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Geometry on nodal curves

Ziv Ran

Abstract

Given a family X/B of nodal curves we construct canonically and compatibly with base-
change, via an explicit blow-up of the Cartesian product Xr/B, a family W r(X/B) that
we show is isomorphic to the relative flag Hilbert scheme parametrizing flags of subschemes
of fibres of X/B with colengths 1, . . . , r. Although W r(X/B) is singular, the important
sheaves on it are locally free, which allows us to study some intersection theory on it
and deduce enumerative applications, including some relative multiple point formulae
enumerating the length-r schemes contained simultaneously in some fibre of X/B and
some fibre of a given map from X to a smooth variety.

Introduction

One of the important facts which make geometry, in particular enumerative geometry, on a smooth
curve X relatively simple is the existence of simple and quite tractable parameter spaces for sub-
schemes of X of given length r, be it the symmetric product Symr(X), which in fact is isomorphic
to the Hilbert scheme Hilbr(X), or the Cartesian product Xr, which parameterizes subschemes in
an (r! : 1) fashion and is sufficient for many applications, especially enumerative ones. One might
say that what is essential about these parameter spaces is that they are enumerative–geometric, i.e.

(i) geometric, which effectively means they admit a morphism to the Hilbert scheme, through
which natural geometric loci may be defined by pullback;

(ii) enumerative, meaning that the relevant cohomology classes and intersection numbers that
may enter into the enumeration of those natural geometric loci are computable.

Mutatis mutandis, similar considerations also hold for families of smooth curves. In [Ran85], the
author studied from this viewpoint enumerative projective geometry for families of smooth curves,
obtaining, inter alia, a general relative multiple point formula. This is a formula enumerating the
length-r subschemes of the fibres of a given family X/B whose image under a given map

f : X → Y

is a single reduced point.
Incongruously, it seems these ideas and results have yet to be extended to singular curves and

families of such. This paper is a step in that direction in the case of nodal curves, i.e. curves with
only ordinary double points as singularities. To a family

π : X → B

of nodal curves and a natural number r we shall associate canonically a family

πr : W r(X/B) → B,
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Z. Ran

which is enumerative–geometric in the above sense and has a number of other favorable properties.
W r(X/B) is functorial in B, i.e. its formation commutes with base-change; in fact, W r(X/B) is a
canonical and explicit blow-up of the Cartesian fibre product Xr/B (more explicitly and directly,
of W r−1(X/B)×BX) in a suitable sheaf of ideals. We will show that W r(X/B) admits a morphism
to the relative Hilbert scheme Hilbr(X/B). In fact, we will subsequently show that W r(X/B) is
isomorphic to the relative flag-Hilbert scheme, which parametrizes chains

z1 ⊂ z2 · · · ⊂ zr

where each zi is a length-i subscheme of a fibre of X/B. The relatively simple relationship of
W r(X/B) and W r−1(X/B), in the form of the natural blow-up map

br : W r(X/B) →W r−1(X/B) ×B X,

makes these spaces more amenable to enumerative computations than the Hilbert scheme itself.
The fact that W r(X/B) admits a morphism to Hilb implies that, for any vector bundle L on X,

W r(X/B) carries a ‘tautological’ bundle (also called a secant bundle) Sr(L), whose fibre at a point
is the restriction of L on the corresponding scheme. We will see that due to the simple relationship of
W r(X/B) and W r−1(X/B), Sr(L) can be analyzed conveniently with exact sequences that relate
it to Sr−1(L). This fact, together with the fact that certain ‘diagonal’ divisors become Cartier
on W r(X/B), enables us to consider some intersection theory on these spaces and apply it to
enumerative questions (although the complete intersection theory of the W r(X/B) is yet to be
worked out).

We note that the W r(X/B), as total spaces, are always singular for r � 3, as soon as the family
X/B has singular fibres. However, when B is smooth, W r(X/B) is normal and Cohen–Macaulay
(cf. Proposition 2.3). In enumerative applications, at least those developed so far, the singular nature
of the W r(X/B) is irrelevant; what matters is that they are enumerative–geometric in the sense
described above.

The remainder of this paper is largely devoted to multiple-point formulae. In the case of a map f
to a Grassmannian, one can define and enumerate a multiple-point scheme Mr(f) as a more-or-
less direct consequence of the existence of a tautological bundle on W r(X/B) (whose fibre at a
point is the space of functions, or sections of a vector bundle, on the corresponding subscheme),
and its relation to the tautological bundles on the Grassmannian. This result can be extended to
the case of a target space which is ‘pseudo-Grassmannian’ in the sense that its diagonal admits a
nice global description as the zero-scheme of a vector bundle. In the case of a map to a general
(smooth) variety Y , multiple-point schemes Mr(f) can still be defined via an embedding of Y
in a pseudo-Grassmannian (e.g. Projective space), and then enumerated by applying a residual-
intersection formula. It can, in fact, be shown that Mr(f) can be defined intrinsically, independently
of the pseudo-Grassmannian embedding (hence even for non-projective or non-algebraic Y ), but that
argument is disproportionately involved considering the paucity of applications and is not presented
here. The version we do present follows a suggestion by the referee.

Perhaps the main question raised and left open by this paper is the full computation of the
subring of the cohomology (or Chow) ring of the W r(X/B) generated by the diagonal divisor
classes [∆k], k = 2, . . . , r, corresponding to the loci where the kth point coincides with one of
the preceding points. This would allow the explicit evaluation of all the multiple-point loci that
we compute, beyond the few fragmentary results given here (generally for r � 3). However, see
[Ran05b, Ran04b] for some recent progress.

The paper is organized as follows. The construction of the parameter spaces W r(X/B) is begun
in § 1 where the case r � 3 is considered in explicit detail. The general case is completed in
§ 2 by an inductive construction, and the relation with the Hilbert scheme is worked out in full.
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Geometry on nodal curves

In § 3 we give enumerative applications, including several multiple-point formulae for maps to
targets of various degrees of generality, and some concrete examples, mainly for maps to P

2 and P
3.

This paper is, in part, a continuation of [Ran04a], where more particular enumerative results
were obtained for r = 2, in effect by an ad hoc version of some of the methods of this paper. We will
work over C. However, we do not see any significant obstruction to extending the results over an
algebraically closed field of arbitrary characteristic.

1. Parameter spaces for pairs and triples

Let

π : X → B

be a flat family of curves over an irreducible variety, with all fibres nodal, i.e. each fibre of π has
at worst ordinary double points as singularities. Typically, the generic fibre will be smooth, but
we do not assume this. Our purpose is to construct a natural and explicit birational modification
W r(X/B) of the relative Cartesian product Xr/B, which will serve as our basic ‘configuration
space’ on which to do enumerative geometry. In this section we begin by considering in explicit
detail the case of r � 3. Subsequently, the construction will proceed by induction.

First, we obviously set

W 1(X/B) = X/B.

Next we consider the easy but significant case r = 2. Note that, at a critical point p of π
(i.e. a singular point of a fibre Xb = π−1(b)), our family is formally equivalent to a subvariety
of A

2 ×B given by

xy = a (1.1)

where x, y are coordinates on A
2 and a is an element of m̂B,b, which may also be viewed as a (formal)

mapping of B to the base (= A
1) of the versal deformation of a node, pulling back the germ at p

of X/B. The analogous statements obtained by replacing ‘formal’ by ‘complex analytic’ also hold,
and it is basically a matter of taste whether one uses the formal or analytic setting. Note that X is
smooth at p if and only if a �∈ m̂2

B,b. If B is a smooth curve, a is either zero or may be taken to be of
the form a = tk, where t is a local parameter on B and k � 1, and k = 1 if and only if X is smooth
at p. The construction we shall undertake will be manifestly local about critical points such as p,
as well as compatible with base-change; therefore, for many purposes it will suffice to consider the
‘universal’ case xy = t.

Now consider the fibre square X2/B and let D ⊂ X2/B be the diagonal. Note that D is a
Cartier divisor at all points (p, p) such that π is smooth (i.e. submersive) at p. On the other hand,
at points (p, p) where p is a critical point, i.e. a fibre singularity, of π, X2/B is given formally or
analytically by

x1y1 = x2y2 = a, (1.2)

and D is given by the two equations

x1 = x2, y1 = y2; (1.3)

moreover, if the total space X is smooth, then X2/B is smooth (over C) except at those points (p, p).
We let

b2 : W 2(X/B) → X2/B

denote the blow-up of D ⊂ X2/B. As D is Cartier away from the singular points (p, p) as above, the
blow-up coincides with the blow-up locally at those points of the ideal (x1 − x2, y1 − y2), cf. (1.3).
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Let
∆2 ⊂W 2(X/B)

be the exceptional divisor, defined by
I∆2 = b∗2(ID)

(this is not to be confused with the exceptional locus, i.e. the locus of all points of W 2(X/B) where
b2 is not an isomorphism locally). Note that the construction of ∆2 ⊂ W 2(X/B) is manifestly
canonical and compatible with base-change. To analyze it, it will suffice to consider the situation
locally along the exceptional locus of b2 where we may use formal or analytic coordinates as above.

In terms of these coordinates, over a neighborhood (formal or analytic) of each (p, p),W 2(X/B) is
covered by two open affines denoted by U2

x,p, U
2
y,p (or just by U2

x , U
2
y if p is understood).

The coordinate ring of U2
x,p is generated over that of X2/B by a symbol [(y2 − y1)//(x2 − x1)]

subject to the evident relation

(x2 − x1)[(y2 − y1)//(x2 − x1)] = y2 − y1.

Note that
x1(x2 − x1)[(y2 − y1)//(x2 − x1)] = x1(y2 − y1) = y2(x1 − x2),

hence we may, and shall, write [(y2 − y1)//(x2 − x1)] as −[y2//x1]; similarly, the same may also
be written as −[y1//x2], and therefore when the index range is understood we may write −[y//x].
Similar comments apply over the other open U2

y,p where a generator [x1//y2] = [x2//y1] = [x//y] is
defined and, of course, on the overlap U2

x,p ∩ U2
y,p we have

[y2//x1][x1//y2] = 1.

Henceforth, we shall denote U2
x,p, U

2
y,p as U([y//x]), U([x//y]), respectively.

Thus the exceptional locus of b2 consists of a P
1 over each point (p, p) as above. Moreover, it is

easy to see that if X is smooth, then so is W 2(X/B): indeed in U([y//x]) (respectively U([x//y])),
a set of coordinates (or a regular system of parameters) is given by x1, x2, y1 (respectively x2, y1, y2).
In fact, if X is a smooth surface then, by (1.2), (p, p) is just a 3-fold ordinary double point and
b2 is one of its two small resolutions. As an aside, it is curious to note that this resolution may be
obtained determinantally, i.e. via (1.2) we obtain locally a mapping

M : X2/B →M1
2×2,

M =
(
x1 x2

y2 y1

)
,

to the space of (2 × 2) matrices of rank � 1 and W 2(X/B) is just obtained by taking the fibre
product of X2/B via M with what is known as the ‘canonical determinantal resolution’ of M1

2×2,
defined by

R1
2×2 = {(A,B) ∈M1

2×2 × P
1 : BA = 0}.

Next, we claim that the natural rational map of X2/B to the Hilbert scheme Hilb2(X/B), assigning
a pair p �= q to the ideal Ip,q < OX , lifts to a morphism, i.e. a regular map

J2 : W 2(X/B) → Hilb2(X/B).

A priori, J2 is just a rational map, and as such it is clearly compatible with the respective natural
maps of W 2(X/B) and Hilb2(X/B) to Sym2(X/B) (see [Ang81] for a general construction of the
map from the Hilbert scheme to the Chow variety). By the projectivity of blow-up morphisms and of
Hilbert schemes, respectively, these maps are proper (even projective); hence by the GAGA principle
it would suffice to check that J2 exists as a holomorphic map (see Remark 1.1 below for a formal
analogue, in arbitrary characteristic, of this argument). Clearly it suffices to check the holomorphic
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nature of J2 locally along the exceptional locus. To this end, it suffices finally to note that, in the
open subset U2

x,p, J2 is given explicitly by sending a point with coordinates (x1, x2, [y2//x1]) to the
ideal

J2(x1, x2, [y2//x1]) = (xy − a, (x− x1)(x− x2), y − y1 + [y2//x1](x− x1)) (1.4)
where, of course, we set

y1 = x2[y1//x2], y2 = x1[y2//x1], a = x1y1 = x2y2 = x1x2[y2//x1].

Indeed, it is elementary that the right-hand side of (1.4) defines an ideal of colength 2 whose
cosupport contains (x1, y1), (x2, y2), and therefore this right-hand side defines a morphism to Hilb
that coincides with J2 generically (e.g. whenever (x1, y1) �= (x2, y2)). This implies our assertion.
The case of U2

y,p is similar.

Remark 1.1. The use of holomorphic coordinates and the GAGA principle to show the regularity
of J2 can be circumvented and replaced by formal coordinates, meaningful in characteristic p, as
follows. First, it is well known and easy to prove that any nodal curve, embedded in P

N by a complete
linear system of sufficiently high degree on each component, yields a smooth (unobstructed) point
of the Hilbert scheme of P

N , and consequently any family of nodal curves is obtained by pullback
from a family with smooth base. Since J2 (as rational map), its source and target are all base-change
compatible, it suffices to check the regularity of J2 in the case of a smooth base B. IfB is smooth then
W 2(X/B) is normal by Corollary 2.2.1 below. On the other hand, formal-analytic considerations as
above show that J2 exists as a continuous, formally regular map, in the sense that for any point w
in W = W 2(X/B) there corresponds a well-defined point h = J2(w) ∈ H =Hilb2(X/B) and

J∗
2 (ÔH,h) ⊆ ÔW,w,

where Ô denotes formal completion. Then, for any g ∈ OH,h, J∗
2 (g) is a rational function on W

that is also in ÔW,w, and by a well-known property of normal varieties (cf. [Mum88, ch. 3, § 9]) it
follows that J∗

2 (g) ∈ OH,h. Hence J2 is a morphism.
Yet another approach to proving the regularity of J2, suggested by an anonymous correspondent,

is to note that J2 corresponds to the subscheme Γ3 ⊂W 2 ×B X as in (1.5) below and the regularity
of J2 is equivalent to the flatness of Γ3 over W 2. By the formal criterion for flatness, this flatness
may be checked by passing to formal completions where we have the formal coordinates xi, yj as
above, and the previous computations as in (1.4) prove flatness.

Now, we study in detail the case r = 3. Let

Γ3 ⊂W 2 ×B X

denote the pullback of the tautological subscheme of Hilb2(X/B) via the map J2. Note the scheme-
theoretic equality

Γ3 = Γ3
1 ∪ Γ3

2 (1.5)
where

Γ3
i ⊂W 2 ×B X

is the graph of the natural projection W 2 → X: indeed this follows easily from the facts that
the left-hand side of (1.5) is flat over W 2 and contains the right-hand side, the right-hand side is
reduced, and both sides agree generically over W 2. In particular, we see that Γ3 is reduced. We
define

W 3 = W 3(X/B) := BΓ3(W 2(X/B) ×B X),
i.e. the blow-up of W 2 ×B X in Γ3, with natural map

b3 : W 3 →W 2 ×B X.
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Clearly W 3 is reduced. Let ∆3 ⊂ W 3 be the natural exceptional (Cartier) divisor supported on
b−1
3 (Γ3), with ideal

I∆3 = b∗3(IΓ3),

and ∆3
i = b−1

3 (Γ3
i ), i = 1, 2, its components (as Weil, in fact non-Cartier divisors). From the com-

putations below it will follow that all these divisors are reduced.
To analyze this construction, we work over U([y//x]). There, note that the expression (y3 − y1)

(x3 − x2) viewed, for example, as a function on

V := U([y//x]) ×B U

is divisible by x2; indeed, setting

R = y2 − [y//x]x3 − y3 + y1,

it is easy to check that x2R = (y3−y1)(x3−x2). We claim next that the ideal of Γ3 in V is generated
by (x3 −x1)(x3 −x2) and R. Indeed, the subscheme Γ′ defined by the latter projects isomorphically
to the subscheme of the ‘x-axis’ defined by (x3 − x1)(x3 − x2); hence, it is flat over W 2, and of
course Γ3 is also flat over W 2. Since Γ3 and Γ′ clearly coincide generically over W 2, they coincide,
as claimed.

Thus we see that b−1
3 (V ) may be realized in the standard way as a subscheme of V × P

1 and
as such is covered by the two standard opens pulled back from P

1. One of these is the domain of
regularity of the rational function

−[y//x2] :=
R

(x3 − x1)(x3 − x2)
,

and it is easy to check that, as rational functions,

[y//x2] =
yi

xjxk

whenever {i, j, k} = {1, 2, 3}, justifying the notation; we denote this open by U([y//x2]).
Note, trivially, that the regularity of [y//x2] implies the regularity of [yi//xj ],∀i, j, so U([y//x2])
indeed lies over U([x//y]). On the other standard open of V × P

1 the function

[x2//y] =
xjxk

yi

is regular; however, its domain of regularity does not lie entirely over U([y//x]) (nor, for that matter,
entirely over U([x//y])).

Analogous comments apply to the part of W 3 over U([x//y]) which gives rise to symbols
[x//y2], [y2//x]. Setting

U([y2//x], [x2//y]) := U([y2//x]) ∩ U([x2//y])

i.e. the common regularity domain of [y2//x] and [x2//y], note by construction that the regularity
domains

U([y//x2]), U([y2//x], [x2//y]), U([x//y2])

already cover W 3(X/B).
We claim next that the natural rational map J3 of W 3(X/B) to the relative Hilbert scheme

Hilb3(X/B) is a morphism. Using again the projectivity of W 3(X/B) and Hilb3(X/B) over Sym3

(X/B) and the GAGA principle, it suffices to check that J3 extends as a holomorphic map
(the ‘cycle map’ Hilb3(X/B) → Sym3(X/B) is constructed in great generality by Angéniol [Ang81]
or see [Kol96]); alternatively, one could argue as in Remark 1.1. The extension is a local assertion
and is, moreover, either obvious or a consequence of the analogous result for J2, except at the
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points of W 3 lying over (p, p, p) ∈ X3/B, so it suffices to check it on opens

U([y//x2]), U([y2//x], [x2//y]), U([x//y2])

as above. Over U([y//x2]), it is easy to see that the expression

(y − y1)(x− x2)(x− x3),

considered as a function on W 3 ×B X, i.e. taken modulo xy − x1y1, is divisible by x2x3.
Explicitly, setting

R = ([y2//x3] − [y//x2])x2 + ([y1//x3] + [y1//x2])x+ y − (y1 + y2 + y3)

(recall that [y2//x3] = x1[y//x2] etc.), we have

x2x3R ≡ (y − y1)(x− x2)(x− x3) mod xy − x1y1.

Then, on U([y//x2]), J3 takes a point with coordinates xi, yj to the ideal

J3 = ((x− x1)(x− x2)(x− x3), R, xy − x1y1).

Since the latter ideal evidently has colength 3 over W 3, this makes J3 a morphism over U([y//x2]).
The case of U([x//y2]) is similar. Over U([y2//x], [x2/y]), it is elementary to check as above that,
always modulo xy− x1y1, (y − y1)(y − y2)(x− x3) is divisible by x3 and (x− x1)(x− x2)(y − y3) is
divisible by y3, and the ideal

J3 =
(

(y − y1)(y − y2)(x− x3)
x3

,
(x− x1)(x− x2)(y − y3)

y3
, xy − x1y1

)

has colength 3 over W 3 and yields the map to Hilb (cf. [Ran05c]).

2. Parameter spaces for r-tuples

In this section we will give the construction of our parameter spaces W r(X/B) for general r,
proceeding by induction. It is convenient to summarize the construction and its main properties as
follows.

Theorem 2.1. Define

br : W r(X/B) →W r−1(X/B) ×B X (2.1)
inductively as the blow-up of the canonical subscheme

Γr ⊂W r−1(X/B) ×B X (2.2)

corresponding to the morphism

Jr−1 : W r−1(X/B) → Hilbr−1(X/B),

and let ∆r = b−1
r (Γr) be the exceptional divisor and

wr : W r(X/B) → Xr/B (2.3)

be the natural map. Then:

(i) W r(X/B) is reduced and is irreducible if X is; Γr is reduced and has r − 1 irreducible com-
ponents each isomorphic to W r−1; as functor of the family X/B, W r(X/B) commutes with
base-change;

(ii) the natural rational map

Jr : W r(X/B) → Hilbr(X/B)
is a morphism;
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(iii) for each node p of X/B, an analytic or formal neighborhood N of w−1
r (p, . . . , p) in W r =

W r(X/B) carries meromorphic or formal-rational functions

[yi//xr−i] = [yI//xJ ], [xi//yr−i] = [xI//yJ ] (2.4)

where I ⊂ [1, r] is any index set of cardinality i and complement J , and the domains of
regularity

U([y//xr−1]), . . . , U([yi//xr−i], [xr−i+1//yi−1]), . . . , U([x//yr−1])
form a covering of N ;

(iv) setting

P r
i =

i∏
j=1

(y − yj)
r∏

j=i+1

(x− xj) ∈ OW r [x, y]/(xy − x1y1), (2.5)

over U([yi//xr−i]), P r
i is divisible by xi+1 · · · xr and over U([xr−i//yi]), P r

i is divisible by
y1 · · · yi; over U([yi//xr−i], [xr−i+1//yi−1]), the map Jr is given by

Jr =
(
xy − x1y1,

P r
i

xi+1 · · · xr
,

P r
i−1

y1 · · · yi−1

)
; (2.6)

(v) W r+1 is covered by open sets over each of which either

(a) [yi//xr+1−i] is regular and P r
i−1(xr+1, yr+1)/(y1 · · · yi−1) is an equation for ∆r+1 (called an

‘x-based equation’); or
(b) [xr−i+1//yi]) is regular and P r

i (xr+1, yr+1)/(xi+1 · · · xr) is an equation for ∆r+1 (called a
‘y-based equation’).

Proof. For r � 3 all the statements have already been proven, so we may assume they hold for r−1.
First (i) is clear from the fact that W r is an iterated blow-up of the Cartesian product Xr/B, while
Γr coincides with the union of the graphs (over B) of the coordinate projections pi : W r−1 → X
(the proof is as in the r = 3 case). For the rest, we may, as before, work over

U([yi//xr−1−i], [xr−i//yi−1]) ⊂W r−1,

so in a suitable open set in W r−1 ×B X the ideal of Γr is generated by

P r−1
i

xi+1 · · · xr−1−i
,

P r−1
i−1

y1 · · · yi−1

(where we plug in (xr, yr) for (x, y)). Thus the blow-up (in the part under consideration) is covered
by two standard opens. In the first we have the regular function

P r−1
i

xi+1 · · · xr−1−i

/
P r−1

i−1

y1 · · · yi−1
=
yr − yi

xr − xi

y1 · · · yi−1

xi · · · xr−1−i

and it is easy to see as before that this coincides as rational function with

− y1 · · · yi

xi+1 · · · xr

and, for that matter, with any −yI/xJ as in (iii), so we may denote it by

−[yi//xr−i].

It is also easy to see as before that this standard open coincides with the regularity domain of this
function, so we denote it by U([yi//xr−i]). Similarly, we get a rational function [xr−i//yi].

Now we can prove (iii). Given z ∈ W r such that wr(z) is close to (p, . . . , p), we may assume z
projects to

z′ ∈ U([yi//xr−1−i], [xr−i//yi−1]) ⊂W r−1,
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and, in particular,
y1 · · · yiyr

xi+1 · · · xr−1
= [yi+1//xr−1−i],

xi · · · xr−1xr

y1 · · · yi−1
= [xr−i+1//yi−1]

is regular at z. As we have seen, either

[yi//xr−i] or [xr−i//yi]

are regular at z. Therefore, either

z ∈ U([yi//xr−i], [xr−i+1//yi−1])

or

z ∈ U([xr−i//yi], [yi+1//xr−1−i]).

Thus (iii) is proved.
We will now prove (iv), which of course implies (ii) (our purpose in stating (ii) separately was

rhetorical). To begin with, note that the question is local (on W r, a fortiori on X/B) so we may
assume X/B is the versal family xy = t over B = A

1 (actually we just need that B is integral).
Now note the following claim.

Claim . (a) Over U([yi//xr−i]), P r
i is divisible by xi+1 · · · xr.

(b) Over U([xr−i//yi]), P r
i is divisible by y1 · · · yi.

Proof. We prove (a) as the proof of (b) is similar. Now P r
i (a polynomial in x, y subject to the

relation xy = x1y1) is a sum of terms of the form

Mi−a(y)Mr−i−b(x)yaxb

where the M are monomials in distinct variables y1, . . . , yi, xi+1, . . . , xr of the indicated degrees.
If a � b, we use the relations

xy = xjyj, ∀j
to rewrite this term as

xb−ay1 · · · yiMr−i−b+a(x),

which is clearly divisible as claimed. If b � a this term can be rewritten as

ya−bMi−a+b(y)xi+1 · · · xr,

which is even more clearly divisible as claimed. This proves the claim.

Note that the above calculation shows P r
i /xi+1 · · · xr and P r

i−1/y1 · · · yi−1 can be written respec-
tively as

yi + f1(x) + f2(y),

xr+1−i + g1(x) + g2(y)

where f1, f2 have degree � r − i and g1, g2 have degree � i − 1, and all have regular functions as
coefficients. Following the proof of [Ran05c, Theorem 2], we see that for Jr as defined to yield a
morphism

Jr : W r(X/B) → Hilbr(X/B)

is equivalent to certain identities among the coefficients of the fi and gj . Since Jr clearly coincides
generically with the evident rational map, these identities hold generically, and hence they
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hold period, so Jr is indeed a lifting of the evident rational map as a morphism to Hilb.
This completes the proof of (iv). Finally, in light of the fact that

P r
i−1(xr+1, yr+1)
y1 · · · yi−1

/
P r

i (xr+1, yr+1)
xi+1 · · · xr

= [xr−i+1//yi],

part (v) follows directly from (iv) and the definition of blow-up (the two opens in question are the
standard affine opens of P

1 over U([yi//xr−i], [xr−i+1//yi−1]). This completes the proof of
Theorem 2.1.

A posteriori, we can identify W r(X/B) with the flag-Hilbert scheme studied in [Ran05c]: recall
that the flag-Hilbert scheme fHilbm(X/B) parametrizes OB-chains of ideals

Im < · · · < I1 < OX

where OX/Ij is OB-locally free of length j. Note that the ideal

aj = Ann(Ij−1/Ij)

is OB-locally free of colength 1, giving rise to a B-map fHilbm(X/B) → X. Putting these together,
we get a map

fHilbm(X/B) → Xm/B.

Note that the various maps Jj together yield a morphism

ηr : W r(X/B) → fHilbr(X/B),

which evidently commutes with the natural maps of its source and target to Xr/B. We showed
in [Ran05c] that any length-m subscheme of a fibre of X/B supported at a fibre node with local
coordinates as above is either Qm

i = (xm−1+1, yi) or Im
i (a) = (yi + axm−i), a ∈ C

∗, and a is part of
a local coordinate system on Hilbm(X/B).

Proposition 2.2. The map ηr is an isomorphism.

Proof. The proof that follows uses the detailed, local-coordinate description of Hilb given
in [Ran05c]. Clearly, both W r(X/B) and fHilbr(X/B) are proper, even projective, over the fibre
powerXr/B, and fHilbr(X/B) is reduced by [Ran05c, Theorem 8]. Therefore, ηr is scheme-theoretically
surjective. To show that ηr is an isomorphism, it suffices by an obvious induction to prove that its
fibre over a flag supported at a point p that is a relative node reduces (scheme-theoretically) to a
point. By induction, we may assume ηr−1 is an isomorphism and, in particular, fHilbr(X/B) is a
subscheme of W r−1 ×B Hilbr(X/B). It then suffices to prove that a fibre F of the natural map

ζr : W r →W r−1 ×B Hilbr(X/B)

is a point. Note that, because fHilbr(X/B) admits an rth projection map to X, F is contained in
a fibre of the natural map

br : W r →W r−1 ×B X.

Let w ∈ W r be ‘supported’ at a fibre node p (i.e. wr(w) = (p, . . . , p) or equivalently, Jr(w) is
supported at p) and write

ζr(w) = (w′, z).
Note also that, by construction, if

w′ ∈ U([yi//xr−1−i], [xr−i//yi−1])

then a fibre of the map br is already coordinatized locally by either

[yi//xr−i] or [xr−i//yi].
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Assume first that w ∈ U([yi//xr−i]). Then by [Ran05c, Theorem 2], and the computations in the
proof of Theorem 2.1(iv) it is clear that z, the point in Hilbr corresponding to w, is either

Ir
i (a) with a = [yi//xr−i]

if a �= 0 (note that a is the coefficient of xr−i in P r
i /xi+1 · · · xr, and it has already been noted that,

on Hilbr, a is part of a coordinate system), or Qr
i if

[yi//xr−i] = [xr−i+1//yi−1] = 0.

Analogous conclusions hold if w ∈ U([xr−i//yi]). In either case, the computations show that
[yi//xr−i] or [xr−i//yi] can be read off from z ∈ Hilbr; consequently, ζr is scheme-theoretically
injective and hence so is ηr.

Corollary 2.2.1. If X/B is flat and B is integral, W r(X/B) → B is a flat, locally complete
intersection morphism. In particular, if B is Cohen–Macaulay or a locally complete intersection, so
is W r(X/B).

Proof. It suffices to prove this locally on X. But locally, any X/B is induced by base-change from
the versal family X0/B0 ⊂ A

2 × A
1/A1 given by xy = t. For this family, the analogous assertions

for the flag Hilbert scheme were proven in [Ran05c, Theorem 8], and by base-change this implies
the general case.

Unfortunately, W r is never smooth if r � 3, whenever X/B has a singular fibre, but we still
have the following proposition.

Proposition 2.3. If B is smooth and X/B is flat, then W r(X/B) is normal and Cohen–Macaulay.

Proof. We have essentially seen this already in [Ran05c] in the case of the flag-Hilbert scheme, but
will give another proof for W r. We first show inductively that W r is R1. For r = 1 this is clear
(indeed W 1 = X is smooth or has at most rational double points). Inductively, if W r−1 is R1 then
clearly so is W r−1 ×B X. Moreover, the blow-up map

br : W r →W r−1 ×B X

has at most P
1 fibres and has those only over a codimension-3 locus. Hence W r is R1.

Now one can see either by applying Corollary 2.2.1 above or imitating the foregoing proof that
W r is Cohen–Macaulay and hence S2. Hence W r is normal.

3. Enumerative results

Now let
Γr+1 ⊂W r ×B X

be the ‘tautological divisor’ (i.e. the pullback of universal divisor over the Hilbert scheme via Jr).
For any sheaf L on X, set

Sr(L) = pW r∗(p∗X(L) ⊗OΓr+1). (3.1)

If L is locally free, Sr(L) is clearly locally free of rank r.rk(L), and we call it the rth secant bundle
associated to L. It was introduced in the smooth case by Schwarzenberger [Sch64]. Because Γr+1 is
the pullback of the universal divisor on Hilbr(X/B) ×B X, Sr(L) is the pullback of the analogous
bundle on Hilbr(X/B). However, the recursive structure of W r makes Sr(L) easier to compute with,
as we proceed to show.

To start with, note trivially that, by flatness of Γr+1/W r, Sr is an exact functor from coherent
(respectively locally free coherent) sheaves on X to coherent (respectively locally free coherent)

1201

https://doi.org/10.1112/S0010437X05001466 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001466


Z. Ran

sheaves on W r. Also, if V is a vector space and φ : V ⊗ OX → L is a map, φ lifts naturally to a
map V ⊗OW r×BX → p∗X(L), whence a map

φr : V ⊗OW r → Sr(L),

and clearly φr is surjective if φ is. Next, note that W r(X/B) is not symmetric with respect to
permuting the factors, but still there are projections ‘to the first s factors’, for all s � r:

γr,s : W r →W s.

We also set
γr = γr,r−1.

Also, denote by
∆r ⊂W r

the exceptional divisor of br, i.e. b∗r(Γr), which is by definition of blow-up a Cartier divisor. As in
Theorem 2.1, we have for any r that Γr splits up as

Γr =
r−1⋃
i=1

Γr
i

with each Γr
i , being the graph of the ith coordinate projection to X, isomorphic to W r−1 and,

in particular, reduced always and irreducible if X is. Similarly, ∆r splits

∆r =
r−1⋃
i−1

∆r
i

with each ∆r
i reduced and birational to Γr

i (and, in general, a non-Cartier divisor on W r).

Proposition 3.1. Let pi : W r(X/B) → X denote the ith natural projection for 1 � i � r.
There is an exact sequence of vector bundles on W r(X/B)

0 → p∗r(L) ⊗O(−∆r) → Sr(L) → γr∗(Sr−1(L)) → 0. (3.2)

Proof. There is clearly a natural surjection

Sr(L) → γr∗(Sr−1(L))

whose kernel K is locally free of rank rk(L) and, moreover, admits a generically injective map

k : K → p∗r(L).

Clearly, k vanishes at each generic point of ∆r, and hence factors through p∗r(L) ⊗ O(−∆r). It is
easy to see that the factored map

K → p∗r(L) ⊗O(−∆r)
is an isomorphism in codimension 1 between locally free sheaves of the same rank, and hence is an
isomorphism since W r is pure-dimensional.

Thus Sr(L) has a natural filtration with quotients

(γr,s)∗(p∗s(L) ⊗O(−∆s)),

and consequently we have the following corollary.

Corollary 3.2. The total Chern class c(Sr(L)) satisfies

c(Sr(L)) =
r∏

i=1

c(Li(−(γr,i)∗∆i))
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where Li denotes (the class of) p∗i (L) and ∆1 = 0. In particular, if L is invertible, we have

c(Sr(L)) =
r∏

i=1

(1 + Li − (γr,i)∗∆i). (3.3)

After this was written, the author became aware of the work of Lehn [Leh99], which computes
the Chern classes of the analogue of the Sr(L) over Hilbert schemes of smooth surfaces, in terms of
Nakajima’s theory of the cohomology of these schemes. See [Ran05b] for a further discussion of the
connection and for a verification that Corollary 3.2 is consistent with Lehn’s formula.

In a nutshell, it is the possibility of results like the foregoing corollary that make the spaces W r

amenable to enumerative computations. As a first application, we use this result to give a multiple-
point formula for maps to a Grassmannian. Let X/B be as above and

f : X → G

be a map to a Grassmannian G = G(k,m + k) = G(k, V ), with tautological sub- and quotient
bundles SG, QG, respectively. Set

SX = f∗SG, QX = f∗QG.

Note that on G×W r(X/B) we have a natural map

ψ : p∗G(SG) → p∗WSr(QX)

which is the composite of the obvious inclusion p∗G(SG) ⊂ V ⊗ O with the natural surjection
φr : V ⊗ O → p∗WSr(QX) deduced from the tautological quotient φ : V ⊗ O → QX .
Another significant way to obtain ψ is as follows. Consider the following diagram.

G× Γr+1

1G×pWr

��

1G×pX �� G×X
1G×f �� G×G

G×W r

(3.4)

The equation ψ0 of the diagonal in G×G is a section of Hom(p∗2SG, p
∗
1SG); by definition, we have

pW r∗(p∗Xf
∗(QG)) = Sr(QX).

Then the image of ψ0 under pulling back to G× Γr+1 and pushing down to G×W r is the map ψ.
Thus, ψ vanishes at a point (w, g) if and only if all the elements of the subspace g ⊂ V vanish in
QX ⊗ OJr(w); in other words, if and only if f maps the scheme Jr(w) corresponding to w to the
reduced point scheme g. We call the latter locus M+

r (f); by definition, it is a subscheme of G×W r.
We may replace M+

r (f) by a subscheme of W r as follows. Define a bundle Sr,1(L), for any L, by
the exact sequence

0 → Sr,1(L) → Sr(L) α→ (γr,1)∗(L) → 0.
Then clearly the zero-scheme of the composite map

α ◦ ψ : p∗G(SG) → p∗W (γr,1)∗(QX)

is just the graph R of the composite

f ◦ p1 : W r → G.

Thus, M+
r (f) is a subscheme of R and, as such, it is the zero-scheme of a map p∗G(SG) → p∗WSr,1(Q).

Identifying R with W r by projection, we see that M+
r (f) projects isomorphically to its image Mr(f)
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in W r and Mr(f) is the zero-scheme of an analogous map

p∗1(SX) → Sr,1(QX).

Then we have shown the following.

Theorem 3.3. In the above situation, M+
r (f) and Mr(f) have a natural scheme structure as zero-

scheme of vector bundle maps. When M+
r (f) and Mr(f) have their expected codimension, i.e.

codim(M+
r (f),W r ×G) = rkm,

or equivalently

codim(Mr(f),W r) = (r − 1)km,
then the cohomology (or rational equivalence) class of Mr(f) on W is

[Mr(f)] = c(r−1)km(p∗1(S
∗
X) ⊗ Sr,1(QX)). (3.5)

In the case when G = P
m = G(m,m+ 1), formula (3.5) simplifies somewhat. Let us write

Li = (f ◦ pi)∗(OG(1)), M1 = (f ◦ p1)∗(SX).

Then we get

[Mr(f)] =
r∏

i=2

cm(M∗
1 ⊗ (Li − (γr,i)∗(∆i))) =

r∏
i=2

( m∑
j=0

Lj
1(Li − (γr,i)∗(∆i))m−j

)
. (3.6)

Now consider the case m = 2, r = 3. Then the right-hand side of (3.5) yields

(L2
1 + L1(L2 − ∆2) + (L2 − ∆2)2)(L2

1 + L1(L3 − ∆3) + (L3 − ∆3)2). (3.7)

We want to compute the image of this on X = W 1. To this end we must first compute the image
on the second factor on W 2 via γ3,2. This computation follows formally from the following lemma.

Lemma 3.4. Set

f i
0 = fibre of W i(X/B) over 0 ∈ B,
d = deg(f1

0 ) = f1
0 .L, b = π∗L2.

Then we have

(i) γ3,2
∗ (L2

1) = 0,
(ii) γ3,2

∗ (L1L3) = dL1,

(iii) γ3,2
∗ (L1∆3) = 2L1,

(iv) γ3,2
∗ (L2

3) = π∗2(b),
(v) γ3,2

∗ (L3∆3) = L1 + L2,

(vi) γ3,2
∗ ((∆3)2) = −K1 −K2 + 2∆2,

where Ki = p∗i (KX/B).

Proof. Assertions (i), (ii) and (iv) are obvious. Assertions (iii) and (v) are immediate from the
fact that ∆3 has two components mapping birationally to W 2. To prove (vi) we may work off
the (codimension-2) exceptional locus of the natural birational map

W 2 → X2/B

and its inverse image in W 3; on this open set, ∆3 consists of two components ∆3
1,∆

3
2, each a pullback

of the diagonal via the p13, p23 projections, which meet in a locus projecting isomorphically to
∆2 ⊂W 2.
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Remark 3.4.1. Actually, analogues of formulae (i)–(vi) hold for any γr,r−1, r � 3, in place of γ3,2,
where the analogue of (vi) is

(γr,r−1)∗((∆r)2) = −
r−1∑
i=1

Ki + 2
r−1∑
i=2

(γr−1,i)∗(∆i)

where we set γr−1,r−1 equal to the identity. All of these formulae are but the tip of a sizable iceberg,
that is explored more deeply in [Ran04b].

Given the formulae (i)–(vi) in Lemma 3.4, an elementary formal calculation yields

γ3,2
∗ ((L2

1 + L1(L3 − ∆3) + (L3 − ∆3)2)) = (d− 4)L1 − 2L2 −K1 −K2 + 2∆2 + π∗2(b).

Therefore, by the projection formula the image of (3.7) via γ3,2 is

(L2
1 + L1(L2 − ∆2) + (L2 − ∆2)2) · ((d− 4)L1 − 2L2 −K1 −K2 + 2∆2 + π∗2(b)). (3.8)

In the computation of the product in (3.8) and its image in X, the main point is the following.
Observe that the normal bundle to ∆2 in W 2 is just −b∗2K1 + E where

b2 : W 2 → X2/B

is the natural blow-up map and E its exceptional locus, which is a divisor on ∆2. Indeed, the
restriction of b2 over the diagonal

∆X = X ⊂ X2/B

is just the blow-up of the critical locus of π, which we denote by σ (cf. [Ran04a]). Therefore,

γ2,1
∗ (∆2)2 = −K,

γ2,1
∗ (∆2)3 = γ2,1

∗ (K − E)2 = K2 − σ.

From these facts the computation of (3.8) and its image in X are routine.
Now by construction M3(f) parametrizes filtered length-3 schemes contained in fibres of f ,

and the filtration induces an ordering on the support. Therefore, the image on X of M3(f) is
geometrically twice the locus of points contained in a relative triple point of f , while the image
on B of the same is 6=3! times the locus of fibres containing a triple point. Thus writing out the
product yields the following result. As a matter of terminology, we will say that a locus Z has
‘virtual class z’ if whenever Z has its expected dimension, its cohomology or rational equivalence
class is given by z.

Theorem 3.5. Let π : X → B be a family of connected nodal curves of arithmetic genus g and
f : X → P

2 a morphism. Then the virtual class on X of the locus of points contained in a relative
triple point of f is

N3,X(f) = 1
2((3d2 − 18d + 24 + 6g − 6)L2 + (18 − 3d)KL+ 4K2 − 2σ); (3.9)

the locus in B of fibres containing a relative triple point of f has virtual class

N3,B(f) = 1
3π∗(N3,X(f)).

Here L = f∗O(1),K = ωX/B , d = deg(f(π−1(pt.))) and σ is the class of critical locus of f .

Let us finally specialize to the case where X/B is the normalization of the pencil (i.e. one-
parameter family) of rational curves in P

2 through 3d − 2 assigned generic points. In this case all
the ingredients of (3.9) have been computed recursively before, e.g. in [Ran99a, Ran99b, Ran01a,
Ran01b]; the results needed from these papers are summarized in [Ran05a]. We have L2 = Nd, the
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number of rational curves of degree d through 3d− 1 generic points, and also

K = −2s1 −mdf
1
0 +R1

(cf. [Ran05a, (11)]), where s1 is a section of X/B contracted by f to a point (viz. one of the base
points of the pencil), R1 is the sum of all fibre components disjoint from s1 and md = −s21 is given
by [Ran05a, (5)]. Hence

L.K = −dmd + L.R1,K
2 = −σ

(cf. [Ran05a, (14),(15)]) and σ coincides with the number of reducible fibres of X/B, also recursively
computed. We conclude with the following corollary.

Corollary 3.6. The number of rational curves of degree d in P
2 having a triple point and going

through 3d− 2 generic points is (cf. [Ran04a])

Nd,3 = 1
2((d2 − 6d+ 10)Nd + (d− 6)(dmd − L.R1) − 2σ). (3.10)

Example 3.6.1. N4,3 = 60, a number first computed by Zeuthen and rederived with modern methods
by Kleiman and Piene [KP99].1 See [KP99, Ran04a] for some similar examples.

When f is a map to P
m, one is interested classically not only in the relative multiple-point loci

of f but also in its relative multisecant loci, that is the locus of length-r subschemes of fibres whose
f -image is contained in a linear P

k. This locus can be enumerated by the above results as the r-fold
locus of the natural projection

IX → G(k,m) := G

where IX is the incidence variety, i.e.

IX = {(x,L) : f(x) ∈ L} ⊂ X ×G.

However, it is simpler and more direct to enumerate this locus as follows. Set

Secr
k(f) = {(z, L) : f(sch(z)) ⊂ L as schemes} ⊂W r(X/B) ×G (3.11)

where sch(z) is the subscheme of X corresponding to z. Clearly Secr
k(f) is just the zero-scheme of

the natural map
p∗2(Q

∗
G) → Sr(L)

where QG is the tautological quotient bundle (of rank (m− k)) on G and L = f∗(O(1)). Thus we
conclude the following.

Theorem 3.7. For a family of nodal curves X/B and a morphism

f : X → P
m,

the virtual locus on W r(X/B) ×G of relatively r-secant k-planes to X/B in P
m is given by

[Secr
k(f)] = cr(m−k)(p

∗
1(S

r(L)) ⊗ p∗2(QG)). (3.12)

If the right-hand side of (3.12) is nonzero (respectively not representable by an effective cycle),
then the locus of relative r-secant k-planes is nonempty (respectively of dimension larger than the
expected, viz. dim(B) + r + (k + r + 2)(m− k)).

Note that the projection of Secr
k(f) to W r(X/B) coincides with the locus where the natural

map
H0(OPm(1)) ⊗OW r(X/B) → Sr(L)

has rank at most k + 1, and consequently it can be enumerated directly via Porteous’ formula [F].

1I am grateful to Steve Kleiman for this reference.
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Now Theorem 3.3 above ‘repackages’ the multiple-point locus M+
r (f) in a certain way, and it is

possible to repackage it differently; the alternative repackaging is useful, notably, for recursion, and
also allows some more general ‘pseudo Grassmannian’ target spaces. We proceed to define these.

Let us say that a smooth m-dimensional variety G is pseudo-Grassmannian (with bundle E and
section ψ, if these need be specified) if E is a rank-m vector bundle on G×G and the diagonal

∆G ⊂ G×G

is the zero-scheme of the section ψ of E.

Examples.

(i) Clearly a Grassmannian is pseudo-Grassmannian, with

E = p∗1S
∗ ⊗ p∗2Q

where S and Q are respectively the tautological sub- and quotient bundles.

(ii) Trivially, any curve is pseudo-Grassmannian.

(iii) Generally, a product of pseudo-Grassmannians is pseudo-Grassmannian, therefore any prod-
uct of curves and Grassmannians is pseudo-Grassmannian. More generally, a fibre product of
Grassmannian bundles over a pseudo-Grassmannian is pseudo-Grassmannian.2

Now suppose we have a morphism f : X → G to a pseudo-Grassmannian with bundle E and
section ψ. Then we get a diagram as in (3.4), and pulling back and pushing forward E,ψ we get a
bundle Er with section ψr on G ×W r, and we define M+

r (f) as the zero scheme of ψr. As in the
proof of Proposition 3.1, we have an exact sequence

0 → (pG × (f ◦ pr))∗(E)(−∆r) → Er → (γr,r−1)∗Er−1 → 0.

Consequently, M+
r (f) is a subscheme of γr,r−1∗(M+

r−1(f)) and as such is a zero scheme of (pG × (f ◦
pr))∗(E)(−∆r). As in the Grassmannian case, the fact that M+

r (f) is contained in (γr,1)∗M+
1 (f),

where M+
1 (f) is just the graph of f , shows that M+

r (f) is isomorphic to its image Mr(f) on W r

and that, as a subscheme of Mr−1(f), Mr(f) is a zero-scheme of ((f ◦ p1) × (f ◦ pr))∗(E)(−∆r).

Theorem 3.3 bis. In the situation of Theorem 3.3, assume only that G is pseudo-Grassmannian
with bundle E. Then:

(i) Mr(f) is a zero-scheme on W r of

r⊕
i=2

((f ◦ p1) × (f ◦ pi))∗(E)(−(γr,i)∗∆i); (3.13)

(ii) if B is irreducible, if Mr(f) is locally defined by (r − 1)m equations on W r(X/B) so hence is
purely at least (dim(B) + r − (r − 1)m)-dimensional and if equality holds, then

[Mr(f)] =
r∏

i=2

((f ◦ p1) × (f ◦ pi))∗(cm(E(−(γr,i)∗∆i))). (3.14)

Proof. (i) has been proved above. In (ii), the assertion about the number of equations is clear
from the definition. As for the assertion about the cohomology class, working by induction on r,
it is clear from the Fulton–MacPherson residual-intersection formula [F] provided that both Mr

and Mr−1 have their expected dimensions. In the general case, let C1, . . . , Ck be the irreducible

2Curiously (?), the author is unable to exhibit a single smooth variety that is (provably) not pseudo-Grassmannian.
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components of Mr−1. By Fulton’s theory, there is a cycle Ui of dimension dim(B)+ r−1− (r−2)m
on each Ci such that ∑

[Ui] = mr−1.

Since Mr is locally defined by m equations over (γr)−1(Mr−1) but still has its expected dimension,
it follows that the contribution of each oversize component Ci to Mr is empty, and in particular

(γr)∗(Ui).µr(f) = 0.

Therefore, these oversize components contribute nothing to either Mr or mr, so (3.14) still holds.

Although in most classical applications the target is in fact pseudo-Grassmannian, it is worth
noting that Theorem 3.3 bis can be extended to mappings where the target is an arbitrary smooth
m-dimensional variety Y embedded in a pseudo-Grassmannian G. Note that any projective variety
admits such an embedding (e.g. with G a projective space). Thus, let

f : X → Y

be a mapping to a smooth variety and fix an embedding

Y ⊂ G

in a pseudo-Grassmannian with bundle E. Of course, the diagonal ∆Y ⊂ Y × Y is a zero-scheme,
albeit not of the expected dimension, of E ⊗OY ×Y . Let f ′ : X → G be the induced map. We set

Mr(f) = Mr(f ′).

In fact, we will show that Mr(f) depends only on f and not the embedding Y ⊂ G. As noted above,
as a subscheme of (γr,r−1)−1(Mr−1(f)), Mr(f) is a zero-scheme of a section of ((f ′ ◦ p1) × (f ′ ◦
pr))∗(E)(−∆r) induced by a section ψ of E whose zero scheme is ∆G. The same section yields a
section of ((f ′ ◦ p1) × (f ′ ◦ pr))∗(E), whose zero-scheme consists of ∆r plus

((f ◦ p1) × (f ◦ pr))∗(∆G ∩ Y × Y ) = ((f ◦ p1) × (f ◦ pr))∗(∆Y ).

Put another way, Mr(f) is the residual scheme to ∆r in ((f ◦ p1)× (f ◦ pr))∗(∆Y ). This first shows
that Mr(f) is independent of the choice of embedding Y ⊂ G. Next, it allows us to compute Mr(f)
using residual-intersection theory. To that end, set for k � 2,

µk(f) = ((f ◦ p1) × (f ◦ pk))∗(∆Y ) − ∆k

{
(f ◦ p1)∗(c(TY ))

1 + ∆k

}
m−1

. (3.15)

Also let

mr(f) =
r∏

k=2

(γr,k)∗(µk(f)) (3.16)

where
γr,k : W r(X/B) → W k(X/B)

is the natural map. The residual intersection formula of [Ful84, §9.2] yields that, whenever Mr(f)
has the expected codimension, viz. m, in (γr,r−1)−1(Mr−1(f)), then its class is given by µr(f). Thus
we have the following theorem.

Theorem 3.3 ter. Let X/B be a family of nodal curves and

f : X → Y

a morphism to a smooth m-dimensional variety embeddable in a pseudo-Grassmannian G. Then:

(i) there is a natural scheme structure Mr(f) on the locus in W r(X/B) of points whose associated
scheme is mapped by f to a reduced point;
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(ii) if B is irreducible, then Mr(f) is locally defined by (r−1)m equations on W r(X/B) and hence
is purely at least (dim(B) + r − (r − 1)m)-dimensional; if Mr(f) is (dim(B) + r − (r − 1)m)-
dimensional or empty, then

[Mr(f)] = mr(f). (3.17)

Proof. Part (i) has been proved above and the proof of (ii) is essentially identical to that of
Theorem 3.3 bis (ii). Note that the local defining equations for Mr(f) in (γr,r−1)−1(Mr−1(f)) arise
by pulling back equations for ∆Y (or what is the same, for ∆G) and factoring out the equation
of ∆r.

Remark . An earlier version of this paper gave a more general version of Theorem 3.3 ter, not
assuming any embedding of Y , and with a more complicated proof. The foregoing argument is due
to the referee. The general idea of defining a multiple-point locus recursively as a residual scheme
inside a diagonal pullback is old folklore. Having the secant bundles is what makes it work.

Corollary 3.8. In the situation of Theorem 3.3 ter, if mr(f) �= 0 then Mr(f) is nonempty.

Consider the case r = 2,m = 3. Thus we have a family of nodal curves mapping to Y and are
enumerating the relative multiple points of their images in Y (at least if we assume that a general
fibre of X/B is smooth and embeds in Y , and that every fibre maps in with degree 1). Then it is
easy to see that (3.13) or (3.15) specializes to (writing fi = f ◦ pi)

[M2(f)] = (f1 × f2)∗(∆Y ) − ((∆2)3 − (∆2)2f∗1KY + ∆2f∗1 c2(Y )). (3.18)

By the calculations in [Ran04a], we have as in the proof of Corollary 3.6,

p1∗(∆2)3 = K2 − σ,

p1∗((∆2)2f∗1KY ) = −K.f∗(KY ), p1∗(∆2f∗1 c2(Y )) = f∗(c2(Y )),

where as before K = ωX/B and σ is the critical locus of π. Thus we obtain the following corollary.

Corollary 3.9. For a family of nodal curves X/B mapping via f to a smooth pseudo-Grass-
mannian 3-fold Y , the virtual locus on X of relative double points of f is

[N2,X(f)] = p1∗(f1 × f2)∗(∆Y ) − (K2 − σ +K.f∗KY + f∗c2(Y )). (3.19)

The expression p1∗(f1 × f2)∗(∆Y ) (which is a 0-cycle or just a number if B is one-dimensional)
may be evaluated in various ways. For example, working in singular cohomology over C, let (αi) be
a homogeneous basis for the total cohomology H∗(B) and let (α∗

i ) be the dual basis. Then the class
of the diagonal ∆B in B ×B is given by

[∆B] =
∑

αi ⊗ α∗
i .

Setting
βi = f∗(π∗(αi)), β∗i = f∗(π∗(α∗

i ))
we have

f∗(p1∗(f1 × f2)∗(∆Y )) =
∑

βi.β
∗
i (3.20)

(which coincides with p1∗(f1×f2)∗(∆Y ) or (f1×f2)∗(∆Y ) when they are of top degree, i.e. numbers).
Note also that when B is a curve we have

[∆B] ≡ [B] ⊗ [pt] + [pt] ⊗B mod H1 ⊗H1,

so if H3(Y ) = 0 then the first term in (3.19) reduces to 2f∗([f0]).f∗([X]). Finally, note that one
customarily denotes

π∗(K2) = κ, π∗(σ) = δ.

Thus we have the following.
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Corollary 3.10. In the above situation, suppose:

(i) a generic fibre of X/B is smooth and embedded via f ;

(ii) dim(B) = 1;
(iii) H3(Y ) = 0.

Then the virtual number of relative double points of f is given by

n2(f) = 1
2(2f∗([f0]).f∗([X]) − κ+ δ −K.f∗KY − f∗c2(Y )). (3.21)

In particular, if n2(f) �= 0 then f does not embed all fibres of X/B and if n2(f) < 0 then f has
degree > 1 on some fibre.

We note that, if Y = P
3, (3.13) simplifies to

n2(f) = 1
2(2bd− 6b− 4L.K −K2) (3.21bis)

where as usual L = f∗O(1), d = L.π−1(pt.) and b = L2. This formula was first given in [CR94] where
it was derived from a general double-point formula referred to Fulton’s book [Ful84] (in fact, the book
does not appear to contain such a formula explicitly in this generality, although it should be possible
to derive one from the case treated there, due to the fact that any double point is automatically
curvilinear). As shown in [CR94], Corollary 3.10 has the following geometric consequence.

Corollary 3.11. There is no nontrivial family of nonsingular rational curves of degree d � 3 in
P

3 parametrized by an irreducible projective variety of positive dimension.

Proof. We reproduce the short argument from [CR94]. If the assertion fails, there is a family as
above with X/B a P

1-bundle P(E), where E is a rank-2 vector bundle over a smooth curve B
and f restricted on each fibre is an embedding in P

3, so that n2(f) = 0; moreover, f(X) is two-
dimensional, so that b = L2 > 0. With no loss of generality, one may assume c1(E) = 0 or −1.
Set D = c1(OP(E)(1)). If c1(E) = 0, we have

K = −2D,K2 = 0,

and we can write
L = dD + xF,F = π−1(pt.), x ∈ Z.

Since b = L2 > 0, we have x > 0, and hence

L.K = −2x < 0.

Since d � 3, (3.21bis) yields a contradiction. If c1(E) = −1, we can write, with similar notation,

K = −2D + F,D2 = 1

so
K2 = 0, L.K = −d− 2x < 0,

and therefore again (3.21bis) yields a contradiction.

As another special case of Corollary 3.10, we recover a result from [Ran04a]. We use the notation
developed in [Ran05a]; in particular, N red

d (a.) denotes the number of reducible rational curves of
degree d in P

3 satisfying the incidence conditions indicated by (a.) and m1 = −s21 where s1 is the
section of X/B corresponding to an incident linear subspace of codimension a1. Both these numbers
are recursively computable. See [Ran05a] for more details.

Corollary 3.12. With the notation of [Ran05a], the number of singular rational curves of degree
d through a generic points and 4d− 2a− 1 generic lines in P

3 is

(d− 2)Nd(3a24d−2a) +N red
d (3a24d−2a−1) − 2dm1(3a24d−2a−1) + 2L.R1 (3.22)
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if a > 0 and

(d− 2)Nd(3a24d−2a) +N red
d (3a24d−2a−1) − 2dma+1(3a24d−2a−1) + 2L.Ra+1 − 4Nd(3a+124d−2a−2)

(3.23)
if 4d− 2a− 1 > 0.

Proof. We use Corollary 3.10 for the family X/B(3a24d−2a−1). Then the right-hand side of (3.21bis)
yields, with (a.) = (3a24d−2a−1), that in the above notation

n2(f) = 1
2(2dNd(3a24d−2a) −K2 +N red

d (a.) + 4LK − 4Nd(3a24d−2a)).

Using the formula [Ran05a, (14)] for i = 1 and noting that Nd(4, . . . , ) = 0 yields (3.22), while the
same formula with i = a+ 1 yields (3.23).

Remark 3.13. Theorem 3.3, as well as the other multiple-point results in this paper, admit straight-
forward generalizations to the relative case, where Y is replaced by a smooth morphism

ρ : Y → B

and f is a B-morphism, i.e. the following diagram commutes.

X

π
���

��
��

��
f �� Y

ρ
����

��
��

�

B

Note that the ‘absolute’ case discussed above becomes a special case of the relative case by replacing
Y by Y ×B → B. In the relative case the factors µk(f) are replaced by

µk(f/B) = (f1 ×B fk)∗(∆Y/B) − ∆k

{
f∗1 (c(TY/B))

1 + ∆k

}
m−1

(3.24)

where ∆Y/B is the diagonal in Y ×B Y and TY/B is the relative or vertical tangent bundle of Y → B
(which coincides with the normal bundle of ∆Y/B in Y ×B Y ) and m is the relative dimension of
Y/B. The analogue of Theorem 3.3 with its bis and ter (with (3.24) in place of (3.15)), as well
as their consequences, hold. The proofs are the same, because for a B-map f , multiple-point loci
involve only the ‘vertical’ coordinates of Y over B.

Concluding remark 3.14. Hopefully, the enumerative results of this section provide sufficient moti-
vation for wanting to determine completely the multiplicative structure of the subring of the Chow
ring of W r generated by ∆2, . . . ,∆r together with the Chow ring of X. As remarked above, this
indeed is the subject of [Ran04b].
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