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ON THE RELATION BETWEEN THE LOGARITHMIC
AND BOREL-TYPE SUMMABILITY METHODS

BY
D. BORWEIN AND B. WATSON

1. Introduction. Suppose throughout that {s,} is a sequence of real numbers,
A>-1,a>0, and B is real. Let N be any non-negative integer such that
aN+B>1.

We are concerned primarily with the logarithmic summability method L and
the Borel-type method (B, a, B). Some known results involve the Abel-type
summability method A,. The methods are defined as follows. Let

-1 -
L — n n+l,
(x) log(l—x),,g‘0 n+1 X
o an+g—1
S(x)=ae ™~ 2 S

n=NF(an+B),

o(x)=(1-x)*""! i sn(n:)\>x".

n=0

If L(x)(o(x)) exists for |x| <1 and tends to s as x— 1—, then we say that {s,}
is L-convergent (A, -convergent) to s and write s, —s(L)(s,—s(A,)).

If S(x) exists for x=0 and tends to s as x — «, then we say that {s,} is
(B, o, B)-convergent to s and write s, —s(B, a, B).

The methods A, and (B, 1, 1) are the ordinary Abel and Borel exponential
methods respectively.

A summability method P is said to be regular if s, — s(P) whenever s, —s.
The summability methods L, A,, and (B, a, B) are all regular. In addition, the
following propositions are known.

ProrosiTion 1. If s,—>s(B, a, B) and Yu_, s,x" converges for |x|<1, then
s,—>s(A,).

ProrosrTioN 2. If 5,—s(A,), then s,—s(L).

The first of these propositions was proved by Shawyer and Yang in [6], and

the second by Borwein in [1]. The converse of each of the above propositions
is false.
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Propositions 1 and 2 yield:

ProposiTioN 3. If s,—>s(B, a, B) and Yo_os,x" converges for |x|<1, then
s,—s(L).

The purpose of this paper is to investigate the reverse problem. That is,
assuming the L-convergence of a sequence, what Tauberian condition will
imply its (B, a, B)-convergence?

2. The main theorem. Suppose that ¢ is a continuous and unboundedly
increasing function on [a, «).

A real-valued function f on [a, =) is said to be slowly decreasing with respect
to ¢ if lim inf(f(y)—f(x))=0 as y>x—c and é(y)— d(x)—0, i.e. if, for each
€>0, there exist positive numbers & and M such that f(y)—f(x)>—¢
whenever y>x=M and ¢(y)— d(x)<8.

For the A, and (B, @, B) methods, Shawyer and Yang established the
following Tauberian result in [7].

ProrosiTiON 4. If s, — s(A,) and S(x) is slowly decreasing with respect to
log x, then s, — s(B, «, B).

We established the following result in [4] for the L and A, methods.

ProrosiTion 5. If s,—>s(L) and o(x) is slowly decreasing with respect to
log log x, then s,—s(A,).

In the present paper we prove the following Tauberian theorem for the L
and (B, a, B) methods.

THeorReM 1. If s, —s(L) and S(x) is slowly decreasing with respect to
log log x, then s,—s(B, a, B).

3. Preliminary results.

a(n+1)

i LN L).
an+p_1n 5D

LemMma 1. s,—s(L) if and only if

This result is a simple consequence of Lemma 1 in [2].
Let

© _—uft
J(t)=-1—J. ¢ S(u)du for t=a>1.
logt), u

Lemma 2. (i) If s,—s(L), then J(t)—s as t—cc.
(i) If L(x) exists for |x|<1 and J(t)—s as t—>cxc,
then s, — s(L).
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Proof. Suppose that L(x) exists for |x|=1. Then s, = O(c") for ¢>1, and
hence S(x) exists for all x=0.

Let
1 a ,—uft
I(t)=————J S(u)du for t=a.
logtl)y u
Then
1 (¢|S
|I(t)|5———J Su) du—0 as t—>c,
logt )y

since S(u)=Ou*N**~") in (0, a) and aN+pB—1>0.
Next we have, for t=a,

1 oee—u/t o s uan+{3——l
I +J(t)=— ™), ———d
B+ logt,[) u % ,Z:NI‘(an—FB) “

==}
1 as,

=log t ,,g‘N (an+B-1Dl'(an+B—-1)

=]
X J e—u(1+!)/tuan+3—2 du
0

1 ¢ a(n+1)s, ( t \onte-t
Clogt, S (an+B-1)(n+1) 1+t>

_( t \* ' —log(1—-T) -1

- E) logt  log(1-T)

xi a(n+1) s, et
aonant+B—1n+1

where T =[t/(1+1¢)]* the inversion being justified since the final series is
absolutely convergent. Also (/147" and —(log(1— T)/log t) tend to 1 as
t—cc, In view of Lemma 1, the desired results follow.

Lemma 3. Let y>1,t>1,a>0. Then

. 1 (e ™!
@ — du—0 as t—x,
logt), wu
. 1 t —ujt
(ii) ———-J ¢ du—1 as t—x,
logt), u
(lll) o< J (e—-u/r“/ _ e—u/r) él;lf< 1’
and
tvy _—u/tY
(iv) LJ’ du—y—1 as t—>c,
logt ),
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o _—uft 1 ®© —v
Proof. (i) 0<— j ¢ du= J ¢ dv—0 as t—oo.
logt), u logt J;

v
t —u/t 1 1 —v lO 1
(ii) —1—J’ ¢ du=———J ¢ dv=e‘“"<1—ﬂ>+—
logt), u logtJ,, v logt/ logt

1
XJ e logvdv—1 as t—x.
alt

(iii) By the mean-value theorem,

o[- o2

u t "/ u

1 1 t
<(T?~)L du

=1-t""<1.
(iv) By parts (ii) and (iii),

Y —u/tYy Y —u/tY 1 t ,—u/t 1
1 j ¢ du= Y j ¢ du-— I ¢ du—
logt) u logt”J, wu logt), u log t

! du
Xj (e —eW)——y—1 as t—o,
u
a

4. A general Tauberian result.

THEOREM 2. Suppose that the following conditions hold:

[June

(1) K(t,u) is defined, real-valued, and non-negative for t>a, u=a;

moreover, | K(t, u) du exists in the sense of Lebesgue for each t> a,
2) J7K(t,u) du—1 as t—x,
(3) f is real-valued and continuous on [a, ),

(4) F(t)={7 K(t, u)f(u) du exists in the Cauchy-Lebesgue sense for each t > a,

(5) f is slowly decreasing with respect to ¢,
6) ¢()—o(t=1)—0 as t—>x,
(7) §% K(t, u) du—0 whenever t=x—>>< and ¢(t)— P(x)—>o,

8) 7 K(t, u)(¢(u)— ¢(x)) du—Owhenever x=t— and &(x)—P(t)—>o,

and
9) F(t)=0Q) fort>a.
Then f(u)= O(1) for u>a.

This result was established in [3].
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5. Proof of Theorem 1. Set a =1+¢°,

1 e
K(t,u)=4logt u
0 otherwise,

for t=a,u=a,

o(t)=1loglogt for t=a,

f(u)=S(u) for u=a.
Then

J K(t, u)f(u) du=J(t) for t=a.

We first show that the conditions of Theorem 1 imply that S(u)= O(1) for
u>a.

Conditions (1), (3), (5), and (6) clearly hold, and {} K(t, u) du—1 as t— by
parts (i) and (ii) of Lemma 3. Furthermore, the L-convergence of {s,} and
Lemma 2 guarantee that F(t) exists and is bounded for t>a. In view of
Theorem 2, to establish the boundedness of S(u) in (a, ) it suffices to prove
that (7) and (8) hold.

To show that (7) holds, we observe that

1 (*du_logx—loga

K =
L (8 u) du logtJ; u log t

—0 as t=x—»

and
log log t —log log x —>».

To show that (8) holds, we note that

®© ,—ult

fK(t, u)((u)— (x) du =$ j :
LT
Slolgt[c eu (xulogxx> du

s; Jme‘“" du
xlogxlogt J,

te—x/t
= ——
xlog x logt

(loglog u—loglog x) du

0 as x=t—oc,

Suppose, as we may without loss of generality, that s, — O(L). Then, by
Lemma 2, J(t)—0 as t—-cc, It remains to show that S(u)—0 as u—>,

Assign £ >0. Since S(u) is slowly decreasing with respect to ¢, there exist
numbers x=a and &§>0 such that S(u)—S(t)>—¢ whenever u>t=x and
log log u —log log t <§&. Equivalently, setting y = e’

(10) S(t)—e<S(u) whenever x<t<u<t".
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Relation (10) implies that, for t>x,

Y —uftY
=—1-—j ¢ (S()—¢)du

logt
1 Y —u/tY
= J’ ¢ S(u) du = 1I,.
logt), u

Now, by Lemma 3, and the fact that S(u)= O(1),

oo —u/tV
L=J(t")~J(0) - j © () du

log t”
1 t o —u/ty _ _—uft 1 ® —-uft
- J ¢ ¢ S(u) du+—— j ¢ S(u) du
logt ), u logt), wu
=0(1) as t—>cc,
Further, by part (iv) of Lemma 3,
I;=(S(t)—e)(y—1+0(1)).
Hence
S)—es=s—2——=0(1
(0= e=——Eo=oll),
and therefore
(11 .
lim sup S(t)<e.
Rewriting (10) we get
(12) S(u)<S(t)+e whenever x<t"<u<t

Relation (12) implies that, for /¥ =y,

t —u/t
ij ¢ S(u)du

3—log tlw u

<—1-J' e S()+e) du=1
“logtlJin u £ eu= e

By Lemma 3 (with t replaced by t"/”) and the fact that S(u)= O(1),
1 1 [Te™
L=J(t)——J(t'")—— J ¢ S(u) du
0 logt), u
1 tiy e_u/'_e,u/:lly 1 oo e,_u/tl/v
— j S(u) du+—— j S(u) du
logt ), u logt ) u
=0(1) as t—cx,

https://doi.org/10.4153/CMB-1981-025-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1981-025-0

1981] SUMMABILITY METHODS 159

Also
L=(S(t)+ e)(l—l-i- 0(1)).
Y
Hence

S(+e= =o(1),

3
1-1/y+0(1)
and therefore

(13) lim inf S(¢) = —e.

t—>0

It follows from (11) and (13) that S(t)—0 as t—oc, and this completes the
proof.
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