
Bull. Aust. Math. Soc. 108 (2023), 353–365
doi:10.1017/S0004972723000102

TRAVERSING A GRAPH IN GENERAL POSITION

SANDI KLAVŽAR �, ADITI KRISHNAKUMAR , JAMES TUITE and
ISMAEL G. YERO

(Received 5 December 2022; accepted 4 January 2023; first published online 13 February 2023)

Abstract

Let G be a graph. Assume that to each vertex of a set of vertices S ⊆ V(G) a robot is assigned. At each
stage one robot can move to a neighbouring vertex. Then S is a mobile general position set of G if there
exists a sequence of moves of the robots such that all the vertices of G are visited while maintaining
the general position property at all times. The mobile general position number of G is the cardinality of
a largest mobile general position set of G. We give bounds on the mobile general position number and
determine exact values for certain common classes of graphs, including block graphs, rooted products,
unicyclic graphs, Kneser graphs K(n, 2) and line graphs of complete graphs.
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1. Introduction

In this paper G = (V(G), E(G)) will represent a connected simple graph whose order
is n(G) = |V(G)|. We will indicate that vertices u and v are adjacent by writing u ∼ v.
A u, v-path of length � is a sequence u = u0, u1, . . . , u�−1, u� = v of distinct vertices of G
such that ui ∼ ui+1 for 0 ≤ i < �. The distance dG(u, v) between two vertices u, v ∈ V(G)
is the length of a shortest u, v-path. A clique of G is a set S ⊆ V(G) of mutually adjacent
vertices, that is, S induces a complete graph. The clique number, denoted by ω(G),
is the cardinality of a largest clique in G. For a given set S ⊂ V(G), the subgraph
induced by S will be written G[S]. For a positive integer k we will use the notation
[k] = {1, . . . , k}.

General position sets in graphs have been widely studied in recent years (see, for
example, [3, 5, 6, 10–12, 15]). The concept was independently introduced in [8, 13];
the terminology and set-up of the present work follow the former paper. The general
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position sets of hypercubes and integer lattices were investigated earlier in a different
context in [7, 9], respectively.

One of the original motivations of the general position problem in [8] was to place
a set of robots in a graph such that any pair of robots situated at vertices u, v can
exchange signals by any shortest u, v-path without being obstructed by another robot.
This static concept can be transformed into a dynamic one which is more closely
related to practical problems in robotic navigation and transport. In fact this research
was inspired by the delivery robots belonging to Starship Technologies� [14] that
deliver groceries to the inhabitants of cities including Milton Keynes, home of the
Open University. For some related studies on robot mobility in computer science see
[1, 2, 4]. We introduce a variant that describes the largest number of robots that can
travel through a network such that each vertex of the network can be visited by a robot,
while at every stage any pair of robots can see each other through any shortest path
between their positions without being obstructed by another robot. We now describe
this concept in greater detail.

A set of vertices S of a graph G forms a general position set if no three distinct
vertices from S lie on a common shortest path. The general position number gp(G) of
G is the cardinality of a largest general position set. Assume that to each vertex of a
general position set S ⊆ V(G) one robot is assigned. The robots can move through the
graph one at a time. We say that a move by a robot is legal if the robot moves to an
adjacent unoccupied vertex such that the new set of occupied vertices is also in general
position. If there exists a sequence of legal moves such that every vertex of G can be
visited by at least one robot, then we say that S is a mobile general position set. The
mobile general position number Mobgp(G) of G is the cardinality of a largest mobile
general position set of G. Such a set will be briefly called a mobile gp-set of G. We
will also abbreviate the term ‘mobile general position set’ to mobile set and ‘mobile
general position number’ to mobile number. A move by a robot from vertex u to a
neighbour v will be denoted by u� v.

The paper is organised as follows. In the rest of this introduction we give some
preliminary results and examples. In Section 2 we consider graphs with cut vertices, in
particular block graphs, rooted products and unicyclic graphs. In Section 3 the mobile
number is determined for Kneser graphs K(n, 2) and line graphs of complete graphs.
We conclude the paper with some open problems.

1.1. Preliminaries. We begin with the following bounds.

LEMMA 1.1. If G is a graph with n(G) ≥ 2, then 2 ≤ Mobgp(G) ≤ gp(G). Moreover,
for any integers a, b with 2 ≤ a ≤ b there exists a graph with Mobgp(G) = a and
gp(G) = b.

PROOF. As the set of occupied vertices at any stage must be a general position set
of G, we have Mobgp(G) ≤ gp(G). Any set of two vertices is in general position. Let
S = {u, v} ⊂ V(G) be any set of two vertices of G; then for any vertex w of G the robot
closest to w (say, dG(u, w) ≤ dG(v, w)) can move along a shortest path to w without
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crossing the robot at vertex v, so that Mobgp(G) ≥ 2. To prove the second assertion, we
claim that if r1 ≥ · · · ≥ rt, where t ≥ 2 and r1 ≥ 2, then

Mobgp(Kr1,...,rt ) = max{2, t − 1} . (1.1)

Let S be the set of occupied vertices in the initial configuration of Mobgp(Kr1,...,rt )
robots. It is trivial that two robots can visit every vertex and remain in general position,
so assume that |S| ≥ 3. Assume that S contains at least two vertices from the same
partite set W. Hence, there can be no robots in the other partite sets and, furthermore, if
there are at least three robots, then no robot can move from W to a different partite set.
Therefore, if Mobgp(Kr1,...,rt ) ≥ 3, then the set of occupied vertices at any stage contains
at most one vertex from each partite set. If each partite set contains an occupied vertex,
then no robot can move without making a partite set containing at least two robots. So
it follows that |S| ≤ t − 1. On the other hand, clearly t − 1 robots can remain in general
position and visit every vertex of Kr1,...,rt .

The second assertion now follows from (1.1) upon taking a complete a-partite graph
with largest part of order b. �

We conclude this introduction with some examples. First, Mobgp(C4) =
Mobgp(C6) = 2 and if n ≥ 3 and n � 4, 6, then Mobgp(Cn) = 3. Since gp(C4) = 2,
Lemma 1.1 yields Mobgp(C4) = 2. In C6, a general position set of order 3 is an
independent set. But such a set is not a mobile set, hence Mobgp(C6) = 2. Assume
now that n ≥ 3 and n � 4, 6. Set V(Cn) = Zn. When n = 2r + 1, consider the general
position set {0, r, r + 1}. The sequence of moves r + 1� r + 2, 0� 1 and r� r + 1
keeps the property of being in general position. By iterating this procedure, each
vertex of Cn will be visited by a robot. As gp(Cn) = 3, Lemma 1.1 implies that this
set is a mobile gp-set. The second case to consider is when n is even. Then consider a
set of three vertices that are as equidistant as possible. By moving robots sequentially
along the cycle in the same direction, all vertices will be visited by the robots.

Consider next the Petersen graph P. A scheme that allows four robots to visit every
vertex of P in general position is shown in Figure 1; robots are initially positioned at
the vertices labelled 1, 2, 3 and 4. The robot at position 1 can visit vertices a, b and e,
the robot at 3 can visit vertex d and the robot at 2 can visit vertices c and f.

To see that four robots is optimal, suppose for a contradiction that K ⊆ V(G) is an
initial configuration of at least five robots in general position. Observe that as α(P) = 4
and P is edge-transitive, we can assume that K contains the two black vertices in
Figure 2. It is easily verified that the remaining robots must be situated on a subset
of the grey vertices. If all four grey vertices are occupied, then no robot can move
at all without creating three-in-a-line. If there are just five robots, then in the two
independent edges joining the grey vertices one edge must have both incident vertices
occupied by robots, while the other edge has just one robot on it. However, in this
configuration the only move that can be made is by the robot on the edge containing
one robot and this robot can only move to the unoccupied grey vertex and back, so that
not all vertices of P can be visited. We have thus shown that Mobgp(P) = 4.
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FIGURE 1. Four robots traversing the Petersen graph in general position.

FIGURE 2. Five robots cannot visit every vertex of the Petersen graph.

Note that Mobgp(G) = n(G) if and only if G is complete. Moreover, Mobgp(G) =
n(G) − 1 if and only if G is obtained from Kn−1 by attaching a leaf to one of its
vertices. The latter result can be deduced from [13, Theorem 3.1] in which the graphs G
with gp(G) = n(G) − 1 are characterised; among the two families described there, the
above stated graphs are the only ones with the mobile number equal to their general
position number. To characterise all graphs with the mobile number equal to their
general position number seems to be difficult.

2. Graphs with cut-vertices

In this section we first give a technical lemma about mobile sets in graphs with
cut-vertices. Then we apply it to block graphs and to rooted products.

LEMMA 2.1. Let v be a cut-vertex of a (connected) graph G and let C1, . . . , Ck
be the components of G − v. Let Gi = G[V(Ci) ∪ {v}], i ∈ [k]. Let S be a mobile
gp-set of G.
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(i) If v ∈ S, then S ⊆ V(Gi) for some i ∈ [k].
(ii) If v � S, then S ⊆ V(Ci) ∪ V(Cj) for some i, j ∈ [k]. Moreover, either |S ∩ V(Ci)| ≤

1 and |S ∩ V(Cj)| ≤ Mobgp(Gj), or |S ∩ V(Cj)| ≤ 1 and |S ∩ V(Ci)| ≤ Mobgp(Gi).
In addition, if |S ∩ V(Ci)| = 1, then |S ∩ V(Cj)| < Mobgp(Gj).

PROOF. (i) Suppose that v ∈ S, vj ∈ S ∩ V(Cj) and vk ∈ S ∩ V(Ck), where j � k. Then
v, vj and vk are not in general position.

(ii) Assume v � S. Suppose that there exist vertices vi ∈ S ∩ V(Ci), vj ∈ S ∩ V(Cj)
and vk ∈ S ∩ V(Ck), where |{i, j, k}| = 3. Consider now the moment when the vertex
v is visited for the first time by some robot. At that moment we get a contradiction
with (i). It follows that S ⊆ V(Ci) ∪ V(Cj) for some i, j ∈ [k]. By a similar argument
we see that S has at most one vertex in Ci or Cj; without loss of generality assume
|S ∩ V(Ci)| ≤ 1. If |S ∩ V(Ci)| = 0, then S = S ∩ V(Cj) and hence S is in particular a
mobile gp-set of Cj. Thus, |S| = |S ∩ V(Cj)| ≤ Mobgp(Gj).

Assume next that |S ∩ V(Ci)| = 1. The statement clearly holds if |S ∩ V(Cj)| = 1,
hence we may consider the case when |S ∩ V(Cj)| ≥ 2. Then the vertex v must be
visited by the unique vertex from S ∩ V(Ci), for otherwise we are in contradiction
with (i). At that moment, (S ∩ V(Cj)) ∪ {v} is a mobile gp-set, which in turn implies
that |S ∩ V(Cj)| < Mobgp(Gj). �

COROLLARY 2.2. Let v be a cut-vertex of a (connected) graph G, let C1, . . . , Ck be the
components of G − v and let Gi = G[V(Ci) ∪ {v}], i ∈ [k]. Then there exists an � ∈ [k]
such that the following statements hold.

(i) There exists a mobile gp-set S of G such that S ⊆ V(G�) and v ∈ S.
(ii) Mobgp(G) = Mobgp(G�).

PROOF. Let S be an arbitrary mobile gp-set of G. Assume first that S ⊆ V(Gi) for
some i ∈ [k]. If v ∈ S, there is nothing to prove. And if v � S, then moving one robot to
v yields a required mobile gp-set when � = i. In the second case, Lemma 2.1 implies
that S ⊆ V(Gi) ∪ V(Gj) for some i, j ∈ [k], where i � j. Then by Lemma 2.1(ii) we have,
without loss of generality, |S ∩ V(Gj)| = 1. Moving the robot from S ∩ V(Gj) to v yields
a required mobile gp-set which lies completely in Gi. This proves (i) by taking � = i.

The proof of (i) also implies that Mobgp(G�) ≥ Mobgp(G). Since Mobgp(G�) ≤
Mobgp(G), assertion (ii) follows. �

THEOREM 2.3. If G is a block graph, then Mobgp(G) = ω(G).

PROOF. Let Q be a clique of G with n(Q) = ω(G). Then we can easily see that V(Q)
is a mobile gp-set, hence Mobgp(G) ≥ ω(G).

To prove that Mobgp(G) ≤ ω(G), we proceed by induction on the number of blocks
of G. If G has only one block, then G is a complete graph for which we know that
Mobgp(G) = n(G) = ω(G). Suppose now that B is an end block of G. Then B contains
exactly one cut-vertex of G; denote it by v. Let S be an arbitrary mobile gp-set
of G. If v ∈ S, then the assertion follows by Lemma 2.1(i) and induction. Assume,
secondly, that v � S. Let H be the subgraph of G induced by (V(G) \ V(B)) ∪ {v}. By
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Lemma 2.1(ii), |S| ≤ 1 + (Mobgp(H) − 1) or |S| ≤ 1 + (Mobgp(B) − 1). The induction
assumption now gives |S| ≤ 1 + (ω(H) − 1) = ω(H) ≤ ω(G), or |S| ≤ 1 + (ω(B) − 1) =
ω(B) ≤ ω(G). �

Theorem 2.3 clearly implies that Mobgp(Kn) = n for n ≥ 2 and that Mobgp(T) = 2,
where T is a tree of order at least 2.

A rooted graph is a connected graph with one chosen vertex called the root. Let G
be a graph and let H be a rooted graph with root x. The rooted product graph G ◦x H is
the graph obtained from G and n(G) copies of H (say, H1, . . . , Hn(G)) by identifying the
root of Hi with the ith vertex of G. If w ∈ V(H), then the vertex from Hv corresponding
to w will be denoted by (v, w).

THEOREM 2.4. If G and H are graphs and x ∈ V(H), then

max{Mobgp(G), Mobgp(H)} ≤ Mobgp(G ◦x H) ≤ max{Mobgp(H), n(G)}.
Moreover, the bounds are sharp.

PROOF. Let S be a mobile gp-set of G. Then we claim that S considered as a subgraph
of G ◦x H is a mobile set of G ◦x H. Indeed, if v ∈ S, then v can be moved to every
vertex of Hv by maintaining the general position property. On the other hand, if v � S,
then in the subgraph G of G ◦x H, some robot can move to v and then continue visiting
all the vertices of Hv. Hence Mobgp(G ◦x H) ≥ |S| = Mobgp(G).

Let S be a mobile gp-set of H. Then a copy of S in an arbitrary Hv is a mobile set of
G ◦x H. Indeed, after a robot inside Hv visits the vertex (v, x), this robot can freely move
around V(G ◦x H) \ V(Hv) while maintaining the general position property. Thus,
Mobgp(G ◦x H) ≥ |S| = Mobgp(H). This proves the lower bound.

Suppose now that S ⊆ V(G ◦x H), where |S| > n(G), is a mobile set. By the
pigeonhole principle there exists v ∈ V(G) such that |S ∩ V(Hv)| ≥ 2. By Lemma 2.1
we have |S ∩ (V(G ◦x H) \ V(Hv))| ≤ 1. If S ∩ (V(G ◦x H) \ V(Hv)) = ∅, then clearly
|S| ≤ Mobgp(H). Otherwise, let {y} = S ∩ (V(G ◦x H) \ V(Hv)). Then the vertex (v, x)
must be visited by the robot from y and at this point the robots form a mobile set of
Hv. We conclude again that |S| ≤ Mobgp(H).

Noting that Mobgp(Kn ◦x K2) = Mobgp(K2 ◦x Kn) = n for n ≥ 2, we infer that the
bounds are sharp. �

The next result shows in particular that the mobile position number of a rooted
product can lie strictly between the bounds of Theorem 2.4. Let G be a unicyclic graph
with unique cycle C of length �; we will identify the vertex set of C with Z� in the
natural manner. Let k ≤ � be the number of vertices of C that have degree at least 3;
we will call such a vertex a root. If � � {4, 6}, then it is trivial that Mobgp(G) ≥ 3, as
three robots can traverse C in general position as described in Section 1.1, visiting the
vertices of any pendent tree on their way.

We note, firstly, that if x is a root of C, with attached trees T1, . . . , Tr, then there can
be at most one robot on the vertices in {x} ∪ (

⋃r
j=1 V(Tj)) at any time if Mobgp(G) ≥ 3.

By Theorem 2.3 there can be at most two robots on {x} ∪ V(Tj) for any 1 ≤ j ≤ r. When
a robot visits x for the first time there will be a robot in a tree attached to x (say, T1).
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Since x is a cut-vertex there can be no robots on the vertices of V(G) \ ({x} ∪ V(T1)),
so that there are only two robots on G. Therefore, when analysing unicyclic graphs, we
can assume without loss of generality that G is a subgraph of a sun graph, that is, any
vertex on the cycle of G has degree 2 or 3 and any attached tree is a leaf. For simplicity
in the following result we only deal with the case where both � and k are even; similar
results are possible in the other cases by a slightly more involved argument.

THEOREM 2.5. Let G be a unicyclic graph with cycle length � such that there are k ≥ 2
vertices of the cycle with degree at least 3. If both k and � are even, then Mobgp(G) ≤
k/2 + 2 and this is tight.

PROOF. As described previously, we can assume that G is a subgraph of a sun graph.
For any i ∈ Z� we call the set {i, i + 1, . . . , i + �/2 − 1} and any attached leaves the
i-section of the cycle. Observe that if a robot is stationed at a vertex x of C, then the
shortest x1, x2-path containing x must be of length at least �/2 + 1, for otherwise there
would be a shortest x1, x2-path in G through x.

Suppose for a contradiction that Mobgp(G) ≥ k/2 + 3. Either the 0-section or
�/2-section must contain fewer than k/2 roots of C; we shall assume that the 0-section
has this property. If there are k/2 + 2 robots contained in the 0-section, then k/2
of them must be positioned on leaves and the other two on vertices of the cycle;
then it can easily be seen that there are three robots not in general position, possibly
considering another robot from the �/2-section. Hence there are at most k/2 + 1 robots
on the 0-section. Furthermore, if there are k/2 + 1 robots in the 0-section, then we
can assume that there are robots stationed on leaves attached to vertices i1, i2, . . . , ik/2
(where 0 ≤ i1 < i2 < · · · < ik/2 ≤ �/2 − 2) and a robot on a vertex ik/2+1 of C, where
ik/2 < ik/2+1 < �/2.

Firstly, suppose that there are at least k/2 + 4 robots. Then as the 0-section contains
at most k/2 + 1 robots, there are at least three robots on the �/2-section. Consider the
middle robot R among any such three robots and suppose this robot is at the vertex y
or at a leaf attached to y. Then R must be stationed on the leaf attached to y, otherwise
it is on a shortest path between the other two vertices of the �/2-section. Then no robot
can visit the vertex y, a contradiction.

Now suppose that there are exactly k/2 + 3 robots. If any section contains fewer
than k/2 roots, then the above argument yields a contradiction, so we can assume that
every section of C contains exactly k/2 roots. This implies that if x, x′ is any pair of
antipodal vertices on C, then either both of x, x′ are roots or neither of x, x′ is a root.
As the 0-section of G contains k/2 roots, there must be at least two robots R1 and R2 at
vertices x1, x2 of C or attached leaves in the �/2-section. If R1 is stationed on a leaf at
some point it must descend to a vertex of C in order to visit the root, so we can assume
that R1 is on C. When this occurs, we consider the two robots at shortest distance from
R1 on either side of R1 with respect to the cycle. Since they must be at distance bigger
than �/2, at least one of then must be in the 0-section. As the 0-section can hold at
most k/2 + 1 robots, we can assume that R1 is on C and R2 is on a leaf attached to x2 in
the �/2-section. Now by the preceding argument the vertex x′2 antipodal to x2 on C is
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also a root in the 0-section; as there are k/2 roots and k/2 + 1 robots in the 0-section,
there must also be a robot R′2 on the leaf attached to x′2. However, this implies that the
robot R1 lies on a shortest path between the robots R2 and R′2. As a conclusion we get
that Mobgp(G) ≤ k/2 + 2.

We now show that this bound is tight. For � ≥ k we define the (�, k)-jellyfish to
be the unicyclic graph with order � + k formed from an �-cycle C� (with vertex set
identified with Z�) with leaves attached to the vertices 0, 1, . . . , k − 1. We will denote
the leaf attached to vertex i by i′. We describe how k/2 + 2 robots can visit every vertex
of the jellyfish while staying in general position. We begin with robots at the vertices
0′, 1′, . . . , (k/2 + 1)′ (call the robots R0, R1, etc.). The first robot R0 makes the move
0′� 0 and then moves around C� in the direction 0� � − 1� � − 2� · · · � k/2 +
2. When robot R0 visits vertices k − 1, k − 2, . . . , k/2 + 2 it can also visit the attached
leaves (k − 1)′, (k − 2)′, . . . , (k/2 + 2)′. Finally, robot R0 moves to the leaf (k/2 + 2)′.
We now send robot R1 around the cycle in the same direction and station it at leaf
(k/2 + 3)′, and in general for 1 ≤ i ≤ k/2 − 3 we send robot Ri around the cycle to
leaf (k/2 + 2 + i)′ in sequence. At this point there are robots at the leaves (k/2 − 2)′,
(k/2 − 1)′, . . . , (k − 1)′ and all vertices of G have been visited with the exception of
the leaves (k/2 − 2)′, . . . , (k/2 + 1)′. Now robot Rk/2−2 moves (k/2 − 2)′� k/2 − 2 and
moves around the cycle in the same direction

k
2
− 2�

k
2
− 3� · · · 0� � − 1� · · · � k,

stopping at vertex k. Next, robot Rk/2−1 performs the move (k/2 − 1)′� k/2 − 1.
Finally, by symmetry, it follows that vertices k/2 and k/2 + 1 can also be visited. �

Note that if � = k then the graph in question is a rooted product.

3. Kneser graphs and line graphs of complete graphs

If n ≥ 2k, then the Kneser graph K(n, k) has all k-subsets of [n] as vertices, two
vertices being adjacent if the corresponding sets are disjoint. In [5, Theorem 2.2] it
was proved that gp(K(n, 2)) = 6 for n ∈ {4, 5, 6} and gp(K(n, 2)) = n − 1 for n ≥ 7. For
additional results on the gp-number of Kneser graphs see [10].

The Kneser graph K(5, 2) is the Petersen graph for which we have seen in Section 1.1
that Mobgp(K(5, 2)) = 4. This fact generalises as follows.

THEOREM 3.1. If n ≥ 5, then Mobgp(K(n, 2)) = max{4, (n − 3)/2�}.

PROOF. For n ≥ 5 the diameter of K(n, 2) is 2. It follows from [3] that a set S of vertices
of K(n, 2) is in general position if and only if it is an independent union of cliques.
Moreover, from the proof of [5, Theorem 2.2] we recall that the structure of S is one
of the following: (1) S consists of a clique of order at least 3; (2) the largest clique of
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S is of order 2, in which case |S| ≤ 6; and (3) S induces an independent set. We now
discuss these structures in turn.

Case 1: S contains a clique of order at least 3. We can assume that S is of the form
{{1, 2}, {3, 4}, . . . , {2r − 1, 2r}} for some r ≥ 3. If 2r ≥ n − 1, then none of the robots can
move, whereas if 2r = n − 2, then any robot of S can only move to the vertex {n − 1, n}
and back again, so that not every vertex can be visited.

However, if 2r ≤ n − 3 then S is a mobile gp-set. There are three forms of vertex
that need to be visited: (i) {a, b}, where a, b � [2r]; (ii) {c, d}, where c ∈ [2r] and
d � [2r]; and (iii) {e, f }, where e, f ∈ [2r], but {e, f } � S. Without loss of generality
we can assume that {a, b} = {n, n − 1}, {c, d} = {1, n} and {e, f } = {1, 3}. These vertices
can respectively be visited by the following sequences of moves.

(i) {1, 2}� {n − 1, n}.
(ii) {1, 2}� {n − 2, n − 1}� {1, n}.
(iii) The robot at vertex {1, 2} moves according to {1, 2}� {n − 1, n}� {2, n − 2}, so

that the robots now occupy the set {{3, 4}, {5, 6}, . . . , {2r − 1, 2r}} ∪ {{2, n − 2}}.
Now the robot at {3, 4} makes the moves: {3, 4}� {n − 1, n}� {1, 3}.

In summary, if S contains a clique of order at least 3, then since |S| = r and
r ≤ (n − 3)/2, we deduce that |S| ≤ (n − 3)/2�. The aforementioned procedure also
shows that a mobile general position set of cardinality (n − 3)/2� exists, hence
Mobgp(K(n, 2)) ≥ (n − 3)/2�.

Case 2: S contains an induced clique of order 2 (and no triangle). By the result of
[5], if S contains an induced copy of K2 (say, on the vertices {1, 2}, {3, 4}) then all
vertices of S are subsets of {1, 2, 3, 4}. Firstly, we show that there is such a mobile set
with four robots. For any distinct a, b, c, d ∈ [n], if robots are positioned at the vertices
{a, b}, {c, d}, {a, c} and {a, d} then by the moves {a, c}� {b, d} and {a, d}� {b, c} the
robots can visit every vertex that is a subset of {a, b, c, d} while remaining in general
position. Suppose that we start with the robots at {1, 2}, {3, 4}, {1, 3} and {1, 4}. Let
a, b � {1, 2, 3, 4}. The move {1, 2}� {3, a} transforms the set of occupied vertices into
a general position set of the same form, so that all subsets of {1, 3, 4, a} can be visited.
Furthermore, starting with robots at {1, 2}, {3, 4}, {1, 3} and {1, 4} the sequence of moves
{1, 2}� {3, a}, {3, 4}� {1, a} and {1, 4}� {a, b} allows any vertex of the form {a, b} to
be visited.

Suppose for a contradiction that there exists such a mobile set with |S| ≥ 5. At some
point a robot has to move to a vertex {a, b} that is not a subset of {1, 2, 3, 4}; we can
assume that immediately before this step there are robots on the vertices {1, 2}, {3, 4},
{1, 3}, {2, 4} and {1, 4} (and possibly {2, 3}) and we let S′ be the set of occupied vertices
immediately after this step. Then S′ cannot contain any induced copy of K2 on subsets
of {1, 2, 3, 4} (otherwise we would have {a, b} ⊂ {1, 2, 3, 4}) and we can also assume by
Case 1 that S′ does not contain a clique of order at least 3. Clearly this is impossible.

In summary, if S contains an induced K2 and no triangle, then |S| ≤ 4. Moreover, in
this case we also have Mobgp(K(n, 2)) ≥ 4.
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Case 3: S is an independent set. There are two possible structures for an inde-
pendent set in K(n, 2). Either S is of the form {{1, 2}, {1, 3}, {2, 3}}, or else of the
form {{1, 2}, {1, 3}, . . . , {1, r}} for some r ∈ [n]. In the first case |S| ≤ 3. Suppose that
|S| = r − 1 ≥ 4. Let a, b � [r]. Without loss of generality we can assume that the robot
at {1, 2} makes the first move. Without loss of generality there are three types of move
that the robot can make: (i) {1, 2}� {a, b}; (ii) {1, 2}� {3, a}; and (iii) {1, 2}� {3, 4}.
In cases (i) and (ii) {1, 3} ∼ {a, b} ∼ {1, 4} and {1, 4} ∼ {3a} ∼ {1, 5} respectively would
be shortest paths containing three robots, a contradiction. For case (iii), if r ≥ 6, then
{1, 5} ∼ {3, 4} ∼ {1, 6} shows that there would be three robots in a line, whereas if r = 5
this move returns us to case 2 above.

All possibilities have been considered, hence Mobgp(K(n, 2)) = max{4, n − 3/2�}
holds for n ≥ 5. �

We now determine the mobility number of the complement of the Kneser graphs
K(n, 2), that is, the line graph L(Kn) of Kn. Recall that the line graph L(G) of a graph
G has V(L(G)) = E(G), vertices being adjacent if the corresponding edges are incident
in G. By the result of [5] the general position number of this graph is n if 3 | n and
n − 1 otherwise; we will show that the mobile gp-number of these graphs is very close
to the general position number.

THEOREM 3.2. If n ≥ 4, then Mobgp(L(Kn)) = n − 2.

PROOF. Let S be a largest mobile set in L(Kn). By [3, Theorem 3.1] each component
of the subgraph induced by S is a clique. Call these cliques W1, . . . , Wk, k ≥ 1, with
orders n1, . . . , nk, respectively. Each of these cliques corresponds to either an induced
star in Kn or an induced C3. We identify the vertex set of Kn with [n] and a vertex of
L(Kn) (that is, an edge ij of Kn) with the pair {i, j}.

Suppose that S contains a clique W that corresponds to a C3 in Kn, so that without
loss of generality W is the clique on the edges {1, 2}, {2, 3} and {1, 3}. No robot can be
positioned at an edge {1, i}, where 4 ≤ i ≤ n. Consider the edge {1, 4}. Observe that no
robot on an edge of W can move to {1, 4} without creating three-in-a-line. Similarly,
any robot on an edge {i, j}, 4 ≤ i, j ≤ n, would create three-in-a-line if it moves to {1, 4}.
Therefore, no robot can ever visit the edge {1, 4} in this scenario, a contradiction, so
we can assume that each clique in S corresponds to an induced star in Kn.

Following the convention of [5], for 1 ≤ i ≤ k we write

Xi =
⋃

{i,j}∈V(Wi)

{i, j}

and set xi = |Xi|. As each Wi corresponds to a star of Kn we have xi = ni + 1 for
1 ≤ i ≤ k. It follows that

|S| =
k∑

i=1

ni =

k∑

i=1

(xi − 1) ≤ n − k.
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Thus, |S| ≤ n − 1 and we have equality if and only if k = 1 and W1 corresponds to an
induced star of order n in Kn; however, in this case no robot is free to move without
violating the general position property. Therefore, |S| ≤ n − 2.

Conversely, there is a mobile set of L(Kn) of order n − 2, namely

{{1, 2}, {1, 3}, . . . , {1, n − 1}}.

The move {1, 2}� {1, n} is valid, so all edges adjacent to 1 can be visited. Also for
2 ≤ i ≤ n − 1 the move {1, i}� {n, i} is valid. Therefore, the only vertices that must
still be visited are those of the form {i, j}, where 2 ≤ i ≤ j; without loss of generality
we show how to visit {2, 3}. This can be done by performing the move {1, i}� {i, n} for
4 ≤ i ≤ n − 1, followed by {1, 2}� {2, 3}. This completes the proof. �

4. Concluding remarks

In conclusion, we list a few interesting open problems that arise naturally.

• Since it is not even clear whether checking if a given set of vertices of a graph is a
mobile general position set is in NP, the computational complexity of computing the
mobile general position number seems to be a challenging and interesting problem.

• Determine the mobile general position number for all unicyclic graphs.
• Determine Mobgp(K(n, k)) for k ≥ 3.
• Based on Theorem 3.2, it would be interesting to investigate the mobile general

position number of arbitrary line graphs.
• In view of Theorems 3.1 and 3.2, since L(Kn) is the complement of K(n, 2), we

propose to investigate Mobgp(G) +Mobgp(G) for an arbitrary G, that is, the additive
Nordhaus–Gaddum inequalities.

• Is there a general relationship between the mobile general position number and the
clique number?

• Finally, in our model it suffices that each vertex is visited by one of the robots.
However, possible applications can also be imagined in which each vertex must be
visited by every robot while still maintaining the general position property at all
times. We believe this variant of mobility deserves independent investigation.
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