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1. Introduction

A subgroup H of a group G is said to be subnormal in G if there is a finite
chain of subgroups, each normal in its successor, connecting H to G. If such chains
exist there is one of minimal length; the number of strict inclusions in this chain
is called the subnormal index, or defect, of H in G. The rather large class of groups
which have an upper bound for the subnormal indices of their subnormal sub-
groups has been investigated to some extent, mainly with a restriction to soluble
groups—for instance, in [10], McDougall considered soluble p-groups in this
class. Robinson, in [14], restricted his attention to wreath products of nilpotent
groups but extended his investigations to the strictly larger class of groups in
which the intersection of any family of subnormal subgroups is a subnormal
subgroup. These groups are said to have the subnormal intersection property.

In [17] Roseblade studied groups in which every subgroup is subnormal, and
proved that if a group of this type has bounded subnormal indices then it is nil-
potent, and its class is bounded by a function of the bound for the subnormal
indices. In [8] McDougall and the present author obtained some information on
the structure of metanilpotent groups with bounded subnormal indices; the
corresponding results for groups with the subnormal intersection property were
less satisfactory. From a consideration of such attempts to describe the structure
of groups which have some restrictions on their subnormal subgroups, it is clear
that the treatment of groups with bounds on their subnormal indices is relatively
easy when compared with that of groups with the subnormal intersection property.
It is therefore of some interest to have at least a partial answer to the question:
for which classes of groups do these two restrictions coincide? The results of [14]
show that for wreath products of nilpotent groups they do not. But, in [12],
Robinson characterised finitely generated soluble groups with the subnormal
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intersection property, proving in the process that such groups have bounded sub-
normal indices; thus at least for finitely generated soluble groups the two res-
trictions are equivalent.

In section 4 of this paper we show that a similar statement holds for the class
of soluble minimax groups, that is, soluble groups which have a subnormal series
of finite length in which each factor satisfies the minimal or the maximal condi-
tion on subgroups. Our fundamental result is theorem 3.2, the proof of which
occupies the bulk of section 3. Section 5 is devoted to the construction of a par-
ticular group which has the subnormal intersection property but unbounded sub-
normal indices. Although this group is not a minimax group, it lies in the related
class of soluble groups of finite reduced rank, that is, soluble groups in which
every finitely generated subgroup can be generated by a fixed number of elements.

2. Notation and preliminary results

In this section we aim to summarise, for convenience, some basic facts and
terminology which will be used implicitly in later sections.

SUBNORMAL SUBGROUPS. Our treatment of subnormal subgroups leans heavily
on the idea of standard series of a subgroup. If H is a subgroup of a group G, the
standard series of H in G may be defined by: HG0 = G, HG'' is the normal closure
of H in HG'l~l if i is a positive integer. It is easy to show that H is subnormal in
G if and only if for some integer n, H=HG"; the least such n is of course the sub-
normal index of Win G, denoted throughout by s(G:H). As is well known, for each
non-negative integer r, the r-th term of the standard series of H in G is given by
HGr = HyGHr, where yGHr is defined inductively: yGH° = G and yGHr+1

= [yGHr, H] . Thus if H is subnormal in G the subnormal index s(G : H) is the
least integer r for which yGHr ^ H.

We are caassrasi with two classes of groups, the first comprising those
groups which have the subnormal intersection property, the second those which
have bounds on the subnormal indices of their subnormal subgroups. The groups
in these classes can be usefully characterised by the behaviour of the standard
series of an arbitrary subgroup, the characterisation showing incidentally that
the second class is indeed a subclass of the first.

LEMMA 2.1. (lemma 2 of [12]) (i) A group G has the subnormal intersection
property if and only if for each subgroup H ofG there is an integer n depending
on H such that HG"= HG"+1, that is, the standard series of each subgroup in
G becomes stationary after finitely many steps.

(ii) A group G has a bound k on the subnormal indices of its subnormal
subgroups if and only if for each subgroup H of G, HG'k — Ha'k+1.
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It is worth noting that if a group G lies in either of these two classes then
any homomorphic image or subnormal subgroup of G will lie in the same class.
Moreover, in [12] and [14], Robinson provides examples of groups which have
the subnormal intersection property but unbounded subnormal indices — for
instance the group Cp wr Cpa0, where p is any prime.

COMMUTATOR RESULTS. We include for easy reference our two main tools for
the manipulation of commutator subgroups. The first of these is a weak form of
the "three subgroup lemma" of Hall.

LEMMA 2.2. ([3], Theorem 2.3.) / / H, K and L are normal subgroups of a
group, then [H,K,L\ g, [K,L,HjL,H,K\.

Although our second tool is also essentially due to Hall (Theorem 2 of [4]) it
is convenient to give a slightly sharper version of his result, which may be estab-
lished by a simple inductive argument which we omit.

LEMMA 2.3. / / H is a normal subgroup of G then for each positive integer k,
\H, ykG~] ^ yHGk, where ykG denotes the k-th term of the lower central series of G.

RADICABILITY. If % is any set of primes, we say that a group is quasi-rc-radicable
if it can be generated by the /c-th powers of its elements for each 7i-number k, that
is, for each positive integer k all of whose prime divisors lie in n. We say that the
group is rc-radicable if every element of the group is a Jt-th power for each n-
number k. It is not difficult to see that in an arbitrary group G the subgroup gen-
erated by a family of quasi-rc-radicable subgroups is itself quasi-7t-radicable, so
that G has a unique maximal quasi-rc-radicable subgroup. This subgroup is fully
invariant in G since quasi-rc-radicability is inherited by homomorphic images. If
the maximal quasi-rc-radicable subgroup of G is trivial, G is said to be n reduced;
the factor group of any group with respect to its maximal quasi n radicable sub-
group will be 7r-reduced. A well-known result of Cernikov [2] implies that any
quasi-rc-radicable Z4-group is actually 7r-radicable, although rc-radicability is, in
general, the stronger property. For the most part we will deal only with the case
where n contains but one prime p: we will use such terms as p radicable and p-
reduced.

FINITENESS CONDITIONS. An abelian group A is said to have finite reduced
rank if there is an upper bound for the values of the 0-rank and the p rank of A
as p ranges over the set of all primes. A soluble group of finite reduced rank is a
group with a subnormal series of finite length in which the factors are abelian
groups of finite reduced rank. A soluble minimax group is one with a subnormal
series of finite length in which the factors are abelian groups satisfying the minimal
or maximal condition on subgroups. It is well known that the class of soluble
groups of finite reduced rank properly contains the class of soluble minimax
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groups. (See chapter 6 of [16].) As far as these classes are concerned, heyond the
obvious remark that both are closed under the operations of forming subgroups
and homomorphic images, we will require only the following result; the proof,is
elementary and is omitted.

LEMMA 2.4. Let G be a soluble group of finite reduced rank. If {Ht : i § 0}
is an ascending chain of normal subgroups of G then all but finitely many of the
factors {H( + 1/ / / , : i ^ 0} are periodic.

This lemma will in fact be used in the context of soluble minimax groups:
for further information on these we refer the reader to [1] and [15].

3. The basic theorem

To begin this section we introduce a concept which does not appear to have
been studied elsewhere.

DEFINITION 3.1. Let G be a group and N a normal subgroup of G. We denote
by Z(G : N) the family of subnormal subgroups S of G such that SN = G. We
put a(G : N) = n {S : S e I ( G : AT)}.

It is easy to see that a(G : N) is a normal subgroup of G; indeed if N is a
characteristic subgroup of G then a{G : JV) will also be characteristic in G.

If N is a normal subgroup of G and N f± M f± G, then for any S in I (G : N),
(S O M) N = SN n M = M, and so S n MeS(M : N), showing that <r(Af : N)
^ M na(G : N).

Our fundamental theorem, in which this concept plays a part, follows a famil-
iar pattern (compare theorem 5.4 of [10] or Lemma 4 of [12] in deducing the nil-
potency of a group from conditions which partly involve subnormal subgroups.

THEOREM 3.2. Let G be a group with a nilpotent normal subgroup N such
that G/N is a finite nilpotent group. If a{G : N) = 1 and G has the subnormal
intersection property then G is nilpotent.

PROOF. In view of the second remark after definition 3.1, it is easily seen that
the hypotheses of the theorem apply to any normal subgroup of G containing N.
By Fitting's theorem we may therefore assume, without loss of generality, that
G/N is a finite p group for some prime p.

Let P denote the maximal p-radicable subgroup of N. Let us define a chain
{Pt : i ^ 0} of normal subgroups of G as follows: Po = 1; Pi/Pi_l is the maximal
p-radicable subgroup of CiiN/Pt-i) (the centre of N/P^^, for i ^ 1. By lemma
3.6 of [8], P,- is precisely the maximal p radicable subgroup of Ct{N), for each
i(0 ^ » = m ) anc* Pm = pm+i = ?, where m is the nilpotent class of N.

If, for 0 < i ^ m, we denote by Q the centralizer in G of the group PJPi-i,
our last statement implies that N :£ Q. Thus the action of G on Pi/Pi_l is es-
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sentially that of the finite p group G/Q, and we can now apply lemma 3 of [7].
We deduce that for each i, Pt is the product of two subgroups Kt and L, with the
following properties

(i) P,_, ^ K-KLt, (ii) [L,,G] ^ Pi-u

These equations hold for 0 < i ^ m. If we put Ko = Lo = 1, it is easy to see
from (iii) that [Kt, G] ^ [^;_i, G] and that (iii) can then be extended to

(iv)K, = [Ki,G-]Li_1=Li_l7KlG'

for any integer r ^ 0.
Finally, the centrality of Pf/Pj_ t in JV/P,_ t implies that for any S in S (G : N),

we have, substituting SN for G in (iv), that

(v) K, = [Xj.S]!, .! =Li_1yKiS'

for any integer r ^ 0.
Since we know from Theorem A of [7] that G/P is nilpotent, our objective is

to prove that for some integer k, yPGk = 1. We accomplish this by showing that
for each i with 0 < i ^ m, Kt = Pt-U that is, Pt = Lt (which will show that in
fact yPGn = 1).

Suppose that this statement is false, and let K, be the first member of the
chain {Kt : i > 0} which violates it. Then Kt > P,-t. Firstly we note that if S is
an arbitrary subgroup in Z(G : N), yK^ = Klt for any r ^ 0, by (v) above.
From the subnormality of S it then follows that K1 ^ S and thus that
Kt ^ <x(G : N) = 1. This shows that t > 1.

The minimality of t implies that for any i with 0 < i < t, Pt = Lt and
[Pj, G] ^ Pi-1- An obvious inductive argument yields

(a) yP.^G'-1 = yL,.^'-1 = I.

Since L,_! is normal in G, we may apply lemma 2.3 to deduce that

(b) [A-i,7,-iG] = 1.

Now we proceed to establish by induction on i that for 0 < i ^ m

(c) [Pinyt_lG,Kt-] = l.

Consider the subgroup Pt-i Hy^jG = Lt_t Oy^jG. We can write

Kt = Lt^yKtG'

for any non-negative integer r, by (iv). Thus

[P,_! ny^CK,-] = [!,_! nyr_1G,I,_1yK,G'-1].

Applying (b) twice, we see that
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[P,_1ny,_1G,X,] = l,

so that (c) holds for 0 < j ^ f - 1, at least.

Suppose now that (c) holds with i = j < m. We show first of all that

(d) [KJ+lny,.1G,Kt-] = l.

Let us denote by MJ+l the commutator which appears in (d). If S is any
subgroup in £(G : N), say of defect s in G, we may choose an integer r ^ s+ X
and write, using (v),

MJ+i = [Kj+1 nyt_1G,X,] = KLjyKj^Snny.^G.lQ.

By the choice of r,

yJC7.+1S
r ^ 7(_,G,

and so we have, by the modular law,

MJ+1 = l(LJny,_iG)yKJ+1S
r,K,l

But by our induction hypothesis,

[L,ny,_1G,K1] = l,
so we have

Now, using (v) again, we may write

My+1 = lyKJ+1S',L,-iyKtS'-]

which, recalling the choice of r and (b) above, becomes

MJ+1 = lyKJ+1S',yKtS'l

Since r exceeds the defect s of S in G, we have shown that MJ+1 ^ S. It follows
that, since S was an arbitrary member of 2(G : N),

Mj+1 = [X7+1 n y , . ^ , ^ ] ^ o(G : N) = 1,

proving (d).

Let us denote by RJ+1 the commutator

[P ; + I n ^ . j C X j = [Xt,Py+1 ny, . , ( f ] .

Using (iv) we may write

RJ+l = [L,_1[Kf,G],PJ+1 n y ^ G ]

which, in view of (b), becomes

Rj+1 = lKt,G,PJ+1nyl_1G].
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Applying the three subgroup lemma 2.2 we deduce that

RJ+1 ^ [G,PJ+1 n y , _ 1 G , X j [ P y + 1 n y , _ 1 G , i : , , G ] .

Now by (iii) we have

[G,PJ+1 ny^CK,-] g [KJ+1 ny.^G.Xj

and so by (d) above

(e) [G,Py+1ny,_1G,K,] = l.

It then follows that

(f) RJ+ x g [P,+! n y,_ XG, JC,, G] = [R7+ u G].

But now

[Ry+1)iV] = [PJ.+1nrt_1G,Kf,iV]

=g IK,,N,PJ+1 ny,_,G] [N,PJ+1 nyt^CK,-]

by the three subgroup lemma. The second of these commutators is trivial, by (e),
hence

{.Rj*i,N']^[.Kt,N,Pj+lnyt.lCf]

g [P,_,,Py+1 ny.^tG-] = \_Lt.lyPj+1 nn-iG],

which is trivial, by (b) above.

Since [RJ+i, N~] = 1, it follows from (f) that for any subgroup S in Z(G : Af),

RJ+1 ^ [Hy+1,G] = IRJ+1,NS] = [RJ+1,S].

It is then clear that for any r ^ 0,

Since S is subnormal in G, we must have RJ+l ^ S, and so RJ+i ^ <r(G : N) = 1.
This proves that

[ P j + i n y ^ C K , ] = 1,

showing that (c) holds for each i with 0 ^ i ^ m, as claimed.
Before proceeding with the proof of the theorem, we digress to prove an

essential equality. Let Y be any normal subgroup of G which is contained in N,
and denote by Y{i) the subgroup [yYG',K,'], for each i ^ 0. Then

(g) y^(0)^'"2 = V V ' ~ 2 for each i ^ 0.

Since we know that t > 1, these commutators are defined. We will establish
(g) by showing that for i ^ 0,
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y V - 2 = yy(j+1,tf'-
2.

Now, for each i ^ 0,

Yw = [Kt,yYG^

= [[X,,G]L,_1,7yG'] by(iv).

From this we obtain

y(,,^[K,,G,yyG'][L,_1,G].

Using the three subgroup lemma 2.2 we then have

y(I, ^ iCyYG^-WyYG^K

since all the subgroups involved are normal in G.
Now, since Y ^ N,

It then follows that

y(i) ^ [?yG' + 1,/i:r][L(_1,G] or Yw ^

Then it is clear that

? y ( j ) i v ' - 2

Since, by (a),

we must have

The reverse inclusion being trivial, we have established the desired equality,
and with it (g).

Returning to the main stream of the proof, we now show by induction on i
that, for each i with 0 < i ^ m,

(h) y[PhK,-]N-2 = 1.

From a consideration of equality (a) above, it is clear that (h) is valid for
0 < i g; t - 1. Let j be an integer with t — I ^ j < m, and suppose that

y[P,,Kr]iV<-2 = 1.

We seek to show that

y[Pj+1,Kt-]N'-2 = 1,

but since [.?,•+i,G] ^ KJ+1 by(iii),we see that, in view of (g), we need only estab-
lish the equality
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y{Kj+uKt-]N'-2 = 1.

But by (iv) we may write

By the induction hypothesis, this last commutator is trivial, so

y\_KJ+uKt-]N-2= 2

which is trivial, by (c). Hence

y{PJ+uKt-]N'~2 = 1,

and the proof of (h) is complete.
Taking i = m in (h) yields

Since G/P is nilpotent, by our previous remarks, there is a non-negative
integer r such that yNGr :g P. Then, recalling the notation of (g) above, we have

Since yPwN'-2 = l,we then have, by (g), with Y = N,

yNi0)N'-* = yN(r)N'~2 g yPi0)N'-2 = 1.

In other words

hence

Now KtIPt-l is generated by homomorphic images of PJP,-1 (see (iii)) and so is
quasi-p-radicable. Then K, is a ^-radicable subgroup of ((-i(iV), and

contradicting our original assumption on Kt. By remarks at the beginning of the
proof, this contradiction establishes that yPGm = 1, and since G/P is known to be
nilpotent, we deduce that G is nilpotent, completing the proof.

By using some results of [7] we can prove an interesting corollary to this
theorem.

COROLLARY 3.3. Let n be a non-empty set of primes and G a group with a
n-torsion-free nilpotent normal subgroup N such that G/N is a nilpotent n-group.
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/ / <x(G : iV) = 1 and G has the subnormal intersection property, then G is nil-
potent.

PROOF. By Theorem C of [7], G has a bound k on its subnormal indices. Let
m = R(k) + 1, where R is Roseblade's function (Corollary to Theorem 1 of [17]),
and choose any m elements glt •••,gm of G. Write

H = <N,gu-,gmy.

H/N is a finite nilpotent group and can be expressed as the product of its Sylow
subgroups {HJN : pen}. Each of the subgroups Hp is subnormal in G and thus
inherits the bound k for its subnormal indices. Note also that by the second remark
after definition 3.1, o(Hp : N) = 1, and therefore Hp, satisfying the conditions of
theorem 3.2, is nilpotent.

Since HjN is finite, we deduce that H is nilpotent, by Fitting's theorem, and
its nilpotency class is at most R(k), by Roseblade's result. It follows that

[91» •••,9m] = 1,

showing that G itself is nilpotent of class at most R(k).
It may be of interest to consider whether the conditions of theorem 3.2 can

be varied without detriment to the conclusion.

EXAMPLE 1. Let G be the semidirect product of the additive group of rational
numbers Q and a 2-cycle <x> with action defined by q* = — q for each qeQ. It
is not difficult to see that for any positive integer r, y2<x>p = Q, and hence that
all proper subnormal subgroups of G lie in Q. Thus each subnormal subgroup of
G is normal, and although the only condition of theorem 3.2 that G fails to satisfy
is the "<r-condition", (for clearly o(G : Q) = G), G is of course not nilpotent. The
"cr-condition" is therefore essential.

EXAMPLE 2. Let D be an infinite dihedral group, the semidirect product of an
infinite cyclic group C = <c> and a 2-cycle B = <fo> with action defined by
(cr)h = c~r for all integers r. If, for each positive integer n, we denote by Dn the
subgroup <cin, b}, then each Dn is subnormal in D and DnC = D. It follows that
ff(D : C) ^ n {£>„ : n ^ 1} = B. Since B is self-normalising, o(D : C) = 1, D
does not have the subnormal intersection property and, although satisfying all
other requirements of theorem 3.2, D is not nilpotent. The subnormal intersection
property is thus essential in the statement of theorem 3.2.

4. Soluble minimax groups with the subnormal intersection property

In this section we make use of theorem 3.2 to prove the following result.

THEOREM 4.1. A soluble minimax group has the subnormal intersection
property if and only if it has a bound on its subnormal indices.
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PROOF. TO prove the non-trivial half of the theorem, let G be a soluble minimax
group with the subnormal intersection property. By theorem A of [9], G has a
normal radicable abelian subgroup A satisfying the minimal condition on sub-
groups, such that G/A is a finite extension of a torsion-free nilpotent group. If we
prove that G/A has a bound on its subnormal indices, then by lemma 2.1 of [13] so
also has G. Our result will therefore follow if we can establish:

4.1' Let G be a soluble minimax group with a nilpotent normal subgroup N
such that G/N is finite. Then G has the subnormal intersection property if and
only if G has a bound on its subnormal indices.

PROOF. The implication in one direction is immediate. Suppose that counter-
examples to the converse implication exist, where by a counterexample we mean
an ordered pair (G, N) such that G and N satisfy the postulates of 4.1', G has the
subnormal intersection property but has no bound on its subnormal indices. We
begin with a useful observation.

(i) If (G, N) is a counterexample and T is the torsion subgroup of N, then
(G/r,7V/T) is also a counterexample.

To see this, all we need to verify is that G/T can have no bound on its sub-
normal indices: but this follows easily from lemma 2.1 of [13] and lemma 1 of
[12], since T, being a periodic soluble minimax group, satisfies the minimal con-
dition on subgroups, and so is (radicable abelian)-by-finite.

Now it is clear that in any counterexample (G, N), N ^ G, so that the set of
positive integers {|G/iV| : (G,N) is a counterexample} has a least element k > 1.
For brevity we will term any counterexample (G, N) with \G/N\ = k a "minimal"
counterexample. We note two important facts.

(ii) If (G, N) is a minimal counterexample then N is the maximal nilpotent
normal subgroup of G.

This is immediate from our choice of k.
(iii) If (G, AT) is a minimal counterexample then oifi : N) ^ N and

(G/o(G : N), Nja{G : N)) is a minimal counterexample.
To prove (iii), let H be a subnormal subgroup of G with N ^ H < G. It is

clear that (H,N) cannot be a counterexample; hence H, which of course inherits
the subnormal intersection property, must have a bound on its subnormal indices.
Moreover since there are only finitely many choices for H, we can find a bound r
which is independent of the choice of H. Now if S is a subnormal subgroup of
G such that SN < G, it follows that s(G : S) ^ s(G : SN) + s(SN : S) <L k + r.
Thus the set of non-negative integers {s(G : S) : SeI,(G : N)} must be unbounded,
and therefore (G/(x(G : N), Na(G : N)/a(G : N)) must be a counterexample, indeed
a minimal counterexample. Hence | G/No-(G:N) | = | G/N\ = k and cr(G:N)^N.
We have established (iii).

We now choose a minimal counterexample (Gj.Afj) in which Nt is torsion-
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free; this is possible by (i). Our aim is to obtain a minimal counterexample (G2, N2)
in which N2 is torsion-free and a(G2 : N2) = 1. If o(Gy : NJ = 1 we need search
no further; if not, we put Mx = oiG^ : AT,). Then by (iii) Mt g N{ and
(GlIM1,N1IMl) is a minimal counterexample. If we write T1/Ml for the torsion
subgroup of NJMi, then (G1/T1,N1/T1) is also a minimal counterexample, by
(i). By repeating this process we construct an ascending chain Mt ^ T ^ M2

S T2 ^ ••• of normal subgroups of Gu each contained in JV^such that for i ^ 1,
(GJM^NJM,) and (GJT^NJT^) are minimal counterexamples, TJMj is the
torsion subgroup of NJMi, and Mi+1ITt = ctiGJTi : NJTi).

But now Nt is a soluble group of finite reduced rank. Thus by lemma 2.4
there is an integer n such that Mn+ljTn is periodic. Since Ni/TH is torsion-free
this means that Mn+l/Ta is trivial, that is a(GJTn,NJTn) = 1. If we now put
G2 = Gj/T^ and iV2 = Ni/Tn, (G2,N2) is a minimal counterexample, N2 is
torsion-free and a(G2 : N2) = 1.

Now G2IN2 is a non-trivial finite soluble group; we can therefore find, in
G2/N2, a non-trivial minimal normal subgroup y,/N2 which will be an elementary
abelian p group for some prime p. Then Y inherits the subnormal intersection
property and a(Y : N2) = 1 by the second remark after definition 3.1. Thus Y
satisfies all the requirements of theorem 3.2, and so is nilpotent. This contradicts
(ii) above and shows that in fact no counterexamples exist, completing the proof
of the theorem.

5. A counterexample

So far in this paper we have shown that under a restriction to soluble minimax
groups, the subnormal intersection property is equivalent to the property of
having bounded subnormal indices; that is, under this restriction there is equality
between the corresponding classes of groups. It would be of interest to know how
far this condition can be relaxed before the two classes cease to coincide. In this
section we partially answer this question by constructing an example which shows
that a restriction to soluble groups of finite reduced rank will not suffice to ensure
equality of the two classes.

First we investigate the subnormal structure of a type of finite group which
will be used as a building block in a more complex construction.

EXAMPLE 5.1. Let p be an odd prime, and q a prime dividing p — 1. Let A be
a cyclic group of order p. Since the automorphism group of A has order p — 1, A
has an automorphism 9 of order q. There is a positive integer m such that for any
a in A, ad = am; m can clearly be chosen so that 1 < m < p. Now for each a in A,

from which it follows that m" — 1 is divisible by p. Let p" be the largest power of
p dividing m* — 1.
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Now let k be a positive integer, and B a cyclic group of order pk*. Since m is
coprime to p , the map x defined by bx = bm, for each b in B, is an automorphism
of B. We now prove two useful facts about the action of the automorphism group
<x> on B.

(i) Let Bj be any subgroup of B. If r is a positive integer coprime to q then
[B1,xr] = B1.

PROOF. Suppose p | mr — 1, that is mr = 1 mod p . Since q and r are. coprime,
there exist positive integers s and t such that sr = 1 + f#. Then recalling that
m* = 1 mod p ,

msr = m1+tq = mmodp.

But we also have m" = 1 mod p , yielding m = 1 mod p, in contradiction to our
choice of m. Thus mr — 1 and p are coprime. If Bt = <&!> then

Hence B1 = <&!> = (fcT""1) ^ [Bi,<J.
To complete the proof of (i) we need only point out that the reverse inclusion

is trivial since each subgroup of B is invariant under the action of <x>.

(ii) Let Bt be any subgroup of B. Then [B1;x«] = Bp".

PROOF. Let Bj = <£>!>. Then [Bj.x*] is generated by the element

[&!,*«] = b?'1 = fef"1 = *P,

where, by the choice of a, n and p are coprime. Thus

proving (ii).
It is a simple matter to deduce from (ii) that

(Hi) B(*'-1 ) k= l b u t B * * - 1 * " 1 # 1.

If we now consider the setnidirect product G of B and <x> with the given
action, we can describe the subnormal structure of G as follows.

(iv) If a subnormal subgroup S of G contains an element of the form x'b
where r is a positive integer coprime to q, and b e B, then we can apply (i) above,
together with the commutativity of B, to deduce that for each non-negative integer
i, B = yBS\ Thus B ^ S and S is normal in G. -

(v) If a subnormal subgroup S of G does not have the property postulated
in (iv), then S lies in the subgroup (B.x*) of G. By (iii) this subgroup is nilpotent
of class precisely k, since B is abelian. Thus the defect of S in G cannot exceed
fc+1.
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Indeed (iv) and (v) together imply that k + 1 is a bound for the subnormal
indices in G.

We are now in a position to construct the main example of this section.

EXAMPLE 5.2. We first construct a sequence of pairs of primes. Choose any
prime q(l). By Dirichlet's theorem (theorem 15 of [5]) we can find a prime p(l)
Such that p(l) — 1 is divisible by q(l).

Suppose now that for i ^ 1 we have chosen pairs of primes (pO)> <z(l)),
•••»(K0»€(0) with the following properties:

(a) q(j) divides p(j) — 1 for 1 ^ j ^ i;
(b) q(J) < P(j) < q(m) if 1 ^ j < m ^ i.

Now choose a prime q(i + 1) > p{i) and, as above, apply Dirichlet's theorem
to obtain a prime p(i + 1) with the property that q(i + 1) divides p(i + 1) — 1.
In this way we define recursively a sequence {(p(0. <Z(0): ' = 1} of pairs of primes
with the properties (a) and (b) for arbitrary i.

Now, by the discussion in example 5.1, to each pair (p(i),q(i)) there corre-
sponds a positive integer m(i), with 1 < m(j) < p(i), such that if A(i) denotes a
cyclic group of order p(i) then the map 9(i), defined by a6(i) = am(1) for each a in
A(i), is an automorphism of order q(i). Let p(0a(l) be the largest power of p(i)
dividing m(j)*(0 - 1, and let B(i) be a cyclic group of order pCO'"(0. Then, as in
5.1, we can define the action of an infinite cycle <x> on B(i) = <b(i)> by putting

b(i)x = b(i)m(i)

and extending the definition in the obvious way. The properties of this action and
the corresponding semidirect product of B(i) and <x> (though now an infinite
group) will be precisely as in (i) — (v) of 5.1, with k replaced by j .

If we now denote by B the direct product of the groups B(i) : i: k 1, it is clear
that the action of <x>, defined on each component B(i) as above, can be extended
to B. Consider the natural semidirect product G of B and <x> with this action.

Firstly we note that since B has p rank at most 1 for each prime p, B has
reduced rank 1 in the sense of [16] (B is locally cyclic). Clearly G is then a meta-
belian group of finite reduced rank, since any finitely generated subgroup can be
generated by two elements.

Secondly we show that G has the subnormal intersection property. Consider
the standard series of an arbitrary subgroup S of G. If S lies in B this series ter-
minates after at most two steps. On the other hand, if SB > B then S must con-
tain an element of the form x'b, where b e B and t is a positive integer. Denote by
D(f) the direct product of those subgroups B(i) for which q(i) does not divide t.
It is easy to see that B/D(t) is a finite group and D(t) is normal in G. It follows by
lemma 1 of [12] that G/D(i) has a bound on its subnormal indices. But if q(i) does
not divide /, then by (i) of 5.1 we have
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It follows that every term of the standard series of S contains B(i), and hence D(t)
also. The standard series of S in G coincides therefore with that of SD(t), and so,
by lemma 2.1 (i), must terminate after finitely many steps. Then, again using
lemma 2.1, this establishes that G has the subnormal intersection property since
S was arbitrary.

Now suppose G has a bound y for its subnormal indices. Choose an integer
j > R(y), where R is Roseblade's function (Corollary to Theorem 1 of [17]). G
has a factor group isomorphic to <B(i), x>. This factor group, G(i) say, inherits
the bound y for its subnormal indices. But by (iii) of 5.1, G(i) has a normal sub-
group which is nilpotent of class precisely i and cannot, by Roseblade's result,
have the bound y for its subnormal indices. This contradiction shows that G has
unbounded subnormal indices, and completes our investigation of this example.

REMARKS, (i) In [6] it was shown that abelian-by-finite groups with the sub-
normal intersection property have bounded subnormal indices. This example
shows that for abelian-by-cyclic groups in general the corresponding result fails,
a fact which does not emerge from Robinson's results on wreath products ([14]).

(ii) We have not been able to decide whether soluble groups of finite total
rank (see [16] for definition) with the subnormal intersection property need have a
bound on their subnormal indices. On the one hand, the fact that this class is not
closed under homomorphisms makes it difficult to handle; on the other hand
a counterexample, at least in the spirit of 5.2, is not easy to construct.
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