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Abstract

Let n be a positive integer and a an integer prime to n. Multiplication by a induces a permutation
over Z/nZ = {0, 1, . . . , n − 1}. Lerch’s theorem gives the sign of this permutation. We explore some
applications of Lerch’s result to permutation problems involving quadratic residues modulo p and confirm
some conjectures posed by Sun [‘Quadratic residues and related permutations and identities’, Preprint,
2018, arXiv:1809.07766]. We also study permutations involving arbitrary kth power residues modulo p
and primitive roots modulo a power of p.
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1. Introduction

For each integer a and any positive integer n, we let {a}n or a denote the least
nonnegative residue of a modulo n. Let X be a finite ordered set. The parity of a
permutation σ of X can be defined as the parity of the number of inversions for σ, that
is, of pairs of elements x, y of X such that x < y and σ(x) > σ(y). The sign or signature
of a permutation σ is denoted sgn(σ) and defined as +1 if σ is even and −1 if σ is odd.

Let p be an odd prime. For each integer a with p - a, Zolotarev’s lemma [9]
states that the Legendre symbol (a/p) is equal to the sign of the permutation of
Z/pZ = {0, 1, . . . , p − 1} induced by multiplication by a. This result has many
applications in modern number theory (see [1, 6]). Zolotarev’s lemma can be
generalised to all positive integers. Let n be a positive integer and a an integer prime to
n. From elementary number theory, multiplication by a induces a permutation τ over
Z/nZ = {0, 1, . . . , n − 1}. Lerch [4] obtained the following theorem which determines
the sign of τ.
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Theorem 1.1 (Lerch [4]). Let (·/·) denote the Jacobi symbol. With the notation as
above,

sgn(τ) =


(a
n

)
if n is odd,

1 if n ≡ 2 (mod 4),

(−1)(a−1)/2 if n ≡ 0 (mod 4).

This result is discussed in [1]. Lerch’s theorem is [1, Theorem 6.1] and it is
generalised to any finite principal ring in [1, Theorem 2.6].

It turns out that the case of even n is very useful when we study permutation
problems. We remark that the application of Lerch’s theorem in this case is new and we
believe that further applications can be found. We use the theorem here to determine
the sign of a permutation induced by a kth power residue modulo an odd prime p.

Let p be an odd prime and k a positive integer with gcd(p − 1, k) = 1. It is easy to
see that

{1, 2, 3, . . . , p − 1} = {{1k}p, {2k}p, {3k}p, . . . , {(p − 1)k}p}.

Since xk ≡ 1 (mod p) implies x ≡ 1 (mod p), we may therefore view

{1k}p, {2k}p, {3k}p, . . . , {(p − 1)k}p

as a permutation of 1, 2, 3, . . . , p − 1. We denote this permutation by τk,p. The
condition gcd(p − 1, k) = 1 implies that xk is a permutation polynomial over Z/pZ =
{0, 1, . . . , p − 1}. The following theorem determines the sign of τk,p.

Theorem 1.2. With the notation as above,

sgn(τk,p) =

1 if p ≡ 3 (mod 4),
(−1)(k−1)/2 if p ≡ 1 (mod 4).

Remark 1.3. Let p ≡ 2 (mod 3) be an odd prime. Sun [7] noticed that in this case
σ3(k) = k3 with 0 ≤ k ≤ p − 1 is a permutation on the set Z/pZ = {0, 1, . . . , p − 1}.
He conjectured that sgn(σ3) = (−1)(p+1)/2. This conjecture follows immediately from
Theorem 1.2.

We now study permutations involving quadratic residues modulo an odd prime.
Given an odd prime p, let 1 = a1 < a2 < · · · < a(p−1)/2 ≤ p − 1 be all the quadratic
residues modulo p in ascending order. It is easy to see that a1, a2, . . . , a(p−1)/2 is a
permutation of {12}p, {22}p, . . . , {((p − 1)/2)2}p. Let π be this permutation. Sun [7]
discussed the sign of this permutation. When p ≡ 3 (mod 4), he evaluated the product∏

1≤ j<k≤(p−1)/2

(ζ j2
p − ζ

k2

p )

by Galois theory, where ζp = e2πi/p is a pth root of unity, and determined the sign of π
in the case p ≡ 3 (mod 4):

sgn(π) =

1 if p ≡ 3 (mod 8),
(−1)(h(−p)+1)/2 if p ≡ 7 (mod 8),
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where h(−p) denotes the class number of Q(
√
−p). In addition, he studied some

other permutations on quadratic residues and posed some conjectures involving
permutations of special forms.

Inspired by Sun’s work, we now consider the following sequences:

A0 : a1, a2, . . . , a(p−1)/2,

A1 : {12}p, {22}p, . . . ,
{( p − 1

2

)2}
p
,

A2 : {22}p, {42}p, . . . , {(p − 1)2}p,

A3 : {12}p, {32}p, . . . , {(p − 2)2}p,

A4 :
{
1
( 1

p

)}
p
,
{
2
( 2

p

)}
p
, . . . ,

{ p − 1
2

( (p − 1)/2
p

)}
p
,

where (·/p) denotes the Legendre symbol. It is easy to see that Ai (i = 0, 1, 2, 3)
contains exactly all the quadratic residues modulo p and A4 does so only when
p ≡ 3 (mod 4). If Ai is a permutation of A j, then we call this permutation σi, j. The
following theorem gives the sign of σ2,1 and σ3,1.

Theorem 1.4. Let p be an odd prime. Then

sgn(σ2,1) =


1 if p ≡ 3 (mod 4),( 2

p

)
if p ≡ 1 (mod 4),

and

sgn(σ3,1) =

−
( 2

p

)
if p ≡ 3 (mod 4),

−1 if p ≡ 1 (mod 4).

Remark 1.5. By Theorem 1.4, it is easy to see that sgn(σ2,3) = −(2/p).

When p ≡ 3 (mod 4), we determine the sign of σ4,0 in the next theorem.

Theorem 1.6. Let p be an odd prime with p ≡ 3 (mod 4). Let h(−p) denote the class
number of Q(

√
−p) and let b·c denote the floor function. Then

sgn(σ4,0) =

(−1)b(p+1)/8c if p ≡ 3 (mod 8),
(−1)b(p+1)/8c+(h(−p)+1)/2 if p ≡ 7 (mod 8).

Remark 1.7. Combining Sun’s result and Theorem 1.6 gives

sgn(σ4,1) = (−1)b(p+1)/8c.

Sun posed several conjectures, one of which is as follows. For an odd prime p and
an integer k, define R(k, p) to be the unique r ∈ {0, 1, . . . , (p − 1)/2} with k congruent
to r or −r modulo p and set

Np := #{(i, j) : 1 ≤ i < j ≤ (p − 1)/2 and R(i2, p) > R( j2, p)},
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[4] Permutations of quadratic residues 365

where #S denotes the cardinality of a finite set S . With this notation, Sun conjectured
that Np ≡ b(p + 1)/8c (mod 2) for every odd prime p. Although we cannot prove this
conjecture completely, we are able to obtain the following result.

Theorem 1.8. With the notation as above, for any prime p ≡ 3 (mod 4),

Np ≡

⌊ p + 1
8

⌋
(mod 2).

Let p be an odd prime and A = {1, 2, . . . , (p − 1)/2}. Sun [7] defined a permutation
τp as follows: for each k ∈ A, τp(k) is the unique integer k∗ ∈ A with kk∗ ≡ ±1 (mod p).
Sun [7] proved that sgn(τp) = −(2/p). We give a simpler proof of this result using
Lerch’s theorem.

Theorem 1.9. With the notation as above, sgn(τp) = −(2/p).

The proofs of Theorems 1.2, 1.4, 1.6, 1.8, 1.9 will be given in the next section. In
Section 3, we turn to another kind of permutation which involves primitive roots.

2. Proofs of the theorems

Proof of Theorem 1.2. Let g be a primitive root modulo p. Then

{1, 2, 3, . . . , p − 1} = {{g0}p, {g1}p, {g2}p, . . . , {gp−2}p}.

Since
τk,p(gi) = gki (mod p),

we see that τk,p induces a permutation

τ̂(i) = ki (mod p − 1)

on the set Z/(p − 1)Z = {0, 1, . . . , p − 2}. It is easy to see that τ̂ and τk,p have the same
factorisation. Hence

sgn(τk,p) = sgn(τ̂) =

1 if p ≡ 3 (mod 4),
(−1)(k−1)/2 if p ≡ 1 (mod 4),

by Lerch’s theorem. �

We need the following lemma which originally appeared in [8, pages 364–365].

Lemma 2.1 [8]. Let p be a prime with p ≡ 3 (mod 4). Then∏
1≤i< j≤(p−1)/2

(i2 + j2) ≡ (−1)b(p+1)/8c (mod p).

For convenience, we let m = (p − 1)/2 throughout the remainder of this section.
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Proof of Theorem 1.4. Ifσ is a permutation of a finite set S = {x1, . . . , xn}, which may
be viewed as a subset of a field F, then

sgn(σ) =
∏

1≤i< j≤n

(σ( j) − σ(i))/( j − i)

by definition. In the present situation, all elements can be viewed as in Fp. Thus

sgn(σ2,1) =
∏

1≤i< j≤(p−1)/2

(2 j)2 − (2i)2

j2 − i2
(mod p)

=
∏

1≤i< j≤(p−1)/2

4 = 41/2·(p−1)/2·(p−3)/2 =

( 2
p

)(p−3)/2
(mod p)

=


1 if p ≡ 3 (mod 4),( 2

p

)
if p ≡ 1 (mod 4).

Similarily,

sgn(σ3,1) =
∏

1≤i< j≤m

(2 j − 1)2 − (2i − 1)2

j2 − i2
(mod p)

=
∏

1≤i< j≤m

4 ·
j + i − 1

j + i
(mod p)

= 2m·(m−1) ·
2

m + 1
·

4
m + 2

· · · ·
2m − 2
2m − 1

(mod p)

= 2m·(m−1) · 2m−1 ·
(m − 1)! · m!

(2m − 1)!
(mod p)

= 2m2−1 ·
2

p − 1
· (m!)2 (mod p)

= −

( 2
p

)(p−1)/2
·

( p − 1
2

!
)2

(mod p).

This gives

sgn(σ3,1) =


−1 if p ≡ 1 (mod 4),

−

( 2
p

)
if p ≡ 3 (mod 4).

�

Proof of Theorem 1.6. Assume p ≡ 3 (mod 4). Since a1, a2, . . . , am is the list of all
(p − 1)/2 quadratic residues among 1, . . . , p − 1 in ascending order, we only need to
count the number of ordered pairs (i, j) with 1 ≤ i < j ≤ m and {i(i/p)}p > { j( j/p)}p.
Denote this number by s(p). Given any i with 1 ≤ i < m, it is easy to check that if
(i/p) = 1 then the number of j with 1 ≤ i < j ≤ m and {i(i/p)}p > { j( j/p)}p is zero and
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if (i/p) = −1 then this number is (p − 1)/2 − i. Thus

s(p) =
∑

1≤i≤(p−1)/2

( p − 1
2
− i

)
·

1
2

(
1 −

( i
p

))
=

(p − 1)(p − 3)
16

−
p − 1

4

∑
1≤i≤(p−1)/2

( i
p

)
+

1
2

∑
1≤i≤(p−1)/2

i
( i

p

)
.

By Dirichlet’s class number formula [2, Corollary 5.3.13],

−ph(−p) =
∑

1≤i≤p−1

i
( i

p

)
=

∑
1≤i≤(p−1)/2

(
i
( i

p

)
+ (p − i)

( p − i
p

))
=

∑
1≤i≤(p−1)/2

(
2i

( i
p

)
− p

( i
p

))
.

This implies ∑
1≤i≤(p−1)/2

i
( i

p

)
=

1
2

(
− ph(−p) + p

∑
1≤i≤(p−1)/2

( i
p

))
.

Thus,

s(p) =
(p − 1)(p − 3)

16
−

1
4

ph(−p) +
1
4

∑
1≤i≤(p−1)/2

( i
p

)
=

(p − 1)(p − 3)
16

−
1
4

ph(−p) +
1
4

(
h(−p) −

( 2
p

))
.

The last equality follows from Dirichlet’s class number formula in another form [2,
Corollary 5.3.13]:

h(−p) =
1

2 −
( 2

p
) ∑

1≤i≤(p−1)/2

( i
p

)
.

When p ≡ 3 (mod 8), letting p = 8k + 3 yields

s(p) ≡ k (mod 2).

When p ≡ 7 (mod 8), letting p = 8k + 7 yields

s(p) ≡ k + 1 +
h(−p) + 1

2
(mod 2).

This gives

s(p) ≡

b(p + 1)/8c + (h(−p) + 1)/2 (mod 2) if p ≡ 3 (mod 8),
b(p + 1)/8c (mod 2) if p ≡ 7 (mod 8),

which completes the proof. �
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Proof of Theorem 1.8. Let S be the set {1, 2, . . . , (p − 1)/2} and τ : i 7→ R(i2, p) be a
map from S to itself. Since p ≡ 3 (mod 4), it is obvious that τ is a bijection, thus also
a permutation on S . Clearly, A1 = {{12}p, {22}p, . . . , {((p − 1)/2)2}p} contains exactly
all quadratic residues modulo p. We define a map f from S to A1 as follows. For each
k ∈ S , set f (k) = {k2}p. Then

sgn(σ4,1) = sgn( f ◦ σ4,1 ◦ f −1) =
∏

1≤i< j≤(p−1)/2

j4 − i4

j2 − i2
(mod p)

=
∏

1≤i< j≤(p−1)/2

( j2 + i2) (mod p)

= (−1)b(p+1)/8c (mod p).

The last equality follows from Lemma 2.1. �

Proof of Theorem 1.9. For each integer k, recall that {k}p is the least nonnegative
residue of k modulo p. Let k ∈ A = {1, 2, . . . , (p − 1)/2}. For each k ∈ A, we can
write τp(k) = {εkk−1}p, where

εk =

1 if 1 ≤ {k−1}p ≤ (p − 1)/2,
−1 otherwise.

Let

B =
{
{12}p, {22}p, . . . ,

{( p − 1
2

)2}
p

}
.

We define a map f1 from A to B by f1(k) = {k2}p for each k ∈ A. Clearly, f1 is a
bijection. On the other hand, let

A′ =
{
{ε11−1}p, . . . ,

{
ε(p−1)/2

( p − 1
2

)−1}
p

}
,

B′ =
{
{1−2}p, . . . ,

{( p − 1
2

)−2}
p

}
.

We define a map f2 from A′ to B′ by f2({εkk−1}p) = {k−2}p for each {εkk−1}p. Clearly,
f2 is a bijection. Moreover, f2 ◦ τp ◦ f −1

1 is a permutation on B with

f2 ◦ τp ◦ f −1
1 (k2) = {k−2}p.

It is easy to see that
sgn(τp) = sgn( f2 ◦ τp ◦ f −1

1 ).

On the other hand, if we let g be a primitive root of p, then

f2 ◦ τp ◦ f −1
1 (g2l) = g−2l.

Hence, f2 ◦ τp ◦ f −1
1 induces a permutation π−1 on Z/(p − 1)/2Z = {1,2, . . . , (p − 1)/2}.

Moreover, π−1(s) = −s for each s ∈ Z/(p − 1)/2Z. Thus our theorem follows from
Lerch’s theorem. �
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3. Permutations involving primitive roots

In 2018, Kohl [3] posed a permutation problem involving primitive roots of an odd
prime on Mathoverflow. Let p be an odd prime, Z/pZ = {0, 1, . . . , p − 1} and g a
primitive root modulo p. Define

σg(b) := gb

for each b ∈ {1, . . . , p − 1} and σg(0) = 0. If we identify Z/pZ with {0, 1, . . . , p − 1},
we can view σg as a permutation over Z/pZ. Let Rp denote the set of all primitive
roots of p. Kohl considered the sign of the permutation σg and posed the following
conjecture which was proved by Ladisch and Petrov (see [3]).

Conjecture 3.1 [3]. Assume the notation defined above.

(i) If p ≡ 1 (mod 4), then #{g ∈ Rp : sgn(σg) = 1} = #{g ∈ Rp : sgn(σg) = −1}.
(ii) If p ≡ 3 (mod 4) and g ∈ Rp, then

sgn(σg) ≡ (−1)(h(−p)−1)/2 (mod p),

where h(−p) denotes the class number of Q(
√
−p).

Throughout this section, we set n = φ(pr) = pr−1(p − 1). We investigate the sign
of the permutation induced by the primitive roots of a power of an odd prime. Given
an odd prime p and a positive integer r, let Rpr denote the set of all primitive roots
of pr and let 1 = b1 < b2 < · · · < bn < pr be the least nonnegative reduced residue
system modulo pr in ascending order. For each g ∈ Rpr , we define a permutation σg

on {b1, . . . , bn} by
σg : bi 7→ gi (mod pr).

Theorem 3.2. Assume the notation defined above.

(i) If p ≡ 1 (mod 4), then

#{g ∈ Rpr : sgn(σg) = 1} = #{g ∈ Rpr : sgn(σg) = −1} = n/2.

(ii) If p ≡ 3 (mod 4) and g ∈ Rpr , then

sgn(σg) = (−1)(h(−p)−1)/2,

where h(−p) denotes the class number of Q(
√
−p).

Proof of Theorem 3.2(i). When p ≡ 1 (mod 4),

σg−1 ◦ σ−1
g (gi) = g−i.

Thus σg−1 ◦ σ−1
g induces a permutation π−1 on Z/nZ = {1, 2, . . . , n}, where π−1(k) = −k.

Since n is even, the fixed points are n/2 and n and so there remain ((n − 2)/2)
2-cycles. Note that (n − 2)/2 is odd when p ≡ 1 (mod 4). It follows that π−1 is an
odd permutation, which implies (i) of Theorem 3.2. �

https://doi.org/10.1017/S000497271900073X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271900073X


370 L.-Y. Wang and H.-L. Wu [9]

Proof of Theorem 3.2(ii). Suppose p ≡ 3 (mod 4). From the definition,

sgn(σg) =
∏

1≤k< j≤n

{g j}pr − {gk}pr

b j − bk
.

Thus we only need to determine this quantity modulo p.
First we consider the numerator. Let

f (z) =
∏

1≤k< j≤n

(z j − zk).

Set ζn = e2πi/n. Then

f (ζn)2 = (−1)n(n−1)/2
∏

1≤k, j≤n

(ζ j
n − ζ

k
n) = −1 ·

∏
1≤ j≤n

zn − 1

z − ζ j
n

∣∣∣∣∣
z=ζ j

n

= −1 ·
∏

1≤ j≤n

nζ j(n−1)
n = nn.

On the other hand, for each pair (k, j) with 1 ≤ k < j ≤ n, it is easy to see that

Arg(ζ j
n − ζ

k
n) = Arg(ζ( j+k)/2

n (ζ( j−k)/2
n − ζ

−( j−k)/2
n )) ≡

j + k
n

π +
π

2
(mod 2π),

where Arg(z) denotes the argument of the complex number z. Thus

Arg( f (ζn)) ≡
∑

1≤k< j≤n

( j + k
n

π +
π

2

)
≡

(3n + 2)(n − 1)
4

π (mod 2π).

Hence,
f (ζn) = (−1)(3n+2)/4nn/2 = pn(r−1)/2(−1)(3n+2)/4(p − 1)n/2.

Since (Z/prZ)× is isomorphic to the group generated by ζn,

p−n(r−1)/2
∏

1≤k< j≤n

({g j}pr − {gk}pr ) ≡ (−1)(3n+2)/4+n/2 (mod p). (3.1)

Next we consider the denominator. Since∏
1≤k< j≤n

{g j}pr − {gk}pr

b j − bk
= ±1,

we only need to determine

p−n(r−1)/2
∏

1≤k< j≤n

(b j − bk) (mod p).

Note that

p−n(r−1)/2
∏

1≤k< j≤n

(b j − bk) ≡
∏

1≤i< j≤p−1

( j − i)pr−1
∏

1≤i, j≤p−1

( j − i)(
pr−1

2 ) (mod p). (3.2)

It is known that ∏
1≤i< j≤p−1

( j − i) ≡
( p − 1

2

)
! · (−1)(p−3)/4 (mod p) (3.3)
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[10] Permutations of quadratic residues 371

and, by [5], ( p − 1
2

)
! ≡ (−1)(h(−p)+1)/2 (mod p), (3.4)

where h(−p) denotes the class number of Q(
√
−p). Observe that∏

1≤i, j≤p−1

( j − i) = −1 ·
∏

1≤i< j≤p−1

( j − i)2. (3.5)

Combining (3.2)–(3.5), we obtain

p−n(r−1)/2
∏

1≤k< j≤n

(b j − bk) ≡ (−1)(h(−p)+1)/2+(p−3)/4+r+1 (mod p). (3.6)

Our desired result follows from (3.1) and (3.6). �
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