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Abstract

A polynomial f over a finite field F, can be classified as a permutation polynomial by the Hermite—
Dickson criterion, which consists of conditions on the powers f¢ for each e from 1 to g — 2, as well as the
existence of a unique solution to f(x) = 0 in F,. Carlitz and Lutz gave a variant of the criterion. In this
paper, we provide an alternate proof to the theorem of Carlitz and Lutz.
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1. Introduction

Let F, be the finite field of ¢ elements. A polynomial f(x) € F,[x] is said to be a
permutation polynomial if the induced map from F, to F, is bijective. Permutation
polynomials form an active area of research with many open problems and conjectures
(see [4)).

Denote the image of f(x) modulo x4 — x by f(x). The best-known criterion for
classifying permutation polynomials is given by the Hermite—Dickson theorem [3].

Tueorem 1.1. Letf(x) € F,[x]. Then f(x) is a permutation polynomial if and only if:

(i) degf(x)f<qg-2forl<t<q-2;
(i)  f(x) has a unique root in F,.

Ayad et al. [1] improved this criterion for binomials. Carlitz and Lutz [2] gave
a variant of the Hermite—Dickson theorem, providing sufficient conditions for a
polynomial to be a permutation polynomial.

Theorem 1.2. Let f(x) € Fy[x]. Suppose that:

() degf()f<g-2for1<t<q-2;
(i) deg f(x)!=¢q- L
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Then f(x) is a permutation polynomial.
In this paper, we refine Theorem 1.2 by proving the following result.
Tueorem 1.3. Let f(x) € Fylx]. Then the following conditions are equivalent.
() degf(0)f <q—2for1<€<q-2 anddeg f(x)i~' =q— 1.
(i) deg f(x)! <q—2 foreach € with 1 <{<q—2 and relatively prime to char(F,),

and deg f(x)i-' =g - 1.
(ii1) f(x) is a permutation polynomial.

2. Preliminary results

Let xy,..., x, be n variables. For each k € {1, ..., n}, let
S(Xt, .o X,) = Z Xiy * o0 X,
1<i)<ip<--<ix<n

be the elementary symmetric polynomial of degree k in n variables, and let
n
O—k(xh' "9xn) = ZX{C
i=1

be the power sum symmetric polynomial of degree k in n variables, with the
conventional definition o¢(x1,...,x,) =n. The polynomials s; and o7 satisfy the
relation

ok — 51041 + -+ (=Dfks; =0 for1 <k<n, 2.1

the validity of which is demonstrated in [6].
A polynomial f(x) € F,[x] is a permutation polynomial if and only if f(F,) =F,,
which is equivalent to

[[a-ren=]]a-0=x-x 2.2)
ceF, ceF,
Let cy,...,c, be the distinct elements of F,. By expanding the left-hand side of

equation (2.2) and identifying its coefficients with those of x? — x, we deduce that
f(x) is a permutation polynomial if and only if

se(fler), ... fleg)) =0
foreachke{l,...,q—2}and
sq-1(f(c1)s ..., f(cy)) = —1.

Consider any map 7 : F, — F,. There exists a unique polynomial g(x) € F,[x] of
degree less than g such that g(c) = 7(c) for all ¢ € F,,. The well-known formula

g = > (1= (x =) r(e)

cely,
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provides an expression for g(x) [5]. This expression implies that deg g < g — 2 if and

only if
D)= gle)=0.

ceF, ceF,

3. Proof of the theorem

Proor or THeorEM 1.3. The implication (i) = (ii) is clear.

Next consider the implication (ii) = (iii). Let p = char(F,) and suppose that
deg f(x)! < q—2 for each £ € {1,...,q— 2} such that ged(p, ) = 1 and in addition
that deg f(x)?~! =g — 1. Seta := o4 (f(c1), ..., f(cy). Then a # 0 and

ae(flcr),.... fleg) =0 3.1
foreach £ € {1,...,q — 2} not divisible by p. We show that
se(f(er),..., fleg)) = oe(f(cr), ..., flcg)) (3.2)

forall £€{l,...,q — 1} not divisible by p.

The statement is clear for £ =1, so let e € {2,...,g — 1} be such that p does not
divide e and assume that equation (3.2) holds for all £ € {1, ..., e — 1} such that p does
not divide €. We write (2.1) in the form

ae(flcr)s ..., fleg) + Z(_l)usu(f(cl)a s fleoy(fer), ..., feg))
+(=Dfes.(f(cy), ..., flcg)) =0, (3.3)

where the sum runs over all pairs (u,v) such that u + v=e and u,ve{l,...,e - 1}.
Letting (u, v) be any such pair, if p does not divide u, then s5,(f(c1),..., f(cs)) = 0 by
hypothesis. If p does divide u, then p does not divide v and so o, (f(cy), ..., f(cy)) = 0.
Equation (3.3) is then reduced to

To(f(1)s -5 flcg) = (1) esc(flcr), ..., fcy),
and (3.1) implies that

se(f(cl), cee sf(cq)) = O-e(f(cq), cee ’f(cq)) =0
foreach e € {2,...,q — 2} not divisible by p, and

Sq-1(f(c1), ..., f(cg)) = og-1(f(c1), ..., flcy) = a.

Let
heo = [ |- feep.

ceF,

Expanding A(x) yields an expression of the form

h(x) = x? + ax + Z aix,

pli
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from which it is apparent that 4’(x) = a # 0. Thus, h(x) is separable, implying that f(x)
is a permutation polynomial.
To prove the implication (iii) = (i), we suppose that f(x) is a permutation
polynomial. Then
se(f(c1)s..., fleg) =0
for e {l,...,q -2} and s,1(f(c1),..., f(cy)) = —1. Equation (2.1) immediately
implies that

oe(f(cr), ..., flcg)) =0
for¢ef{l,...,q—2}and oy 1(f(c1), ..., f(cg) = —1. It follows that

D fe' =0

ceF,
forfe{l,...,qg—2}and
> fer = -1,
ceF,
Therefore, deg f(x)f <g—2forfe{l,...,q—2}and deg f(x)i ' =g —1. O

We next state and prove an immediate consequence of Theorem 1.3.
CororLary 3.1. Let f(x) € Fy[x]. Then the following statements are equivalent.
(1)  f(x) is a permutation polynomial.
(i)  For any polynomial u(x) € Fy[x], degu(x) = q — 1 if and only if deg u(f(x)) =
qg-— 1.
Proor. Suppose that f(x) is a permutation polynomial and let u(x) € F,[x] be such that
degm =g — 1. By Theorem 1.3, we then have deg u(f(x)) = q — 1.
Conversely, let u;(x) = x' for each i € {1,...,g — 1}. Then u;(f(x)) = f(x)'. By

Theorem 1.3, degu;(f(x)) =g —1 if and only if i =g — 1. Therefore, f(x) is a
permutation polynomial. O

4. Concluding remarks

The theorems presented can be interpreted as properties of the composition on the
left of f(x) with each of the basis elements {x' | i =0,...,g — 1} of the F,-vector space
Fy[x]/(x? — x). Changing this basis to another will allow one to prove similar results.

Remark 4.1. Let f(x) be a permutation polynomial over F,, and consider the map
@0:{l,...,q—1} > {1,...,q — 1} given by @(e) = deg f(x)°. Theorem 1.3 shows that
¢l g-D={g-1}

In the particular case f(x) = x", where n is an integer relatively prime to g — 1,
f(x) is a permutation polynomial [5], and it is straightforward to show that the
corresponding map ¢ is injective. However, this is not always the case. For example,
suppose that ¢ = p” for an odd prime p and let f(x) = ax92 + b with a,b € F,. One
can verify that ¢(1) = ¢(2) = ¢(3) = g — 2.
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Remark 4.2. If d > 1 is a divisor of g — 1, then there is no permutation polynomial over
F, of degree d [5]. This introduces the following problem: for each k € {1,...,g -2},
let a; be an element of {1,...,q — 2} such that a; does not divide g — 1 whenever
ged(k,g — 1) = 1. Does there exist a permutation polynomial f(x) € IF,[x] such that
the corresponding map ¢ satisfies ¢(k) = a; foreach ke {1,...,q— 2} and ¢(q — 1) =
qg—1?
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