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A SIMPLE PROOF OF INTEGRATION BY PARTS FOR THE 
PERRON INTEGRAL 

BY 

P. S. BULLEN 

ABSTRACT. This note presents a very simple proof for the integration by 
parts formula for the Perron integral. 

1. Introduction. It is a remarkable fact that the proof of such an elementary result 
as the integration by parts formula for an integral with such a simple definition was not 
given until fifty years after the integral was introduced. To this day the proofs are far 
from simple. The most elegant, due to Maffk [7], requires a non-standard, but reason­
able, form for the definition of the integral; the most direct, that of Gordon and Lasher, 
[5], needs a special treatment for the case when 'the function to be differentiated' is not 
continuous; the earliest, McShane's proof, ([8], [9]), is cumbersome in its use of 
sixteen major and minor functions. The present note combines McShane's approach 
with some preliminary simplifications to give a short direct proof. A detailed history 
of this theorem has been given in Bullen [2]. 

2. The integral and some simple properties. 

DEFINITION 1. Iff: [a, fc] —> R then fis Perron integrable (on [a, b]),fE P(a, b) 
or just feP if there is no ambiguity, iff: 

(I) 3 m, M: [a, b]-> R such that 
(a) m, M are continuous; 
(b) m(a) = M (a) = 0; 
(c) (DM > / > uDm, n.e.; 
(d) (DM > - oo, uDm < oo n.e.; 

((D denotes the lower derivative, uD the upper derivative; n.e. means nearly every­
where, that is, except on a countable set); 

(II) inf M(b) = sup m{b), where the inf is over all M in (I), and the sup over 
all m. 

Then the common value in (I) is written P — f* f the Perron integral off over 
[a, bl 
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LEMMA 2. (a) If M, m are as in (I) then M — m increasing and non-negative. 
(b) IffeP(a, b) thenfeP(a, JC), a < x < b, and ifF(x) = P - ja

x f, a < x < b, 
then M — F and F — m are increasing and non-negative; (M, m as in (I)). 

(c)feP(a, b) iff Ve > 03M, m as in (I) such that 0 < Af (ft) - m(ft) < e. 

The proof of Lemma 2 is almost immediate, but see, for instance Bruckner ([1], 
p. 174). 

The functions M, m of (I) are called respectively major and minor functions off. If 
in Definition 1 we had used unilateral derivatives we could have defined left, and right, 
major and minor functions off If now M a major function off of any type, and m a 
minor function of/of any type, Lemma 2(a) still holds; the proof when M and m are 
of opposite types, one left and the other right, is a little deeper (see McShane [9], 
p. 313). 

The following generalisation of Lemma 2(c) is due to McShane, ([8], [9]); but the 
fact that it is elementary to prove is due to Ridder [10]. 

LEMMA 3.feP(a, b) iff Ve > 03 jxl9 JJL2, f̂ 3, M* being left majory right major, left 
minor, right minor functions of f respectively, such that ||x,(ft) — [ij(b)\ < e, 1 ^ /, 
j < 4; and then 

P - f f=wf{t\t= iLt(b)i= l o r 2}. 

= sup {t; t = \Xi(b), i = 3 or 4}. 

3. The main result. 

THEOREM 4. IffeP(a, b), F = P - j f G of bounded variation thenfGeP(a, b) 
and 

(1) P - \ fG = F(b)G(b) - F(a)G(a) - P FdG, 

(The right-hand side of (1) is to be interpreted as follows: 

G(fl) = G(£i + ); G(b) = G{b-)- LbFdG= lim fa
b FdG 

the integrals being Riemann-Stieltjes' integrals.) 

We remark that Theorem 4 is trivial if G is constant; further if Theorem 4 holds for 
G\ and G2 then it holds for all XGi + |xG2, X, [ieR. Since, if G is of bounded variation, 
G = Gi — G2 where Gx and G2 are bounded increasing functions, to prove Theorem 
4 it is sufficient to prove, 

LEMMA 5. IffeP(a, b), F = P — f f G a bounded increasing function, G (a) = 0, 
thenfGeP(a, b) and 

(2) P - [fG = F(b)G(b) - [FdG. 
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PROOF. Let M be a major function off, (as in (I)), and define 

R(x) = M{x)G(x) - \ MdG, a<x<b. 

If then JC and x + h are in [a, b], there is, by the mean value theorem for the 
Riemann-Stieljes integral, a y between x and x + h such that 

(3) R(x + h) - R(x) = {M(x + h) - M(y)}{G{x + h) - G(x)} 

+ G(x){M(x + h) - M{x)} 

hence, since M is continuous, so is R. 
From (3) we get on rewriting that 

R(x + h) - R(x) M(x + h) - M(x) 
(4) = G(x + h) 

G(x + h) - G(x) 

h 

Since G > 0, if x is a point at which G'{x) is finite, and so a.e., 

£DR(x) = G{x)iDM(x)\ 

hence by (c) of Definition 1 

(DR > / G a . e . 

Finally, (4) can be rewritten as 

R(x + h) - /?(JC) (M(x + h) - (x) 

{M(y) - M{x)}. 

(M(x + h) - {x)) 

\M{y) — M(x)] (y — x\ 

y - x 

if then h < 0, and JC is a point at which ÎDM(x) > — o°, and so n.e., 

W.R{x) > -oo; 

(here €D_ denotes the left lower derivative); hence 

W-R > -oo, n.e. 

Since obviously R(a) = 0, we have that R in a left major function of/G. 
In a similar way, if m is a minor function off, then 

r(x) = m(x)G(x) - I mdG, a < JC < fc, 

is a left minor function of fG. 
A consideration of the above discussion shows that if G had been a non-positive 

increasing function, rather than a non-negative one, then R would have been a right 
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minor function of/G; similarly r would have been a right major function. If then 7 = 
sup G(JC), G*(x) = G(x) - 7 and 
a<x<b 

fl*U) = M(JC)G*(JC) - j MdG 
a 

we have that /?* is a right minor function of /G* , and so 

5(JC) = 7m(x) + /?*(*) 

is a right minor function of/G: similarly 

S(JC) = 7M(JC) + r*(x), 

where 

r*(x) = »JG*(JC) — mdG, a < JC < /?, 

is a right major function of / G . 
If then e > 0 and M, m are chosen so that M(b) - m(b) < e, as is possible by 

Lemma 2(c), then the tetrad R,S,r,s can be taken as the fi,, 1 < / < 4, of Lemma 3, 
and so fGeP(a, b); further, by Lemma 3, P - faf= inf/?(&), the inf being over all 
R defined above; this gives (2) and completes the proof of Lemma 5. 

5. In [3] an integration by parts theorem for the Burkill approximately continuous 
integral, the Pap-integral, was promised; this result has been recently proved by 
Chakrabarti and Mukhopadhyay [4]. 

THEOREM 6. LetfeP*p(a, b), F = P*p — j / , g of bounded variation, G = / g; if 
then FeP(a, b) it follows thatfGeP and 

(5) PaP ffG = F(b)G(b) - F(a)G(a) -P~ \" Fg. 

For this result the difficulties that occur in trying to prove Theorem 4 do not occur; in 
particular a proof along the lines given above requires no appeal to Lemma 3. This is 
because G' = g n.e. and so the analogously defined R, see the proof of Lemma 5 above, 
is a Pap-major function, not, as in Lemma 5 merely a left major function. The proof 
following the lines of that of Theorem 4, but now much simpler, is different to that 
given in [4]. A further proof can be given using the descriptive definition of the 
P*p-integral (see [2]). The right-hand side of (5) is, as a function of b, [ACG*p]; its 
a.e. existing approximate derivative is the integrand on the left-hand side of (5). 

The condition FeP(a, b) ensures the existence of the right-hand side of (5), by 
Theorem 4; and the need for such a hypothesis is demonstrated in [4]. 

6. Professor K. Garg has brought to my attention that the above proof of 
Theorem 4 will provide an integration by parts theorem for two generalisations of the 
P-integral given by Ionescu-Tulcea [6], and Ridder [10]. If in Definition 1 right lower 
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dérivâtes are used in the definition of the major functions M, but left upper dérivâtes 
in the definition of the minor functions m, an integral more general than the /^-integral 
is defined, the Pi-integral say. In an analogous way another generalisation the 
P+ -integral can be defined. While generalizing the P-integral they are not themselves 
related by one being more general than the other; both can be given descriptive 
definitions (see [6], [10]). Clearly the proof of Theorem 4 will also give a proof of a 
Theorem 4± , a theorem in which the hypothesis "feP, F = P — / / " of Theorem 4 
is replaced by "feP±, F = P± - / / " and the conclusion is fGeP±, with the integral 
on the left-hand side of (1) being P± - fa

b'/G; a similar Theorem 4+ can be obtained 
in the obvious way. 
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