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Transfer of Representations and Orbital
Integrals for Inner Forms of GLn

Jonathan Cohen

Abstract. We characterize the Local Langlands Correspondence (LLC) for inner forms of GLn via
the Jacquet–Langlands Correspondence (JLC) and compatibility with the Langlands Classiûcation.
We show that LLC satisûes a natural compatibility with parabolic induction and characterize LLC
for inner forms as a unique family of bijections Π(GLr(D)) → Φ(GLr(D)) for each r, (for a ûxed
D), satisfying certain properties. We construct a surjective map of Bernstein centersZ(GLn(F)) →
Z(GLr(D)) and show this produces pairs of matching distributions in the sense of Haines. Finally,
we construct explicit Iwahori-biinvariant matching functions for unit elements in the parahoric
Hecke algebras of GLr(D), and thereby produce many explicit pairs of matching functions.

1 Introduction

_e classical Local Langlands Correspondence for G∗ = GLn over a local nonarchi-
median ûeld F is characterized as the unique family of bijections between irreducible
smooth complex representations Π(G∗) of GLn(F) and n-dimensional Frobenius-
semisimple Weil–Deligne representations Φ(G∗), satisfying certain properties. Of
these properties, the most crucial is the preservation of L- and ε-factors of pairs, orig-
inally constructed in [12]. _e absence of an intrinsic deûnition of such factors is an
obstacle to generalizing the characterization to inner forms. _e theory of Whittaker
models, necessary to deûne L(π×π′ , s), exists only for quasi-split groups, and so does
not apply to these inner forms. It is also not clear what form such factors could take,
since the functional equation for L(π×π′ , s) uses the existence of inverse-transpose as
an involution transporting irreducible representations of GLn(F) to their contragre-
dients. With the single exception of GLr(D) as an inner form of GL2r(F), i.e., when
D is a quaternion algebra, no such involution exists for GLr(D), as all automorphisms
of GLr(D) are inner; see [20].

Instead, we characterize the Local Langlands Correspondence for inner forms of
G∗ by requiring it to be compatible with the Jacquet–Langlands Correspondence and
Langlands quotients. We also consider the restrictions of the resulting Langlands pa-
rameters to the Weil group. Let Π(H) (resp. Π2(H)) denote the set of isomorphism
classes of irreducible smooth complex H-representations (resp. essentially square-
integrable representations). Let Φ(H) denote the set of equivalence classes of Lang-
lands parameters W ′

F → LH. _e result is summarized in the following theorem.
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_eorem 1.1 Fix D a d2-dimensional F-central division algebra over the nonarchime-
dian local ûeld F, and let G = GLr(D) be an inner form of G∗ = GLn(F) = GLrd(F).
_en there is a a unique family of bijective maps

recr ∶Π(GLr(D)) Ð→ Φ(GLr(D)) ⊂ Φ(GLn(F))

for r ≥ 1 such that

(i) recr ∣Π2(GLr(D)) = rec∗rd ○ JLr where rec∗n ∶Π(GLn(F))
≅Ð→ Φ(GLn(F)) is the LLC

for GLn(F) and JLr ∶Π2(G) → Π2(G∗) is the Jacquet–Langlands Correspon-
dence.

(ii) If π is the Langlands quotient of σ1 × ⋅ ⋅ ⋅ × σk , then recr(π) = recr1(σ1) ⊕ ⋅ ⋅ ⋅ ⊕
recrk(σk).

_e image of recr consists of those parameters that decompose as direct sums of inde-
composableWeil–Deligne representationsW ′

F → GLm(C), where d divides m. _e fam-
ily recr is compatible with twisting: if χ○NrdGLr(D) is an arbitrary character ofGLr(D),
where χ∶ F× → C×, then recr(χ ⋅ π) = recr(π) ⊗ (χ ○ Art−1

F ) where ArtF ∶ F× → W ab
F

is the Artin Reciprocity isomorphism of Local Class Field _eory. If we postcompose
recr with restriction to the Weil group WF , then the resulting family is characterized by
compatibility with Jacquet–Langlands and parabolic induction in the sense of LLC+ (see
Section 3 for the deûnition of LLC+). _e image of res ∣WF ○ recr is those representations
WF → GLrd(C) that factor through a Levi subgroup of the form∏k

i=1 GLm i
d
qi
(C)q i for

some coprime integers m i and q i such that∑k
i=1 m i = r.

_is is _eorem 4.6. We mention that the LLC for inner forms of GL(n) has a
folklore status and is considered well known; see [2]. However, the characterization
given above does not seem to appear elsewhere, and is useful for the other applications
in this paper.

With this in hand we then prove a result relating the Bernstein centers Z(G) and
Z(G∗) ofG andG∗. See Section 5 for a recollection of the relevant basics of the theory
of the Bernstein Center.

_eorem 1.2 _ere is a natural surjective homomorphism

T∶Z(G∗) Ð→ Z(G)

between the Bernstein center of G∗ and that of its inner form G = GLr(D). Further-
more, if f ∈ H(G) and f ∗ ∈ H(G∗) have matching orbital integrals (see Section 8 for
the relevant deûnitions), then so do T(Z∗) ∗ f and Z∗ ∗ f ∗ for all Z∗ ∈ Z(G∗).

_is is shown in Proposition 5.2,_eorem 5.3, and_eorem 8.3. We show that the
restriction of the Langlands parameter φπ = recr(π) of an irreducible representation
π ∈ Π(G) to WF is determined by the supercuspidal support of π, and use this to
prove a transference of geometric Bernstein centers between G∗ and its inner forms,
as we now explain. Let IF denote the inertia subgroup of the Weil group, and let
Φ denote a geometric Frobenius. _e geometric Bernstein centers are deûned to be
the subalgebras of the Bernstein centers generated by those regular functions on the
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Bernstein variety of the form

ZV ∶ (M , σ)G z→ tr(φπ(Φ) ∶ V IF) ,

where V varies over ûnite-dimensional algebraic representations of LG, and (M , σ)G
is the supercuspidal support of π. _e fact that these ZV are well deûned elements
of the Bernstein center is a consequence of LLC+, as we describe in Section 6.2. We
write Z∗V for the analogous distribution on G∗. As an immediate consequence of the
deûnition of T and LLC+, we obtain the following corollary.

Corollary 1.3 For a representation V of LG as above, we have T(Z∗V) = ZV .

_is result, listed below as Corollary 6.4, was proved in the special case of n = 2
for the Iwahori block in [9]. _ere is a concrete combinatorial interpretation of this
transference, at least on the Iwahori block, in terms of an identity involving Schur
polynomials; see Section 7.

In order to apply _eorem 1.2, we need to be given a pair of matching functions.
It is known that for every f ∈ H(GLr(D)) there is a function f ∗ ∈ H(GLn(F)) that
matches f . However, this f ∗ is not given explicitly. Indeed, only its image in the co-
center is canonical. However, having an explicit matching function, particularly one
with speciûed biinvariance properties, can be useful for many purposes. For example,
the matching of Kottwitz’s Euler–Poincaré functions is used in his proof of the Tam-
agawa Number Conjecture, [18]. We brie�y recall the deûnition of these functions.
Let H be a reductive, adjoint, F-group, and let S denote some choice of representa-
tives for the (ûnitely-many) H-orbits of facets in the Bruhat–Tits building of H. For
σ ∈ S, let Hσ ⊂ H denote the stabilizer, and let sgnσ ∶Hσ → {±1} denote the sign of
the permutation action ofHσ on the vertices of σ . Fix a Haar measure dh on H. _en
Kottwitz’s Euler–Poincaré function on H is deûned to be

∑
σ∈S

(−1)dim σ sgnσ

dh(Hσ)
.

Returning to our context of G = GLr(D), let J denote any parahoric subgroup
of G. For each Levi subgroup M∗ ⊂ G∗, we construct explicit functions fSM∗ in the
Iwahori-Hecke algebra of GLn(F), which we term relative Euler–Poincaré functions.
Explicitly, these have the form

fSM∗ ∶= ∣ M∗

M∗,1Z(M∗) ∣ ∑
σ∈SM∗

(−1)dim σ

vol(M∗
σ /Z(M∗), dm/dz)

vol(M∗
σ ∩M∗,1 , dm)

vol(Jσ , dg)
1Jσ .

See Section 8.2.2 for complete deûnitions. In _eorem 8.17 we deûne a certain linear
combination FJ of these fSM∗ , depending on J. In the case where G = GL1(D) such
that J = O×

D is the Iwahori subgroup, FJ is Kottwitz’s Euler–Poincaré function for
PGLn(F), li�ed to GLn(F) and restricted to GLn(F)1. Subject to some restrictions
on F, we prove the following result.

_eorem 1.4 Let F have characteristic zero and residual characteristic p. Assume that
p > n. _en FJ has matching orbital integrals to 1J , the unit element of the parahoric
Hecke algebraH(G , J) of GLr(D).
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By applying _eorem 1.2, we obtain a large family of matching functions. In par-
ticular, with Corollary 1.3, we have the following immediate consequence.

Corollary 1.5 Under the same assumptions on F, the functions ZV ∗ 1J and Z∗V ∗ FJ
have matching orbital integrals.

_e construction of fSM∗ makes use only of Bruhat–Tits theory and can be gener-
alized to arbitrary reductive p-adic groups. See Deûnition 8.20. _ese functions may
be of interest in greater generality than we pursue here.
For future work, we will extend these results to twisted orbital integrals, as these

will then have applications to Shimura varieties. We also prove a result relating the
cocenters ofG andG∗, whose proof makes use of the homomorphism T of Bernstein
centers; see Section 5.2.

_eorem 1.6 _ere is a natural surjective homomorphism T∶H(G∗) →H(G).

2 Notation

Let F be a local nonarchimedian ûeld and letD be a d2-dimensional F-central division
algebra. We writeO = OF for the valuation ring of F, ϖ for a uniformizing parameter,
and q for the cardinality of the residue ûeld. Similarly, we will write OD and ϖD for
the valuation ring and a choice of uniformizer for D, respectively. Any restrictions
on the characteristic of F or its residue ûeld will be made in the section where they
arise. For us, G will denote the group GLr(D) and G∗ the group GLn(F), where
n = rd, unless otherwise speciûed. We will sometimes write φπ instead of recn(π) if
we wish to suppress the index n. Given a representation σ of a Levi subgroup M ⊂ G,
we will write ιGP σ for the normalized parabolically induced representation of G along
some parabolic subgroup P with Levi factor M. If σ is a ûnite-length representation
and we are working inside the Grothendieck group of such representations, we will
sometimes write ιGMσ for the corresponding semisimpliûcation, as it does not depend
on the parabolic subgroup P. We similarly write rGP (π) or πN for the normalized
Jacquet module with respect to a parabolic subgroup P with unipotent radical N . We
write rGM(π) for its image in theGrothendieck group. We alsowrite X(G) for its group
of unramiûed characters, and G1 for the kernel of the Kottwitz homomorphism. In
our case, G1 is those elements of G whose reduced norm is in O×. Similar notation
holds for G∗. All representations are complex and smooth.

We denote by XG the Bernstein variety of supercuspidal supports of G, and write
s = [M , σ]G for an inertial support. We write Xs for the corresponding Bernstein
component. WewriteZ(G) = C[XG] for the Bernstein center ofG. _e symbol Π(G)
denotes the set of all irreducible smooth representations of G, and Π2(G) denotes
the subset of essentially square-integrable representations. We denote by H(G) the
Hecke algebra of compactly-supported, locally constant, complex-valued functions
on G; the choice of Haar measure here will be made clear when it is relevant.
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3 The LLC and LLC+ for GLn(F)
_e goal of this section is to state two compatibilities satisûed by the Local Langlands
Correspondence for G∗ ∶= GLn(F). We recall the necessary aspects of the Bernstein–
Zelevinsky classiûcation of irreducible smooth representations of G∗ in terms of su-
percuspidals. We freely use the notation and terminology of [25]. Let

ν = ∣det ∣F ∶G∗ Ð→ C× .

We use the same symbol for all n. Let ρ be a supercuspidal representation ofGLn/k(F)
for some divisor k of n. If ∆ = [ρ, νk−1ρ] is a segment of supercuspidal representa-
tions, we write Q(∆) for the unique irreducible quotient of the normalized paraboli-
cally induced representation

ρ × νρ × ⋅ ⋅ ⋅ × νk−1ρ ∶= iG
∗

P (⊠k−1
i=0ν

iρ),
where P is the block upper-triangular parabolic subgroup with Levi factor GL n

k
(F)k ,

_en Q(∆) is essentially square-integrable, and all such representations so arise for a
unique ∆. Let π be an arbitrary irreducible smooth representation ofG∗. By [25], π is
the unique irreducible quotient of iG

∗
P′ (Q(∆1) ⊠ ⋅ ⋅ ⋅ ⊠ Q(∆r)) for some segments ∆ i ,

subject only to the condition that i < j implies that ∆ i does not precede ∆ j . We write
π = Q(∆1 , . . . , ∆r).

Lemma 3.1 Let π = Q(∆1 , . . . , ∆r) as above, and let σ = ⊠r
i=1Q(∆ i) ∈ Π2(M),

where M is the Levi subgroup M = ∏r
i=1 GLn i (F). _en the Langlands parameters of π

and σ are equal. _at is, if

φσ ∶=
r
⊕
i=1

φQ(∆ i) ∶W ′
F → LM = (

r
∏
i=1

GLn i (C)) ⋊WF ⊂ GLn(C) ⋊WF = LG

corresponds to σ and φπ corresponds to π, then they are conjugate by Ĝ.

Proof _e result is tautological if π is essentially square-integrable; in particular, if
it is supercuspidal. So we assume it is not. _en by [11, _eorem 1.7], it is enough to
show that

L(s, φπ ⊗ τ) = L(s, φσ ⊗ τ)
for every τ ∈ G2(r), for r = 1, . . . , n − 1, where G2(r) denotes the indecomposable
r-dimensional Weil–Deligne representations. We compute

L(s, φσ ⊗ τ) = L( s,
r
⊕
i=1

φQ(∆ i) ⊗ τ) =
r
∏
i=1

L(s, φQ(∆ i) ⊗ τ)

=
r
∏
i=1

L(s,Q(∆ i) × πτ),

where in the last equality we have used LLC and written πτ for the representation of
GLr(F) corresponding to τ. Meanwhile,

L(s, φπ ⊗ τ) = L(s, π × πτ)
by the LLC, and this is equal to the above by [11, §2.8.], using the fact that
Q(∆1 , . . . , ∆r) = J(Q(∆1), . . . ,Q(∆r)), in the notation of that section.

https://doi.org/10.4153/CJM-2017-017-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-017-5


600 J. Cohen

_e above lemma shows how “essentially square-integrable support” of a represen-
tation of GLn(F) determines its Langlands parameter. We need to also understand
the relationship between Langlands parameters and supercuspidal supports. _e fol-
lowing deûnition originates in [9].

Deûnition 3.2 Let G be a connected reductive group over a local ûeld F. We say
that LLC+ holds for G if LLC holds for G and all its F-Levi subgroups, and that we
have a compatibility with parabolic induction as follows. IfM ⊂ G is a Levi subgroup,
then LM ⊂ LG, well-deûned up to Ĝ-conjugacy. If σ ∈ Π(M/F) and if π ∈ Π(G/F)
is an irreducible subquotient of the normalized parabolically induced representation
iGP (σ), where P = MN is an F-parabolic of G with F-Levi subgroup M, then φπ ∣WF ∶
WF → LG and φσ ∣WF ∶WF → LM ⊂ LG are Ĝ-conjugate.

For GLn(F) this is handled in [23, _eorem 1.2.], so LLC+ for GLn(F) is known.

4 The LLC and LLC+ for GLr(D)
4.1 The Definition of LLC for GLr(D)

_epurpose of this section is to address the corresponding two compatibilities of LLC
for the inner form G = GLr(D), where D is a d2-dimensional F-central division al-
gebra. So we will carefully state what the LLC is for G, and then discuss the analogous
compatibility conditions. Now LG = Ĝ ⋊WF = GLn(C) ×WF is its L-group, where
n = rd. In this case LLC asserts that there is a bijection

Π(G/F) Ð→ Φ(G/F)
where Π(G/F) is the set of isomorphism classes of irreducible smooth representa-
tions ofG(F), and Φ(G/F) is the set of Ĝ-conjugacy classes of admissible homomor-
phisms φ∶W ′

F = WF ⋉ C → LG, and this bijection should satisfy various desiderata
[6, section 10]. _e notion of admissibility for the Langlands parameters depends on
the particular inner form G; we refer the reader to _eorem 4.6.

Let
JL∶Π2(G) Ð→ Π2(G∗)

be the Jacquet–Langlands Correspondence; we use the same letter for all r and n. It is
well known that JL is characterized by a character identity on corresponding regular
conjugacy classes; see, for example, [5]. Explicitly, this states that if Θπ is the Harish–
Chandra character of π, then we have

Θπ(g) = ΘJL(π)(g∗)(−1)n−r

whenever g ∈ G and g∗ ∈ G∗ correspond. See Section 8.1 for this notion. We recall
the necessary parametrization of irreducible representations ofG, as described in [4].
Consider the absolute value of the reduced norm

ν ∶= ∣Nrd∣F ∶G Ð→ C× .

We use the same letter for all r. Let π be a smooth irreducible representation of G.
As for GLn(F), it is the unique irreducible quotient of a “standard representation”
iGP σ . _is means that σ = ⊗k

i=1 σi , where σi are essentially square-integrable with a
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condition on the σi parallel to the “does not precede” condition on segments above.
Explicitly, σi = νe i σu

i for some real number e i and square-integrable representation
σu
i , and the condition is that e i ≥ e i+1 for all 1 ≤ i ≤ k− 1. _en the standard represen-

tation is uniquely determined by π up to permutations of the σi that do not change
the e i . See [4, §2.1.], for example.

Deûnition 4.1 We deûne the Langlands parameter of π ∈ Π(GLr(D)) to be φπ ∶=
⊕φJL(σi).

Lemma 3.1 shows that this is consistent with the case D = F. With this deûni-
tion we will show the + part of LLC+. From [4] we have an extension of JL to the
Grothendieck groups R(G) and R(G∗) of ûnite length representations as follows. Let
BG (and similarlyBG∗) be the set of standard representations iGL σ . _enBG is a base
for R(G), and we deûne

JL∶BG ↪Ð→ BG∗

iGL σ z→ iG
∗

L∗ JL(σ)

where L∗ is a Levi subgroup whose conjugacy class is associated with the conjugacy
class of L. We remark that this map obviously takes standard representations of G to
those of G∗, since they have the same form. Concretely, L ≅ ∏k

i=1 GLr i (D) and L∗ ≅
∏k

i=1 GLr id(F)with∑k
i=1 r i = r. We extend linearly to an injective homomorphism of

free abelian groups
JL∶R(G) ↪Ð→ R(G∗).

However, JL does not map irreducibles to irreducibles, and in fact may send an ir-
reducible representation to a non-genuine virtual representation. Another natural
function considered in [4] is Q∶Π(G) ↪ Π(G∗), deûned to make the diagram

BG
JL //

≅

��

BG∗

≅

��
Π(G) Q // Π(G∗)

commute, where the vertical arrows are Langlands quotients. Our deûnition and the
above lemma imply that φπ = φQ(π) . _e map JL is also compatible with arbitrary
parabolic inductions. See [4, _eorem 3.6.] and its proof. For future use we also note
that there is a natural surjective map

LJ∶R(G∗) Ð→ R(G)

deûned on the base of standard representations to be an inverse to JL on its image,
and zero on the complement.

Remark 4.2 It is conjectured in [4] that LJ takes irreducibles to irreducibles up to
sign, or to zero. _is remains open in general.

Proposition 4.3 With the deûnition above, the + part of LLC+ holds for GLr(D).
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_is proposition is used in [10, section 13.2].

Proof Let π be the unique irreducible quotient of iGP σ as above. Since π and σ have
the same supercuspidal support, we can assume that π = σ , i.e., that π ∈ Π2(G).
Following [4] (or [24]), the supercuspidal support of σ has the form τ = ρ ⊗ νsρ ⊗
⋅ ⋅ ⋅ ⊗ ν(k−1)sρ, where ν = ∣Nrd∣F and s is an integer determined by σ . Further, σ is the
unique irreducible quotient of iGP τ. Wemust show that φσ ∣WF = φτ ∣WF or equivalently
φJL(σ)∣WF = φJL(τ)∣WF , which is then equivalent to showing that JL(σ)(= Q(σ)) and
JL(τ) have the same supercuspidal support. Towards this end, let P = LU be a Levi
decomposition of P and write

iGL τ = σ +∑ a i iGL i
τ i

in R(G), where all the summands on the RHS are standard representations, and the L i
are all proper F-Levi subgroups of G, since σ is the only essentially square-integrable
subquotient of iGL τ. Note that iGP τ is not itself a standard representation if k > 1.
Applying JL to this equation gives

JL(iGL τ) = JL(σ) +∑ a i JL(iGL i
τ i),

hence
iG

∗
L∗ JL(τ) = Q(σ) +∑ a i iG

∗
L∗i

JL(τ i),
where we have used that JL commutes with parabolic induction for the LHS and the
deûnition of JL for the RHS. Now Q(σ) is itself essentially square-integrable and
hence a standard representation, and standard representations form a base. All the
Levi subgroups L∗i are proper, so Q(σ) is not a subquotient of any ιG

∗
L∗i

JL(τ i), and
thus Q(σ) is indeed a subquotient of iG

∗
L∗ JL(τ). Hence, LLC+ for GLr(D) follows

from LLC+ for GLn(F).

Note that JL∶Π2(G) → Π2(G∗) does not preserve supercuspidals, though the in-
verse of JL does. For ease of reference, we record the following result, which charac-
terizes the image of JL restricted to supercuspidal representations.

Lemma 4.4 _e representation σ ∈ Π2(G) is supercuspidal if and only if JL(σ)
has vanishing Jacquet modules with respect to all Levi subgroups L∗ ⊂ GLn(F) whose
conjugacy classes correspond to those of some Levi subgroups of GLr(D).

Proof If we identify L∗ with a product of∏k
i=1 GLm i (F), then the conjugacy class of

L∗ corresponds to a conjugacy class of Levi subgroups L in G if and only if d divides
each m i . _en we apply [4, Lemma 2.4], which shows that JL(σ) ∈ Π2(G∗) has
Jacquet modules rG

∗
L∗ JL(σ) = JL(rGL σ) if L corresponds to L∗. _is implies the result.

Corollary 4.5 _e supercuspidal support of JL(σ), for σ ∈ Π(G) supercuspidal, is
of the form (L∗ , τ)G∗ , where L∗ is conjugate to a Levi subgroup of the form GLr dk

(F)k ,
where (r, k) = 1 and τ ≅ ρ⊗ νρ⊗ ⋅ ⋅ ⋅⊗ νk−1ρ, for ρ a supercuspidal GLr dk

(F)-represen-
tation.
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4.2 Compatibility with Twists

_e LLC for GLn(F) has the following well-known property: if χ is a character of F×

and π is an irreducible representation of GLn(F), then
φχπ = φπ ⊗ (χ ○Art−1

F ).
_e above deûnition, the identiûcation of characters of GLr(D), GLn(F), and F×, and
the compatibility of Jacquet–Langlands and Langlands quotients with twists, make it
clear that the same holds true for the inner forms. Explicitly, if π is the Langlands
quotient of σ1 × ⋅ ⋅ ⋅ × σk , then χπ is the Langlands quotient of χσ1 × ⋅ ⋅ ⋅ × χσk , and so
φχπ = ⊕φχ JL(σi) = ⊕φJL(σi) ⊗ (χ ○Art−1

F ) = φπ ⊗ (χ ○Art−1
F ).

A Langlands parameter φπ can also be thought of as a 1-cocycle in H1(W ′
F , Ĝ); see

[9]. An unramiûed character χ on G(F) can be regarded as an element

zχ ∈ H1(WF/IF , Z(Ĝ)IF) = H1(⟨Φ⟩, Z(Ĝ)IF) .

_en also φπzχ ∈ H1(W ′
F , Ĝ) and should equal φχπ . _e above shows that this holds

for GLr(D) if it holds for GLn(F), which it is known to do.

4.3 Characterizations of LLC for an Inner Form

_e above results are summarized in the following theorem.

_eorem 4.6 Fix D as above.
(i) _ere is a a unique family of bijections

recr ∶Π(GLr(D)) Ð→ Φ(GLr(D)) ⊂ Φ(GLn(F))
such that:
(a) recr ∣Π2(GLr(D)) = rec∗n ○ JLr where rec∗n is the LLC for GLn(F) and JLr is the

Jacquet–Langlands Correspondence; and
(b) If π is the Langlands quotient of σ1 × ⋅ ⋅ ⋅ × σk , then recr(π) = recr1(σ1) ⊕ ⋅ ⋅ ⋅ ⊕

recrk(σk).
(ii) _e image of these maps consist of those parameters that decompose as direct

sums of indecomposableWeil–Deligne representationsW ′
F → GLm(C), where d divides

m.
(iii) If we postcompose recr with restriction to the Weil group WF , then the result-

ing family is characterized by compatibility with Jacquet–Langlands and parabolic in-
duction (in the sense of LLC+). _e image of res ∣WF ○ recr is those representations
WF → GLrd(C) that factor through a Levi subgroup of the form ∏k

i=1 GLm i
d
qi
(C)q i

for some coprime integers m i and q i such that∑k
i=1 m i = r.

Proof Part (i) is immediate from the deûnition, the determination of irreducible
representations as Langlands quotients, and the well-known unicity of the Local
Langlands Correspondence for G∗ and the Jacquet–Langlands Correspondence. Part
(ii) is immediate from the deûnition, since recr i (σi) = rec∗dr i

(JLr i (σi)) is a ho-
momorphism W ′

F → GLr id(C) ⋊ WF . Part (iii) follows from the fact that essen-
tially square-integrable representations ofG∗ have supercuspidal supports of the form
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τ ⊗ ντ ⊗ ⋅ ⋅ ⋅ νℓ−1τ, and Corollary 4.5 applied to Levi subgroups of G. Since every
parameter of G is a direct sum of parameters associated with essentially square-
integrable representations of various GLm(F), and we know LLC+ for G and all its
Levi subgroups, the result follows.

5 A Morphism of Bernstein Centers

5.1 Constructing T

_e primary goal of this section is to construct and give some basic properties of a
morphism connecting the Bernstein varieties of G and G∗; much of the rest of the
paper will be devoted to its study. For basic concepts of the Bernstein center, we refer
to [9]. First we need a small lemma.

Lemma 5.1 If M = ∏k
i=1 GLi(D)r i ⊂ G, then there is a canonical isomorphism

NG(M)/M ≅ ∏k
i=1 Sr i .

Proof _is is a simple exercise in linear algebra, following easily from the equality
NG(M) = NG(Z(M)).

IfM ≅ ∏k
i=1 GLr i (D) is a standard Levi subgroup ofG, and σ is a supercuspidal ir-

reducibleM-representation, then let M∗ ≅ ∏k
i=1 GLr id(F) be the associated standard

Levi subgroup of G∗, and let M∗
σ ≅ ∏k

i=1 GL(r id)/q i (F)q i be the standard Levi sub-
group of M∗ such that JL(σ) has supercuspidal support (M∗

σ , ρσ)G∗ , for some inte-
gers q i . For square-integrable σ , supercuspidality of σ is equivalent to the requirement
that (q i , r i) = 1. If σ = ⊗ ρ i , then JL(σ) = ⊗ JL(ρ i), and JL(ρ i) ∈ Π2(GLr id(F)) has
supercuspidal support

( GL ri d
qi

(F)q i , π i)GLri d(F)
,

where π i ∶= τ i ⊗ ντ i ⊗⋅ ⋅ ⋅⊗ νq i−1τ i , by [24, p. 53]. So JL(σ) has supercuspidal support
(M∗

σ , ρσ)G∗ , where ρσ ∶= ⊗k
i=1 π i

Proposition 5.2 _e assignment

T∶ (M , σ)G z→ (M∗
σ , ρσ)G∗ ∶XG Ð→ XG∗ ,

where (M∗
σ , ρσ)G∗ is the supercuspidal support of JL(σ), is a well-deûned morphism of

varieties. Hence it induces a ring homomorphism Z(G∗) → Z(G) of Bernstein centers,
which we shall also call T. _is homomorphism can be characterized as follows: if Z∗ ∈
Z(G∗) then for all Levi subgroups L ⊂ G and for every supercuspidal τ ∈ Π(L), the
distribution T(Z∗) acts on ιGL (τ) by the same scalar by which Z∗ acts on ιG

∗
L∗ JL(τ).

Proof By deûnition, (M , σ)G is the G-conjugacy class of the pair (M , σ), where M
is a Levi subgroup of G and σ is a supercuspidal M-representation. To show that the
assignment (M , σ)G ↦ (M∗

σ , ρσ)G∗ is well deûned, it suõces to show that if w ∈
NG(M)/M, then (M , σ)G and (M , wσ)G have the same image. It is enough to show
that JL(σ) is conjugate to JL(wσ). But in fact JL(wσ) ≅ w JL(σ), via the identiûcation
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NG(M)/M ≅ NG∗(M∗)/M∗ implied by Lemma 5.1 and the character identity that
characterizes JL. Hence, the assignment gives a well-deûned function.
Before proving that this is a morphism, we note the requisite fact that the map of

varieties preserves connected components. _is follows from the fact stated in [4] that
JL commutes with unramiûed characters, using the canonical identiûcation X(G) ≅
X(G∗) of unramiûed characters. _is fact is easy to show from the characterization
of Jacquet–Langlands by the character identity. Explicitly, χ JL(σ) has supercuspidal
support (M∗

σ , χ∣M∗
σ
ρσ). We remark that by [24, p. 53], the q i are unchanged by the

twist.
Wewill prove that the restriction ofT to any connected component is amorphism.

Fix (M , σ) where M is a standard Levi subgroup in G and σ is a supercuspidal M-
representation. Write

M =
k
∏
i=1

GLr i (D), M∗ =
k
∏
i=1

GLr id(F), and M∗
σ =

k
∏
i=1

GLr id/q i (F)q i ,

as above, so that M∗
σ is a Levi subgroup of M∗ and (M∗

σ , ρσ)G∗ is the supercuspidal
support of JL(σ). Also write

s ∶= [M , σ]G , sM ∶= [M , σ]M ,
s∗ ∶= [M∗

σ , ρσ]G∗ , s∗M∗
σ
∶= [M∗

σ , ρσ]M∗
σ
,

for the relevant inertial supports. Noting that M is an inner form ofM∗, we can con-
sider themorphism X(M) ≅ X(M∗) resÐ→X(M∗

σ ), whichwe also call res and denote by
χ ↦ χ∣M∗

σ
. _is is in fact a closed immersion: it is a product of diagonal morphisms

(C×)k ↪ (C×)∑k
i=1 q i . We have the following commutative diagram with surjective

vertical arrows
X(M) res //

��

X(M∗
σ )

��
XsM

//

��

Xs∗
M∗σ

��
Xs

T // Xs∗ ,
where the ûrst vertical arrows are χ ↦ (M , χσ)M and χ∗ ↦ (M∗

σ , χ∗ρσ)M∗
σ
, the sec-

ond ones are the structure maps for the Bernstein components. For example, the ûrst
one is (M , χσ)M ↦ (M , χσ)G ; see the “abstract constant term” below. _e middle
horizontal map is (M , χσ)M ↦ (M∗

σ , ρχσ)M∗
σ
= (M∗

σ , χ∣M∗
σ
ρσ)M∗

σ
. _ese vertical

maps are the ones that deûne variety structures on the Bernstein components. _us,
T is indeed a morphism.

_e characterization is immediate from the deûnition, and the identiûcation of the
Bernstein center as the categorical center.

_eorem 5.3 _e morphism T is a closed immersion.

Proof It suõces to consider the case whereM = GLm(D)k and σ = τ⊗⋅ ⋅ ⋅⊗ τ, since
the other cases are eòectively tensor products of this one. So M∗

σ = GLmd/ℓ(F)kℓ for
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some divisor ℓ of d, coprime to m, and ρσ = ⊗ℓ−1
j=0⊗k

i=1ν
jρ for some supercuspidal

representation ρ. Observe that if we identify X(M) ≅ (C×)k , then

stabσ ∶= { χ ∈ X(M) ∶ χσ ≅ σ}

is isomorphic to µk
m/s for some s dividing m. _is follows from stabσ ≅ stabk

τ , and
stabτ ⊂ µm ⊂ C×. To see the latter, suppose ξτ ≅ τ as GLm(D)-representations, with
ξ unramiûed, and consider central characters.

Similarly, if we identify X(M∗
σ ) ≅ (C×)kℓ , then we claim that stabρσ is isomorphic

to µkℓ
m/s , for the same s. Since ρσ is a tensor product of unramiûed twists of a single

representation ρ, the group stabρσ ≅ stabkℓ
ρ is certainly of the form µkℓ

md/ℓt for some t.
But if χρ ≅ ρ for χ ∈ X(GLmd/ℓ(F)), then χ ⊗ ⋅ ⋅ ⋅ ⊗ χ ∈ X(M∗

σ ) is the restriction of a
character ofM∗ = GLmd(F)k , hence comes from a character ξ ofM, and ξ necessarily
stabilizes σ .

Let σ be the basepoint in identifying XsM with X(M) stabσ , and let ρ⊗kℓ play the
same role on the quasisplit side. Observe that the choice of basepoints ensures that
the action of the symmetric groups

W[s] ∶= {w ∈ NG(M)/M ∶ wσ ≅ χσ for some χ ∈ X(M)} ≅ Sk

and W[s∗] ≅ Skℓ are the ordinary actions. Passing to Sk and Skℓ invariants, the
induced homomorphism of rings of regular functions takes the form

C[z±m/s
1 , . . . , z±m/s

kℓ ]Skℓ Ð→ C[t±m/s
1 , . . . , t±m/s

k ]Sk

p i(zm/s
1 , . . . , zm/s

kℓ ) z→ 1 − q−ikℓm/s

1 − q−im/s p i(tm/s1 , . . . , tm/sk ),

where the p i are the power sum symmetric functions. As this is clearly surjective, the
conclusion follows.

5.2 The Cocenter

To complete the picture, we consider another related perspective. Let JG ⊂ H(G) be
the subspace spanned by functions of the form f − g f , for g ∈ G and f ∈H(G). Let

H(G) =H(G)/JG
be the cocenter, and similarly for G∗. By a theorem of Kazdhan ([14]) we have an
inclusion ofC-vector spaces into the dual of the complexiûed Grothendieck group of
ûnite length representations

H(G∗) ↪Ð→ R(G∗)∨C
f z→ (π ↦ tr π( f )) ,

where f is any li� to H(G∗) of f , whose image is characterized by the trace Paley–
Wiener theorem, described below. By considering the same inclusion for the inner
form G and the map

JL∨∶R(G∗)∨ Ð→ R(G)∨

dual to JL above, we check below that this induces a mapH(G∗) →H(G), which we
will compare to the map of Bernstein centers considered above. Here the traces are
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taken with respect to measures dg and dg∗ that are compatible in the sense of [18].
So suppose ϕ ∈ R(G∗)∨C is in the aforementioned image. By the trace Paley–Wiener
theorem ([5, Appendix B]), this is equivalent to saying that ϕ has the following two
properties:
(a) _ere is a compact open subgroup K∗ ⊂ G∗ such that ϕ(π) = 0 if π ∈ Π(G∗)

with πK∗ = 0.
(b) For all Levi subgroups M∗ and ûnite-length M∗-representations σ , the map

χ z→ ϕ( iG
∗

M∗(χσ)) ∶X(M∗) Ð→ C

is an algebraic morphism.
_e trace Paley–Wiener theorem applied toG gives an analogous characterization for
elements of R(G)∨C that come from H(G). We must show that

JL∨(ϕ)∶ π z→ ϕ(JL(π))

has the same two properties for the inner form. It will be more straightforward to
demonstrate an equivalent condition to property (a). We will prove the following
lemma for G; the lemma for G∗ is then a special case.

Lemma 5.4 _e functional ϕ ∈ R(G)∨C satisûes (a) if and only if there exist ûnitely-
many inertial classes si = [M i , σi]G such that ϕ(π) = 0 if π is an irreducible represen-
tation with inertial support s /= si for all i.

Proof Suppose that K ⊂ G is a compact open subgroup such that ϕ(π) = 0 for all
π ∈ Π(G) with πK = 0. From the theory of the Bernstein center [21], we have that
eK = es1 + ⋅ ⋅ ⋅ + esm , where esi is the idempotent projecting onto the correspond-
ing component. So if ϕ satisûes condition (a), then it satisûes the other condition.
Conversely, suppose ϕ is supported on ûnitely-many Bernstein components corre-
sponding to si , as above. If Pi = M iN i is a parabolic subgroup with Levi factor M i ,
and rGM i

denotes Jacquet restriction, then in R(G) we have

rGM i
ιGM i

(χσi) = ∑ g(χσi),

where the sum is over g ∈ NG(M i)/M i . _is is a special case of [21, Lemma 1.7.1.1].
Now choose compact open subgroups KM i of M i such that every subquotient of
rGM i

ιGM i
χσi , in particular χσi , has KM i -ûxed vectors. _e sum formula above shows

that all subquotients of rGM i
ιGM i
χσi haveKM i -ûxed vectors for all unramiûed characters

χ ofM i . We can further choose KM i small enough so that there exists a compact open
subgroup K i of G with Iwahori factorization K i = (N i ∩K i)(M i ∩K i)(N i ∩K i) and
KM i = M i ∩ K i . Now suppose that π is an irreducible representation with ϕ(π) /= 0.
Suppose si is the inertial support of π, for some 1 ≤ i ≤ m, so πN i = rGM i

(π) is a sub-
quotient of rGM i

ιGM i
χσi and some unramiûed character χ. We deduce that πKMi

N i
/= 0.

By Jacquet’s Lemma, the canonical map πK i → πKMi
N i

is onto, so πK i /= 0. Taking
K = ⋂m

i=1 K i yields the desired result.
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Proposition 5.5 _e map JL∨C∶R(G∗)∨C → R(G)∨C restricts to give a linear map
T∶H(G∗) →H(G). _is map is characterized by the identity

tr (T( f ∗) ∶ π) = tr ( f ∗ ∶ JL(π))

for all irreducible, or equivalently for all ûnite length, representations π of G.

Proof Assume ûrst that ϕ ∈ R(G∗)∨C is such that ϕ(σ) = 0 unless σ is a linear
combination of irreducible representations with inertial supports in a ûxed set s∗i ,
for i = 1, . . . ,m. We claim that for all irreducible representations π, ϕ(JL(π)) = 0
unless π has inertial support in some ûnite set {s j}. But we can take this to be the
set of preimages of the s∗i induced by the morphism T, which we note may be empty.
Here we are using the compatibility of JL with arbitrary parabolic inductions. See
[4, _eorem 3.6.] for the proof of this.

Now assume that ϕ ∈ R(G∗)∨C satisûes condition (b) above. Let M ⊂ G be a Levi
subgroup and let σ be a ûnite-length M-representation. We claim

χ z→ ϕ(JL(iGM χσ))∶X(M) Ð→ C

is algebraic. But this equals ϕ(iG∗
M∗ JL(χσ)) = ϕ(iG∗

M∗ χ JL(σ)) using X(M) ≅ X(M∗).
So this is true by applying property (b) above to M∗ and JL(σ).

Proposition 5.6 _e map T of cocenters has a section, hence is surjective.

Proof Let LJ∨∶R(G)∨C → R(G∗)∨C be the vector space homomorphism dual to LJ.
Let f ∈ H(G) ⊂ R(G)∨C and deûne f ∨ ∶= LJ∨( f ) ∈ R(G∗)∨C to be the functional
π ↦ f (LJ(π)). _en since LJ ○ JL = idR(G), we see that JL∨ sends f

∨
to f . We will

show that LJ∨ preserves the cocenters. Once this is established, the result follows.
Let ϕ ∈ R(G)∨C, and suppose that ϕ(σ) = 0 unless σ is a linear combination of

irreducible representations with inertial supports in a ûxed set {si}m
i=1. _is property

of σ is equivalent to σ being a linear combination of standard representations with
(all irreducible subquotients having) inertial supports in the same set. We must show
ϕ(LJ(π)) = 0, for π an irreducible representation, unless π has inertial support in
some ûxed ûnite set {s∗j }. _is is equivalent to showing ϕ(LJ(iG∗

L∗ τ)) = 0 for all
standard representations unless iG

∗
L∗ τ has (all irreducible subquotients having) inertial

support in the same ûnite set. Take this set to be the image of {si}m
i=1 induced by the

morphism T. _e conclusion follows from the fact that LJ preserves supercuspidal
representations and commutes with parabolic induction, both proved in [4], and that
JL ○LJ∣im(JL) = idim(JL).

Next, suppose M∗ ⊂ G∗ is a Levi subgroup and σ is a ûnite-length M∗-represen-
tation. We want to prove that

χ z→ ϕ(LJ(iG
∗

M∗ χσ)) ∶X(M∗) Ð→ C

is algebraic. If M∗ does not transfer to G, then this is identically 0, hence regular. If
M∗ does transfer, this equals ϕ(iGMLJ(χσ)) = ϕ(iGM χLJ(σ)) using X(M) ≅ X(M∗).
So the function is regular by property (b) above for M∗ and JL(σ).
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C[XG∗] C[XG]

C[XM∗] C[XM]

Z(G∗ , J∗) Z(G , J)

Z(M∗ , J∗M∗) Z(M , JM)

T

CG∗
M∗ CG

M

T

t̃

cG
∗

M∗

t̃

cGM

Figure 1

Remark 5.7 _ere is a vector space homomorphism H(G) → H(G∗) that gen-
erates matching pairs (in the sense deûned in Section 8), and this induces by duality
a vector space homomorphism of invariant distributions H(G∗)∨ → H(G)∨. _e
restriction of this linear map to the essentially compact distributions (which is a real-
ization of the Bernstein center) does not give a ring homomorphism Z(G∗) → Z(G),
since it does not preserve the identity. In particular, one cannot recover T this way.

6 Further Properties of T

6.1 Compatibility Between T, Constant Term Homomorphisms, and Normalized
Transfer

In this section we further study the map T∶Z(G∗) → Z(G). We will make reference
to the isomorphisms

lim←Ð
C

Z(G ,C) ≅ Z(G) ≅ C[XG]

giving realizations of the Bernstein center as an inverse limit of ûnite-level Hecke alge-
bra centers, as a categorical center, and as a ring of regular functions on the Bernstein
variety. We will not make use of its realization as invariant essentially compact dis-
tributions until the section on orbital integrals below. See [9] for a summary of these
realizations.
Consider Figure 1. We show in Lemma 6.2 that each square is commutative. Here J

and J∗ are arbitrary parahorics in their respective groups,M denotes a Levi subgroup
of G, M∗ a corresponding Levi in G∗, and JM = M ∩ J, etc.

_e normalized transfer homomorphisms t̃ are deûned in general in [9]; we give a
concrete description in our context. From the inclusion T∗ ↪ M∗ we get the induced
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map
A∶Zn ≅ T∗/T∗

1 Ð→ M∗/M∗
1 Ð→ M/M1 ≅ Zr ,

where T = GL1(F)n ,M∗ = GLd(F)r , andM = GL1(D)r is an inner form ofM∗. _e
subscript 1’s here indicate kernels of the Kottwitz homomorphism; see [9] for details.
Now via the Bernstein isomorphism we can realize the normalized transfer map as
the map of group rings

C[T/T1]Sn Ð→ C[M/M1]Sr

∑
t
at t z→∑

m
( ∑

t↦m
atδ

−1/2
B∗ (t)δ1/2P (m))m

where t ↦ m means that A(tT∗
1 ) = mM1. Here P is the upper-triangular parabolic

with M as Levi factor, and B∗ is the upper-triangular Borel containing T∗. We rein-
terpret this as a mapC[Zn]Sn → C[Zr]Sr . Without the normalization, the map above
is (a1 , . . . , an) = (a11 , . . . , a1d , a21 , . . . , ard) ↦ (b1 , . . . , br), where bk = ∑di=1 aki =
∑kd

i=(k−1)d+1 a i . In our case, if t corresponds to (a1 , . . . , an) and m corresponds to
(b1 , . . . , br), then we have

δ1/2P (m) = q−∑
r
i=1(r+1−2i)db i/2 ,

δ−1/2
B∗ (t) = q∑

n
i=1(n+1−2i)a i/2 .

_e exponent of the product of these together is
n

∑
i=1

(n + 1 − 2i)a i/2 −
r

∑
i=1

(r + 1 − 2i)db i/2,

which, a�er using dr = n and ∑r
i=1 b i = ∑n

i=1 a i , is equal to 1−d
2 ∑n

i=1 a i − ∑n
i=1 ia i +

d∑r
i=1 ib i . _is, in turn, can be realized as the inner product of (a1 , . . . , an) with

the vector x⃗ ∶= (c⃗, . . . , c⃗) (repeated r times) where c⃗ ∶= ( d−1
2 , d−3

2 , . . . , 1−d
2 ). In sum-

mary, with the above notation, the normalized transfer map is, a�er restriction to
Weyl group invariants,

a⃗ ∶= (a1 , . . . , an) z→ q a⃗⋅x⃗(b1 , . . . , br).

Or if we write this as polynomials, it maps a monomial∏n
i=1 z

a i
i to q a⃗⋅x⃗ ⋅ ∏r

j=1 t
b j
j .

Remark 6.1 _e normalized transfer map is a completely canonical map deûned
between the centers of the parahoric Hecke algebras. In our description above, we
have chosen a particular maximal torus, etc., solely to make computations explicit.
Also, to write it out completely would involve symmetrizing the above map; we give
such a description below.

_e constant term homomorphism cGM is deûned by

cGM( f )(m) = δ1/2P (m)∫
N
f (mn)dn

for any parabolic P = MN with Levi subgroup M, where dn(J∩N) = 1; see [9, §11.11.]
for the proof that cGM preserves centers. We remark that cGM is always injective, since it
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corresponds to the natural inclusion under the Bernstein isomorphism. _e crucial
fact about the constant term homomorphism is the equality

tr(cGM( f )∣σ)/dim σ JM = tr( f ∣iGP σ)/dim(iGP σ)J ;

i.e., both act by the same scalars on their respective spaces (a�er taking invariants).
_e “abstract constant term” map CG

M is induced from the morphism

(L, σ)M z→ (L, σ)G ∶XM Ð→ XG ,

and CG
M is generally neither 1-1 nor onto. _e morphism inducing CG

M restricts to
a map XM

1 → XG
1 , where XM

1 corresponds to the inertial class [GL1(D)r , 1]M , and
similarly forXG

1 . _e deûnitions of these maps for the quasisplit groupG∗ are similar.
_e vertical maps are restrictions to the Iwahori component of the Bernstein vari-

ety, which we will write as XG
1 , in agreement with the notation of [9], via the isomor-

phism Z(G , J) ≅ C[XG
1 ]. Alternatively, they can be viewed as the natural projection

maps from the Bernstein center, realized as an inverse limit, to the center of the para-
horic Hecke algebra.

Lemma 6.2 _e diagram in Figure 1 commutes. In particular, the homomorphism T
restricts to the normalized transfer t̃ of [9].

Proof First note that the top-level maps preserve Iwahori blocks, certainly a nec-
essary condition for the diagram to commute. We have already stated this for the
abstract constant term. It it also true for T, since JL takes an unramiûed character of
a minimal Levi in G to a product of twists of Steinberg representations, whose super-
cuspidal support lies in the Iwahori block of G∗.

Bottom Square _e bottom square is proved to commute in [9].

Top Square _e top square commutes, because the corresponding square of vari-
eties commutes. Explicitly, themaps of varieties are (L, σ)M ↦ (L, σ)G ↦ (L∗σ , ρσ)G∗

and (L, σ)M ↦ (L∗σ , ρσ)M∗ ↦ (L∗σ , ρσ)G∗ , and hence are equal.

Constant Term Square Clearly it suõces to prove the commutativity for G, since
that of G∗ is analogous. We cite the fact that if f ∈ Z(G , J) and σ ∈ Π(M) has
JM = M ∩ J-ûxed vectors, then

tr(cGM( f )∣σ JM)
dim σ JM

= tr( f ∣(iGP σ)J)
dim(iGP σ)J .

_at is, f acts on (iGP σ)J by the same scalar by which cGM( f ) acts on σ JM . _at makes
the commutativity of that square clear if we regard the Bernstein center as the cate-
gorical center.

Transfer Square Let (L, χ)G ∈ XG
1 , so that L ≅ (D×)r is a minimal Levi subgroup

and χ = χ1 ⊠ ⋅ ⋅ ⋅ ⊠ χr is an unramiûed character of L. We abuse notation to think of
χ i as a character of F× composed with the reduced norm, so that we can write

JL(χ) = ⊠ JL(χ i) = ⊠(χ iStGLd(F))
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as a representation of GLd(F)r . Now the Steinberg representation StGLd(F) has super-
cuspidal support (GL1(F)d , δ−1/2

B )GLd(F). _us χ iStGLd(F) has supercuspidal support

( GL1(F)d , χ⊠di ⋅ δ−1/2
Bd )

GLd(F)
.

So JL(χ) has supercuspidal support (GL1(F)rd ,⊠r
i=1(χ⊠di ⋅ δ−1/2

Bd ))G∗ , where we write
Bd for the upper-triangular Borel in GLd(F). _is induces a map

C[XG∗
1 ] ≅ C[XGL1(F)n

1 ]Sn Ð→ C[XG
1 ] ≅ C[XL

1 ]Sr ,

where XL
1 ≅ Hom(L/L1 ,C×) is a complex torus. _is is the normalized transfer: the

value of ⊠r
i=1(χ⊠di ⋅ δ−1/2

Bd ) on diag(ϖa11 , . . .ϖa1d ,ϖa21 , . . . ,ϖard ) is equal to

r
∏
i=1
χ i(ϖa i1+⋅⋅⋅+a id ) ⋅ q∑

d
j=1
(d+1−2 j)ai j

2 = q a⃗⋅x⃗
r
∏
i=1
χ i(ϖ∑

d
j=1 a i j) = q a⃗⋅x⃗

r
∏
i=1
χ i(ϖ)b i

where x⃗ and b i are as above. _e proof that the front panel commutes is similar,
mutatis mutandis, the main diòerence being the use of Young subgroups instead of
just symmetric groups.

Remark 6.3 We would get the non-normalized transfer described in [9] by using
unnormalized parabolic induction.

6.2 Compatibility of T and Certain Distributions

We have for each ûnite dimensional, algebraic representation (r,V) of LG = LG∗ a
distribution ZV in the Bernstein center of G deûned by

ZV(π) = tr(φπ(Φ),V IF ).

_at it lies in the Bernstein center is a consequence of LLC+. We suppose V is irre-
ducible, so that it is parametrized by a highest weight µ. Really, this is just giving us
a representation of the dual group, not the whole L-group, but there exists a way to
extend to a representation of the L-group described in [17, Lemma 2.1.2]. We have a
function Z∗V deûned analogously.

Corollary 6.4 _e equality T(Z∗V) = ZV holds in the Bernstein center.

Proof In fact, this is a simple consequence of LLC+. To see this, let (M , σ)G ↦
(M∗

σ , ρσ)G∗ , where ρσ is the supercuspidal support of JL(σ). By LLC+ for GLn(F),
we know that φρσ (Φ) = φJL(σ)(Φ). By the deûnition of LLC for GLr(D), we know
that φσ(Φ) = φJL(σ)(Φ). By LLC+ for GLr(D), Z∗V is the trace of φσ(Φ) on V IF , and
the conclusion follows.

_is gives a generalization of [9, Proposition 7.3.2], which extends the case n = 2,
r = 1, and πI /= 0, to arbitrary n, r, and π.
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6.3 The Stable Bernstein Center

Let XG andYG be the Bernstein variety and stable Bernstein variety associated with
G, and similarly for G∗. Let Z(G) and Zst(G) be the corresponding rings of regular
functions, the Bernstein center and stable Bernstein center, respectively. In the case
of GLn(F), it is shown in [9] that the stable and ordinary Bernstein centers coincide,
because their corresponding varieties are isomorphic. However, the deûnition of the
varietyYG of inûnitesimal characters (see [9, §5]) shows that in fact the stable Bern-
stein centers of G and G∗ are isomorphic, since YG = YG∗ . On the other hand, the
natural map

(M , σ)G Ð→ (φσ ∣WF )Ĝ ∶XG Ð→YG

is in this case neither injective nor surjective. Similarly, the corresponding map of
rings of regular functions (stable Bernstein centers) is neither surjective nor injective.
In summary, we have the following two commutative diagrams:

XG //

��

YG

=

��
XG∗

≅ // YG∗

Z(G) Zst(G)oo

Z(G∗)

OO

Zst(G∗).

=

OO

≅
oo

_e same diagrams also exist for the conjugacy class of a given Levi subgroup M ⊂ G
and its corresponding conjugacy class of Levi subgroup M∗ ⊂ G∗, regarding M∗ as
an inner form of M. We have already said that these are compatible, on the side
of the usual Bernstein center, via the abstract constant term maps. _ey are also
compatible with the stable Bernstein centers, via the analogous “constant term” map
YM → YG , and similarly for G∗, induced by taking a parameter λ∶WF → LM to
λ∶WF → LM ⊂ LG.

6.4 The Geometric Bernstein Center

Inspired by Corollary 6.4, we study the relationship between the geometric Bernstein
centers of GLn(F) and their inner forms. Recall that this is the algebra generated
by the ZV (resp. Z∗V ) inside the stable Bernstein centers of G and G∗. _ere is also
the “Φ-version” generated by functions ZΦ

V deûned by ZΦ
V (π) = tr(φπ(Φ),V), and

similarly Z∗,ΦV , which requires choosing a particular Frobenius Φ. We denote these
algebras by Zgeom(G) and Zgeom

Φ (G), and similarly for G∗. Corollary 6.4 shows that
the homomorphism T of Bernstein centers preserves both of these geometric Bern-
stein centers, and they are identiûed at the level of the stable Bernstein centers. If we
transport them to the usual Bernstein centers, it is easy to see that one surjects onto
the other. _e map can be concretely regarded as restriction of ZV , or ZΦ

V , to the im-
age of Q∶Π(G) ↪ Π(G∗). We address injectivity of T∶Zgeom

Φ (G∗) → Z
geom
Φ (G).

Since ZΦ
V⊗W = ZΦ

V ⋅ ZΦ
W , the algebra generated by these functions is the same as

the vector space they span. Consider a ûnite sum ∑i a iZ∗ΦVi
, where the Vi ’s are ir-

reducible representations. Applying T gives ∑i a iZΦ
Vi
. Convolving with eI gives an

element eI ∗ ∑i a iZΦ
Vi

∈ Z(G , I). _en applying the Bernstein isomorphism (see
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[9, §6]) Z(G , I) ≅ K0(Rep(Ĝ)) gives∑ a iVi . But the Vi are a basis. So injectivity of
T∶Zgeom

Φ (G∗) → Z
geom
Φ (G) follows.

_is argument fails for Zgeom(G∗) → Zgeom(G), since it no longer suõces to con-
sider elements of the form∑ a iZVi .

7 Combinatorial Asides

_is section will not be used elsewhere in the paper. Corollary 6.4 can be given a
concrete interpretation, when applied to the Iwahori block. If we rewrite C[Zn]Sn =
C[t±1

1 , . . . , t±1
n ]Sn , then the normalized transfer map can be described as the algebra

homomorphism that maps the elementary symmetric functions

ek(t1 , . . . , tn) ↦ ∑
α=(α1≥⋅⋅⋅≥αk≥0,0,. . . )∈Πk

[
k
∏
i=1

( d
α i

)
q
]q∑

k
i=1(α

2
i −d)/2mα(t1 , . . . , tr),

where we sum over the partitions Πk of k, the coeõcients are the q-binomial coeõ-
cients, andmα is the symmetric monomial function. In particular, writing it this way
makes it clear that symmetric invariants are indeed sent to symmetric invariants. It
is less obvious that this is a surjective homomorphism, but this is also true as a con-
sequence of the surjectivity of T. _is can also be written more simply in terms of
power sum symmetric functions as

pk(t1 , . . . , tn) z→ ( qdk/2 − q−dk/2

qk/2 − q−k/2 ) pk(t1 , . . . , tr),

and from this perspective it is clearly surjective.
In general, still on the Iwahori component, if µ = (a1 ≥ ⋅ ⋅ ⋅ ≥ an) is any cocharacter,

then we have shown above, as a consequence of LLC+, that t̃ takes z∗µ = ∑λ∈Sn ⋅µ λ to

zµ = tr(diag(η1q(d−1)/2 , . . . , η1q(1−d)/2 , . . . , ηrq(1−d)/2),Vµ) ,

where we think of this as a (rational) function of the η i . _is then is the Schur poly-
nomial

Sµ(q(d−1)/2 t1 , q(d−3)/2 t1 , . . . , q(1−d)/2 t1 , q(d−1)/2 t2 , . . . , q(1−d)/2 t2 , . . . , q(1−d)/2 tr),

where we write t i for η i . We are getting a relationship between this “renormalized”
Sµ and Sµ(t1 , . . . , tn). Explicitly, if we write Sµ(t1 , . . . , tn) = ∑T ta1

1 ⋅ ⋅ ⋅ tan
n , where the

summation is over all semistandard Young tableaux T of shape λ and a i counts the
occurrences of the number i in T , then

Sµ(q(d−1)/2 t1 , . . . , q(1−d)/2 tr) = ∑
T

q a⃗⋅x⃗ ⋅
r
∏
j=1

tb j
j .

For example, µ = (k, 0, . . . , 0) corresponds to a symmetric power of the standard
representation, and we get a (rather simpler) explicit formula.
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8 Matching Distributions and Functions

8.1 Matching Distributions

In this section wewill use Proposition 6.4 to give ameans of generating newmatching
pairs of functions from given ones; see below for the deûnition of matching pair. We
assume for this section that F has characteristic zero. We constructed above a map of
cocenters

T∶H(G∗) Ð→H(G)
characterized by

tr(π(T( f ∗))) = tr( JL(π)( f ∗))
for all irreducible representations π of G. Note here that we are using JL and not Q.
We also have a map of geometric Bernstein centers that sends Z∗V to ZV , essentially
by restricting to the image of the map T, if viewed as regular functions on Bernstein
varieties. Since we can also view ZV and Z∗V as essentially compact invariant distri-
butions, we can convolve them with elements of the Hecke algebra (see [9]).

We recall some deûnitions. We say that γ∗ ∈ G∗ is
(a) semisimple if its minimal polynomial is separable;
(b) regular semisimple (whichwewill just call regular) if its characteristic polynomial

is separable;
(c) elliptic if its minimal polynomial is irreducible (and separable).
For G, similar deûnitions exist in terms of the reduced characteristic and minimal
polynomials. For each semisimple γ ∈ G there is a corresponding conjugacy class in
G∗. _e image of this assignment restricted to regular elements in G is those con-
jugacy classes in G∗ whose characteristic polynomials have all irreducible factors of
degree divisible by d.. We write γ↔ γ∗ for this correspondence of conjugacy classes.

Now we require a comment on measures chosen on both G and G∗ in order to
properly deûne the orbital integrals. For the centralizers of γ and γ∗, we have a natural
notion of transference of measures, because if γ ↔ γ∗, then G∗

γ∗ is an inner form of
Gγ . Explicitly, the measures are obtained by transporting invariant diòerentials of top
degree from G∗

γ∗ to Gγ . However, the measures chosen on the whole groups G and
G∗ are not related in this manner. Instead, we choose dg and dg∗ to be such that
dg(I) = 1 = dg∗(GLn(OF)), as is done in [15], where I is an Iwahori subgroup of G.
_is is not the same thing as the notion of transference; for example in [19] it is shown
that if dg and dg∗ are transfers, and r = 1, then

dg∗(GLn(OF))
dg(O×

D)
= (q − 1)(q2 − 1) ⋅ ⋅ ⋅ (qn−1 − 1) /= 1.

Deûnition 8.1 We say that f ∗ ∈ H(G∗) and f ∈ H(G) have matching orbital
integrals (or are associated) if, for all semisimple γ∗ ∈ G∗, we have

Oγ∗( f ∗) =
⎧⎪⎪⎨⎪⎪⎩

e(Gγ)Oγ( f ) if γ↔ γ∗ ,
0 if there is no such γ ∈ G,

where e(Gγ) = (−1)rankF(G∗
γ∗)−rankF(Gγ).
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If γ↔ γ∗, then G∗
γ∗ is the quasisplit inner form of Gγ . See [16] for background on

the sign factor e(Gγ). Note that if the elements that correspond are regular semisim-
ple, then their centralizers are tori, identiûed with F[γ]×, and so no sign arises; this
fact will appear in the proof of_eorem8.3. However, signs do arise, even forGL2(F),
by considering central elements. In general, if considering GL1(D) as an inner form
of GLn(F), then the relevant conjugacy classes ofG∗ are precisely the elliptic ones. In
the regular elliptic case no signs arise, and in the central case the sign is (−1)n−1. We
remark that we could have put a factor of e(G∗

γ∗) on the le�-hand side of the deûni-
tion’s equality above for symmetry, but sinceG∗

γ∗ is quasisplit (over F) for semisimple
γ∗ ∈ GLn(F) this factor is always 1; G∗

γ∗ can be identiûed with a product of GLk ’s over
ûnite extensions of F; see, e.g., [1, p. 4].

Lemma 8.2 If f ∈ H(G) and f ∗ ∈ H(G∗) are associated, then tr( f ∶ π) =
(−1)n−r tr( f ∗ ∶ JL(π)) for all tempered irreducible representations π of G = GLr(D).
Further, tr( f ∗ ∶ π∗) = 0 for all tempered irreducible π∗ ∈ R(G∗) that are not in the
image of JL ∶ R(G) → R(G∗).

Proof Note that tempered irreducible representations of G and G∗ can be written
as parabolic inductions of essentially square-integrable representations; see, for ex-
ample, [24]. So if π ∈ Π(G) is tempered, then JL(π) is a tempered, irreducible rep-
resentation as well, since JL commutes with parabolic induction ([4, _eorem 3.6.]).
Furthermore, every tempered representation of G∗ so arises. By theWeyl Integration
Formula,

tr( f ∗ ∶ JL(π), dg) = ∫
G∗
f ∗(g)ΘJL(π)(g)dg

= ∑
T/∼

∣WT ∣−1 ∫
T
DG∗(t)2ΘJL(π)(t)OG∗

t ( f ∗ , dg/dt)dt

= ∑
T/∼

∣WT ∣−1 ∫
T rs
DG∗(t)2ΘJL(π)(t)OG∗

t ( f ∗ , dg/dt)dt,

where we sum over conjugacy classes of maximal F-tori of G∗, and T rs ⊂ T denotes
the regular semisimple subset. Observe that OG∗

t ( f ∗) = 0 for t ∈ T rs , by assumption,
unless t (or rather its G∗ conjugacy class) comes from G, and that for such t the cen-
tralizing torus T also comes fromG, so that it makes sense, and is true, that the above
equals

∑
T/∼

∣WT ∣−1 ∫
T rs
DG(t)2(−1)n−rΘπ(t)OG

t ( f , dg′/dt)dt,

where now the sum and integral are over tori ofG, and dg′ is the compatible measure
as described above. Applying the Weyl Integration Formula again, one gets that this
is equal to (−1)n−r tr( f ∶ π, dg′).
For the second statement, suppose that π∗ ∈ Π(G∗) is tempered. _en π∗ =

iG
∗

P∗ (σ) for some square-integrable σ ∈ Π2(M∗), whereM∗ is a Levi factor of P∗. _e
assumption that π∗ is not in the image of JL is equivalent to the conjugacy class ofM∗

not coming from the inner form G. Because f ∗, by assumption, is associated with
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some function on G, it follows that the orbital integrals of f ∗ vanish at all (semisim-
ple) conjugacy classes of G∗ that do not come from G. _e vanishing statement is
then (half of) the content of [3, Lemma 3.3.].

_eorem 8.3 Suppose f and f ∗ are associated and Z∗ ∈ Z(G∗). _en Z∗ ∗ f ∗ and
T(Z∗) ∗ f are also associated.

Proof By [18, Proposition 2], it suõces to prove matching for regular semisimple
orbital integrals, in which case the sign is always +1. When char(F) = 0 it is shown
in [5, _eorem B.2.c.1] that for any φ ∈ H(G), there exists φ∗ ∈ H(G∗) satisfying
Oγ∗(φ∗) = Oγ(φ) for corresponding regular semisimple elements, and Oγ∗(φ∗) = 0
if γ∗ does not come from G. _e corresponding result for F having positive charac-
teristic was proved by Badulescu in [3,_eorem 3.2.]. We apply this to φ = T(Z∗)∗ f .
By Lemma 8.2, we know that

tr(T(Z∗) ∗ f ∶ π) = (−1)n−r tr(φ∗ ∶ JL(π))

for all tempered irreducible representations π of G, and similarly, since f and f ∗ are
associated, we have tr( f ∶ π) = (−1)n−r tr( f ∗ ∶ JL(π)) for all tempered irreducible
representations π of G. So

tr(T(Z∗) ∗ f ∶ π) = (T(Z∗))(π) tr( f ∶ π)
= Z∗( JL(π))(−1)n−r tr( f ∗ ∶ JL(π))
= (−1)n−r tr(Z∗ ∗ f ∗ ∶ JL(π))

for all such representations π. _us, Z∗∗ f ∗ and φ∗ have equal traces on all tempered
irreducible representations of G∗: those that arise as JL(π) for tempered π ∈ Π(G),
and those which do not (on which both have trace zero by Lemma 8.2). By Kazh-
dan’s density theorem [13], Z∗ ∗ f ∗ and φ∗ have the same regular semisimple orbital
integrals.

Corollary 8.4 Suppose f and f ∗ are associated. _en ZV ∗ f and Z∗V ∗ f ∗ are also
associated.

_is establishes a special case of [9, Conjecture 6.2.2]. _e above proof shows that
(−1)n−rT can be used to generate (noncanonical)matching functions. However, as we
will see below, this property cannot be li�ed to a homomorphism of Hecke algebras.
_e proof of this result is similar to the proof of the ûrst part of [22, _eorem C],
though our functoriality is Jacquet–Langlands rather than Base Change. _e second
part of that theorem gives a matching statement between characteristic functions of
congruence subgroups (in the sense of base change), and is false in our context, and
we partially address this in the next section.

8.2 Explicit Pairs of Matching Functions

In this section we give some important explicit examples of matching functions to
which the previous theorem can then be applied.
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8.2.1 Euler–Poincaré (EP) Functions

Take f and f ∗ to be Kottwitz’s Euler–Poincaré functions on the groups PGLr(D) and
PGLn(F), respectively. We can li� them to G and G∗, and restrict to the kernels of
the respective Kottwitz homomorphisms, G1 and G∗,1, to get compactly supported
functions on G and G∗. We make this a little more explicit. Let K = GLn(OF) be
the usual maximal compact subgroup of G∗, and let dg∗ be the Haar measure on G∗

such that dg∗(K) = 1. From [19, Ch. 5], we have the following expression for the EP
function on GLn(F):

f EP = ∑
I⊂{1,. . . ,n−1}

( (−1)n−1−∣I∣

n − ∣I∣ ) eJI ,

where eJI = 1
d g∗(JI)

1JI = [K ∶ JI]1JI and JI is the standard parahoric deûned as follows:
if

{1, . . . , n − 1} ∖ I = {d1 , d1 + d2 , . . . , d1 + ⋅ ⋅ ⋅ + ds−1} and
s

∑
i=1
d i = n,

then JI corresponds to the partition (d1 , . . . , ds).

Remark 8.5 _is function is not deûned exactly as Kottwitz’s original one, but the
orbital integrals are unaòected; see [19, Lemma 5.2.2].

_e function f EP depends on a choice ofmeasure dg∗, andwe are choosing ours so
that the maximal compact subgroup has volume 1. Similarly, if dimF D = n2, then the
EP function on GL1(D) is (vol(D×/F× , dg/dz))−11O×

D
= 1

n 1O×
D
, where dg(O×

D) = 1
and dz(O×

F) = 1.

Proposition 8.6 If GL1(D) is an inner form of GLn(F), then the functions f EP ∈
H(G∗ , I) and 1

n 1O×
D
∈H(D× ,O×

D) have matching orbital integrals.

Proof Since the conjugacy classes inG∗ that correspond to those inD× are precisely
the elliptic ones, this proposition is largely a consequence of [19,_eorem5.1.3], which
computes the orbital integrals of f EP . SinceO×

D is normal inD×, computing the orbital
integrals of 1

n 1O×
D
is trivial:

Oγ(
1
n
1O×

D
) =

⎧⎪⎪⎨⎪⎪⎩

1
n vol(D

×/Gγ , dg/dgγ) if ν(γ) = 1,
0 otherwise.

Comparing with the result of [19, _eorem 5.1.3], one checks directly that the
matching condition holds.

Remark 8.7 Proposition 8.6 can also be regarded as a special case of [18, _eo-
rem 2], at least when F has characteristic zero.
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8.2.2 Matching for Characteristic Functions of Parahoric
Subgroups of GLr(D)

For a parahoric subgroup J ⊂ G = GLr(D), we will construct an explicit function in
H(G∗ , I∗) associated with the characteristic function 1J ∈H(G , J). _is will general-
ize Proposition 8.6. To do so we ûrst need to recall a few facts about Deligne–Lusztig
functions. To each character θ∶T → C× of a maximal torus in T ⊂ H(Fq), whereH is
a connected reductive group over Fq , we can construct a virtual character RH

T (θ) of
H(Fq), by the general method of [8]. For us the ambient group H will be a product of
general linear groups (and restrictions of scalars thereof), and we will only need this
construction for the case where the character θ is trivial.

Recall that conjugacy classes of tori in GLd(Fq) correspond bijectively to theWeyl
group W = Sd ; we write Tw for any torus in the conjugacy class corresponding to
w ∈ W . Write G ∶= GLd(Fq), and for w ∈ Sd , write Rw ∶= RG

Tw
(1) for the Deligne–

Lusztig function on G associated with the trivial character of Tw . We will also regard
Rw as a function on K = GLd(OF) via in�ation, or on GLd(F) by extension by zero,
since its meaning will always be clear from context.

We consider ûrst the case of GL1(D). Here the unique parahoric is I = O×
D . Let 1I

denote the unit element of the Iwahori–Hecke algebra of GL1(D), an inner form of
GLd(F). We now recall a (very) special case [15, _eorem 2.2.6].

_eorem 8.8 (Kazhdan–Varshavsky) Suppose that F is characteristic zero, and sup-
pose that p > d, where p is the residue characteristic of F. If w = (12 ⋅ ⋅ ⋅ d), then
1I ∈H(GL1(D)) and Rw ⊂H(GLd(F)) are matching functions.

We will give an alternative proof of _eorem 8.8, removing these restrictions on
the characteristic of F, and on p. Comparing with Proposition 8.6, we expect to have
a relation between EP and Deligne–Lusztig functions in this context.

Proposition 8.9 We have, with no restriction on F, the equality

d ⋅ Oγ( f EPGLd(F)) = Oγ(Rw)

for all γ ∈ GLd(F), if w = (12 ⋅ ⋅ ⋅ d).

_is will be a consequence of Propositions 8.11 and 8.12. Propositions 8.6 and 8.9
show that _eorem 8.8 holds with no restriction on the residue characteristic p, or on
the characteristic of F. We will shortly use a similar approach to address the case of
general GLr(D), though, in general, we will still have this restriction on F.

Remark 8.10 _e functions 1I and 1I∗ do not match, as Oγ(1I∗) both fails to vanish
when it should (at nonelliptic regular semisimple γ), and vanishes when it should not
(at elliptic regular γ). Indeed 1I∗ does notmatch any f ∈H(G) for this reason. In par-
ticular, the normalized transfer homomorphism t̃ above does not generate matching
pairs, unlike the base change homomorphism. Nevertheless, _eorem 8.3 shows that
the analogous result is true at the level of distributions in the Bernstein center.
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We write K1 for the prounipotent radical of K, and identify JI/K1 with a standard
parabolic subgroup of block upper-triangular matrices in K/K1 = GLd(Fq). We re-
call a few notions and notations from the representation theory of ûnite groups. If f
is a class function on the parabolic subgroup JI/K1, we write IndGLd(Fq)

JI/K1
( f ) for the

induced class function, deûned by x ↦ ∑s∈S f (s−1xs), where S is a set of le� coset
representatives for JI/K1 in GLd(Fq), and where the summand is by deûnition zero
if s−1xs /∈ JI/K1.

Proposition 8.11 Let y = (12 ⋅ ⋅ ⋅ d) ∈ Sd =∶W. _en we have

(8.1) Ry = d( ∑
I⊂{1,. . . ,d−1}

(−1)d−1−∣I∣

d − ∣I∣ IndGLd(Fq)

JI/K1
(1)) .

Proof We ûrst describe some notation. Fix a parahoric subgroup J of GLd(F), and
let L ∶= J/J+ be its maximal reductive quotient, which is isomorphic to a product of
groups of the form GLd i (Fq). Let WL = NL(T)/T for a split maximal torus T of L.
We will need the formulas

1J =
1

∣WL ∣
∑

w∈WL

RL
Tw

(1)

IndG
J/K1(1) =

1
∣WL ∣

∑
w∈WL

RG
Tw

(1)(8.2)

_e ûrst is a rewriting of [7, Proposition 7.4.2], the latter [7, Proposition 7.4.4]. We
can rewrite the RHS of (8.1) using (8.2), and the coeõcient of Rg , for g ∈W is

fg ∶= d ∑
I⊂{1,. . . ,d−1}

(−1)d−1−∣I∣

d − ∣I∣
1

∣WI ∣
∣{v ∈WI ∶ v is conjugate to g in Sd}∣,

and so it suõces to show that fg = 0 unless g is conjugate to (12 ⋅ ⋅ ⋅ d), in which
case fg = 1. _e second assertion is straightforward: y is not in any proper parabolic
subgroupWI ofW = Sd , so only I = {1, . . . d − 1} contributes, and fy = d ⋅ 11

1
d ! ⋅ ∣W ⋅ y∣,

but the conjugacy class of y is size (d − 1)!, so fy = 1. _e vanishing property is more
diõcult.

Let the “1-adic EP function” be

f = ∑
I⊂{1,. . . ,d−1}

(−1)d−1−∣I∣

d − ∣I∣
1

∣WI ∣
1WI .

_en the claim is equivalent to the statement that the orbital integral

Og( f ) ∶= ∑
v∈Sd

f (v−1gv) = ∣CSd (g)∣ fg

vanishes for g not conjugate to (1 ⋅ ⋅ ⋅ d). Let WM ⊂W be any Young subgroup. Using
the notation of [19], we write DM ,I for minimal coset representatives for WM/W/WI .
By [7, Proposition 2.7.5], every element of the double coset WMwWI can be uniquely
expressed as wMwwI with wM ∈ WM ∩ D∅, J , wI ∈ WI , and J ∶= ∆M ∩w(I). _en for
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anyWM (i.e., any Young subgroup), we have

Og(1WI) = ∑
w∈DM ,I

∑
wM∈WM∩D∅,J

∑
wI∈WI

1WI(w−1
I w−1w−1

M gwMwwI)

= ∑
w∈DM ,I

∑
wM∈WM∩D∅,J

∣WI ∣1WI(w−1w−1
M gwMw),

so

Og( f ) = ∑
I⊂{1,. . . ,d−1}

∑
w∈DM ,I

∑
wM∈WM∩D∅,∆M∩w(I)

(−1)d−1−∣I∣

d − ∣I∣ 1WI(w−1w−1
M gwMw).

If J = ∆M ∩ w(I), then WM ∩ wWIw−1 = WJ . _at is, WJ is a parabolic subgroup
of WM whose type is determined by J. _is is parallel to [19, Lemma 5.4.6], which
in turn relies on [7, §2.7, _eorem 2.7.4]. _e set WJ is precisely the support of g ↦
1WI(w−1gw), viewed as a function onWM . In other words, 1wWI

∣WM = 1WJ forw ∈ DM ,I ,
where hw(v) = h(wvw−1) for any function h on W . Noting that (12 ⋅ ⋅ ⋅ d) is the only
elliptic conjugacy class in W , we can choose M so that g ∈WM /=W , and deduce

Og( f ) = ∑
J⊂∆M

∑
I⊂{1,. . .d−1}
w∈DM ,I ∶

J=∆M
∩w(I)

∑
wM∈WM∩D∅,J

(−1)d−1−∣I∣

d − ∣I∣ 1WJ(w−1
M gwM).

So it suõces to show that for all J ⊂ ∆M and all wM ∈WM ∩ D∅, J , we have

∑
I⊂{1,. . . ,d−1}

w∈DM ,I
J=∆M

∩w(I)

(−1)d−1−∣I∣

d − ∣I∣ 1WJ(w−1
M gwM) = 0.

_is is obvious if w−1
M gwM /∈ WJ . Otherwise, sinceWM is a proper Young subgroup,

this is a special case of [19, Proposition 5.5.5]. We remark that [19, Proposition 5.5.5.] is
a purely combinatorial statement, which is used as an important step in demonstrating
the vanishing of the nonelliptic orbital integrals for the Euler–Poincaré function on
G∗.

Proposition 8.12 Let f be a class function on the parabolic subgroup J/K1 of K/K1 =
GLn(Fq), regarded as a function on J, where J ⊂ K is any parahoric subgroup. _en we
have

[K ∶ J]Oγ( f ) = Oγ( IndGLn(Fq)

J/K1
( f ))

for all γ ∈ GLn(F), where Ind( f ) is the induced class function.

Proof Certainly it suõces to consider the case f = 1C , the characteristic function of
a conjugacy class C ⊂ J/K1. _en the induced function K/K1 → C is

IndK/K1
J/K1

f (s) = 1
∣J/K1∣

∑
t∈K/K1
tst−1

∈C

1 = ∑
g∈K/J

1gCg−1(s).

_e ûrst equality is the deûnition. _e second equality is a simple exercise in ûnite
group theory, but we provide it for completeness. Note that the containment s ∈ C g ∶=
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gCg−1 only depends on the coset g(J/K1). Further, s ∈ C g if and only if g−1sg ∈ C,
so the value of∑g∈K/K1 1C g = ∣J/K1∣∑g∈K/J 1C g , which is a class function on K/K1, on
s ∈ C, is exactly ∣{t ∈ K/K1 ∶ tst−1 ∈ C}∣, as desired. _e conclusion of the proposition
is clear, since Oγ(1gCg−1) is certainly independent of g.

Remark 8.13 In particular, if f is a unipotent character of K/K1, then since it can
be written as a linear combination of parabolic inductions of trivial characters, its li�
to K has orbital integrals equal to those of some function supported on K, which is
a linear combination of characteristic functions of parahoric subgroups, and hence is
Iwahori-biinvariant. Not all Iwahori-biinvariant functions so arise, since in general
the span of 1J as J varies through parahorics I ⊂ J ⊂ K is strictly smaller thanH(K , I).

Proof of Proposition 8.9 We apply Proposition 8.12 to the special case of f = eJ ∶=
1

d g∗(J) 1J , using [K ∶ J] = 1/dg∗(J) to obtain

Oγ(eJ) = Oγ( IndK/K1
J/K1

(1)) .

In particular, the LHS only depends on the maximal reductive quotient J/J+, which
is a weaker invariant than the conjugacy class of J. _us,

Oγ( f EPGLd(F)) = Oγ( ∑
I⊂{1,. . . ,d−1}

(−1)d−1−∣I∣

d − ∣I∣ IndGLd(Fq)

JI/K1
(1))

= 1
d
Oγ(RGLd(Fq)

F×
qd

(1))

where the second equality is Proposition 8.11.

For the Iwahori subgroup in general, GLr(D) the situation is as follows. We again
have the following special case of [15, _eorem 2.2.6.].

_eorem 8.14 (Kazhdan–Varshavsky) Suppose that F is characteristic zero, and sup-
pose that p > n, where p is the residue characteristic of F. If

w = (12 ⋅ ⋅ ⋅ d)(d + 1 ⋅ ⋅ ⋅ 2d) ⋅ ⋅ ⋅ ((r − 1)d + 1 ⋅ ⋅ ⋅ rd) ,

then 1I ∈ H(GLr(D)) and Rw = RGLn(Fq)

Tr
(1) ∈ H(GLn(F)) are matching functions.

Here Tr ≅ (F×qn/r)r and I ⊂ GLr(D) is the Iwahori subgroup.

It would be natural to have an Iwahori-biinvariant function on GLn(F) matching
1I ∈H(GLr(D)). Note that a Deligne-Lusztig function is only K1-biinvariant.

_eorem 8.15 Suppose that F is characteristic zero, and suppose that p > n, where p
is the residue characteristic of F. Deûne the function

d r ∑
I1 , . . . ,Ir⊂{1,. . . ,d−1}

(
r
∏
i=1

(−1)d−1−∣I i ∣

d − ∣I i ∣
) eJ I⃗ ,

where the subscript on the e is understood to mean a parahoric with ∏r
i=1 JI i /JI i ,+ as

its maximal reductive quotient. _en this function gives an I∗-biinvariant function,
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supported on the parahoric corresponding to the partition (d r) of n, which is associated
to 1I ∈H(G , I).

Proof To proceed, observe ûrst that by [7, Prop. 7.4.4],

RGLn(Fq)

Tr
(1) = IndGLn(Fq)

Pr
(RGLd(Fq)

F×
qd

(1)⊠r) ,

where d = n/r and Pr is a parabolic with Levi factor Mr ≅ GLd(Fq)r . We now apply
Proposition 8.11, observing that by transitivity of induction,

IndGLn(Fq)

Pr
( IndGLd(Fq)

Q1
(1) ⊠ ⋅ ⋅ ⋅ ⊠ IndGLd(Fq)

Qr
(1)) = IndGLn(Fq)

L1×⋅⋅⋅×Lr
, (1)

where L i is any choice of Levi factor of the parabolic subgroup Q i ⊂ GLd(Fq), and
on the RHS we mean parabolic induction. _us,

RGLn(Fq)

Tr
(1) = d r ∑

I1 , . . . ,Ir⊂{1,. . . ,d−1}
(

r

∏
i=1

(−1)d−1−∣I i ∣

d − ∣I i ∣
) IndGLn(Fq)

∏
r
i=1 JI i /JI i ,+

(1)

and this has orbital integrals equal to that of the function deûned in the theorem.

Remark 8.16 _is is not proportional to a summand of the usual EP function. For
example, the coeõcient of eI∗ , which corresponds to taking all subsets to be empty,
is (−1)r(d−1), whereas in f EP it is (−1)d−1 1

rd . However, the term corresponding to
taking all subsets to be {1, . . . , d − 1} has coeõcient d r , whereas in the EP function its
coeõcient is (∆ − I = {d , 2d , . . . , (r − 1)d}) equal to (−1)r−1/r.

We can also give amore conceptual construction of such a function, similar to Kot-
twitz’s original description of EP functions, which will have the virtue that it applies
to any connected reductive F-group. Let M = GLd(F)r ⊂ GLn(F). Let SM be a set
of representatives for theMad-orbits (equivalently M-orbits) of facets in the Bruhat–
Tits building B(Mad). For σ ∈ SM , we writeMσ for the stabilizer of σ in M. _en the
function

fSM ∶= d r ∑
σ∈SM

(−1)dim σ

vol(Mσ/Z(M), dm/dz)
vol(Mσ ∩M1 , dm)

vol(Jσ , dg)
1Jσ ∈H(G∗)

matches 1I ∈ H(G), where Jσ is any parahoric in GLn(F) with maximal reductive
quotient Jσ/Jσ ,+ being isomorphic to themaximal reductive quotient ofMσ∩M1. _is
has the same orbital integrals as our function above, hence the same as RGLn(Fq)

Tr
(1).

In fact, the former is an average over certain choices of SM , as is done in [19,
Lemma 5.2.2], using an identiûcation of the facet σ with a product of r facets of
PGLd(F). Observe that if d = n, then fSM is the usual Euler–Poincaré function (up
to a factor of d), and if d = 1, then it is the characteristic function of the Iwahori I∗,
divided by dg∗(I∗). Note that the scalar d r can be interpreted as ∣M/M1Z(M)∣, or as
the Coxeter number of theWeyl group ofM. More generally, for M∗ ⊂ G∗ = GLn(F),
an arbitrary Levi subgroup, we deûne

fSM∗ = ∣M∗/M∗,1Z(M∗)∣ ∑
σ∈SM∗

(−1)dim σ

vol(M∗
σ /Z(M∗), dm/dz)

vol(M∗
σ ∩M∗,1 , dm)

vol(Jσ , dg)
1Jσ ,
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where Jσ is any parahoric in GLn(F) with maximal reductive quotient Jσ/Jσ ,+ being
isomorphic to themaximal reductive quotient ofMσ∩M1. Wewill use these functions
shortly. Note that we can choose the Jσ in such a way that they all contain a given
Iwahori subgroup. We assume such a choice has beenmade, so that fSM∗ is biinvariant
with respect to this Iwahori subgroup.
Finally, let J be an arbitrary parahoric inGLr(D). Wewill now construct an explicit

function FJ ∈H(G∗ , I∗) that matches 1J ∈H(G). Let

L ∶= J/J+ ≅
k

∏
i=1

GLr i (Fqd )

be the maximal reductive quotient of J, so that a maximal torus T(Fq) ⊂ L is of the
form T1(F1) × ⋅ ⋅ ⋅ × Tk(Fq) where Ti(Fq) ≅ ∏t i

j=1 F
×
qdri j and ∑t i

j=1 r i j = r i . Write
L∗ = ∏k

i=1 GLr id(Fq); this is the maximal reductive quotient of a parahoric subgroup
J∗ ⊂ GLn(F) corresponding to J ⊂ GLr(D). Note that every maximal torus of L also
embeds in L∗. If w ∈WL , we will write Tw for the corresponding (conjugacy class of)
maximal torus, which we will regard as being embedded in L or L∗ as needed. _en
RL

Tw
(1) li�s to a function on J, and we have 1J = 1

∣WL ∣
∑w∈WL

RL
Tw

(1), as above. By a
special case of [15, _eorem 2.2.6.], this then matches

1
∣WL ∣

∑
w∈WL

RGLn(Fq)

Tw
(1) = 1

∣WL ∣
∑

w∈WL

IndGLn(Fq)

L∗ (RL∗
Tw

(1)).

We can repeat the analysis above for the Iwahori for each summand

IndGLn(Fq)

L∗ (RL∗
Tw

(1))
to obtain an f ∗ ∈ H(G∗ , I∗) associated with 1J . Explicitly, if with w ∈ WL , or more
properly Tw , we associate integers r i j and t i as above (we suppress dependence of
these on w), then an Iwahori-biinvariant matching function to 1I is

1
∣WL ∣

∑
w∈WL

∑
I⃗={I i j}

I i j⊂{1,. . . ,dr i j−1}

( ∏
1≤i≤k
1≤ j≤t i

dr i j(−1)dr i j−1−∣I i j ∣

dr i j − ∣I i j ∣
) eJ I⃗ ,

where again J I⃗ means a parahoric with maximal reductive quotient isomorphic to
∏i , j JI i j/J+I i j . Once again, we can describe this more conceptually. Let Tw be an un-
ramiûed torus in G = GLr(D) deûned over OF so that Tw(Fq) = Tw . _en Tw also
embeds in G∗ = GLn(F). Let M∗

w ⊂ G∗ be a Levi subgroup such that Tw(F) ⊂ M∗
w

and Tw(F) is elliptic in M∗
w . _is latter property determines the conjugacy class of

Mw . By identical reasoning to the Iwahori case, we now obtain the following result.

_eorem 8.17 Suppose that F is characteristic zero and p > n. Let J ⊂ G = GLr(D) be
a parahoric subgroup, and let WL be the Weyl group of the maximal reductive quotient
L of J. _en

FJ ∶=
1

∣WL ∣
∑

w∈WL

fSM∗w

is an Iwahori-biinvariant function associated with 1J . For any algebraic, ûnite-dimen-
sional representation V of LG, the functions ZV ∗ 1J and Z∗V ∗ FJ are associated.
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Remark 8.18 Kazhdan and Varshavsky [15] prove that the DL functions have the
correct orbital integrals, subject to assumptions on the residue characteristic being
suõciently large. It would be desirable to have a proof of this that has no such con-
straint.

Remark 8.19 Once we have the matching functions for 1J , we can apply Corollary
8.4, and since every element of Z(G , J) is of the form ZV ∗ 1J , as V ranges over repre-
sentations of the dual group of G, we obtain an explicit Iwahori-biinvariant matching
function for every element of Z(G , J).

We wish to formulate a (naive) conjecture for more general reductive groups. Let
G be an arbitrary reductive group, and let G∗ be its quasisplit inner form. Let J ⊂ G
be an arbitrary parahoric subgroup. With the function 1J we wish to associate an
Iwahori-biinvariant matching function on G∗.

Deûnition 8.20 Let M be a Levi subgroup of the connected reductive group G
and let SM be a choice of representatives for theM-orbits of facets in the Bruhat–Tits
building B(Mad). _en deûne the “relative Euler–Poincaré function” to be

fSM ∶= ∣ M
M1Z(M) ∣ ∑σ∈SM

(−1)dim σ

vol(Mσ/Z(M), dm/dz)
vol(Mσ ∩M1 , dm)

vol(Jσ , dg)
1Jσ ,

whereMσ is the stabilizer of σ , and Jσ is a parahoric subgroup ofG such that Jσ ∩M =
Mσ ∩M1 and Jσ is minimal for this property.

Lemma 8.21 _e orbital integrals of fSM are independent of the choices of SM and
the Jσ .

Proof Suppose that J′σ was a diòerent choice. We only need to remark that the condi-
tion in the deûnition pins down the group Jσ/J+σ , since it is this group that determines
the orbital integrals of 1Jσ , as follows from (the natural generalization of) Proposition
8.12. _e independence from SM is clear, since changing it is equivalent to conjugating
various summands of the function.

Let L = J/J+, so that with w ∈WL we can associate a (conjugacy class of) maximal
torus Tw in L. If Tw is a maximal torus in L, then there is an unramiûed maximal
torus Tw deûned over O, with special ûber Tw , and embedding into G and into G∗.
Let M∗

w be a Levi subgroup of G∗ containing Tw(F) as an elliptic subtorus.

Conjecture 8.22 If J ⊂ G is an arbitrary parahoric subgroup, then a matching func-
tion (in the sense of standard endoscopy) for 1J is 1

∣WL ∣
∑w∈WL

fSM∗w

In the special case where G = G∗, if J = I is the Iwahori, then the function in Con-
jecture 8.22 simpliûes to 1

d g(I) 1I . _is does match 1I for our deûnition of matching.
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