dependence relies on the
choice of background profile in the present work: different τ can yield different analytical
geometrical dependence.

3. Analytical suboptimal bound

Now we aim to derive an analytical upper bound on heat transport in supergravitational
convection by assuming that the background temperature has the following profile:

τ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c
ln((ri + δi)/ri)

ln(r/ri), z ∈ [ri, ri + δi],

c, z ∈ (ri + δi, ro − δo],
c − 1

ln((ro − δo)/ro)
ln(r/ro) + 1, z ∈ (ro − δo, ro].

(3.1)

Here, c is the mean temperature profile in the bulk region, and δi, δo are the boundary layer
thicknesses adjacent to the inner/outer cylinders. We use logarithmic profiles for τ in the
boundary layers because they satisfy the pure conduction state. We also require that the
background field bears the following constraint such that the heat flux is conserved:

c
ln((ri + δi)/ri)

= c − 1
ln((ro − δo)/ro)

. (3.2)

The mean temperature c thus depends on the boundary thicknesses δi and δo. When δi � ri
and δo � ro as Ra → ∞, we have c = (δi/δo)/(η + δi/δo) + o(δi, δo).

The next step is to fix the boundary layer thicknesses such that the spectral constraint is
satisfied:

H =
〈
a |∇u|2 + |∇θ |2 + 2

√
Ra θu

dτ

dr

〉
� 0. (3.3)

Therefore, we only need to bound the last term in H such that 〈a |∇u|2 + |∇θ |2〉 �
|〈2 √

Ra θu(dτ/dr)〉|. Substituting the piecewise continuous profile into the last term in
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Supergravitational turbulent thermal convection

H , we have∣∣∣∣
〈
θu

dτ

dr

〉∣∣∣∣ = 2
r2

o − r2
i

∣∣∣∣ c
ln((ri + δi)/ri)

∫ ri+δi

ri

uθ dr + c − 1
ln((ro − δo)/ro)

∫ ro

ro−δo

uθ dr
∣∣∣∣

� 2
r2

o − r2
i

∣∣∣∣ c
ln((ri + δi)/ri)

∫ ri+δi

ri

uθ dr
∣∣∣∣︸ ︷︷ ︸

P1

+ 2
r2

o − r2
i

∣∣∣∣ c − 1
ln((ro − δo)/ro)

∫ ro

ro−δo

uθ dr
∣∣∣∣︸ ︷︷ ︸

P2

. (3.4)

The part P1 is then written as

P1 =
∣∣∣∣∣ c
ln((ri + δi)/ri)

∫ ri+δi

ri

∫ r

ri

∂u
∂r′ dr′

∫ r

ri

∂θ

∂r′′ dr′′ dr

∣∣∣∣∣ . (3.5)

Using the Cauchy–Schwarz inequality, we have∫ r

ri

∂u
∂r′ dr′ =

∫ r

ri

1√
r′

√
r′ ∂u

∂r′ dr′ �
(∫ r

ri

1
r′ dr′

)1/2
(∫ r

ri

r′
(

∂u
∂r′

)2

dr′
)1/2

, (3.6)

∫ r

ri

∂θ

∂r′′ dr′′ =
∫ r

ri

1√
r′′

√
r′′ ∂θ

∂r′′ dr′′ �
(∫ r

ri

1
r′′ dr′′

)1/2
(∫ r

ri

r′′
(

∂θ

∂r′′

)2

dr′′
)1/2

.

(3.7)

Hence we obtain

P1 �
∣∣∣∣ c
ln((ri + δi)/ri)

∫ ri+δi

ri

ln
(

r
ri

)

×
(∫ ri+δi

ri

r′
(

∂u
∂r′

)2

dr′
)1/2 (∫ ri+δi

ri

r′′
(

∂θ

∂r′′

)2

dr′′
)1/2

dr

∣∣∣∣∣∣
= c

[
(ri + δi) − δi

ln((ri + δi)/ri)

]

×
∣∣∣∣∣∣
(∫ ri+δi

ri

r′
(

∂u
∂r′

)2

dr′
)1/2 (∫ ri+δi

ri

r′′
(

∂θ

∂r′′

)2

dr′′
)1/2

∣∣∣∣∣∣ . (3.8)

Applying the Cauchy–Schwarz inequality again in (3.8), we have

P1 � c
[
(ri + δi) − δi

ln((ri + δi)/ri)

]

×
∣∣∣∣∣
∫ ri+δi

ri

r′
(

∂u
∂r′

)2

dr′
∣∣∣∣∣
1/2 ∣∣∣∣∣

∫ ri+δi

ri

r′′
(

∂θ

∂r′′

)2

dr′′
∣∣∣∣∣
1/2

. (3.9)

Here, the Cauchy–Schwarz inequality is applied over the temporal-surface average.
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Z. Ding

Applying the same procedure to P2, we obtain

P2 � (1 − c)
[

δo

ln(ro/(ro − δo))
− (ro − δo)

]

×
∣∣∣∣∣
∫ ro

ro−δo

r′
(

∂u
∂r′

)2

dr′
∣∣∣∣∣
1/2 ∣∣∣∣∣

∫ ro

ro−δo

r′′
(

∂θ

∂r′′

)2

dr′′
∣∣∣∣∣
1/2

. (3.10)

Hence we can bound the last term in H as∣∣∣∣
〈
θu

dτ

dr

〉∣∣∣∣ � C × 〈|ur|2〉1/2〈|θr|2〉1/2, (3.11)

where

C = c
[
(ri + δi) − δi

ln((ri + δi)/ri)

]
+ (1 − c)

[
δo

ln(ro/(ro − δo))
− (ro − δo)

]
. (3.12)

Using Young’s inequality, we have

2
√

Ra
∣∣∣∣
〈
θu

dτ

dr

〉∣∣∣∣ � b〈|ur|2〉 + C2 Ra
b

〈|θr|2〉, (3.13)

where b is a free parameter. Consequently, we obtain

2
√

Ra
∣∣∣∣
〈
θu

dτ

dr

〉∣∣∣∣ � b〈|∇u|2〉 + C2 Ra
b

〈|∇θ |2〉. (3.14)

Hence the positive semidefinite requirement on H gives

b = a, C =
√

a/Ra. (3.15a,b)

As Ra → ∞, C = cδi + (1 − c)δo + o(δi, δo) since δi � ri and δo � ro, and we can
express a using (3.15a,b):

a = (δ2
i + ηδ2

o)2

(δi + ηδo)2 Ra + h.o.t. (3.16)

where h.o.t. stands for small higher-order terms.
Using the piecewise background profile, we can obtain the upper bound as follows:

Nu � − a2

4(1 − a)

(
1 + η2

η(1 + η)
ln(η) ri + 1

)

− ln(η)

1 − a

(
c2

ln((ri + δi)/ri)
+ (c − 1)2

ln(ro/(ro − δo))

− a
1 − η

1 + η

(
c

ln((ri + δi)/ri)
δi(2ri + δi) + 1 − c

ln(ro/(ro − δo))
δo(2ro − δo)

))
.

(3.17)
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Supergravitational turbulent thermal convection

When Ra → ∞, δi � ri and δo � ro, we can simplify the bound as

Nu � − a2

4(1 − a)

(
1 + η2

η(1 + η)
ln(η) ri + 1

)
− ln(η)

1 − a

(
c2

δi
ri + (c − 1)2

δo
ro

− a
1 − η

1 + η

(
2cr2

i + 2(1 − c)r2
o

))
+ o(δi, δo). (3.18)

Since 0 < a < 1 and 0 < η < 1, the leading-order term in (3.18) is

− ln(η)

1 − a

(
c2

δi
ri + (c − 1)2

δo
ro

)
as Ra → ∞. (3.19)

Thus as Ra → ∞, using (3.16) and c = (δi/δo)/(η + δi/δo) + o(δi + δo) from (3.2), we
obtain

Nu � −ri ln(η)
δi + ηδo

(δi + ηδo)2 − (δ2
i + ηδ2

o)2 Ra
= −η ln(η)

1 − η

δi + ηδo

(δi + ηδo)2 − (δ2
i + ηδ2

o)2 Ra
.

(3.20)

Note that (3.20) depends on Ra, η, δi, δo, in which Ra and η are set as known parameters.
Therefore, we want to minimize Nu over δi and δo to yield the best analytical bound, which
gives

δi = δo = 1√
3 Ra

. (3.21)

Thus the balance parameter is given by

a = 1
3 + h.o.t. (3.22)

The derivation of the analytical bound gives the thickness ratio of the boundary layers
δi/δo = 1, and the mean bulk temperature can be obtained as τb = c = 1/(1 + η)

consequently. Therefore, (3.20) is simplified to

Nu � −3
√

3
2

ln(η)
η

1 − η2 Ra1/2, Ra → ∞. (3.23)

The analytical geometrical dependence can be defined as χa(η) = −η ln(η)/(1 − η2)
(where the subscript a denotes ‘analytical’). Equation (3.23) also indicates that in the
supergravitational convection, heat transport cannot exceed the so-called 1/2 scaling,
which is usually referred to as the ultimate scaling.

When η → 1, we have

Nu � 3
√

3
4

Ra1/2, Ra → ∞. (3.24)

This analytical bound is much larger than the optimal bound derived by Plasting &
Kerswell (2003) for the traditional Rayleigh–Bénard convection. Thus it is referred to
as the suboptimal bound. Indeed, the suboptimal analytical bound can be improved by
incorporating the continuity equation as constraint (Doering & Constantin 1996) or solving
a variational problem (Plasting & Kerswell 2003; Kumar 2022).
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Z. Ding

4. Optimal upper bound

Now we seek the optimal upper bound on −Nu/ ln(η), which reads

− Nu
ln(η)

� min
τ,a

max
u,θ, s.t. BCs

∇·u=0

{
nu − r2

o − r2
i

2
H (u, θ)

}
. (4.1)

Here, we also scale out the prefactor 1/(1 − a) in front of H , which does not affect
the minimum of H (min(H ) = 0). The best upper bound is therefore sought from a
minimization problem over τ , a and p, where the pressure p is to impose the continuity
condition. Equation (4.1) is restated as

− Nu
ln(η)

� min
τ,a,p

max
u,θ, s.t. BCs

{
nu − r2

o − r2
i

2
H (u, θ) + r2

o − r2
i

2
〈p ∇ · u〉

}
︸ ︷︷ ︸

:=L

. (4.2)

Therefore, the upper bound on Nu can be sought by finding a saddle point of the
Lagrangian L , which must satisfy the following Euler–Lagrange equations:

δL /δu := 2a ∇2u − 2
√

Ra θ
dτ

dr
er − ∇p = 0, (4.3)

δL /δp := ∇ · u = 0, (4.4)

δL /δθ := 2 ∇2θ − 2
√

Ra u
dτ

dr
= 0, (4.5)

δL /δτ := d2τ

dr2 + 1
r

dτ

dr
− 2a

1 − η

1 + η
− (1 − a)

√
Ra

(
dθu
dr

+ uθ

r

)
= 0, (4.6)

δL /δa := 1
(1 − a)2

∫ ro

ri

r
(

dτ

dr

)2

dr − 2
(1 − a)2

∫ ro

ri

1 − η

1 + η
r2 dτ

dr
dr

− a(a − 2)

4(a − 1)2

(
1

1 + η
+ ri + 1

ln(η)

)
−
∫ ro

ri

r |∇u|2 dr = 0. (4.7)

However, solutions of the Euler–Lagrange equations can be spurious (Wen et al. 2015;
Fantuzzi et al. 2022). The true solution yielding the correct upper bound is that which
satisfies the spectral constraint (H � 0 should be satisfied for all u and θ ). As η → 1,
the above set (4.3)–(4.7) can be converted to the traditional Rayleigh–Bénard problem
(Doering & Constantin 1996) by introducing a new coordinate y = r − ri and setting
ri = ∞. It should be indicated that energy stability of the present problem should
be built upon the conduction state τcon = − ln(r/ri)/ ln(η). While we notice that at
the first bifurcation point of the Euler–Lagrange equations, τ = − ln(r/ri)/(2 ln(η)) +
(r2 − r2

i )(1 − η)/(2(1 + η)) /= τcon, which gives a smaller Ra than the energy stability
threshold. This indicates that the first bifurcation point of the Euler–Lagrange equations
does not correspond to the energy stability of the conduction state. This is very different
from the traditional Rayleigh–Bénard problem, the Taylor–Couette problem or the plane
Couette problem, which can be directly connected to the energy stability problem of a
laminar background state. It indicates that Doering–Constantin–Hopf formalism can be
disconnected with the energy stability by the curvature effect.
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Supergravitational turbulent thermal convection

4.1. Asymptotic analysis of the Euler–Lagrange equations
Note that the Euler–Lagrange equations are rather complex, and it is impossible to
get an analytical solution. Previous works indicated that constraint of continuity only
improves the prefactor rather than the exponent of the bound (comparison with our
numerical solution also confirms this finding). The Kumar (2022) study on Taylor–Couette
flow suggests that an analytical solution can be obtained by dropping the pressure
and continuity equation away from the Lagrangian or the Euler–Lagrange equations,
which can yield a suboptimal bound. Hence to seek an asymptotic analytical result for
the Euler–Lagrange equations when Ra → ∞, we also drop the continuity equation
and pressure here. Furthermore, dropping the pressure term indicates that the optimal
solution is independent of z (see also (4.22) and (4.23), which give kn = km = 0 if p is
dropped). This immediately gives the solution of the truncated Euler–Lagrange system
that (u, θ) /=(0, 0) but (v, w) = (0, 0). It also indicates that if the continuity equation is
dropped away, then the optimal perturbation field is one-dimensional, which is similar to
the Taylor–Couette flow problem (Kumar 2022). Hence we only need to solve the following
ordinary differential equations (ODEs):

2a

(
d2u
dr2 + 1

r
du
dr

− u
r2

)
− 2

√
Ra θ

dτ

dr
= 0, (4.8)

2a

(
d2θ

dr2 + 1
r

dθ

dr

)
− 2

√
Ra u

dτ

dr
= 0, (4.9)

d2τ

dr2 + 1
r

dτ

dr
− 2a

1 − η

1 + η
− (1 − a)

√
Ra
(

dθu
dr

+ uθ

r

)
= 0. (4.10)

We decompose the solution of the above ODE system into three regimes: an inner
boundary layer, a bulk layer and an outer boundary layer. We set ε = Ra−1/2 (where
ε � 1 is the small parameter) and introduce the rescaled coordinates for the inner and
outer boundary layers:

si = r − ri

ε
, so = ro − r

ε
. (4.11a,b)

Now, we expand the solutions asymptotically:

ui = u0
i (si) + ε u1

i (si), θi = θ0
i (si) + ε θ1

i (si), τi = τ 0
i (si) + ε τ 1

i (si), (4.12a–c)

uo = u0
o(so) + ε u1

o(so), θo = θ0
o (so) + ε θ1

o (so), τo = τ 0
o (so) + ε τ 1

o (so), (4.13a–c)

ub = u0
b(r) + ε u1

b(r), θb = θ0
b (r) + ε θ1

b (r), τb = τ 0
b (r) + ετ 1

b (r), (4.14a–c)

where the subscripts i, o, b stand for ‘inner boundary layer’, ‘outer boundary layer’ and
‘bulk layer’, and higher-order terms are neglected. Both functional inequality analysis and
numerical solutions of the Euler–Lagrange equations indicate that the optimal balance
parameter is a = 1/3 (see our numerical evidence in figure 1). Therefore, we just set a =
1/3 in the present asymptotic analysis for simplicity. Using a standard matching method
between the boundary layer solutions and the bulk solution (see Kumar 2022), we can
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Z. Ding

103 104 105

Ra
106 107 108

0

0.2

0.4 1/3

0.6

a

0.8

1.0
ri = 0.1
ri = 0.1
ri = 1
ri = 1
ri = 9

Figure 1. The balance parameter versus the Rayleigh number. Solid lines are computed by solving the full 3-D
Euler–Lagrange equations, and dashed lines are computed from the 2-D axisymmetric problem. The green line
is derived from the analytical suboptimal problem: a = 1/3.

find the leading-order solution to (4.8)–(4.10) after some algebraic computations. Here,
the leading-order solution of the background field τ is shown as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τi = 1
1 + √

η
tanh

(
3

2(1 + √
η)

si

)
+ O(ε),

τb = 1
1 + √

η
+ O(ε),

τo = 1 −
√

η

1 + √
η

tanh
(

3
√

η

2(1 + √
η)

so

)
+ O(ε).

(4.15)

Using the leading-order solution of τ , we derive the leading-order bound for heat transport:

Nu � 3
2

χ(η) Ra1/2, χ(η) := − η ln(η)

(1 − η)(1 + √
η)2 . (4.16a,b)

Note that the asymptotic solution of the one-dimensional Euler–Lagrange equations
improves the suboptimal bound by a factor

√
3(1 + √

η)2/(1 + η).

4.2. Numerical results
Before presenting the numerical results of the full Euler–Lagrange equations, we briefly
explain our strategy. We observe that the spectral constraint is invariant under the mirror
symmetry transformation:

[u, v, w, p, θ ](r, φ, z) �→ [u, −v, w, p, θ ](r, −φ, z), (4.17)

[u, v, w, p, θ ](r, φ, z) �→ [u, v, −w, p, θ ](r, φ, −z). (4.18)
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Supergravitational turbulent thermal convection

Thus we assume that the perturbation of the same mirror symmetry is expanded as⎡
⎣u

p
θ

⎤
⎦ =

N∑
n=1

⎡
⎣un(r)

pn(r)
θn(r)

⎤
⎦ cos(nφ) cos(knz) +

M∑
m=1

⎡
⎣um(r)

pm(r)
θm(r)

⎤
⎦ cos(mφ)

+
Q∑

q=1

⎡
⎣uq(r)

pq(r)
θq(r)

⎤
⎦ cos(kqz), (4.19)

v =
N∑

n=1

vn(r) sin(nφ) cos(knz) +
M∑

m=1

vm sin(mφ), (4.20)

w =
N∑

n=1

wn(r) cos(nφ) sin(knz) +
Q∑

q=1

wq(r) sin(kqz). (4.21)

The subscript n denotes the three-dimensional (3-D) mode, m denotes the annular mode,
and q denotes the axisymmetric mode. The Chebyshev spectral method is applied to
the resulting ODE problem. In the present work, we gradually increase the number of
Chebyshev modes to ensure the numerical accuracy, e.g. for Ra = 108, 300 Chebyshev
modes are used.

Extra equations describing the variation with wavenumbers kn and kq are now required
to close the system of optimal equations. Writing the Lagrangian L in (4.2) in terms of
the Fourier modes in (4.19)–(4.21) (see Appendix C), the optimal axial wavenumber can
be found from

δL /δkn := 2
∫ ro

ri

[akn(u2
n + v2

n + w2
n) + knθ

2
n ]r − (wnpn)r dr = 0, n /= 0, (4.22)

δL /δkq := 2
∫ ro

ri

[akq(u2
q + w2

q) + kqθ
2
m]r − (wqpq)r dr = 0. (4.23)

We should indicate that the popular time-marching method (Wen et al. 2015) is not
applicable in the present study because our cylinders are infinitely long and kn and kq are
not compatible, i.e. a wave of length 2π/kq cannot fit the domain z ∈ [0, 2π/kn]. Hence we
resort to the Newton–Raphson method, which was well-honed in previous works (Plasting
& Kerswell 2003; Ding & Kerswell 2020). The shortcoming of the Newton method is that
we need to manually handle the critical modes since (m, n) are discrete, which makes the
searching of critical modes very tedious. When the Rayleigh number is lower than that
of the first bifurcation point of the Euler–Lagrange equations, the balance parameter is
a = 1 and u = θ = p = 0. To solve the Euler–Lagrange equations, we apply the following
steps.

(1) Solving for the analytical solution of the background field τ using (4.6):
τ = − ln(r/ri)/(2 ln(η)) + (r2 − r2

i )(1 − η)/(2(1 + η)) with a = 1, and test the
eigenvalue problem (2.32)–(2.34) to identify the first bifurcation point, then
initialize the computation of the Euler–Lagrange equations using the background
field τ = − ln(r/ri)/(2 ln(η)) + (r2 − r2

i )(1 − η)/(2(1 + η)) and eigenfunctions
obtained from the eigenvalue problem by slightly increasing Ra.
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Z. Ding

(2) When the solution is converged, test the eigenvalue problem (2.32)–(2.34) of the
new ‘τ ’ in a wide range of wavenumbers. (Both the even and odd solutions should be
examined to ensure that the solution is not spurious, which can be done by writing
the perturbation as (u(r) exp(inθ + ikz), θ(r) exp(inθ + ikz), p(r) exp(inθ + ikz)).)
Choosing the range of wavenumbers is empirical, and the range becomes wider as
Ra increases. For example, in the present work, we test the eigenvalue problem in
(n, m, kq, kn) ∈ [0, 300] when Ra = 108, and confirm that there is no spurious mode
in the solution.

(3) If an unstable mode is found as Ra increases, add the unstable mode into the
Euler–Lagrange equation solver.

(4) After a converged solution is obtained, check the spectral constraint again. If there
are no unstable modes, solve the Euler–Lagrange equation with a higher Ra and
repeat step (2).

It takes approximately 300 h for tracking the critical modes of ri = 0.1 up to Ra = 108 on
a desktop computer with 16 cores. But if we consider a 2-D axisymmetric problem (m =
n = 0), using (4.23) can significantly speed up the searching of critical modes, and it takes
only approximately 5 h for solving the problem up to Ra = 108 on the same computer.

We consider three cases, ri = 0.1, 1, 9. For all three cases, the first critical mode of
the spectral constraint is indeed 3-D. However, for ri = 9, we find that the azimuthal
wavenumber n is large (n = 25), and the critical Rayleigh number for a 3-D mode is very
close to that for a 2-D axisymmetric mode. This implies that the upper bound produced
from a 2-D axisymmetric problem will be very close to the full 3-D problem. Therefore,
for cases ri = 0.1, 1, we solve the full 3-D problem and compare the results with the
complementary 2-D axisymmetric problem. For large radius ri = 9, instead of solving
the 3-D problem, the 2-D version gives good approximations to the optimal bound at a
much lower computational cost.

Figure 2 illustrates the numerical results of Nu versus Ra. It indicates that the upper
bound of the 2-D axisymmetric problem on heat transport is generally lower than its 3-D
counterpart. However, the difference between the two cases is only significant when Ra
is relatively low (Ra < 107) and the curvature effect is conspicuous (ri = 0.1). When
the inner radius increases to ri = 1 (η = 0.5), the upper bounds of the two cases are
almost overlapped, indicating that we only need to compute a 2-D problem to yield
the upper bound on supergravitational convection. When rescaling the upper bound
by the geometrical factor χ(η) in (4.16a,b), we observe that all the curves overlap
asymptotically, and approach 0.106 as Ra → ∞. This indicates that χ(η) derived from the
one-dimensional Euler–Lagrange system is better than χa(η) derived from the functional
inequality analysis. Therefore, we propose that the upper bound on heat transport in
supergravitational convection is given by

Nu � 0.106 χ(η) Ra1/2. (4.24)

Plasting & Kerswell (2003) proved Nu � 0.026 Ra1/2 in the classical Rayleigh–Bénard
convection, which coincides with the present work as η → 1.

Different from the Taylor–Couette problem (Kumar 2022) in which the 3-D mode
exists only when the radius ratio η is very small, we observe that the 3-D critical mode
always exists in the supergravitational convection. To illustrate this, we plot the bifurcation
diagram of critical modes of the 3-D problem in figure 3. For ri = 0.1, two 3-D critical
modes can be found in the range Ra ∈ [9.5 × 103, 1.8 × 104] ∪ [3.2 × 104, 6 × 104].
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Figure 2. The Nusselt number Nu versus the Rayleigh number. Solid lines are computed by solving the full
3-D Euler–Lagrange equations, and dashed lines are computed from the 2-D axisymmetric problem.
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Figure 3. The wavenumbers of critical modes for (a,b) ri = 0.1 and (c,d) ri = 1. Dashed lines of the same
colour in (b,d) correspond to the 3-D mode.

Otherwise, there is only a single 3-D critical mode of n = 2, k ≈ 2, indicating that there is
a large-scale 3-D flow structure, which is absent in the classical Rayleigh–Bénard problem
and Taylor–Couette problem. To illustrate this 3-D mode of n = 2, k ≈ 2, we plot it in
figure 4 by setting Ra = 108. The perturbation velocity and thermal fields are shown,
indicating that the 3-D mode occupies the whole domain, i.e. it is a large-scale structure.
For the other 2-D modes, i.e. the annular mode and the axisymmetric mode, we observe
that some of them are nested in the boundary layers, and others are close to the boundary
layers but occupy a large region of the domain. This indicates that the 2-D modes that
are confined with the boundary layers are actually small-scale structures. This observation
may indicate that the small-scale motions in turbulent flows are due to the local instability
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Figure 4. The critical modes of the Euler–Lagrange equations for ri = 0.1, Ra = 108: (a) the 3-D mode with
axial length rescaled to 2π; (b,c) the radial velocity components of the critical modes.

of boundary layers, while large-scale motion is insensitive to the boundary thickness,
which is due to the global instability of the background field.

For ri = 1, the bifurcation diagram is more complicated. There are two critical 3-D
modes, and the mode of n = 5 appears and disappears as Ra increases (see the bifurcation
diagram in figure 3). It is also interesting that the 2-D axisymmetric mode q = 2 emerges
at approximately Ra = 3 × 105 but disappears forever at approximately Ra = 4.6 × 105.
The disappearance and reappearance of these modes causes a ‘discontinuous profile’ of
the wavenumbers in figure 3. This is very different from the traditional Rayleigh–Bénard
problem: the critical modes never disappear (Plasting & Kerswell 2003; Ding & Kerswell
2020), and the corresponding wavenumbers are continuously changing with Ra. For the
3-D mode or annular mode, the rising of a new mode can suppress the old mode by
changing the profile of the background field (e.g. Plasting & Kerswell 2005). Hence this
indicates that in the present problem, the second annular mode is suppressed by the new
third mode.

Note that the bifurcation diagram for the 2-D axisymmetric problem is very different
from the axisymmetric mode in the 3-D problem (compare figures 3 and 5). The first
mode in the 2-D problem is a large-scale structure as the optimal wavenumber remains
O(1) as Ra increases. (The bifurcation diagrams for the 2-D axisymmetric problem of
ri = 0.1, 1 are very similar to figure 5. Hence we show only the case ri = 9.) But the
first axisymmetric mode in the 3-D problem becomes a small-scale structure as Ra
increases (its wavenumber scales as Ra1/2). This indicates that the first critical mode in
the 2-D problem is due to the global instability of the background field, while the first
axisymmetric mode in the 3-D problem is due to the instability of the boundary layer.
As argued above, that a small-scale structure arises from the instability of boundary
layers, it is natural that the ensuing critical modes are of size similar to the boundary
layer, i.e. the convective cell height is of the same order as the boundary layer thickness.
Typically, the convective cells are nearly square, i.e. 2π/n ∼ δ and 2π/kq ∼ δ (where δ

is the thickness of either the inner boundary layer or the outer boundary layer). It is clear
that the small-scale axisymmetric modes and annular modes in the 3-D problem, as well as
the critical modes in the 2-D axisymmetric problem, share common features: n ∼ Ra1/2,
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Figure 5. The bifurcation diagram of the critical wavenumber of a 2-D axisymmetric problem for ri = 9.
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Figure 6. The background temperature profiles for the three typical cases at Ra = 107. Solid lines are for
background profiles computed from the 2-D axisymmetric problem, and solid dots are for the corresponding
full 3-D problem. The green dashed lines are for τb = 1/(1 + √

η).

kq ∼ Ra1/2, which agree well with the analytical suboptimal result that the boundary layer
thickness reduces as δ ∼ Ra−1/2.

The optimal background fields τ at Ra = 107 for ri = 0.1, 1, 9 are illustrated in figure 6.
When ri = 0.1, there is a small discrepancy in the background profiles between the 2-D
axisymmetric problem and the full 3-D problem. This discrepancy becomes negligible
when ri increases to ri = 1, indicating that the upper bounds yielded from the 2-D and 3-D
problems will be very close when the radii ratio is large. In fact, this small discrepancy
will also reduce as Ra increases. The present study suggests that 2-D computation gives
a good approximation to the optimal bound in supergravitational thermal convection.
Moreover, we observe that the bulk temperature of the background field is in excellent
agreement with the asymptotic solution τb = 1/(1 + √

η) + O(Ra−1/2). This observation
implies that an ‘analytical’ upper bound can be derived from a simple one-dimensional
perturbation problem, and imposing the continuity equation as a constraint only improves
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Figure 7. The Nusselt number Nu versus the Rayleigh number from DNS; data courtesy of Professor C. Sun.
The Prandtl number is Pr = 1, and the Rossby number gives Ro−1 = 1.

the prefactor of the bound, which does not change the geometrical dependence or the
exponent.

4.3. Comparison with DNS data
We have computed the upper bound of heat transport in supergravitational thermal
convection by enforcing partial information of the Navier–Stokes equations. It would
be interesting to examine if the maximum heat transfer among solutions of the full
Navier–Stokes equations follows the geometrical dependence, and the temperature in the
bulk region is close to 1/(1 + √

η) or 1/(1 + η). Figure 7 illustrates the dependence of
the Nusselt number obtained from DNS on the Rayleigh number. The DNS data suggest
that the heat transfer in supergravitational thermal convection is reduced by the curvature
effect, which is in line with our upper bound analysis. It is also interesting that using our
analytical geometrical dependence χ(η), those data from DNS at relatively low Ra ∼ 106

can be brought closer. A close look at the rescaled data suggests that this is not caused by
the logarithmic scale of the plot. For example, the rescaled Nusselt number (Nu/χ(η)) for
η = 0.3 is a little higher than that for η = 0.5 at Ra = 106 or Ra = 2.2 × 106. However, for
Ra > 107, the DNS data cannot be well clustered by the geometrical dependence χ(η), and
the data gap is even enlarged by the geometrical dependence χ(η) (rescaling using χa(η)

is worse). Perhaps there are multiple turbulent states in supergravitational convection, e.g.
convection with different periods in the azimuthal direction. It is yet unknown which flow
state can transfer the most heat, and it is not known whether heat transfer by this flow state
follows the geometrical dependence or not. Another more physically plausible reason is
that the geometrical dependence is derived from the Euler–Lagrange equations rather than
the Navier–Stokes equations, which does not reflect the actual scaling, and correction to
the geometrical dependence using more physical information should be made.

By arguing the equality of temperature scales in the outer and inner boundary layers,
Wang et al. (2022) derived that the mean bulk temperature is

τb = 1
1 + η4/3 . (4.25)

Obviously, this bulk temperature is higher than our optimal background temperature τb =
1/(1 + √

η) and the suboptimal background temperature τb = 1/(1 + η). This difference
stems from the assumption of the ratio of the boundary layer thickness. We note that the
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DNS data by Wang et al. (2022) suggest that the mean temperature approximately follows
(4.25), indicating that (4.25) is a better candidate for the bulk temperature than derivations
from the upper bound problem for relatively low Ra flows. It is yet unknown if (4.25)
is applicable for very large Ra flows, e.g. the ultimate regime flow. Nevertheless, both
Wang et al. (2022) and our present work indicate that the bulk temperature deviates from
τb = 1/2 due to the curvature effect, and the mean temperature is elevated by curvature.

It would be interesting to propose a scaling law for the DNS finding by combining
(4.25) and an assumption of boundary layer thickness. Since their DNS data suggest that
Nu approximately follows Ra1/3 (Nu ∼ Ra0.32 in Wang et al. 2022), it is reminiscent of
Malkus’s classical scaling in Rayleigh–Bénard convection. The 1/3 scaling can be derived
by arguing that the boundary layer is marginally stable or heat flux is independent of
the fluid depth. Here, we use the marginal stability assumption to find the geometrical
dependence. Since (4.25) well predicts the bulk temperature, the equality of temperature
scales in the boundary layers is also reasonable. Thus the assumption of boundary layer
thickness ratio δo/δi = η1/3 is adopted here too. Moreover, we define inner and outer
Rayleigh numbers:

Rai = αω2Riδ
3
i �Ti

νκ
, Rao = αω2Roδ

3
o �To

νκ
, (4.26a,b)

where �Ti = �T/(1 + η4/3), and �To = η4/3 �T/(1 + η4/3). Hence we have
Rao = η4/3 Rai and Rao < Rai. Therefore, we argue that the inner boundary layer is
marginally stable, while the outer boundary layer is over stable. Consequently, we can
assume that the inner Rayleigh number is constant:

Rai = αω2Riδ
3
i �Ti

νκ
= const. (4.27)

By invoking the definitions of the Rayleigh number Ra = 1
2αω2(Ri + Ro)�T d3/νκ and

Nusselt number Nu = − ln(η) τbRi/δi, and substituting them into (4.27), we obtain

Nu ∼ χ∗(η) Ra1/3, χ∗(η) = − η4/3 ln(η)

(1 − η)(1 + η)1/3(1 + η4/3)4/3 . (4.28a,b)

Figure 8 demonstrates that the data rescaled by χ∗(η) are more compact at high Ra (Ra >

107), and it seems that all rescaled data are converging to a single curve. This indicates
that χ∗ is a good candidate for the geometrical dependence of the Nusselt number in
actual supergravitational turbulence when the marginal stability assumption is reliable.

5. Discussion and conclusion

This study explores the upper bound on supergravitational turbulent convection using
Doering–Constantin–Hopf formalism. The take-home message is that heat transport in
this system cannot exceed the so-called 1/2 scaling, and the curvature effect retards heat
transport. Our study indicates that different choices of the piecewise background field
can yield different geometrical dependence (see the results in § 3 and Appendix B). An
interesting finding similar to that of Kumar (2022) is that the asymptotic solution of the
one-dimensional Euler–Lagrange system can yield the correct geometrical dependence
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Figure 8. The rescaled Nusselt number Nu versus the Rayleigh number using (4.28a,b). The data are the
same as in figure 7.

for an optimal upper bound. This also implies that enforcing the incompressibility of the
perturbations only improves the prefactor.

By rescaling the DNS data from Wang et al. (2022) using our geometrical dependence
(4.16a,b), we find that the data can be clustered more compactly when the Rayleigh number
Ra is low (Ra ∼ 106). However, at high Ra, DNS data do not follow our geometrical
dependence. To propose a better geometrical dependence, we applied the marginal
stability assumption to discover the geometrical dependence. Interestingly, the geometrical
dependence derived from the marginal stability assumption can cluster the DNS data very
well (see figure 8). However, Jiang et al. (2022) reported transition to the ultimate regime
in supergravitational convection at higher Ra (>1010) for η = 0.5, and they proposed
Nu ∼ Ra0.4 in the high Rayleigh number regime. This may signify the breakdown of the
marginal stability assumption. But it remains unknown how the Nusselt number depends
on the geometry in the ultimate regime. Does it depend on our derived geometrical
dependence χ(η) from the upper bound problem or the geometrical dependence derived
under the marginal stability assumption? This clearly deserves further study in future.

Another interesting finding of our present study indicates that although 3-D large-scale
critical modes are crucial for deriving the optimal upper bound, a 2-D axisymmetric
problem can yield an asymptotically identical bound as in the full 3-D problem as Ra →
∞. It indicates that we only need to solve a 2-D Euler–Lagrange system to approximate the
optimal upper bound. However, if one considers a 2-D problem with stress-free conditions
in future, the bound may be lowered (improved) by imposing further constraints, e.g.
a vorticity equation constraint. It has been well known that the best upper bound on
2-D traditional Rayleigh–Bénard convection can be lowered (improved) to Nu ∼ Ra5/12

(Whitehead & Doering 2011; Wen et al. 2015; Ding & Wen 2020) when stress-free
boundary conditions are considered. Thus this raises an interesting question for future
study: if one can prove the 5/12 scaling with geometrical dependence in supergravitational
convection between two stress-free boundaries, does that imply that the so-called ultimate
regime does not exist, at least in 2-D axisymmetric flow? However, for a 3-D flow, there
is no room to improve the 1/2 scaling derived in the present study in the framework of
Doering–Constantin–Hopf formalism (Ding & Kerswell 2020).
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Appendix A. The particular solution for inf G

To find the minimum of G , we construct the Lagrangian

L =
〈
a |∇u|2 + |∇θ |2 + 2

√
Ra θu

dτ

dr
+ 2a

1 − η

1 + η
r

∂θ

∂r

〉
− 〈p ∇ · u〉. (A1)

Variation of L gives the equations

δL/δu := −2a ∇2u + 2
√

Ra θ
dτ

dr
er + ∇p = 0, (A2)

δL/δp := ∇ · u = 0, (A3)

δL/δθ := −2 ∇2θ + 2
√

Ra u
dτ

dr
− 4a

1 − η

1 + η
= 0. (A4)

Hence it is easy to show that (u, θ) = (0, θ(r)) is a particular solution, and we obtain

u = 0, θ(r) = −a
2

1 − η

1 + η
(r2 − r2

i ) − a
2 ln(η)

ln(r/ri),

p = pi − 2
√

Ra
∫ r

ri

θ(r′)
dτ(r′)

dr′ dr′,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A5)

where pi is a constant. This particular solution can be used to remove the linear terms in G .

Appendix B. Different background fields can yield different geometrical dependence

Inspired by the asymptotic solution (4.15) and the numerical result a = 1/3, we revisit the
analysis in § 3 by choosing the following background profile (setting c = 1/(1 + √

η) in
(3.1)):

τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1 + √

η

1
ln((ri + δi)/ri)

ln(r/ri), z ∈ [ri, ri + δi],

1
1 + √

η
, z ∈ (ri + δi, ro − δo],

1 −
√

η

1 + √
η

1
ln((ro − δo)/ro)

ln(r/ro), z ∈ (ro − δo, ro].

(B1)

Moreover, we also impose the heat flux conservative condition across the two cylinders:
1

ln((ri + δi)/ri)
= −

√
η

ln((ro − δo)/ro)
. (B2)

As Ra → ∞, δi � ri and δo � ro, (B2) simplifies to δi = √
η δo.
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Using the new background profile (B1), and following exactly the same inequality
analysis as in §3, we can obtain

C = 1
1 + √

η
δi +

√
η

1 + √
η

δo = 2
1 + √

η
δi as Ra → ∞. (B3)

Using (3.15a,b) and (B3), we have

2
1 + √

η
δi = 1√

3 Ra
⇒ δi = 1 + √

η

2
√

3
Ra−1/2, Ra → ∞. (B4)

Using (3.18) and the new background profile (B1), we obtain

Nu � −3
2

η ln(η)

(1 − η)(1 + √
η)2

(
1
δi

+ 1
δo

)
= − 3

√
3η ln(η)

(1 − η)(1 + √
η)2 Ra1/2, Ra → ∞.

(B5)

Note that the above analysis yields the same geometrical dependence as (4.16a,b) but
with a higher coefficient 3

√
3 (compared with 3/2). This is the direct evidence that

different background profiles can yield different geometrical dependence. However, (3.23)
is slightly better (smaller) than (B5) for all η ∈ (0, 1), although it does not yield the correct
analytical geometrical dependence.

Appendix C. The Lagrangian in terms of Fourier modes

Using the expansion in (4.19)–(4.21), the Lagrangian L is expressed as

L = nu − a
4

N∑
n=1

∫ ro

ri

r

[((
dun

dr

)2

+
(

dvn

dr

)2

+
(

dwn

dr

)2
)

+ (nun + vn)
2 + (un + nvn)

2

r2

]
dr

− a
4

N∑
n=1

∫ ro

ri

rk2
n(u

2
n + v2

n + w2
n) dr − 1

4

N∑
n=1

∫ ro

ri

r

((
dθn

dr

)2

+ n2θ2
n

r2 + k2
nθ

2
n

)
dr

− 1
4

N∑
n=1

∫ ro

ri

2
√

Ra runθn
dτ

dr
dr + 1

4

∫ ro

ri

rpn

(
dun

dr
+ un

r
+ nvn

r
+ knwn

)
dr

− a
2

M∑
m=1

∫ ro

ri

r

[((
dum

dr

)2

+
(

dvm

dr

)2

+
(

dwm

dr

)2
)

+ (mum + vm)2 + (um + mvm)2

r2

]
dr
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− 1
2

M∑
m=1

∫ ro

ri

r

((
dθm

dr

)2

+ m2θ2
m

r2

)
dr − 1

2

M∑
m=1

∫ ro

ri

2
√

Ra rumθm
dτ

dr
dr

+ 1
2

M∑
m=1

∫ ro

ri

rpm

(
dum

dr
+ um

r
+ mvm

r

)
dr

− a
2

Q∑
q=1

∫ ro

ri

r

[((
duq

dr

)2

+
(

dvq

dr

)2

+
(

dwq

dr

)2
)

+ u2
q

r2 + v2
q

r2 + k2
q(u

2
q + v2

q + w2
q)

]
dr

− 1
2

Q∑
q=1

∫ ro

ri

r

((
dθq

dr

)2

+ k2
qθ

2
q

)
dr − 1

2

M∑
m=1

∫ ro

ri

2
√

Ra rumθm
dτ

dr
dr

+ 1
2

Q∑
q=1

∫ ro

ri

rpq

(
duq

dr
+ uq

r
+ kqwq

)
dr. (C1)

Variational of L with respect to kn and kq gives the optimal conditions for wavenumbers.
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