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Abstract

This paper presents a study of the intertemporal propagation of distributional properties
of phenotypes in general polygenic multisex inheritance models with sex- and time-
dependent heritabilities. It further analyzes the implications of these models under
heavy-tailedness of traits’ initial distributions. Our results suggest the optimality of a
flexible asexual/binary mating system. Switching between asexual and binary inheritance
mechanisms allows the population effectively to achieve a fast suppression of negative
traits and a fast dispersion of positive traits, regardless of the distributional properties of
the phenotypes in the initial period.
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1. Introduction

1.1. Objectives and key results

In this paper, we study the transmission of distributional properties of traits through genera-
tions in general polygenic multisex inheritance models with time- and sex-dependent heritabil-
ities. We focus on the analysis of the implications of these models under heavy-tailedness of
the traits. We show that switching between asexual and binary modes of inheritance allows
the organisms to prevent, immediately or in a relatively short time, the spread of negative traits
(e.g. medical or behavioral disorders for which heritability is significant) in the population and
to achieve the wide spread of positive phenotypes (e.g. the trait of intelligence). Given the
high costs to populations of species of developing and maintaining extra sexes, this makes the
flexible asexual/binary inheritance systems advantageous in comparison with other inheritance
mechanisms.

1.2. Multisex inheritance models

We focus on the analysis of the following multisex (more precisely, k-sex) analogues of
multifactorial two-sex Galtonian inheritance models, where

∑k
j=1 λjt = 1, t ≥ 0:

Xt+1(λ
(k)
t ) =

k∑
j=1

λjtXjt , t = 0, 1, . . . . (1)

(Multisex inheritance models of this sort represent the purely parental transmission of traits
over time. Most of the results in the paper can be generalized to analogues of (1) that include
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independent environmental contributions εt , e.g.

Xt+1(λ
(k)
t ) =

k∑
j=1

λjtXjt +
(

1 −
k∑

j=1

λjt

)
εt ,

with
∑k

j=1 λjt ≤ 1, t ≥ 0.) In models such as (1), as in the case of k = 2 sexes (see, e.g. Karlin
(1984), (1992), Karlin and Lessard (1986, pp. 268–279), and Ibragimov (2005), (2007)), Xt+1 is
the offspring’s phenotype value and Xjt , t = 0, 1, . . . , are the j th-sex parental contributions,
for j = 1, . . . , k. Also, λ

(k)
t = {(λ1s , . . . , λks)}ts=0 is a sequence of k-dimensional vectors

(λ1s , . . . , λks) ∈ R
k+ of sex-dependent heritability coefficients; it is assumed that heritability

can change with time.
Let the trait X0 have a sex-independent distribution in the population at time t = 0 (the

‘beginning’ of time). (All the results presented in the paper hold for inheritance models consid-
ered to propagate into the future starting from a certain initial period of interest.) Throughout
the paper, we assume that X1t , . . . , Xkt are independent copies of Xt(λ

(k)
t ), i.e. Xjt

d= Xt(λ
(k)
t ),

j = 1, . . . , k, t = 0, 1, . . . . In other words, the trait contributions of the existing k sexes are
equally likely to be inherited by the offspring. (Here and in what follows, the relation Y

d= Z

between two random variables (RVs) Y and Z means that their distributions are the same).
Let λ

(k)

t = {(λ1s , . . . , λks)}ts=0, where λ1s = · · · = λks = 1/k. Processes (1) with λ
(k)
t =

λ
(k)

t for all t ≥ 0 (or, equivalently, with λjt = 1/k, j = 1, . . . , k, t = 0, 1, . . . ), model
symmetric k-sex inheritance:

Xt+1(λ
(k)

t ) = 1

k

k∑
j=1

Xjt . (2)

Restricting the inheritance parameters λ in general multisex models (1) to lie in a given domain
A, i.e. requiring that (λ1t , . . . , λkt ) ∈ A, t ≥ 0, allows us to model asexual, two-sex, and
multisex binary mating inheritance systems observed in nature. In particular, the models reduce
to time series with asexual propagation (k = 1) for A = {(1, 0, . . . , 0)} and to two-sex (k = 2)
binary mating systems for A = {(γ1, γ2, 0, . . . , 0) ∈ R

k+ : γ1 + γ2 = 1}. Furthermore, under
the restriction that

A = {(0, . . . , 0, γi, γj , 0, . . . , 0) ∈ R
k+, 1 ≤ i < j ≤ k : γi + γj = 1}, (3)

time series of the type in (1) correspond to multisex inheritance systems in which mating is
allowed between any two different sexes. Such inheritance mechanisms are exhibited by certain
species of fungi and ciliates that have three or more sexes (see Nanney (1980, Chapters 4 and 6),
Iwasa and Sasaki (1987), and references therein). Ciliates, for instance, typically have several
mating types and conjugation in them occurs between organisms of unlike types; mating does
not occur within the same type. In particular, certain Stylonychia species exhibit mating systems
with as many as 48 sexes. Note that, even in species with more than two sexes, the inheritance
system is binary: the offspring inherits genetic contributions from two parents only.

1.3. Discussion of the results

Theorem 1 shows that if the initial distribution of the trait X0 (e.g. a behavioral or medical
disorder or an ability for which heritability is significant) in model (1) is not extremely heavy
tailed and has a finite mean, then switching to an inheritance system with more uniform
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heritability parameters at a given time always leads to an increase in the peakedness and
concentration of the phenotype in the next period’s offspring. The situation is reversed in the
case of traits that have extremely heavy-tailed initial distributions with infinite first moments
(e.g. a medical or behavioral disorder for which there is no strongly expressed risk group, or
a relatively equally distributed ability with significant genetic influence): in such a setting,
a decrease in the diversity of the heritability coefficients at time t leads to a decrease in the
peakedness and concentration of the time-(t + 1) trait distribution and to the phenotype’s even
wider spread in the population.

Corollary 3 specializes the results to the case of multisex inheritance models of the sort
in (2). According to the corollary, an increase in the number of sexes under symmetric
heritability increases the peakedness and concentration of traits that have moderately heavy-
tailed distributions. However, at any given time it increases the spread of phenotypes that have
extremely heavy-tailed initial distributions. More precisely, the following conclusions hold.

Let X0 − µ have a moderately heavy-tailed distribution with finite first moment; e.g. let the
distribution of X0 −µ be a convolution of symmetric log-concave distributions and symmetric
stable distributions with characteristic exponents in the interval (1, 2). For all k ≥ 1 and all
t ≥ 1, the time-t value of the phenotype Xt(λ

(k+1)

t−1 ) in a (k + 1)-sex symmetric heritability
model of the type in (2) is strictly more peaked (concentrated) about µ than is the time-t value
of the trait Xt(λ

(k)

t−1) in the same model with k-sex inheritance. That is,

P(|Xt(λ
(k+1)

t−1 ) − µ| > x) < P(|Xt(λ
(k)

t−1) − µ| > x) for all x > 0.

These conclusions are reversed in the case of a phenotype that has an extremely heavy-tailed
initial distribution with an infinite first moment. For instance, suppose that the distribution of
X0 − µ is a convolution of symmetric stable distributions with indices of stability less than 1.
Then, for any k ≥ 1 and all t ≥ 1, the time-t value of the phenotype Xt(λ

(k+1)

t−1 ) in model (2)
with (k + 1)-sex inheritance is less peaked (less concentrated) about µ than is the value of the
trait Xt(λ

(k)

t−1) in a k-sex mode of inheritance. That is,

P(|Xt(λ
(k+1)

t−1 ) − µ| > x) > P(|Xt(λ
(k)

t−1) − µ| > x) for all x > 0.

In other words, an increase in the number of sexes is desirable for positive traits with
extremely heavy-tailed distributions and for negative phenotypes that have moderately heavy
tails.

These conclusions further imply (see Corollary 4) that switching to the asexual inheritance
system completely stops sharp concentration and the decline of ‘good’ traits that have moder-
ately heavy-tailed distributions under multisex inheritance with more than one sex. Similarly,
switching to the asexual mode of propagation stops the spread of any extremely heavy-tailed
phenotype that negatively affects the fitness of the population in the multisex inheritance system.
Furthermore (see (9) and (11) in Corollary 5), any given (wide) spread of positive, extremely
heavy-tailed traits occurring at time t in a multisex inheritance system with k > 2 sexes is
also achievable in a slightly longer time, t ′ > t , using the binary mating mechanism. The
same is true for negative phenotypes that have moderately heavy-tailed initial distributions:
any (sharp) concentration of such ‘bad’ heavy-tailed traits achievable at time t in the multisex
inheritance models with more than two sexes is also achieved in the two-sex inheritance models
in a slightly longer time. (By ‘slightly longer’ we mean that t ′ can be a linear transformation
of t , e.g. t ′ = t log2 k + 1 (see Remark 1).)
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1.4. Multiple sexes: advantages versus costs

The fitness advantage of outbreeding has been emphasized in a number of works in evolu-
tionary biology as the main explanation for the dominance of the binary mating system over the
asexual one in modern species (see, among others, Hurst (1995), Czárán and Hoekstra (2004),
and references therein). Negative effects of inbreeding on population fitness and a possible
increase in the chance of mating has also been indicated as the main reason for the evolution
of binary mating systems with more than two sexes in some organisms, e.g. in some species of
fungi and ciliates (see, e.g. Nanney (1980, Chapters 4 and 6) and Czárán and Hoekstra (2004)).

It is clear that switching to an inheritance system in which the offspring receives genetic
material from more than two parents would further decrease the negative effects of inbreeding
seen in the binary and asexual mating systems. However, the evolution of additional sexes
places a high burden on a population because of the complex logistics involved in the search
and detection of multiple potential mates. In this regard, a two-sex inheritance mechanism
is already much more complicated than a one-sex system, and modern two-sex species have
developed various adaptations to increase the efficiency of mate finding.

The results in this paper add some new insights to the discussion of the advantages and
disadvantages of having multiple sexes. According to the discussion in the previous subsection,
even in the absence of costs in the evolution and maintenance of an inheritance system with
more than two sexes, switching between only the asexual and the binary systems of inheritance
allows a population to control the spread of ‘bad’ and ‘good’ traits over time. The results thus
suggest that an increase in the number of sexes above two is unnecessary even in the absence
of burdens associated with the increase. On the other hand, it is striking that, although the
systems that switch between asexual (one-sex inheritance) and two-sex reproduction (and are
optimal in the sense of trait propagation) are fairly common, they are by no means universal,
since many modern species have only the two-sex system.

1.5. Organization of the paper

The paper is organized as follows. Section 2 contains notation and definitions of classes
of distributions used throughout the paper and reviews their basic properties. In Section 3,
we present the main results on the properties of polygenic multisex inheritance models under
heavy-tailedness of the traits’ distributions. Section 4 contains some remarks on extensions
of the results and suggestions for further research. In Appendix A, we review the peakedness
properties of linear combinations of RVs needed in our proofs. In particular, we discuss
peakedness and majorization properties of log-concavely distributed RVs derived by Proschan
(1965), and their analogues for heavy-tailed distributions obtained in Ibragimov (2005), (2007).
Appendix B contains proofs of the results obtained in the paper.

2. Notation and classes of distributions

We say that an RV X with density f : R → R and convex distribution support � = {x ∈
R : f (x) > 0} is log-concavely distributed if log f (x) is concave in x ∈ �, i.e. if f (λx1 +
(1 − λ)x2) ≥ f (x1)

λf (x2)
1−λ for all x1, x2 ∈ � and any λ ∈ [0, 1] (see An (1998)). A

distribution is said to be log-concave if its density f satisfies this inequality. Examples of
log-concave distributions include (see, e.g. Marshall and Olkin (1979, p. 493)) the normal
distribution, the uniform density, the exponential density, the logistic distribution, the gamma
distribution �(α, β) with shape parameter α ≥ 1, the beta distribution B(a, b) with a ≥ 1 and
b ≥ 1, and the Weibull distribution W(γ, α) with shape parameter α ≥ 1. If an RV X is log-
concavely distributed, then its density has at most an exponential tail, i.e. f (x) = o(exp(−λx))
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for some λ > 0 as x → ∞, and all the power moments, E(|X|γ ), γ > 0, of the RV exist
(see Corollary 1 of An (1998)). This implies, in particular, that distributions with log-concave
densities cannot be used to model heavy-tailed phenomena. In what follows, LC denotes the
class of symmetric log-concave distributions.

For 0 < α ≤ 2, σ > 0, β ∈ [−1, 1], and µ ∈ R, we denote by Sα(σ, β, µ) the stable
distribution with the characteristic exponent (index of stability) α, the scale parameter σ , the
symmetry index (skewness parameter) β, and the location parameter µ. That is, Sα(σ, β, µ) is
the distribution of an RV X with characteristic function

E(eixX) =
{

exp(iµx − σα|x|α(1 − iβ sgn(x) tan(πα/2))), α �= 1,

exp(iµx − σ |x|(1 + (2/π)iβ sgn(x) ln(|x|))), α = 1,
x ∈ R,

where i2 = −1 and sgn(x) is the sign of x, defined by sgn(x) = 1 if x > 0, sgn(0) = 0, and
sgn(x) = −1 otherwise. For a detailed review of properties of stable distributions, the reader
is referred to, e.g. the monograph by Zolotarev (1986). We write X ∼ Sα(σ, β, µ) if the RV X

has the stable distribution Sα(σ, β, µ).
A closed-form expression for the density of the distribution Sα(σ, β, µ) is available in the

following cases (and only in these cases): α = 2 (Gaussian distributions); α = 1 and β = 0
(Cauchy distributions); α = 1

2 and β = ±1 (Lévy distributions). (In fact, Cauchy distributions
have densities of the form f (x) = σ/(π(σ 2 + (x − µ)2)). Lévy distributions have densities
of the form

f (x) =

⎧⎪⎨
⎪⎩

(
σ

2π

)1/2

exp

(
− σ

2x

)
x−3/2, x ≥ 0,

0, x < 0,

σ > 0,

and their shifted versions.) Degenerate distributions correspond to the limiting case in which
α = 0.

The index of stability, α, characterizes the heaviness (the rate of decay) of the tails of stable
distributions. In particular, if X ∼ Sα(σ, β, µ) then there exists a constant C > 0 such that
limx→∞ xα P(|X| > x) = C. This implies that the pth absolute moment, E(|X|p), of an
RV X ∼ Sα(σ, β, µ), α ∈ (0, 2), is finite if p < α and is infinite otherwise. The symmetry
index, β, characterizes the skewness of the distribution. The stable distributions with β = 0 are
symmetric about the location parameter, µ. For α > 1, the location parameter is the mean of the
distribution Sα(σ, β, µ). The scale parameter, σ , is a generalization of the concept of standard
deviation; it coincides with the standard deviation in the special case of Gaussian distributions
(α = 2).

Distributions Sα(σ, β, µ) with µ = 0 for α �= 1 and β = 0 for α = 1 are said to be strictly
stable. If Xi ∼ Sα(σ, β, µ), α ∈ (0, 2], are independent, identically distributed, strictly stable
RVs, then, for all ai ≥ 0, i = 1, . . . , n, with

∑n
i=1 ai �= 0, we have∑n

i=1 aiXi

(
∑n

i=1 aα
i )1/α

∼ Sα(σ, β, µ).

Let CS denote the class of distributions which are convolutions of symmetric stable distri-
butions Sα(σ, 0, 0) with characteristic exponents α ∈ (1, 2] and σ > 0. (The overline indicates
relation to stable distributions with indices of stability greater than the threshold value 1.) That
is, CS consists of distributions of RVs X such that, for some k ≥ 1, X = Y1 + · · · + Yk , where
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Yi , i = 1, . . . , k, are independent RVs such that Yi ∼ Sαi
(σi, 0, 0) with αi ∈ (1, 2] and σi > 0

for i = 1, . . . , k.
By CSLC we denote the class of convolutions of distributions from the classes LC and

CS. That is, CSLC is the class of convolutions of symmetric distributions which are either
log-concave or stable with characteristic exponents greater than 1. In other words, CSLC
consists of distributions of RVs X such that X = Y1 + Y2, where Y1 and Y2 are independent
RVs with distributions belonging to LC or CS. The distributions of RVs X in CSLC are
moderately (not extremely) heavy tailed, in the sense that they have finite means: E(|X|) < ∞.

Let CS denote the class of distributions which are convolutions of symmetric stable distribu-
tions Sα(σ, 0, 0) with index of stability α ∈ (0, 1) and scale parameter σ > 0. (The underline
indicates relation to stable distributions with indices of stability less than the threshold value 1.)
That is, CS consists of distributions of RVs X such that, for some k ≥ 1, X = Y1 + · · · + Yk ,
where Yi , i = 1, . . . , k, are independent RVs such that Yi ∼ Sαi

(σi, 0, 0) with αi ∈ (0, 1) and
σi > 0 for i = 1, . . . , k. The distributions of RVs X from the class CS are extremely heavy
tailed, in the sense that their first moments are infinite: E(|X|) = ∞.

We note that the class CS, of convolutions of symmetric stable distributions with different
indices of stability α ∈ (1, 2], is wider than the class of all symmetric stable distributions
Sα(σ, 0, 0) with α ∈ (1, 2] and σ > 0. Similarly, the class CS is wider than the class of all
symmetric stable distributions Sα(σ, 0, 0) with α ∈ (0, 1) and σ > 0. Clearly, LC ⊂ CSLC
and CS ⊂ CSLC. Note also that the class CSLC is wider than the class of (two-fold)
convolutions of log-concave distributions with stable distributions Sα(σ, 0, 0) with α ∈ (1, 2]
and σ > 0. In some sense, the symmetric Cauchy distributions S1(σ, 0, 0) (symmetric about 0)
are at the boundary between the classes CS and CSLC.

In what follows, we respectively write X ∼ LC, X ∼ CSLC, or X ∼ CS if the distribution
of the RV X belongs to the class LC, the class CSLC, or the class CS.

3. Main results

The following concept of peakedness of RVs was introduced by Birnbaum (1948).

Definition 1. (Birnbaum (1948); see also Proschan (1965) and Marshall and Olkin (1979,
p. 372).) An RV X is more peaked about µ ∈ R than is an RV Y if

P(|X − µ| > x) ≤ P(|Y − µ| > x)

for all x ≥ 0. If this inequality is strict (for all x ≥ 0) whenever the two probabilities are not
both 0 or both 1, then X is strictly more peaked about µ than is Y . An RV X is said to be
(strictly) less peaked about µ than is an RV Y if Y is (strictly) more peaked about µ than is X.
For µ = 0, it is simply said that X is (strictly) more or less peaked than Y .

Roughly speaking, an RV X is more peaked about µ ∈ R than is Y if the distribution of X

is more concentrated about µ than is that of Y .
For a vector a ∈ R

n, denote by a[1], . . . , a[n] its components, written in (not strictly)
decreasing order.

Definition 2. (Marshall and Olkin (1979).) Let a, b ∈ R
n. The vector a is said to be majorized

by the vector b, written a ≺ b, if
∑k

i=1 a[i] ≤ ∑k
i=1 b[i], k = 1, . . . , n − 1, and

∑n
i=1 a[i] =∑n

i=1 b[i].
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The relation a ≺ b implies that the components of the vector a are more diverse than those
of b. In this context, it is easy to see that, for all n ≥ 1 and a ∈ R

n+, the following relations hold:

( n∑
i=1

ai

n
, . . . ,

n∑
i=1

ai

n

)
≺ (a1, . . . , an) ≺

( n∑
i=1

ai, 0, . . . , 0

)
, (4)

(
1

n + 1
, . . . ,

1

n + 1
,

1

n + 1

)
≺

(
1

n
, . . . ,

1

n
, 0

)
. (5)

Theorem 1, below, provides general results on the peakedness properties of the distribution of
the trait X in k-sex inheritance models of the sort in (1) with sex- and time-dependent heritabil-
ities. According to the theorem, switching to a reproduction mechanism with a more uniform
inheritance structure (i.e. a mechanism with less diverse coefficients governing inheritance in
the multisex model) at a given time increases the peakedness and concentration of traits that have
moderately heavy-tailed distributions. However, it decreases the peakedness and concentration
of phenotypes that have extremely heavy-tailed distributions in the population at the moment
of the switch.

Let µ ∈ R and, as in the introduction, let λ
(k)
t−1 denote the sequence {(λ1s , . . . , λks)}t−1

s=0.
As before, Xt(λ

(k)
t−1) denotes the trait value at time t . Let ξt = (ξ1t , . . . , ξkt ) and θt =

(θ1t , . . . , θkt ) ∈ R
k+ be two vectors of time-t heritability coefficients such that

∑k
i=1 ξit =∑k

i=1 θit = 1, ξt ≺ θt , and ξt is not a (component-wise) permutation of θt . Denote by

Yt+1(λ
(k)
t−1, ξt ) =

k∑
i=1

ξitXit (λ
(k)
t−1)

and

Yt+1(λ
(k)
t−1, θt ) =

k∑
i=1

θitXit (λ
(k)
t−1)

the time-(t + 1) trait values corresponding to ξt and θt .

Theorem 1. Consider model (1). If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1], and
α ∈ (1, 2], or X0 = µ + W with W ∼ CSLC, then Yt+1(λ

(k)
t−1, ξt ) is strictly more peaked

about µ than is Yt+1(λ
(k)
t−1, θt ). That is,

P(|Yt+1(λ
(k)
t−1, ξt ) − µ| > x) < P(|Yt+1(λ

(k)
t−1, θt ) − µ| > x), x > 0. (6)

If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1], and α ∈ (0, 1), or X0 = µ + W with
W ∼ CS, then Yt+1(λ

(k)
t−1, θt ) is strictly less peaked about µ than is Yt+1(λ

(k)
t−1, ξt ). That is,

P(|Yt+1(λ
(k)
t−1, θt ) − µ| > x) < P(|Yt+1(λ

(k)
t−1, ξt ) − µ| > x), x > 0. (7)

Denote by �k = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)} the set of orthants
in R

k . Let δt = (δ1t , . . . , δkt ) ∈ R
k+ be an arbitrary vector of time-t heritability coefficients

such that
∑k

i=1 δit = 1, and let Yt+1(λ
(k)
t−1, δt ) = ∑k

i=1 δitXit (λ
(k)
t−1) be the corresponding

time-(t + 1) trait value in model (1).
Corollary 1 shows that in a general multisex inheritance model of the sort in (1), the

peakedness and concentration of traits that are not extremely heavy tailed increase with time.
In contrast, phenotypes with extremely heavy-tailed distributions become less peaked and more
spread in the population with time in the above models of inheritance.
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Corollary 1. Consider model (1). Let δt /∈ �k . If X0 ∼ Sα(σ, β, µ) for some σ > 0,
β ∈ [−1, 1], and α ∈ (1, 2], or X0 = µ + W with W ∼ CSLC, then Yt+1(λ

(k)
t−1, δt ) is strictly

more peaked about µ than is Xt(λ
(k)
t−1). That is,

P(|Yt+1(λ
(k)
t−1, δt ) − µ| > x) < P(|Xt(λ

(k)
t−1) − µ| > x), x > 0.

If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1], and α ∈ (0, 1), or X0 = µ + W with
W ∼ CS, then Yt+1(λ

(k)
t−1, δt ) is strictly less peaked about µ than is Xt(λ

(k)
t−1). That is,

P(|Xt(λ
(k)
t−1) − µ| > x) < P(|Yt+1(λ

(k)
t−1, δt ) − µ| > x), x > 0.

Let δt = (δ1t , . . . , δkt ) = (1/k, . . . , 1/k) ∈ R
k be the vector of time-t heritability coeffi-

cients corresponding to symmetric inheritance, and let Yt+1(λ
(k)
t−1, δt ) = (1/k)

∑k
i=1 Xit (λ

(k)
t−1)

be the corresponding trait value at time t + 1.
According to Corollary 2, the peakedness of phenotypes that have moderately heavy-tailed

distributions is maximal in the symmetric model of inheritance. On the other hand, symmetric
inheritance leads to the smallest concentration of extremely heavy-tailed traits in the population
using the general k-sex mechanism of propagation.

Corollary 2. Consider model (1). Let δt �= δt . If X0 ∼ Sα(σ, β, µ) for some σ > 0,
β ∈ [−1, 1], and α ∈ (1, 2], or X0 = µ + W with W ∼ CSLC, then Yt+1(λ

(k)
t−1, δt ) is strictly

more peaked about µ than is Yt+1(λ
(k)
t−1, δt ). That is,

P(|Yt+1(λ
(k)
t−1, δt ) − µ| > x) < P(|Yt+1(λ

(k)
t−1, δt ) − µ| > x), x > 0.

If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1], and α ∈ (0, 1), or X0 = µ + W with
W ∼ CS, then Yt+1(λ

(k)
t−1, δt ) is strictly less peaked about µ than is Yt+1(λ

(k)
t−1, δt ). That is,

P(|Yt+1(λ
(k)
t−1, δt ) − µ| > x) < P(|Yt+1(λ

(k)
t−1, δt ) − µ| > x), x > 0.

Let us now turn to the analysis of intertemporal distributional properties of traits under the
symmetric k-sex inheritance mechanism modeled by time series (2). The following results,
which are counterparts of Corollary 1 under symmetry, show that an increase in the number
of sexes in models of the sort in (2) leads to an increase in the intertemporal peakedness and
concentration of traits that have moderately heavy-tailed initial distributions. However, the
peakedness and concentration of extremely heavy-tailed phenotypes over time decrease with
the number of sexes in such inheritance models.

Corollary 3. Consider model (2). If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1], and

α ∈ (1, 2], or X0 = µ + W with W ∼ CSLC, then, for all k ≥ 1 and all t ≥ 1, Xt(λ
(k+1)

t−1 ) is
strictly more peaked about µ than is Xt(λ

(k)

t−1). That is,

P(|Xt(λ
(k+1)

t−1 ) − µ| > x) < P(|Xt(λ
(k)

t−1) − µ| > x), x > 0.

If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1], and α ∈ (0, 1), or X0 = µ + W with

W ∼ CS, then, for all k ≥ 1 and all t ≥ 1, Xt(λ
(k+1)

t−1 ) is strictly less peaked about µ than is

Xt(λ
(k)

t−1). That is,

P(|Xt(λ
(k)

t−1) − µ| > x) < P(|Xt(λ
(k+1)

t−1 ) − µ| > x), x > 0.
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The following result is a particular case of Corollary 3 with k = 1. It indicates that the
asexual inheritance mechanism produces the most uniform concentration of traits that are
not extremely heavy tailed, in comparison with inheritance models with two or more sexes.
However, concentration of a trait that propagates asexually is maximal among all the multisex
inheritance models if the initial distribution of the phenotype is extremely heavy tailed.

Corollary 4. Consider model (2). If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1], and

α ∈ (1, 2], or X0 = µ + W with W ∼ CSLC, then, for all k ≥ 2 and all t ≥ 1, Xt(λ
(k)

t−1) is
strictly more peaked about µ than is Xt(λ

(1)

t−1) ≡ X0. That is,

P(|Xt(λ
(k)

t−1) − µ| > x) < P(|Xt(λ
(1)

t−1) − µ| > x) ≡ P(|X0 − µ| > x), x > 0.

If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1], and α ∈ (0, 1), or X0 = µ + W with

W ∼ CS, then, for all k ≥ 2 and all t ≥ 1, Xt(λ
(k)

t−1) is strictly less peaked about µ than is

Xt(λ
(1)

t−1) ≡ X0. That is,

P(|X0 − µ| > x) ≡ P(|Xt(λ
(1)

t−1) − µ| > x) < P(|Xt(λ
(k)

t−1) − µ| > x), x > 0.

Corollary 5 concerns comparisons of peakedness properties of traits in the two-sex inheri-
tance system with those in models with three or more sexes.

Corollary 5. Consider model (2). If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1], and

α ∈ (1, 2], or X0 = µ + W with W ∼ CSLC, then, for all k ≥ 3 and all t ≥ 1, Xt(λ
(k)

t−1) is
strictly more peaked about µ than is Xt(λ

(2)

t−1). That is,

P(|Xt(λ
(k)

t−1) − µ| > x) < P(|Xt(λ
(2)

t−1) − µ| > x), x > 0. (8)

In addition, for any t ≥ 1, there exists a t ′ > t such that Xt(λ
(k)

t−1) is strictly less peaked about µ
than is Xt ′(λ

(2)

t ′−1). That is,

P(|Xt ′(λ
(2)

t ′−1) − µ| > x) < P(|Xt(λ
(k)

t−1) − µ| > x), x > 0. (9)

If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1], and α ∈ (0, 1), or X0 = µ + W with

W ∼ CS, then, for all k ≥ 3 and all t ≥ 1, Xt(λ
(k)

t−1) is strictly less peaked about µ than is

Xt(λ
(2)

t−1). That is,

P(|Xt(λ
(2)

t−1) − µ| > x) < P(|Xt(λ
(k)

t−1) − µ| > x), x > 0. (10)

In addition, for any t ≥ 1, there exists a t ′ > t such that Xt(λ
(k)

t−1) is strictly more peaked

about µ than is Xt ′(λ
(2)

t ′−1). That is,

P(|Xt(λ
(k+1)

t−1 ) − µ| > x) < P(|Xt ′(λ
(2)

t ′−1) − µ| > x), x > 0. (11)

Remark 1. It follows from the proof of Corollary 5 that we can take t ′ = t log2 k + 1 in (9)
and (11).

Relations (8) and (10) are consequences of Corollary 3 with k = 2. Similar to Corol-
lary 4, these relations show that the binary inheritance mechanism leads to more pronounced
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peakedness and concentration of phenotypes that are not extremely heavy tailed, in comparison
with the inheritance systems with more than two sexes. In addition, at any given time, the
peakedness and concentration of extremely heavy-tailed traits in inheritance models with three
or more sexes are less than those of traits with two-sex inheritance. However, according to
peakedness comparisons (9) and (11), there is a crucial difference between the distributional
properties of traits in the two-sex inheritance system and those in the asexual inheritance model.
Peakedness comparison inequalities between the traits in the asexual and multisex inheritance
models never reverse. On the contrary, time-t peakedness comparison inequalities between the
phenotypes in the two-sex and multisex inheritance models with k > 2 reverse at some future
time t ′ > t .

Remark 2. The results in this section have implications for the analysis of binary mating
systems with more than two sexes. As suggested by the discussion in Subsection 1.4, populations
should prefer such systems to their two-sex binary mating counterparts if the costs of evolution
and maintenance of extra sexes are low, due to the fitness advantage of outbreeding. In addition,
although all the distributional properties of the offspring’s phenotypes in models of the sort in (1)
with k = 2 and, under restriction (3), with k > 2 are the same for equally distributed parental
genetic contributions, this is not true if the distributional properties of the contributions differ
among the sexes. It is well known that the tail index of the convolution of two heavy-tailed
distributions equals the minimum of their tail indices. Therefore, the freedom in the choice of
two contributing sexes among the k existing in models of the sort in (1) under restriction (3)
allows the population to regulate the propagation of distributional properties of positive or
negative traits through generations more effectively than it can in a two-sex mating system.

4. Extensions and suggestions for further research

Using the extensions of peakedness comparisons in Appendix A (see Ibragimov (2005),
(2007)), it is possible to obtain generalizations of the results in this paper to the case of dependent
and not necessarily identically distributed parental contributions Xjt , including convolutions
of random vectors with α-symmetric distributions.

The arguments used in this paper can be also applied in the study of multisex inheritance
systems with positive costs of developing extra sexes. This approach may be applicable in
the quantitative study of the evolution of an asexual/two-sex system (rather than a multisex
inheritance model) starting from a given condition. The latter problems are of considerable
interest and are left for further research.

Appendix A. Majorization properties of log-concave and heavy-tailed distributions

Proschan (1965) obtained the following seminal result concerning majorization and peaked-
ness properties of tail probabilities of linear combinations of log-concavely distributed RVs.

Proposition 1. (Proschan (1965).) Let c = (c1, . . . , cn) ∈ R
n+ and d = (d1, . . . , dn) ∈ R

n+ be
two vectors such that c ≺ d and c is not a (component-wise) permutation of d. If X1, X2, . . .

are independent, identically distributed RVs such that X1 ∼ LC, then
∑n

i=1 ciXi is strictly
more peaked than

∑n
i=1 diXi , i.e.

P

(∣∣∣∣
n∑

i=1

ciXi

∣∣∣∣ > x

)
< P

(∣∣∣∣
n∑

i=1

diXi

∣∣∣∣ > x

)
, x > 0.
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The following results on majorization properties of convex combinations of heavy-tailed
RVs were obtained by Ibragimov (2007) (see Theorems 3.1 and 3.2 in that paper). According
to Lemma 1, the peakedness properties of linear combinations of RVs that have moderately
heavy-tailed distributions are the same as those in the case of log-concave distributions in
Proschan (1965).

Lemma 1. (Ibragimov (2007).) Proposition 1 continues to hold if X1, X2, . . . are independent,
identically distributed RVs such that X1 ∼ Sα(σ, β, 0) for some σ > 0, β ∈ [−1, 1], and
α ∈ (1, 2], or X1 ∼ CSLC.

According to Lemma 2, the peakedness properties given by Proposition 1 and Theorem 1
above are reversed in the case of RVs with extremely heavy-tailed distributions.

Lemma 2. (Ibragimov (2007).) Let c = (c1, . . . , cn) ∈ R
n+ and d = (d1, . . . , dn) ∈ R

n+ be
two vectors such that c ≺ d and c is not a (component-wise) permutation of d. If X1, X2, . . .

are independent, identically distributed RVs such that X1 ∼ Sα(σ, β, 0) for some σ > 0,
β ∈ [−1, 1], and α ∈ (0, 1), or X1 ∼ CS, then

∑n
i=1 ciXi is strictly less peaked than∑n

i=1 diXi , i.e.

P

(∣∣∣∣
n∑

i=1

ciXi

∣∣∣∣ > x

)
< P

(∣∣∣∣
n∑

i=1

diXi

∣∣∣∣ > x

)
, x > 0.

Appendix B. Proofs

In what follows, for two vectors a = (a1, . . . , an) ∈ R
n and b = (b1, . . . , bm) ∈ R

m, we
denote by vec(a
b) the vector

(a1b1, . . . , a1bm, a2b1, . . . , a2bm, . . . , anb1, . . . , anbm) ∈ R
nm,

i.e. the vector formed by collecting the entries of the matrix a
b ∈ R
n×m in one long row.

In addition, {Vt }∞t=1 denotes a sequence of independent copies of the RV X0 and, for t ≥ 1,
V (t) denotes the random vector V (t) = (V1, . . . , Vt ). For m ≥ 1, we denote by V m =
(1/m)

∑m
s=1 Vs the sample mean of the RVs Vs , s = 1, . . . , m.

Proof of Theorem 1. Let X0 ∼ Sα(β, σ, µ) for some σ > 0, β ∈ [−1, 1], and α ∈ (0, 1), or
X0 = µ+W with W ∼ CS. For k, t ≥ 1, let Nkt = kt and �

(k)
1 = (λ11, . . . , λk1). Recursively

define the vectors

�(k)
s = vec((λ1t , . . . , λkt )


�
(k)
s−1), s = 2, . . . , t − 1.

Furthermore, let �t = vec(ξ

t �

(k)
t−1) and �t = vec(θ


t �
(k)
t−1). It is not difficult to see that

Yt+1(λ
(k)
t−1, ξt )

d= �t (V
(Nk,t+1))
 and Yt+1(λ

(k)
t−1, θt )

d= �t (V
(Nk,t+1))
. According to Propo-

sition 5.A.7 of Marshall and Olkin (1979), the relations x = (x1, . . . , xn) ≺ y = (y1, . . . , yn)

and a = (a1, . . . , am) ≺ b = (b1, . . . , bm) imply that (x, y) = (x1, . . . , xn, a1, . . . , am) ≺
(y1, . . . , yn, b1, . . . , bm). It is not difficult to see, using this result, that from the assumption
that ξt ≺ θt in the theorem it follows that �t ≺ �t . In addition, it is easy to see that, under the
assumption that ξt is not a permutation of θt , the vector �t is not a permutation of the vector �t .
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Lemma 2 and the above relations thus imply that, for all x > 0,

P(|Yt+1(λ
(k)
t−1, ξt ) − µ| > x) = P(|�t (V

(Nk,t+1))
 − µ| > x)

< P(|�t (V
(Nk,t+1))
 − µ| > x)

= P(|Yt+1(λ
(k)
t−1, θt ) − µ| > x).

Consequently, inequality (7) holds. Inequality (6) can be proven in a similar way, using
Lemma 1 instead of Lemma 2.

Proof of Corollaries 1 and 2. Corollary 1 follows from Theorem 1 with ξt = δt and θt =
(1, 0, . . . , 0) ∈ R

k , using the relation δt ≺ (1, 0, . . . , 0) implied by (5). Corollary 2 is a
consequence of Theorem 1 with ξt = δt and θt = δt , and the fact that, by (4), δt ≺ δt .

Proof of Corollary 3. From the proof of Theorem 1, it follows that Xt(λ
(k+1)

t−1 )
d= V Nk+1,t

and Xt(λ
k

t−1)
d= V Nk,t

. Corollary 3 thus follows from the results of Lemmas 1 and 2 and (4).

Proof of Corollaries 4 and 5. Corollary 4 and, respectively, (8) and (10) in Corollary 5 are
consequences of Corollary 3 with k = 1 and k = 2. Let k ≥ 3 and t ≥ 1, and let t ′ be such that
N2,t ′ = 2t ′ > kt = Nk,t . From the proof of Theorem 1, it follows, similarly to the argument
for Corollary 3, that Xt ′(λ

(2)

t ′−1)
d= V N2,t ′ and Xt(λ

k

t )
d= V Nk,t

. From Lemmas 1 and 2, together
with (4), it thus follows that (9) and (11) hold.
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