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Abstract

We consider semicoherent and mixed systems with exchangeable components.
We present sharp lower and upper bounds on various dispersion measures (in particular,
variance and median absolute deviation) of the system lifetime, expressed in terms of
the system signature and the dispersion of a single component lifetime. We construct
joint exchangeable distributions of component lifetimes with two-point marginals which
attain the bounds in the limit.
Keywords: Semicoherent system; mixed system; Samaniego signature; exchangeable
random variables; sharp bound; dispersion measure; variance; median absolute deviation

2010 Mathematics Subject Classification: Primary 62N05
Secondary 60E15; 62G30

1. Introduction and results

Semicoherent systems are basic notions of the reliability theory (see, e.g. Barlow and
Proschan (1966), (1975)). They work if certain subsets of their components do too. These
relations are precisely described by means of system structure functions φ : {0, 1}n → {0, 1},
where n denotes the number of components, xi = 0 and xi = 1, i = 1, . . . , n, mean
that the ith component works and does not work, respectively, and φ(x1, . . . , xn) defines
the working status of the system. A system is called semicoherent if φ(1, . . . , 1) = 1,
φ(0, . . . , 0) = 0, and φ(x1, . . . , xn) ≥ φ(y1, . . . , yn) when xi ≥ yi, i = 1, . . . , n. These
conditions mean that the system with all working (respectively, failed) elements operates
(respectively, does not operate), and that failure of some components cannot result in repairing
a failed system. A system is called coherent if it does not contain irrelevant components.
Formally, it means that, for every i = 1, . . . , n there exists x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}
such that φ(x1, . . . , xi−1, 1, xi+1, . . . , xn) − φ(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 1. Classic
examples of coherent systems are k-out-of-n:F systems with the structure functions

φ(x1, . . . , xn) =
{

0 if n − ∑n
i=1 xi ≥ k,

1 otherwise.
k = 1, . . . , n

It means that the system fails at the moment of the kth failure of its components. A frequently
used alternative notion is k-out-of-n:G system which works as long as at least k of its components
work. Note that the (n − k + 1)-out-of-n:G system is k-out-of-n:F . In this paper we prefer to
use the k-out-of-n:F, because it leads to simpler formulae in the description of our results.
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118 P. MIZIUŁA AND T. RYCHLIK

It is assumed that the lifetimes X1, . . . , Xn of components are random. If the system is
composed of identical elements, it is natural to assume that the joint distribution of X1, . . . , Xn

is exchangeable. A typical extra assumption that X1, . . . , Xn are independent and identically
distributed (i.i.d.) is often not satisfied in practice; for example, failure of some components
often causes an increased pressure on the other still working items. If the component lifetimes
are exchangeable then the distribution of the semicoherent system lifetime T can be represented
as a convex combination of marginal distributions of order statistics X1:n, . . . , Xn:n, i.e.

P(T ≤ t) =
n∑

i=1

siP(Xi:n ≤ t) (1)

(see Samaniego (1985), (2007), Kochar et al. (1999), and Navarro et al. (2008)). The vector of
combination coefficients s = (s1, . . . , sn) is called the Samaniego signature and depends only
on the system structure. Namely, si = S̄i−1 − S̄i , where

S̄i = 1(
n
i

) ∑
x : ∑n

j=1 xj =n−i

φ(x), i = 0, . . . , n.

Vectors S̄ = (S̄0, . . . , S̄n) and S = (1 − S̄0, . . . , 1 − S̄n) are called the tail signature and cumu-
lative signature, respectively, of the system (see Boland (2001) and Gertsbakh et al. (2011)).
We also define

s1 = min
1≤j≤n

1

j
Sj = min

1≤j≤n

1

j

j∑
i=1

si, (2)

sn = max
1≤j≤n

1

j
Sn−j = max

1≤j≤n

1

j

n∑
i=n−j+1

si, (3)

s1 = max
1≤j≤n

1

j
Sj = max

1≤j≤n

1

j

j∑
i=1

si, (4)

sn = min
1≤j≤n

1

j
Sn−j = min

1≤j≤n

1

j

n∑
i=n−j+1

si . (5)

Note that the k-out-of-n:F system has lifetime Xk:n and signature with coefficients sk = 1,
si = 0, i �= k. Equation (1) implies that the lifetime of a semicoherent system with
exchangeable components and signature s has an identical distribution to that of a randomly
chosen k-out-of-n:F system when the choice probability is sk . Using this observation, Boland
and Samaniego (2004) introduced a more general and mathematically convenient notion of
a mixed system. The mixed system of size n with arbitrary signature s = (s1, . . . , sn) such
that 0 ≤ si ≤ 1 and

∑n
i=1 si = 1 is randomly chosen among the k-out-of-n:F systems (for

k = 1, . . . , n) with respective probabilities s1, . . . , sn.
There are known sharp bounds on expectations of system lifetimes with either i.i.d. or ex-

changeable components under various restrictions on the marginal distributions. They coincide
with the bounds on expectations of convex combinations of order statistics. In contrast, much
less is known about evaluations of lifetime variances of semicoherent and mixed systems. Sharp
upper bounds for lifetime variances of k-out-of-n systems with i.i.d. components were derived
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by Papadatos (1995). An extension to the exchangeable case is due to Rychlik (2008). Jasiński
et al (2009) presented upper evaluations of variances for arbitrary mixed systems composed of
elements with i.i.d. lifetimes. Recently, Miziuła and Rychlik (2014) obtained optimal bounds
on lifetime variances of mixed systems composed of exchangeable items in terms of the system
signature and the variance of a single component. In this paper this result is generalized by
replacing the variance by an arbitrary dispersion measure of a random variable X defined in
the following way:

σ(X, ρ) = inf
μ∈R

Eρ(X − μ).

Here ρ : R → [0, ∞) is a function satisfying the following conditions:

(i) ρ is nonincreasing on (−∞, 0],
(ii) ρ(0) = 0,

(iii) ρ is nondecreasing on [0, ∞).

In particular, for ρ(x) = x2 the dispersion measure is the variance, and for ρ(x) = |x| it
becomes the mean absolute deviation from the median. Note, however, that we admit here
asymmetric (e.g. popular LINEX) and discontinuous functions ρ.

Now we formulate the main result of this paper. It is easily concluded from auxiliary results
presented in Section 2. Section 3 contains the proofs.

Theorem 1. Let X1, . . . , Xn be nonnegative, nondegenerate, exchangeable random lifetimes
of components of a coherent or mixed reliability system with signature s = (s1, . . . , sn) and
lifetime denoted by T . Let ρ : R → [0, ∞) be a nonincreasing (respectively, nondecreasing)
function on (−∞, 0] (respectively, [0, ∞)) and vanishing at 0. If 0 < Eρ(X1 − μ) < ∞ for
some μ ∈ R then

n min{s1, sn} ≤ σ(T , ρ)

σ (X1, ρ)
≤ n max{s1, sn}. (6)

Moreover, if ρ is continuous at 0 and ρ(x) > 0 for x �= 0 then these bounds are the best
possible which means that, for an arbitrary system with signature s = (s1, . . . , sn), each of two
bound in (6), and arbitrary ε > 0, there exists an exchangeable joint distribution of nonnegative
component lifetimes such that the ratio σ(T , ρ)/σ (X1, ρ) is less distant from the bound than ε.

The definitions (2)–(5) imply the following inequalities:

max{s1, sn} ≤ 1

n

n∑
i=1

si = 1

n
≤ min{s1, sn}.

Therefore,

0 ≤ n min{s1, sn} ≤ n max{s1, sn} ≤ 1 ≤ n min{s1, sn} ≤ n max{s1, sn} ≤ n.

The lower bound is equal to 0 if and only if either s1 = 0 or sn = 0. This happens for all
the coherent systems (see Remark 3, below). The lower bound is equal to 1 if and only if
s1 = · · · = sn = 1/n. It is the necessary and sufficient condition for the upper bound being
equal to 1 as well. The conditions imply that H = F (cf. (8), below), which means that the
lifetimes of the system and single component are identical. The upper bound takes on the
maximal value n only for the series and parallel systems. We also note that the bounds in (6)
are identical for the mutually dual systems; in particular, for the k-out-of-n:F and k-out-of-n:G
ones.
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We prove that the bounds of Theorem 1 are attained in the limit by some exchangeable
random variables with identical two-point marginal distributions. This universal, but artificial,
construction seems to be not very applicable in reliability theory. Miziuła and Rychlik (2014)
showed that the particular variance bounds are attained by Pareto and power marginals and
dependence structures resulting in simultaneous failures of some components. We are able to
specify more realistic constructions of reliability models providing attainability of the bounds,
but they depend on the particular choice of function ρ.

2. Auxiliary results

Theorem 2. (Rychlik (1993)) Distribution functions F1, . . . , Fn are the distribution functions
of consecutive order statistics from an identically distributed sample of size n with a common
marginal F if and only if

F1 ≥ · · · ≥ Fn, (7)
n∑

i=1

Fi = nF. (8)

The statement is also valid for the narrower class of exchangeable samples.

Theorem 3. (Rychlik (2012)) LetH = ∑n
i=1 siFi for some distribution functions satisfying (7)

and (8) and arbitrarily fixed 0 ≤ si ≤ 1, i = 1, . . . , n, that sum up to 1. Let S, S : [0, 1] →
[0, 1] be the greatest convex and smallest concave functions, respectively, satisfying S(0) =
S(0) = 0 and

S

(
j

n

)
≤

j∑
i=1

si ≤ S

(
j

n

)
, j = 1, . . . , n

(see Figure 1). Then
S(F (t)) ≤ H(t) ≤ S(F (t)) (9)

for all real t , and

n min
1≤i≤n

si[F(t) − F(u)] ≤ H(t) − H(u) ≤ n max
1≤i≤n

si[F(t) − F(u)], (10)

for all real t > u.

The inequalities in (10) imply that H is absolutely continuous with respect to F , and the cor-
responding Radon–Nikodym derivative satisfies n min1≤i≤n si ≤ dH/dF ≤ n max1≤i≤n si F

almost surely. Rychlik (1994) proved that conditions (9) and (10) uniquely characterize the
lifetime distributions of k-out-of-n systems, i.e. they are necessary and sufficient for the specific
signatures sk = (ek1, . . . , ekn), k = 1, . . . , n, where eki = 1 if i = k and 0 otherwise. An
extension of the result to slightly more general mixed systems can be found in Rychlik (2012).
It is obvious that functions S and S, defined in Theorem 3, are continuous and piecewise linear,
and they change their slopes at some points of the form i/n, 1 ≤ i ≤ n − 1, only. Therefore,
their right-hand side versions of derivatives can be written as

S′(x) =
n∑

i=1

nsi 1[(i−1)/n,i/n)(x), S
′
(x) =

n∑
i=1

nsi 1[(i−1)/n,i/n)(x).
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Figure 1: Functions S, S for s = ( 1
12 , 1

2 , 0, 0, 0, 5
12

)
.

Vectors s = (s1, . . . , sn) and s = (s1, . . . , sn) are the projections of s = (s1, . . . , sn) onto the
convex cones of nondecreasing and nonincreasing vectors, respectively, in R

n with the standard
Euclidean norm. They satisfy 0 ≤ si, si ≤ 1, i = 1, . . . , n, and

∑n
i=1 si = ∑n

i=1 si = 1.
In particular, s1, sn, s1, and sn defined here coincide with (2)–(5).

Theorem 4. Suppose that X1 has a nondegenerate distribution function F , say. Let ρ : R →
[0, ∞) be a nonincreasing and nondecreasing function on (−∞, 0] and [0, ∞), respectively,
which satisfies ρ(0) = 0. If a random variable T has a distribution function H satisfying the
assumptions of Theorem 3, then

n min{s1, sn} ≤ Eρ(T − μ)

Eρ(X1 − μ)
≤ n max{s1, sn}

for all μ ∈ R such that 0 < Eρ(X1 − μ) < ∞, where s1, sn, s1, and sn are defined in (2)–(5).

Theorem 5. Under the assumptions of Theorem 4, the inequalities in (6) hold. Moreover, if ρ

is continuous at 0 and positive for all nonzero arguments, then the bounds (6) are attained in
the limit. Precisely, for every signature sequence (s1, . . . , sn), function ρ, ε > 0, and each
of two bounds in (6), there is an n-dimensional distribution with marginals F1 ≥ · · · ≥ Fn

such that, for random variables X1 and T with distribution functions F = (1/n)
∑n

i=1 Fi and
H = ∑n

i=1 siFi , respectively, the ratio σ(T , ρ)/σ (X1, ρ) is less distant from the respective
bound than ε.

Theorems 4 and 5 are proved in Section 3. In view of Theorem 2, Theorem 5 immediately
implies Theorem 1. Note that we can admit that the random variables X1, . . . , Xn, defined
in Theorem 1, do not need to be exchangeable and can take on some negative values as well.
Actually, we provide here optimal bounds for dispersions of order statistics XI :n based on an
arbitrary identically distributed sequence X1, . . . , Xn with randomly chosen index I which is
independent of the sequence and has probability distribution P(I = i) = si, i = 1, . . . , n.
The randomly selected order statistics XI :n were applied in optimal nonparametric quantile
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estimation by Uhlmann (1963) and Zieliński (1999), (2001). We finally observe that Theorem 1
holds for the k-out-of-n:F system when the exchangeability assumption is dropped and we
merely require that the component lifetimes have identical marginal distributions.

3. Proofs

Using Theorem 3 we can check that if Eρ(X1 − μ) < ∞ for some μ ∈ R then

Eρ(T − μ) =
∫

ρ(x − μ)
dH

dF
(x)F (dx)

≤ n max
1≤i≤n

si

∫
ρ(x − μ)F(dx)

= n max
1≤i≤n

siEρ(X1 − μ)

< +∞. (11)

3.1. Proof of the first inequality in Theorem 4

To prove that the first (i.e. the left-hand side) inequality in Theorem 4 holds, we proceed as
follows. If either s1 = 0 or sn = 0 then the inequality is obvious. So we assume that s1 > 0
and sn > 0. Set 0 < m = n min{s1, sn} ≤ 1, and define functions r, r : [0, 1] → [0, 1] as

r(x) =
{

mx, x < 1,

1, x = 1,
r(x) =

{
0, x = 0,

m(x − 1) + 1, x > 0

(see Figure 2). Since r ≤ S and r ≥ S, by Theorem 3, we have

r ◦ F ≤ H ≤ r ◦ F.

Define

Gμ(x) = mF(x) + (1 − m) 1[μ,∞)(x) =
{

r ◦ F(x), x < μ,

r ◦ F(x), x ≥ μ

(see Figure 2). We have H(x) ≥ Gμ(x) for x < μ and H(x) ≤ Gμ(x) for x ≥ μ. Therefore,∫
ρ(x − μ)Gμ(dx) ≤

∫
ρ(x − μ)H(dx) = Eρ(T − μ). (12)

Moreover,∫
ρ(x − μ)Gμ(dx) = m

∫
ρ(x − μ)F(dx) + (1 − m)

∫
ρ(x − μ) 1[μ,∞)(dx)

= m

∫
ρ(x − μ)F(dx) + (1 − m)ρ(0)

= mEρ(X1 − μ). (13)

The inequality is proved.

Remark 1. It is easy to see from (12) and (13) that the condition Eρ(T − μ) < ∞ for fixed
μ ∈ R implies Eρ(X1 − μ) < ∞ as well. Combining this result with (11) we conclude that

Eρ(X1 − μ) < ∞ ⇐⇒ Eρ(T − μ) < ∞.
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Figure 2: Functions r , r , and Gμ for s = ( 1
12 , 1

2 , 0, 0, 0, 5
12

)
and F ∼ U(0, 1).

3.2. Proof of the second inequality in Theorem 4

To prove that the second (i.e. the right-hand side) inequality in Theorem 4 holds, we proceed
as follows. Define 1 ≤ M = n max{s1, sn} ≤ n, and define the functions R, R : [0, 1] → [0, 1]
by

R(x) = max{M(x − 1) + 1, 0}, R(x) = min{Mx, 1}
(see Figure 3). Since R ≤ S and R ≥ S, Theorem 3 implies that

R ◦ F ≤ H ≤ R ◦ F.

Assume that H(μ) = α ∈ [0, 1]. Let

C =
{
x ∈ R : α

M
≤ F(x) ≤ 1 − 1 − α

M

}
.

It is clear that μ ∈ C. Define

Gα(x) =

⎧⎪⎨
⎪⎩

MF(x), F (x) < α/M,

α, x ∈ C,

M(F(x) − 1) + 1, F (x) > 1 − (1 − α)/M

=

⎧⎪⎨
⎪⎩

R ◦ F(x), F (x) < α/M,

α, x ∈ C,

R ◦ F(x), F (x) > 1 − (1 − α)/M

(see Figure 3). Such a Gα is a distribution function. We have H(x) ≤ Gα(x) for x < μ and
H(x) ≥ Gα(x) for x ≥ μ. Therefore,

Eρ(T − μ) =
∫

ρ(x − μ)H(dx) ≤
∫

ρ(x − μ)Gα(dx).
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Figure 3: Functions R, R, and Gα for s = ( 1
12 , 1

2 , 0, 0, 0, 5
12

)
and F ∼ U(0, 1).

Moreover,∫
ρ(x − μ)Gα(dx) = M

∫
R\C

ρ(x − μ)F(dx) ≤ M

∫
ρ(x − μ)F(dx) = MEρ(X1 − μ).

The proof is complete.

3.3. Proof of the inequalities in Theorem 5

If either s1 = 0 or sn = 0 then the left-hand side inequality in (6) is obvious. So we
assume that s1 > 0, sn > 0, and 0 < m = n min{s1, sn} ≤ 1. There exists a sequence μk,

k = 1, 2, . . . , where

Eρ(T − μk) ↘ inf
μ∈R

Eρ(T − μ) = σ(T , ρ)

as k → ∞. For this sequence, by Theorem 4 and Remark 1, we also have

σ(X1, ρ) ≤ Eρ(X1 − μk) ≤ 1

m
Eρ(T − μk) ↘ 1

m
σ(T , ρ)

and, consequently,
mσ(X1, ρ) ≤ σ(T , ρ).

Now take 1 ≤ M = n max{s1, sn} ≤ n. There exists a sequence μk, k = 1, 2, . . . , where

Eρ(X1 − μk) ↘ inf
μ∈R

Eρ(X1 − μ) = σ(X1, ρ)

as k → ∞. From Theorem 4, we obtain

σ(T , ρ) ≤ Eρ(T − μk) ≤ MEρ(X1 − μk) ↘ Mσ(X1, ρ),

which allows us to conclude that

σ(T , ρ) ≤ Mσ(X1, ρ).
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3.4. Proof of the optimality of Theorem 5

The proof is based on two constructions. For an arbitrarily chosen j ∈ {1, . . . , n} we first
define exchangeable random variables X1, . . . , Xn with a joint distribution dependent on the
parameter α ∈ (0, 1) and a variable T whose distribution is the convex combination of marginal
distributions of X1:n, . . . , Xn:n with coefficients s1, . . . , sn, so that

lim
α↘0

σ(T , ρ)

σ (X1, ρ)
= n

j

j∑
i=1

si . (14)

Another construction leads to the relation

lim
α↘0

σ(T , ρ)

σ (X1, ρ)
= n

j

n∑
i=n−j+1

si . (15)

Since

{s1, s1} ⊂
{

1

j

j∑
i=1

si : j = 1, . . . , n

}

and

{sn, sn} ⊂
{

1

j

n∑
i=n−j+1

si : j = 1, . . . , n

}
,

proving (14) and (15) is sufficient for concluding sharpness of bounds in Theorem 5.
First, we describe a model providing equality (14). Choose c ∈ (0, ∞) such that ρ is

continuous at c and −c. Fix j ∈ {1, . . . , n}. Suppose that we have two urns containing n balls
with values

(0, . . . , 0︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
n − j

), (c, . . . , c︸ ︷︷ ︸
n

).

Let α ∈ (0, 1). First we choose either the first or the second urn with probability α and
1 − α, respectively. Then we draw all the balls from the chosen urn without replacement.
Let X1, . . . , Xn denote the values of consecutively drawn balls. These random variables are
exchangeable and have the two-point marginal distribution

Pα(X1 = 0) = α
j

n
= 1 − Pα(X1 = c),

dependent on α. It is also easy to see that

Pα(Xi:n = 0) = 1 − Pα(Xi:n = c) =
{

α, i ≤ j,

0, i > j,

for i = 1, . . . , n. Now we obtain a random variable T by choosing Xi:n with probability si .
It has distribution

Pα(T = 0) = α

j∑
i=1

si = 1 − Pα(T = c).

We aim at proving that the construction allows us to get (14).

https://doi.org/10.1239/jap/1429282610 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1429282610
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We have

Eαρ(X1 − x) = α
j

n
ρ(−x) +

(
1 − α

j

n

)
ρ(c − x),

Eαρ(T − y) = α

j∑
i=1

siρ(−y) +
(

1 − α

j∑
i=1

si

)
ρ(c − y).

Relations ρ(−x) ≥ ρ(−c) and ρ(c − x) > ρ(0) for x > c imply

Eαρ(X1 − x) > Eαρ(X1 − c), x > c. (16)

Similarly,
Eαρ(X1 − x) < Eαρ(X1 − 0), x < 0. (17)

Let xα ∈ R satisfy
Eαρ(X1 − xα) ≤ σα(X1, ρ) + α2.

By (16) and (17), we can assume that xα ∈ [0, c]. Using the same arguments, we can find
yα ∈ [0, c] such that

Eαρ(T − yα) ≤ σα(T , ρ) + α2.

So we have
σα(T , ρ)

σα(X1, ρ)
≥ Eαρ(T − yα) − α2

Eαρ(X1 − xα)

and
σα(X1, ρ)

σα(T , ρ)
≥ Eαρ(X1 − xα) − α2

Eαρ(T − yα)
.

It suffices to prove that

lim
α↘0

Eαρ(T − yα) − α2

Eαρ(X1 − xα)
= n

j

j∑
i=1

si (18)

and

lim
α↘0

Eαρ(X − xα) − α2

Eαρ(T − yα)
=

(
n

j

j∑
i=1

si

)−1

. (19)

We will show that (18) holds; the proof of (19) is fully analogous. We need the following
facts:

(i) limα↘0 xα = c and limα↘0 yα = c,

(ii) limα↘0 ρ(c − xα)/α = 0 and limα↘0 ρ(c − yα)/α = 0.

We now prove that these facts hold.

(i) Suppose that there exist ε > 0 and (αk)
∞
k=1 such that αk → 0 and xαk

≤ c − ε. Then

Eαk
ρ(X1 − xαk

) = αk

j

n
ρ(−xαk

) +
(

1 − αk

j

n

)
ρ(c − xαk

)

≥
(

1 − αk

j

n

)
ρ(ε)

→ ρ(ε)

> 0;
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whereas,

Eαk
ρ(X1 − xαk

) ≤ σαk
(X1, ρ) + α2

k ≤ Eαk
ρ(X1 − c) + α2

k = αk

j

n
ρ(−c) + α2

k → 0.

So we get the contradiction. Analogously, we check that limα↘0 yα = c.

(ii) We have

1 ≥ σα(X1, ρ)

Eαρ(X1 − c)

≥ Eαρ(X1 − xα) − α2

Eαρ(X1 − c)

= α(j/n)ρ(−xα) + (1 − αj/n)ρ(c − xα) − α2

α(j/n)ρ(−c)
.

Hence,

0 ≤ ρ(c − xα)

α
≤ (j/n)[ρ(−c) − ρ(−xα)] + α

1 − αj/n
→ 0

as α ↘ 0. Analyzing ρ(c − yα)/α we proceed analogously.
Now, using these facts, we can see that

Eαρ(T − yα)

Eαρ(X1 − xα)
=

∑j
i=1 si[ρ(−yα) − ρ(c − yα)] + ρ(c − yα)/α

(j/n)[ρ(−xα) − ρ(c − xα)] + ρ(c − xα)/α
→ n

j

j∑
i=1

si

and

α2

Eαρ(X1 − xα)
= α2

α(j/n)ρ(−xα) + (1 − αj/n)ρ(c − xα)
≤ α

(j/n)ρ(−c/2)
→ 0,

which completes the proof of (18). This together with (19) implies (14).
Similar calculations allow us to prove that (15) is attained by the analogous model of two

urns containing balls with the following values:

(c, . . . , c︸ ︷︷ ︸
j

, 0, . . . , 0︸ ︷︷ ︸
n − j

), (0, . . . , 0︸ ︷︷ ︸
n

)

when the probability α of choosing the first urn tends to 0.

Remark 2. In the above proof we applied an urn model of elementary probability theory. In
the reliability setup we could consider n system components with two possible failure schemes.
Either j randomly chosen components fail at a fixed time t , say, and the other n−j do so c time
units later, or all the components fail simultaneously at the moment t + c. The probabilities of
these two cases are α and 1 − α, respectively. This model yields (14). Relation (15) can be
derived once we interchange the failure times t and t + c in the previous construction.

Remark 3. If a coherent system has at least two elements, then either s1 = 0 or sn = 0. We
prove this claim using the definition of a coherent system. Suppose that n ≥ 2 and s1, sn > 0.
The condition sn > 0 implies that there exists a sequence of components (x1, . . . , xn) ∈ {0, 1}n
containing n − 1 zeros such that φ(x1, . . . , xn) = 1. Without loss of generality we can write
φ(1, 0, . . . , 0) = 1. On the other hand, s1 > 0 assures that φ(x1, . . . , xn) = 0 for some
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(x1, . . . , xn) ∈ {0, 1}n such that
∑n

i=1 xi = n − 1. Since φ(x1, . . . , xn) = 1 if x1 = 1, it must
be the case that x1 = 0 when φ(x1, . . . , xn) = 0. Thus, the state vector (x1, . . . , xn) with one
zero element for which φ(x1, . . . , xn) = 0 must be the vector (0, 1, . . . , 1). But this implies
that all components except for the first are irrelevant. This contradicts the assumption that the
system is coherent.
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