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whence taking , we immediately obtain the
inequality . Finally, since by the Lemma, in the above inequality
the equality holds if, and only if, , it follows
that  is true if, and only if, .

a1 + a2 +  …  + an = nAn
An ≥ Gn

a1 = a2 =  … = an = Gn
An = Gn a1 = a2 =  … = an
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107.33 On the antiderivatives of a monotone function and
its inverse

As far as we know, computing antiderivatives of the inverse
trigonometric functions and logarithmic function all are initial examples of
integration by parts in calculus. In this Note we are motivated by the
question that is it possible to compute the above mentioned antiderivatives
without using integration by parts? The common property of these functions
is their monotonicity. Based on this fact, we demonstrate a geometric
argument to relate the antiderivatives of a monotone function  and its
inverse . Although our geometric implication essentially carries ideas

f
f −1
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from integration by parts, it avoids many computational details, more
precisely when we have an antiderivative for .f

Theorem 1: Let  be positive, continuous and monotone,
and let . Then, we have

f : [a, b] → �
F′ = f

∫
b

a
f −1 (t) dt = bf −1 (b) − F (f −1 (b)) − af −1 (a) + F (f −1 (a)) . (1)

Proof: We give the proof only for the case  is increasing. Thus,  is also
positive and increasing, and we may consider the following diagram, picturing
the grey areas given by  and .

f f −1

∫
b
af −1(t)dt ∫

f −1(b)
f −1(a)f (y)dy = F(f −1(b)) − F(f −1(a))

y

f −1 (b)

f −1 (a)

t = f (y)

a b t

FIGURE 1: The key to relate antiderivatives of a monotone function  and its inverse f f −1

On the other hand, the sum of these areas, the area of the grey L-shape,
is equal to . Thus, we obtain (1). The same proof works
for the case  is decreasing.

bf −1 (b) − af −1 (a)
f

Now we may explore the antiderivatives of a monotone function and its
inverse. The fundamental theorem of calculus asserts that the function

 is an antiderivative of . Also, considering (1) with
, we obtain

x → ∫
x
a f −1 (t) dt f −1 (x)

b = x

∫
x

a
f −1 (t) dt = xf −1 (x) − F (f −1 (x)) − af −1 (a) + F (f −1 (a)) .

Thus, if  is positive, continuous and monotone, and , then we have
the following antiderivative formula

f F′ = f

∫ f −1 (x) dx = xf −1 (x) − F (f −1 (x)) + C. (2)

Differentiating the right-hand side of (2) we observe that the relation (2)
actually holds for any continuous and monotone function .f

Let us show usefulness of the identity (2) by some examples. In the
following, we always let .F (x) = ∫ f (x) dx
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Example 1: Let . Since , from (2) we conclude thatf (x) = sinx F(x) = − cosx

∫ sin−1 x dx = x sin−1 x + cos (sin−1 x) + C

= x sin−1 x + 1 − x2 + C.

Example 2: For  we have . Since f (x) = tan x F (x) = ln sec x

sec (tan−1 x) = x2 + 1,
by using (2) we obtain

∫ tan−1 x dx = x tan−1 x − ln x2 + 1 + C.

Example 3: Let . We have . Thus, from (2) we getf (x) = ex F (x) = ex

∫ ln x dx = x ln x − eln x + C = x ln x − x + C.

Example 4: The Lambert  function is defined as the inverse of the function
. Thus, it satisfies . We get .

Also, since , from (2) we deduce that

W
f (x) = xex x = W (x) eW(x) eW(x) = x / W (x)

F (x) = (x − 1) ex

∫ W (x) dx = xW (x) − (W (x) − 1) eW(x) + C

= xW (x) − x +
x

W (x)
+ C.
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107.34 On a staircase function

Let  and consider the series defined as follows: the first
term is equal to  and the cosine of the sum  of the first  terms equals
the th term. We regard  as the length of an arc on the unit circle.
In this Note, by using an elementary geometric argument, we show that  is
a monotone sequence that converges to . Due to periodicity of the cosine
function, we also have convergence to  for any

x ∈ (−1
2π, 3

2π)
x Sn (x) n

(n + 1) |Sn|
Sn

1
2π

2kπ + 1
2π
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