A Scientific Meeting was held at the West Park Conference Centre, Dundee, Scotland, on 27 and 28 March 2008

Mechanisms opposing exercise-induced perturbations in energy balance in overweight women

E. Manthou, J. M. R. Gill, A. Wright and D. Malkova *University of Glasgow, Glasgow, UK*

The effectiveness of exercise in reducing body weight is individual and may be related to variability in compensatory responses⁽¹⁾. The aim of the study was to identify the underlying mechanisms opposing exercise-induced perturbations in energy balance in overweight women.

Thirty-one healthy sedentary women (mean age 31.9 (sp 8.3) years; BMI 28.8 (sp 3.6) kg/m²; percentage body fat 39.1 (sp 4.7) participated in a supervised 8-week exercise programme, which consisted of 150 min cycling per week at an intensity of 90–95% lactate threshold. Body composition, activity energy expenditure (AEE; calculated as energy expended during all active activities including exercise sessions), inactivity energy expenditure (IEE; calculated as energy expenditure of sedentary activities), sleeping energy expenditure (SEE) and energy intake (EI) were assessed at baseline and during week 8 of the exercise programme. AEE and IEE were estimated from individual relationships between V_{O2} and V_{CO2} and heart rate (HR) and records of HR and physical-activity diaries obtained during waking hours of week 0 and week $S^{(2)}$. SEE was obtained from basal metabolic rate (BMR) measurements (Deltatrac System; Datex Instrumentation Inc., Baldwin Park, CA, USA). EI was assessed by 7 d self-recorded weighed intake. Measures of body mass and its components were taken using bioelectrical impedance scales (Tanita TBF-300; Tanita UK Ltd, Yiewsley, Middlesex, UK). Nine of the subjects achieved $\geq 75\%$ predicted body-fat loss and were classified as responders (R), while another twenty-two subjects fell into the group of non-responders (NR). Changes in all variables from baseline to post-intervention assessment were compared by two-way ANOVA (group × time) with repeated measures on the 'time' factor and post hoc Tukey test was used to identify changes within a group.

There was a significant interaction (P<0.05) for the change in AEE between groups R and NR, with AEE during week 8 being significantly higher (P<0.05) in comparison with baseline only in group R. Changes in IEE, SEE and EI from week 0 to week 8 were not significant within both groups and not different between groups R and NR. Reported daily EI of 41% of participants was below BMR \times 1.3.

Table 1. Exercise-induced changes in daily AEE, IEE, SEE and EI

Group	R (n 9)		NR (n 22)	
	Mean	SD	Mean	SD
AEE (kJ)	1696*	515	289†	85
IEE (kJ)	-316	31.3	-131	306
SEE (kJ)	53.6	92.9	68.2	50.2
EI (kJ)	561	756	1028	528

Mean value was significantly different from that for baseline within the group: *P<0.05. Interaction for change from baseline was significant between groups R and NR: †P<0.05.

In conclusion, in overweight women reduction in physical activity in the non-exercise time can be expected during supervised exercise programmes and thus explain a lower-than-predicted weight loss.

- 1. King NA, Hopkins M, Caudwell P, Stubbs RJ & Blundell JE (2008) Int J Obes 32, 177–184.
- 2. Moon JK & Butte NF (1996) J Appl Phys **81**, 1754–1761.