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1. Introduction. Suppose throughout that {sn} is a sequence of real numbers, 
A > - 1 , a > 0 , and |8 is real. Let N be any non-negative integer such that 
aN+ j 3 > l . 

We are concerned primarily with the logarithmic summability method L and 
the Borel-type method (B, a, j3). Some known results involve the Abel-type 
summability method Ak. The methods are defined as follows. Let 

LM = 7-^—Ï£ l o g ( l - x ) n = 0 n + l 

S(x) = ae-Z y _ , , 

a(x) = (l-xr^isn(
n + k)x^ 

n=o \ n I 

If L(x)(o~(x)) exists for |JC| < 1 and tends to s as x—> 1- , then we say that {sn} 
is L-convergent (Ak-convergent) to s and write sn—>s(L)(sn^>s(Ak)). 

If S(x) exists for J C > 0 and tends to s as x - » » , then we say that {sn} is 
(JB, a, ]8)-convergent to s and write sn—»s(B, a, ]8). 

The methods A0 and (B, 1, 1) are the ordinary Abel and Borel exponential 
methods respectively. 

A summability method P is said to be regular if sn^>s(P) whenever sn-^>s. 
The summability methods L, AA, and (B, a, j8) are all regular. In addition, the 
following propositions are known. 

PROPOSITION 1. If s n ^ s ( B , a, ]8) and £n=o snjc
n converges for | x | < l , fherc 

sn->s(AA). 

PROPOSITION 2. I/sn—»s(AJ, then sn-^s(L). 

The first of these propositions was proved by Shawyer and Yang in [6], and 
the second by Borwein in [1]. The converse of each of the above propositions 
is false. 
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Propositions 1 and 2 yield: 

PROPOSITION 3. If sn->s(B, a, |8) and S = 0 s n x n converges for | x | < l , then 
sn-*s(L). 

The purpose of this paper is to investigate the reverse problem. That is, 
assuming the L-convergence of a sequence, what Tauberian condition will 
imply its (B, a, /3)-convergence? 

2. The main theorem. Suppose that $ is a continuous and unboundedly 
increasing function on [a, oc). 

A real-valued function / on [a, oc) is said to be slowly decreasing with respect 
to <j> if lim inf(/(y)-/(x))>:0 as y >x->^ and $(y)-$(x)—>0, i.e. if, for each 
e > 0 , there exist positive numbers 8 and M such that f(y) — f(x)>—e 
whenever y > x > M and </>(y) — <fi(x)<8. 

For the Ax and (B, a, /3) methods, Shawyer and Yang established the 
following Tauberian result in [7]. 

PROPOSITION 4. If sn -» s(Ax) and S(x) is slowly decreasing with respect to 
log x, then sn—>s(B, a, j8). 

We established the following result in [4] for the L and AA methods. 

PROPOSITION 5. 1/ sn—>s(L) and o-(x) is s/ow/y decreasing with respect to 
log log x, then sn->s(Ak). 

In the present paper we prove the following Tauberian theorem for the L 
and (B, a, ]8) methods. 

THEOREM 1. If sn —> s(L) and S(x) is slowiy decreasing with respect to 
log log x, fhen sn-^s(B, a, 0). 

3. Preliminary results. 

LEMMA 1. sn^>s(L) if and only if — - s n - * s ( L ) . 
an + p — 1 

This result is a simple consequence of Lemma 1 in [2]. 
Let 

J(t)= * 
log t J 

S(u)du for f > a > l . 

LEMMA 2. (i) 1/ sn—>s(L), fhen J(t)->s as f—»oc. 
(ii) If L(x) exists for \x\<l and J(t)—>s as t—><*, 

then sn —» s(L). 
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Proof. Suppose that L(x) exists for | x | ^ l . Then sn = 0(cn) for c > l , and 
hence S(x) exists for all x > 0. 

Let 

Then 

K0 = 

|K0l=£ 

1 a e-u/t 

log r J, 

1 ra 

log* 

S(u) du for f>a . 

S(n) 
du-^»0 as f—>oc5 

since S(u)= 0(w a N + p - 1 ) in (0, a) and a N > 0 - l > O . 
Next we have, for f>a , 

7(0+ /(*) = dw a 6 - u V ^ 
log f Jo u n=NT(an + p) 

1 £ as„ 

log t n=N (an + p - l)T(an + j3 - 1 ) 

e - u ( l + t ) A M a n + 3 - 2 d M 

1 a(n + l)sn r 
a n + / 3 - l 

logf„f N (an + /3 - l ) (n + l ) \ l + (y 

• 0-1~a - I o g ( l - T ) _ - 1 

logf ' l o g ( l - T ) 

x y g(n + l) s» T „ + 1 

"(ï^)' 

n=2V cm+ /3 — 1 n + 1 

where T = [f/(l + f)]a, the inversion being justified since the final series is 
absolutely convergent. Also (r/l + t ) 3" 1"" and - ( log( l -T) / log t) tend to 1 as 
f—>oc. In view of Lemma 1, the desired results follow. 

LEMMA 3. Let y > 1, f > 1, a > 0. Then 

1 r°°e-
M/f 

— du-*0 as t—>°c, 
•g t Jt u 

t 

du-*l as *—»<», 

(i) 

(ii) 

(iii) 

and 

(iv) 

log i 

1 f * e~u" 

logf J 

0 < 
du 

(e-""y-e-u/,) — <l, 

log t J, 
du—»y—1 as f—»°c. 
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Proof, (i) 0 < du : 

\ogt)t u ~ logi 

1 f°°e~u 

— — dv-^0 
3g f Jx U 

as f-»«>. 

oo r ' - r ^ „ „ = - L f £Z(b_..~(1_!ai!\+J_ 
log*Ja w logf-U u \ log*/ logr 

x e~v log udi; —> 1 as t —> oo. 

(iii) By the mean-value theorem, 

0 < (e-u/ty-e-u/t) 
du 

< 

V [u u\du 

]a \7~7v~ïT 

(T-F)J du 

l-t1~y<l. 

(iv) By parts (ii) and (iii), 

1 (,ye'u"y 

log (J 
du = 

log*1 

f e - " " ' , I f e"u/' , 1 
du-- du—-

)a U 10gfJa U lOgf 

p 
•'a 

du 
x\ (e-u/ty-e~u/t) > y - l as f->oo. 

4. A general Tauberian result* 

THEOREM 2. Suppose that the following conditions hold: 
(1) K(t, u) is defined, real-valued, and non-negative for t>a, u>a; 

moreover, $™ K(t, u) du exists in the sense of Lebesgue for each t> a, 
(2) £K(f, M) du-^1 as f-»«>, 
(3) / is real-valued and continuous on [a, oo), 
(4) F(t) = J~ K(t, u)f(u) du exists in the Cauchy-Lebesgue sense for each t > a, 
(5) / is slowly decreasing with respect to <f>, 
(6) <f>(0-4>(f-l)->0 as f-^oo, 
(7) Sx

aK(t, u) du->0 whenever f>x-»oc and 0(f)-</>(*)-*oo? 

(8) $™ K(t, w)(0(w)-0(x)) du^'Owhenever x>f—>oo and 0(x)-<f>(f)—»(», 
and 

(9) F(t) = 0(l)fort>a. 
Then f(u) = O(l) for u>a. 

This result was established in [3]. 
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5. Proof of Theorem 1. Set a = 1 + e 

( 1 e~u/t 

K(t,u) = \ 
for \>a,u> a, 

Then 

log t u 

0 otherwise, 

<f>(t) = log log r for f>a , 

f(u) = S(u) for u > a. 

K(f, u)/(w) du = J(r) for f > a. 

We first show that the conditions of Theorem 1 imply that S(u) = O(l) for 
u> a. 

Conditions (1), (3), (5), and (6) clearly hold, and J~ K(t, u) du-*l as t^>°° by 
parts (i) and (ii) of Lemma 3. Furthermore, the L-convergence of {sn} and 
Lemma 2 guarantee that F(t) exists and is bounded for t>a. In view of 
Theorem 2, to establish the boundedness of S(u) in (a, °°) it suffices to prove 
that (7) and (8) hold. 

To show that (7) holds, we observe that 

K(t, u) du < 
1 fx d w l o g x - l o g a 

logfJ a u log* 
->0 as t>x—»<*> 

and 
log log r - log log x —> oo. 

To show that (8) holds, we note that 

1 
K(t,u){<\>{u)-4>{x))du 

-u/t 

log t J 
1 [ 

=log f J. 

"xlog 
te~ 

(log log w - log log x) du 

~u/7 u-x \ 

u Vxlogx/ 

i r°° 
— «T^'dii 
x log t Jx 

x log x log f 
-»0 as x>t—>oc. 

Suppose, as we may without loss of generality, that sn —» 0(L). Then, by 
Lemma 2, / ( 0 - * 0 as f—>°c. It remains to show that S(u)—»0 as w-*oo. 

Assign £ > 0 . Since S(u) is slowly decreasing with respect to <f>, there exist 
numbers x>a and 8>0 such that S ( u ) - S ( f ) > - e whenever w > f > x and 
log log u - log log r < 8, Equivalently, setting y = e8, 

(10) S(t)-e<S(u) whenever x<t<u<ty. 
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Relation (10) implies that, for f>x, 

1 
h = 

ty e~u/ty 

log t J 

1 Çtye~u/ty 

"log r J 

(S(t)-e)du 

S(u)du = I2 

Now, by Lemma 3, and the fact that S(u) = O(l) , 

- u / n 

i 2 = 7 j a 7 ) - J W - iog r J 
S(u) du 

S(u) du + 
logf log f Ja u 

= o(l) as r—>oc. 

Further, by part (iv) of Lemma 3, 

^ ( S t o - e X ? - l + o(l)). 

Hence 

J2 

S(u) du 

S ( f ) - e : 7 - 1 + 0(1) 
= o(l), 

and therefore 

( ID 
limsup S(t)<e. 

Rewriting (10) we get 

(12) S(u)<S(t) + e whenever x<t1/y<u<t. 

Relation (12) implies that, for f 1 / 7>x, 

— f 
lOg t Jtl/y 

1 f< e"u/t 

- Î < 
lOg t Jtl/7 M 

I3 = : S(w) du 

•(S(0 + e)dM = I4. 

[June 

By Lemma 3 (with t replaced by t1/y) and the fact that S(u)= O(l) , 

I3 = J ( 0 - - J ( ^ ) -
logt 

S(w) du 

- — f 
log f J. 

tX/T g - " / » _ e~
U/î1' 

log f Ja u 
= o(l) as *-»<*. 

1 r°° 6-"/fl/7 

S(u) du +- S(u) du 
lOg t Jtl/7 U 
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Also 

I4 = (S(f) + e ) ( l - - + o ( l ) ) . 

Hence 

S(f) + £ S - — - A — - = o(l), 

1-1/7 + 0(1) 

and therefore 
( ' l iminfS(Os-e. 

t—>oo 

It follows from (11) and (13) that S(t)—>0 as f—»oc? and this completes the 
proof. 
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