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Abstract We discuss an ordinary differential equation which describes how the pres­
sure in a coronal loop may evolve in time under the influence of a uniform, but time 
varying heating rate.

During the gradual phase of a Hare, the most violent motions have ceased. To a good 
approximation, the pressure P in the corona should be uniform, although changing 
with time as evaporation or condensation occurs. Our goal is to develop a simple equa­
tion to study the evolution of the corona during the gradual phase without having to 
resort to numerical simulations.

The energy equation can be written
3 • 5 dv dFc— P ~ Q - R - - P — --------- ,2 2 dz dz

( 1)

where Q is the volumetric heating rate, R is the radiative loss rate, v  is the plasma 
velocity, Fc = k0T5i2cITUlz is the conductive flux, and z is the distance measured from 
the loop apex toward one of the loop footpoints. The plasma is assumed to be fully 
ionized, and obeys the equation of state P = 2nkT. The radiative loss rate is assumed 
of the form R = n2A(T), where we assume A(T) = ATa, with T being the plasma 
temperature. The power law index is taken to be a  = -1/2, consistent with radiative 
losses at flaring temperatures. Since the pressure P is assumed uniform, its time 
derivative is as well. Integrating equation (1) from apex to lootpoint, the enthalpy and 
conductive flux terms vanish if the integration is extended into the topmost layer of the 
chromosphere. The resultant equation is

j  P = < Q > - < R >  . (2)
The quantities <Q> and <R> ate the heating and radiative loss rates averaged over the 
loop length. If these can be expressed in terms of the loop pressure, then equation (2) 
provides a way of solving for the coronal pressure as a 1 unction of time. In this paper, 
we assume that Q is uniform in the loop for simplicity. This leaves only the determi­
nation of <R >.

In our first approach to this problem, we treat the temperature structure in the 
corona as though it were determined to zeroth order by a static loop, and examine the 
effect of first order perturbations due to evaporation or condensation. This means that 
to zeroth order, the temperature structure in the corona is determined by
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(3)() - R  - £ Fc
dz = 0 .

The solution of equation (3) is straightforward. In its integrated form, it leads to the 
well known loop sealing law (Craig, McClymont and Underwood, 1978; Rosner, 
'flicker, and Vaiana, 1978). For our choice o f parameters of tho loss function, its pre­
cise form is

LRT a / 2 --1 1/4

<•
11/4- a l l  1 r >

LJ 2 -  a ’ 2 -

2k'2x\)(u-t-3/2)M 1/2 / (2 -  a) , (4)

where A is the apex to footpoint looplength, K0 is the Spitzer coefficient, TA is the 
apex temperature, and I\ ( a j ) )  is the beta function. The position within the loop is 
related to the temperature by

(1 -  z / / ,)  -  I, 11/4 -  a/2 _1_
’ 22 -  a (5)

where i - ( T / T A )2 '~U, and Ix ( a , b )  is the incomplete beta function. Equations (3-5) 
are sufficient to evaluate < R>  if we ignore the enthalpy flux due to evaporation or 
condensation. We then lind

It
<R>

all + 3/4 1
a

It
11/4- a / 2  1

9 a 9

RA > (6)

which for a  - - 1 / 2  gives <R> = 1/2RA . RA is the radiative loss rate at the loop 
apex, 'fhe fact that <R>  is 3.5 limes larger that RA means that the bulk o f the radia­
tive losses are coming from near the base of the loop where the temperature is cooler 
than that at the apex. We find it useful to deline an effective radiative loss tempera­
ture l\. by setting R(TC) = <R>,  from which we lind

7,. -  (2/7)m  Ta = 0.6067',! (7)
In the static loop model, this occurs at a distance of 89% o f L measured from the 
apex.

Before we examine the effects of enthalpy llux, we digress briefly to discuss the 
continuity equation

On 0- -  - I -  T /tu =  0. Or Oz (8)
If we divide both sides by n and assume that n/n is uniform (which must be true if 
the loop structure is detemiined by a sequence of static loop models) then this equation 
has the solution

/id  -  -  (a In ) N (z ) ,

where A' ( z ) is the column density J n dz ' . From this we find that

(9)
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(10)^  = -(n / n )(l+ 2kN (z )ll>  ) .
dz dz

We note that the scaling law tells us that for a  -  -1/2, hln -  (2/3) P/P.

The enthalpy term — P will act to reduce the radiative losses low in the 
2 dz

corona during evaporation and increase them during condensation, thereby altering the 
mean loss rate <1Z> from its static value in equation (6). To first order, the change in 
the mean loss rate should be just balanced by the enthalpy term near Tc . We will 
therefore add this correction to the mean loss rate. All of the quantities in equation 
(10) needed to evaluate this term can be determined from equations (3-5). At Tc , we 
find

5 dx> 5 2— P —  = — — 0.662 P = 1.103 P . (11)
2 dz 2 3 v '

This means that to first order in P , equation (6) can be replaced with

<R> = (7/2) Ra -  1.103 P . (12)
When substituted into equation (2), this results in the loop evolution equation

0.40 P = Q -  (7/2) Ra . (13)

Equation (13) can be solved for the time evolution of the coronal pressure. Since 
the quantity RA involves just apex densities and temperatures, these can be converted 
into pressure from the equation of slate and the scaling law. Equation (13) is therefore 
a first order ordinary differential equation for the loop pressure as a function of time 
given a uniform, time-varying heating function Q. If Q is constant, then the equation 
is separable and is solvable by quadrature. The solution in this case is monotonic with 
time. We feel this argues strongly against the "limit cycle" behavior suggested by 
some authors (e.g. Kuin and Martens, 1982).

The approximation of equation (2) by equation (13) assumes that the loop struc­
ture is always fairly close to the static scaling law solution. While this should be the 
case if the heating rate changes on the conductive time scale or longer, more rapid 
changes in the heating rate will result in evaporating or condensing loops far from 
static equilibrium. In this case, one must do a more careful job of estimating the aver­
age loss rate. We are presently working on such extensions of the model.
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