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CHARACTERS OF NON-CONNECTED, REDUCTIVE 
pABIC GROUPS 

LAURENT CLOZEL 

1. Introduction In this paper, we extend to non-connected, reductive 
groups over a/7-adic field of characteristic zero Harish-Chandra's theorem 
on the local integrability of characters. 

Harish-Chandra's theorem states that the distribution character of an 
admissible, irreducible representation of a (connected) reductive /?-adic 
group is locally integrable. We show that this extends to any reduc­
tive group; just as in the connected case, one even gets a very precise 
control over the singularities of the character along the singular 
elements. 

As will be seen, the proof in the non-connected case is an easy extension 
of Harish-Chandra's. The reader may wonder why we have bothered to 
write its generalization completely. The reason is that the original article 
[8] does not contain proofs for the crucial lemmas, and this makes it 
impossible to explain why the theorem extends. Because this result is 
needed for work of Arthur and the author on base change, it has been 
thought necessary to give complete arguments. We have done so only to a 
degree. Harish-Chandra's paper contains three separate parts, two dealing 
with theorems on the Lie algebra (Parts I and II), one with the group 
(Part III). We have relied on the self-contained parts I and II, though 
some proofs are missing there also. On the basis of that, we supply 
complete proofs for the theorems on the group. To keep the length of this 
paper to a minimum, we have constantly referred to the results proved 
in [8]. 

Of course Harish-Chandra had completely written proofs of all the 
missing lemmas. It is expected that those for Parts I and II will eventually 
appear. The proofs we supply for Part III rely completely on his 
unpublished notes. 

We would like to remark that the study of representation theory of 
non-connected groups is not an idle generalization. In fact, some of the 
most important applications of the trace formula to the study of auto-
morphic forms are likely to come from the consideration of outer 
automorphisms. (For the trace formula in that case see [7] ). Facts of local 
harmonic analysis seem to be useful there. In particular they are used in 
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[1] to prove the identities of orbital integrals for Base Change; I have also 
used them to prove the corresponding identities for the lifting between 
SL(2) and PGL(3), simplifying an earlier proof of Langlands; this is used 
by Flicker in [7]. Also, some interesting questions appear in the 
representation theory of non-connected groups. Here is one. Harish-
Chandra has conjectured that orthogonality relations, generalizing those 
between discrete series characters, must hold between elliptic characters 
[5] of reductive groups. On the other hand, in the study of base change, 
certain elusive "twisted orthogonality relations" appear ( [13, Chapter 7] ). 
These twisted orthogonality relations can be construed as (ordinary) 
orthogonality relations between certain elliptic characters of a non-
connected group arising as the semi-direct product of a connected group 
by a Galois automorphism. I do not know if this may lead to a local proof 
of the twisted orthogonality relations. Another question is to extend to 
non-connected groups the "Langlands classification", the theory of 
Jacquet modules, etc. 

The organization of this paper is as follows: Section 2 contains some 
preliminaries on semi-simple elements, centralizers, and Harish-Chandra's 
D function for non-connected groups. In Section 3, we prove the main 
theorems and in particular the local integrability of characters. The results 
(Theorems 1, 2 and 3) are stated in Section 3.3. 

Harish-Chandra's untimely death does not allow me to thank him here; 
I can only record my gratitude for his great generosity. Besides his proof 
of the local integrability theorem, I have also relied on his unpublished 
notes on characters of non-connected real groups. 

Thanks are due to Howe for indications about his representation theory 
of small compact/7-adic groups. I have also made use of a recent paper of 
Rodier, where he proves the local integrability of characters of /?-adic 
GL(n) in large enough characteristics. 

2. Non-connected reductive groups. 

2.1 We will denote by G a linear algebraic group defined over a 
non-Archimedian local field k of characteristic 0. We say that G is 
reductive if G , its neutral component, is a reductive connected group. 

We denote by Rk the ring of integers of /c, by co a uniformizing 
parameter, by q the cardinal of the residue field, by p the prime divisor 
of q. 

Let G = G(k) be the group of /c-points of G: it is a locally compact, 
totally discontinuous group. We call G a reductive &-group; if G = G(k) 
with G connected, we say that G is connected. We write G = G (/c), and 
often call it the neutral component of G. We have G = IL G\ a finite 
disjoint union, where each Gl is a G -coset in G, of the form Gl(k) where 
Gl is a connected component of G. We call each G1 a connected 
component of G. 
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We write ZG for the center of G, where G is any reductive group. 
Since G is linear, semi-simple and unipotent elements are defined in 

G(k) ( [2] ). Assume y is a semi-simple element of G: then Ad(y) is a 
semi-simple automorphism of G°. Let M be the neutral component of the 
centralizer of y in G (We will write GY for the centralizer of y, gy for its Lie 
algebra). We will call M = M(&) the connected centralizer of y. Obviously 
M c G°, and since Ad(y) is semi-simple, M is a reductive group by a 
theorem of Steinberg [15, 2.10]. 

2.2 Harish-Chandra's discriminant; regular elements. Assume G = _LL Gz, 
a union of connected components. For all /, let ri be the first non-zero 
power of T in the polynomial 

Pt(T) = d e t ( ( r - Ad(g) + 1) |fl), (g e G'). 

Here g is the Lie algebra of G. Then ri is called the rank of Gl. Notice 
that rt may vary when / ranges over the connected components. 

Example. Let kr Ik be a finite extension of local fields. Let G be a 
connected reductive &'-group. Set 

H° = R « W G ) , 

the k-group obtained by restriction of scalars. Then 2 = Gal(/:7/:) acts by 
/c-automorphisms over H°. Let H = H ° X I a non-connected &-group. 
Assume 2 is cyclic of order /, generated by a. Then, if r is the rank of G 
over k'\ 

rank(7/°) = rl 

rank(#° X a) = r 

as an easy computation shows. 
We define the discriminant function DG on G componentwise, by 

putting DG(g) equal to the coefficient of Tn in Pt(T) if g e Gl. 
An element y of G will be called regular if DG(y) ^ 0. We denote by Greg 

the set of regular elements of G. 

LEMMA 1. Assume y is regular. Then y is semi-simple and the neutral 
component of its centralizer is a torus. 

Remark. For connected groups it is well known that the converse to 
Lemma 1 is true. 

Proof of Lemma 1. By definition, y is regular if the multiplicity of the 
eigenvalue 1 in Ad(g), g ranging over the connected component of y, is 
minimal at y. Let y = ov, o semi-simple, v unipotent, be the Jordan 
decomposition of y. Then the multiplicity of 1 in Ad(y) is at least equal to 
the dimension of ga. Thus, if y is regular, a is regular also. Now assume o is 
regular semi-simple. Let M be the neutral component of G°. We must 
show that M is a torus. Indeed, if that was false, there would be a 
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unipotent element u e M with u ¥= 1. If g e G centralizes ou, it must 
centralize o and u by unicity of the Jordan decomposition. Thus Gou is 
the centralizer of u in G°, whose dimension is smaller than that of GCT: this 
contradicts the regularity of a. This shows that M must be a torus. Now if 
y = ov is regular, we have seen that its semi-simple part o is regular: then 
v must belong to the torus M, which shows that y is in fact semi-simple. 

Assume y E Gis regular. Then, by Lemma 1, it is semi-simple and thus 
diagonalizable (on an algebraic closure). Let t = c$Y be the space where 
Ad(y) has eigenvalue 1. Then 1 — y is bijective on g/t and it is easy to 
prove the following result: 

LEMMA 2. Assume y regular, t = Qy. Then 

Dc(y) = det((l - Y)|g/ t). 

2.3 Representation theory. The group G is a locally compact, totally 
discontinuous group, and the elementary results of representation theory 
of such groups contained, for example, in [3] apply. In particular, we have 
the notion of admissible representation. We will use the habitual nota­
tions: for example, if (TT, V) is an admissible representation of G, K c G 
a compact-open subgroup, V denotes the vectors fixed by K, V the 
admissible dual. 

3. Local integrability of characters. 

3.1 Representations of compact groups ([8, Section 13]). If AT is a 
compact group, we denote by ^(K) the dual of K. If Kx, K2 are two 
compact subgroups of a same group G, and Ft (i = 1, 2) is a finite subset of 
<̂ (AT/), we say that Fx, F2 interact if there is a common representation in 
their restrictions to Kx n K2. We say that x e G intertwines Fx and F2 if Fx 

interacts with Ad(x).F2, defined in the obvious way as a subset of 
£(Ad(x)K2). We write [Fx :F2] ¥^ 0 or [Fx :F2] = 0 according as Fx and F2 do, 
or do not, interact. 

Obvious properties of these notions are listed in [8, Section 13]. We 
record the following one. For K, F as above, let s/(F) be the space of 
functions on K of type F. 

LEMMA 3 ( [1 , Corollary to Lemma 31]). Assume x e G Let f be a 
complex function on KxxK2 such that the function 

(kl9 k2) ^f(kxxk2) 

lies in s/(Fx) ® s/(F2). Then, iff =£ 0, x intertwines F2 and Fx. 

If /x is an irreducible representation of K, we will denote by £ its 
character; we write 

h = 2 & 
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for a finite F c ${K). We will use without comment the notation K to 
denote a compact-open subgroup of a topological group G. 

3.2 Admissible distributions. We now assume that G satisfies the 
assumptions of Section 2. We recall from [8, Section 14] the definition of 
admissible distributions. If U is open in G, 0 a distribution on U, K0 c G 
a compact open subgroup, 0 is (G, X^-admissible a t y e U if 

(1) yK0 c U. 

(2) If Kis an open-compact subgroup of K0, and ju e S(K), 0 * ^ = 0 on 
yAT0 unless y intertwines ju and the trivial representation \K of AT0. 

We say that 0 is admissible at y if it is (G, AT0)-admissible at y for some 
K0. An admissible distribution is one that is admissible at each point 
of U. 

LEMMA 4. Let TT be an irreducible admissible representation of G on a 
space V. Let K0 be such that V ° ^ {0}. Then the character 0^ is 
(G, K0)-admissible at each point. 

Proof. Assume K c K0. Assume that, for /x e <?(K), ©*£„ is not 
identically 0. This implies that /x occurs in the restriction of IT to K. Let 
v e F be of type fi, v ¥= 0. Since V is generated by F^°, we have 

So for some /', we must have 

(w, 7T(g/)V/> ^ 0 

with W Ê Fof type /A, such that (w, v) = 1. But then, applying Lemma 3 
to the function 

fikigfa) = <w, 77(/c1g//c2)v/> = <*r(fc,)w, 7r(g/-fc2)vl-> 

of /C] G ^ , /:2 E XQ, we see that gz intertwines ti and 1^. 

3.3 Statement of results. 

THEOREM 1. Let m be an admissible irreducible representation of G Then 
the character 0^ ofir is a locally integr able function on G, locally constant on 
Greg. Moreover, the function 

is locally bounded on G. 

This will follow from the following two results: 

THEOREM 2. Let 0 be an admissible distribution on an open, G-invariant 
subset U of G. Let y be a semi-simple element of U. Then, if S is admissible 
at y, it coincides with a locally integr able function around y. 
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THEOREM 3. Under the assumptions of Theorem 2, let M be the connected 
component of the centralizer of y in G, m its Lie algebra. Then there exist 
unique complex numbers Cy such that, for Y close to zero in m 

0(y exp Y) = 2 ceve{Y\ 

Here (9 ranges over nilpotent M-orbits in m, vG is the invariant measure on (9, 
and vy its Fourier transform. 

3.4 Reduction to Lemma 6: Descent. From now on, let 0 , U, y be as in 
Theorem 2. Let M be the neutral component of the centralizer of y in G 
(or G ): then M is a connected reductive group. Let m be its Lie 
algebra, 

q = (Ad(y) - l) f l: 

then Q = m + q, a direct sum. Define, for m G M, 
DG/M(m) = det(Ad m - 1) |fl/m. 

Let M ' c M b e defined by 

DG/M(ym)^09 UM = M n y " 1 ^ 

Then Mf is an open, M-invariant neighborhood of 1 in M, and the map 

(x, m) I—> xymx 

G X UM^U 

is submersive ( [14, Proposition 1] ). By integration along the fibers, 0 
defines an M-invariant distribution, 0, on UM. 

Roughly speaking, the idea of the proof is to show that 0 is close to 
being admissible; and, by descent to the Lie algebra, to show that an 
admissible character has the required properties near the identity. 
However, the route followed for that is quite tortuous. 

Let K0 c G be such that 0 is (G, ^0)-admissible at y. We fix a 
compact-open subgroup KM of M such that KM c UM n K0. As before, K 
is any open subgroup of K0. Let Ft (i ~ 1) be finite subsets of $(K), 
disjoint and exhausting S{K). We set 

where £ is the character of fi e ê{K), 

The same notations apply to 0 and 8 e £(KM). It is then easy to prove 
([8, Lemma 36]): 

LEMMA 5. Let 8 G ^(ATM) . Then 0(J5) = 0 unless there is i such that: 
1) 8 interacts with Ft 

2) 0/r(ym) ¥= 0 for some m e Z£M. 
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Now let m0 be an invariant, open, closed subset of m satisfying the 
following conditions: 

(1) ^ m 0 = m0; the exponential mapping is an analytic isomorphism of 
m0 onto an open subset M0 of UM. 

(2) M0 n QZM is compact for any compact Q c M. 
(3) \DM(exp X) | = \r]M(X) | for X e m0 where i)M is the discriminant in 

the Lie algebra ( [8, Section 1] ). We may restrict the distribution 0 to M0, 
pull it back to m0, and extend it by 0 to m : whence a distribution 0O on m. 
The core of the proof will be to deduce from Lemma 5 the following 
assertion. Let | | be a /?-adic norm on Q: we denote also by | | its 
restriction to m. Let^Tbe the nilpotent cone in g, S the set \X\ = 1. Let V 
be a neighborhood oiJfC\ S n m i n S n m. Let A be a lattice in m that is 
small (see Section 3.5) and well-adapted with respect to M ( [8, Section 
12] ). If B is a non-degenerate, invariant bilinear form on m, x a non-trivial 
character of k, they define a dual lattice A* c in. If Z e m, l e t / z be the 
characteristic function of Z 4- A*. 

LEMMA 6. If the integer v is large enough, the following property holds. 
Assume Z e m is such that \Z\ > qv, and Z <£ kV. Then, 00 being the 
Fourier transform of 0O: 

K(fz) = 0-
(The Fourier transform is defined by means of x (^ (X Y) X so it ^ a 

distribution on m.) 

We now prove Theorems 1, 2, and 3, relying on Lemma 6. If t > 0, and 
Fis as before, let J(V, t, A*) be the space of invariant distributions Ton m 
such that, if Z G m and \Z\ ^ /, then T(fz) = 0 unless Z G kV. By 
Lemma 6, 

£0 e J(V, t, A*) 

for large enough t. If T is an invariant distribution, letyA*r denote its 
restriction to the space of A*-invariant functions. Let J0 be the space of 
invariant distributions whose support is compact modulo conjugation. By 
a fundamental result from Howe's theory [8, Corollary to Theorem 17] we 
have that, for suitably chosen V: 

jAJ(V,t,A*) C 7 A * / 0 

for any t. (That such a V exists results from Lemmas 28, 29 of [8].) Thus 
0O G jA*J0. Taking Fourier transform, we see that 60 agrees on A with a 
distribution in the space of Fourier transforms of J0. But now Theorem 3 
of [8] implies that 00 is locally integrable in a neighborhood of 0. 
Transporting by the exponential, we see that 6 is locally integrable in a 
neighborhood of 1. The usual theory of invariant distributions ( [9, 
Theorem 11 and Corollary] ) now shows that S is locally integrable 

https://doi.org/10.4153/CJM-1987-008-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-008-3


156 LAURENT CLOZEL 

around y, whence Theorem 2. Moreover, Theorem 4 of [8] gives the more 
precise estimates of Theorem 3. 

By Theorem 3 of [8], |T?M |1 / 2^0 is bounded near 0 and 60 is locally 
constant on regular elements. Via the exponential isomorphism, this 
means that \DM\]/20 is bounded, and 0 is smooth on regular elements, 
near 1. To obtain the regularity assertions of Theorem 1 near y, we 
need: 

LEMMA 7. (a) IfyxŒ Greg Pi yM, then x e Mreg. 

(b) — is bounded near 1. 

Proof. If yjc G G , the connected centralizer of yx in G is a torus. Since 
M centralizes y, the connected centralizer of x in M must be a torus. This 
proves (a). In (b), we may assume yx regular, whence x regular in M. If 
t c Q is the centralizer of yx, we have 

DG(yx) = det(l - Ad(yx) | f l / t) . 

The argument for (a), and counting ranks, show that t is the centralizer of 
x in m. Thus 

DM(x) = det(l - Ad x\m/t) = det(l - Ad(yx) |m / t) 

since M commutes with y. But for x close to 1, 

det(l - Ad(yx) |fl/m) # 0, 

whence (b). 

Now Theorem 1 follows from Harish-Chandra's usual argument and 
well-known lemma: 

LEMMA 8. Assume Fa G is non-empty, closed and G-invariant. Then F 
contains a semi-simple element. 

For this see, e.g., [4, Lemma 4.14]. Applied to the complement of the set 
where ©^ is not locally integrable (resp. \D\l/ ©,,. is not locally bounded) 
this shows that it must be empty, whence the theorem. 

3.5 Representations of small compact subgroups. Let Q be the Lie algebra 
of a reductive group G over k. Let g0 c q be a domain satisfying the 
conditions (l)-(3) after Lemma 5. We recapitulate Howe's theory of 
representations of small, compact-open subgroups of G ( [10] ). 

Assume k is an extension of Q Set 

P = 3 ordk(p) + 1 if p * 3 
2(p - 1) 

/8 = ord^(3) + 1 ifp = 3 . 

Let L be a lattice in g, contained in g0. Assume that [L, L] c Then 
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K = exp L is an open compact subgroup of G ( [10] ). We say that L is 
small if 

(a) [L,L] c rf+]L (p * 2), 

(b) [L,L] c 22*+ 1I , (p = 2). 

Condition (b) is equivalent to: 

[L', L'] c S*+1Z/, with L' = - L . 
2 

We set ^ = exp L, # I / 2 = exp L'. (Thus À:172 = Sunless/? = 2.) Then /<: 
is a normal subgroup of finite index of KV2. Let SX/1(K) be the set of Kxn 

1 /9 

orbits in (̂AT). If /x G <f (AT), let /x, be the representations belonging to /A. 
We set J(/x) = d(jit\ the dimension of any LI,, and 

^ = 2 ̂ . 
I 

We assume given an invariant bilinear form B(X, Y) on g, and a 
non-trivial character x on /c. Let then L* be the dual lattice of L with 
respect to the character x(B(X, Y) ) of g X g. Then AT172 operates on 

THEOREM 4 (Howe). Assume L is small There is a bijection \i \—> 0^ from 
SXI1(K) to the set of all Kl/2-orbits in Q/L* such that 

(1) </(/!)£ (exp X) = 2 x(B(X,\)). 

(2) For any X e 0^, 

</(/i) = [K:Kxf
2 

where 

Kx = {k e #:Ad(À:)X G Z + L*}. 

This is Theorem 1.1 of [10], at least for/? ^ 2. The case /? = 2 is not 
covered there, but the analogue is proved in [11] for discrete nilpotent 
groups: this is Theorem 1(b) of [11]. The reader will check that, for the 
arguments there to work, one needs that Z)~^Lf be pronilpotent and 
"elementarily exponentiable". That is true under our assumptions. 

PROPOSITION 1 (Howe). Assume Lv L2 are small lattices, Kt = exp(Lz). 
We identify subsets ofq/Lf with Lf -invariant subsets of Q. Then, if x e G, x 
intertwines jû  with /Xj if and only if 0t being the associated orbits: 

0X n Kà(x)02 * 0. 

This is Proposition 1.4 of [10]. 
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3.6 Properties of the Harish-Chandra map for orbits. In this section we 
study the relation between representations of small compact open 
subgroups of M and G. This is analogous to the Harish-Chandra map 
between centers of enveloping algebras in the real case. It is expressed, of 
course, in terms of Howe's orbit parametrization. 

We assume given G-invariant and M-invariant domains q0 C q and 
m0 c m satisfying the conditions after Lemma 5. Let L c q, A c m be 
small lattices. We set K = exp L, KM = exp A. Let q = m 4 q, and Pm, PQ 

be the corresponding projections. 

LEMMA 9. Assume /x e SXI1(K\ 8 e £]/2(KM). Then /x and 8 interact if 
and only if 

Proof By [8, Lemma 30], JU, and 8 interact if and only if 

JKHKM 
^(x)£8(x)dx * 0. 

Using Howe's character formula, this is equivalent to 

2 2 SL nAx(B(Y - Z,u))du * 0. 

(Note that exp sends Haar measure to Haar measure for small compact 
subgroups.) 

But, by duality theory for Abelian groups, 

f sntv 7 AW / v o l ( L O A) if 7 h xx(B(Y — Z,u))du = i n xl 
jLnAA V v " {0 othe 

z ^ (L n Ay 
otherwise 

where (L Pi A)* is the orthogonal of L n A in g for x o 5 . 
Furthermore 

(L n A)* = L* 4 A* 4 q. 

So the term associated with Y and Z is equal to vol(L Pi A) if and only 
if 

Y - Z e L* 4- A* 4- q. 

This implies the lemma. 

We now make the following precise assumptions on the /?-adic norm 
on q and on the small compact-open subgroups. We assume that 
G c GL(n, k), an embedding given by a faithful representation of 
/c-groups. On Mn{k), we have the/?-adic norm 

\x\ = maxl^-l 

where x is the matrix (x-). It restricts to a norm on q. 
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Set K0 = exp L0, L0 being a small lattice in g. We may assume, by 
taking L0 small enough: 

(1) K]
0
/2 c GL(n, Rk) 

(2) | (Ad(exp X) - 1)X| ^ |X| \X\ 

for X e - L 0 , X G g 

(3) © is (G, inadmiss ib le at y and AQY^O c t /-
Likewise, we define KM = exp A, where A is a small lattice in m, well 

adapted with respect to M ( [8, Section 12] ) such that 

(1) A c L0, KM c UM 

(2) | (Ad(yw) - l)Y\ g c | y | for some c > 0 

i f m G ^ j Ë q. 

(3) 1 A 

2 

for m 

< 1 and | (Ad(m) - 1)Z| 
1 

|Z| 

* 
1/2 

,M\ Z e m. 

It is easy to check that these conditions are satisfied for A small enough. 
We now define, for v a positive integer, 

Lv = </L0, Kv = exp L„. 

Recall that Jf is the nilpotent variety in g. Let 0„ be the set of JU, <= «f1/z(/Q 
such that 

p l /2 / 

(1) ^ n ^ r ^ 0 

(2) Ad(ym)^ n < ^ 0 for some m ^ KK 

LEMMA 10. Let V be a neighborhood ofJ^n S n m in S n m. 77ze/? 
//zere /s i>0 w/Y/i the following property. Assume v i? J>0, JU, e Oj, tf/id |X| ^ g 
/or ^om^ X e (?? 77ze« 

/»m^ C kV. 

We will need an auxiliary lemma: 

LEMMA 11. There is cx ^ max! \-L0 , \LQ\ J with the following proper 

ty.lfv^0,ii<^ $„, then there is X0 e 0 such that 

2v 

\p^\ Ik cx max( / , q V\X0\ ) 

and 

\X0 ~ X\ 
for all X i 

cx max(</, q V\X0\ ) 

0 . 
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Proof. By definition of O ,̂, there i sm G KM such that 

Ad(ym)^ n 0^ * 0. 

So let X0 e ^ be such that 

Ad(ym)X0 

of 

Ad(ym)X0 - Ad(£)*0 G L* 

By definition of the orbit, there is then k e KXJ2 such that 

or 

(Ad(ym) - 1)*0 - (Ad(/c) - l)X0 e L*. 

By condition (2) on A, we have 

c\pqX0\ =i \(Ad(ym) - \)pQX0\ 

^ max{ \pqL;\, \Pq(Ad k - 1)X0| }. 

Thus 

\pqX0\ ^ c2 maxj qv\m q~ 
2 

\X0\ 

using the definition of Lv. Here 

c2 = 

Setting 

c2 = c l\pq\. 

max(l, c2) m a x ( J - L 0 | , |L(J|j 

For the second, choose Jf e 0 Then there exist k e KV and 
gives the first inequality. 

For the seconc 
A e L* such that 

X = Ad(&)X0 + X 

whence 

X - X0 = (Ad(fc) - \)X0 + A; 

therefore 

\X - X0\ ^ m a x ( | ^ L „ | \X0\, |L*|) 

^ c, max^-HAol, <f). 

COROLLARY. Assume that cx < qv~r and \X\ ^ qlv for some X e 6? 
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qr = max( |/?J, \pq\ ). 

Then 

(a) \pmX | = |* | 

(b) 1*1 = \X'\foranyX> G ^ 

(c) | / 7 m * - A'l i c 1 ? - " + r | X | > a«7 X' e 0„. 

{Here |/>m|, |/>q| are defined by the sup norm for operators). 

Proof. If * ' e 0 we can write 

X' = Ad(/t)* + A, fc e Jf)/2, X G L*. 

Since KQ2 C GL(«, tfA), we have 

|Ad(£)*| = |*|. 

Moreover 

|X| S |L*| g c , ^ < q*-r S |*| . 

Hence |X'| = |X|. In particular, with X0 as in the Lemma, \X0\ = |X|. The 
first inequality in the Lemma yields 

\pQX0\ ^ cx max(<f, q-v\X0\ ) < \X0\. 

This implies that |/7m^Y0| = \X0\. Moreover 

|*o ~ X\^cx max(<f, < r iX 0 | ) ^ q ^ l ^ l < <T W 

Hence \pq(X0 ~ X) | < |X0|. This, and the majoration of \pqX0\, imply 

|/>q*| < |X0| = |Jf|. 

So we conclude that 1/^*1 = \X\. 
We still have to prove (c). Write 

(*) PmX - X' = pJX - X0) - (X - X0) - pQX0. 

We have proved that 

Hence 

\Pm(X0- X)\ ^ c l 9 - ' + r | * 0 l -

Also, since \X'\ = \X\, the assumptions of the Corollary apply to X, so 

\X0 - X\ ^ cxq-v\XQ\ 

as proved above for X. Furthermore, 

\paXQ\ i c,q~v\X0\ 

as proved above. 
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Adding terms in (*), we get 

\pmX - X'\ fk cxq-v+r\XQ\ = ciq~"+r\X\. 

This is (c). 

We can now prove Lemma 10. Let Q(R) be the set { \X\ ^ R}. (The 
same notation will apply to m.) We may choose e > 0 such that 

( / n n G(€) ) n m c V. 

Assume vQ è 0 is such that 

Then if v, jti, Xare as in Lemma 10, choose a G k such that \a\ = \X\. Since 
jit G <bv, we may choose 7 G 0 n i/K For e small, 

The corollary to Lemma 11 applies. So 

\Y\ = \X\ = \a\, \PmX - Y\ g c l 9- '+ r | J f | ^ ck|. 

If y, = a~]Y, X} = a~xX, we have 

Yx e ^ n 5, | /7m^ - y,| ^ c. 

Thus 

pmXx ^ {JT n S + 8(e) ) n m c V. 

Thus/?mAr G kV. By part (b) of the corollary, \X\ = \X\ for any X G ^ . 
Therefore this applies to X\ and 

3.7 Fourier expansion of 0. Recall that the distribution 0 is defined on 
UM. We have KM c UM, and a character of KM extends by 0 to a function 
on UM. If 8 G <f1/2(^M), we set 

0(0) = 0(J5()) 

where 80 is any element in the orbit 8; this does not depend on 80 since 6 is 
M-invariant and K1^2 C M. 

Let / > ^ 0) be the set of all 8 G é,2(KM) such that 

The purpose of this section is to prove: 

LEMMA 12. Assume v > 0 is large enough. Then if 8 G S (KM) does not 
belong to Fv, and 6(8) ^ 0, we have 

(a) \Z\ > q2vfor any Z G ff8 

(b)ff8 c *K. 
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We start with a lemma that is often useful. 

LEMMA 13 ( [12, Lemma 2.4] ). Assume co c g is compact. Then there is a 
lattice L c Q such that 

Ad(G)cô c JT + L. 

Proof. We may assume G connected. Let A be a maximal split torus in 
G, M its centralizer, K a Bruhat-Tits subgroup of G adapted to A. Fix a 
lattice L 0 c g adapted to (K,A)( [8, Section 12] ). It is enough to consider 
co equal to a lattice L = w"L0. Let 

Q = m 4- n + + n~, m = Lie(M), 

be a triangular decomposition of g. Let M + be the set of elements of 
M which contract n + . By the Cartan decomposition [3, Section 3.5], 
G = KM+K. Then Ad(K)L = L 

Ad(M+K)L = Ad(M+)L 

= Ad(M+)( (L n m) + (L n rt+) 4- (L n n _ ) ) 

c a(L Pi m) + (L n n + ) 4- n~ 

c aL 4- n~ 

for some a ^ k independent of L, since the eigenvalues of Ad(M) on m are 
bounded. Then 

Ad(G)L c a Ad(K)L 4- Ad(AT)n~ 

c aL + JT. 

This implies the lemma. 

Now fix v0 â 0 large enough that 

(1) Ad(G)0o C / + L ; (cf. Lemma 13) 
"0 

(2) q2"° 
2 

(3) cxq
r v° < 1 where cx is as in Lemma 11 

(4) Lemma 10 is satisfied. 

1 £ r- Jp\/2/ I LEMMA 14. Assume v ^ v0 and 8 e ê ' (KM) does not belong to Fv. 
Then 

Jlv + r-(P8 n m(qzv+r) = 0. 

Proof. There is Z e 0S such that \Z\ > q2v+r. Assume Z' <= 0fi, so 

Z' = Ad(m)Z 4- A, m e ^ 2 , A e A*. 
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Then 

Z' - Z = (Ad(w) - 1)Z + A 

\Z' Z\ ^ m a x ( | ^ A | \Z\, |A*|) 

Now 

\Z\ > q 2v H <72"° |A* 
1 - 1 1 
- A and - A 
2 2 

< 1. 

So 

IZ' z\ ^ A \z\ < \z\. 

This shows that \Z'\ = \Z\. 

We can now prove Lemma 12. Assume v ^ v0. Applying Lemma 5 
to the representations in the orbit S, we see that if 0(8) =£ 0 there is 

m 
SA/2(KV) such that 8 interacts with /x and ©^(yra) ¥= 0 for some 
KM. Using Lemma 9, we rewrite this as 

(l) pj)^ n o8 * 0 

0 onK, (2) e ^ y m ) 

Now let (9Q = LQ be the orbit associated to the trivial representation of 
K0. Assume /x e S>X/2(KV). Since 0 is (G, X^-admissible at y, we have 

unless 

A/-

0 on yK0 unless G intertwines /x and \K, i.e., by Proposition 1, 

0M n Ad(G)0o * 0. 

A fortiori, condition (2) above implies 

0^ n Ad(G)0o * 0-

By (1) before Lemma 14 we have 

(3) ^ n ^r ^ 0. 

By (2), we may choose m <E KM such that ®^(ym) ^ 0. We have 

KvymKv c ^ 0 y ^ 0 c f/; 

the function 

(*!, k2) h-> G ^ y r n / ^ ) 

is in ^/(/x) 0j^(jLt). By Lemma 3, then, yra intertwines 0 with itself, so by 
Proposition 1: 

(4) Ad(ym)0M n ^ i . 
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Assertions (3) and (4) mean that JU, belongs to $v (cf. before Lemma 
10). 

Now using property (1), choose X e 0 such that 

Z=pmXe %. 

We claim that \X\ > q2v. For otherwise, 

\Z\ = \pmX\ fk q2"^ since \pm\ fk qr. 

Since we assumed that 8 e Fp9 

08 n m(q2v+r) = 0 

by Lemma 14: this is a contradiction. 
So \X\ > q . By the Corollary to Lemma 11 (note that the assumption 

on Cj is our assumption (3) before Lemma 14), \Z\ = \X\ > q2v. This is 
part (a) of Lemma 12. 

We now prove (b). For a e k with \a\ = \Z\ = \X\. Since (i e 0 ,̂, we 
then have a~~ Z e F by Lemma 10. 

Obviously we may assume that 

V = jrnsnm + m(e) 

for some small e. If Z' e 05, 

Z' = Ad(m)Z + A for some m G ^ 2 , X <= A*. 

Then 

a~lAd(m)Z e K, and |Ad(m)Z| = |Z| = \a\ > 42" 

since K1^2 C XQ preserves length. Moreover 

\a~lX\ ^ ^~2HA*| ^ € for large v. 

Thus 

a~lZ e J/ + m(c) = F, 

finishing the proof of Lemma 12. 

3.8 ^ formula for the KM-expansion. We keep to the notation of the 
previous sections. In particular, if Z E m, l e t / z denote the characteristic 

function of Z + A*. We assume moreover that - A c m0. 

LEMMA 15. Assume 8 e SV2(KM), Z <E 0S. Then 

0(8) = v(A*yld(8)0o(f_z). 

Here 0O is defined as in Section 3.4 by restricting 0 to exp(m0), pulling it 
back to m0 and extending it by 0 to m; 0O is its Fourier transform. 

Proof Consider £8 as a function on m as follows: 
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U.2) = £s(e*p Z) Z G A 

= 0 Z £ A. 

Define 

W = Xs *^Z' Z'> ̂ Z' 
where dZ' is Haar measure on m. Since 08 is A*-invariant, 

0Ô(Z) = 0 for Z « A. 

On the other hand, if Z G A, 

è8(Z)= 2 v(A*)x(£(z,z')). 
Z'<E0g/A* 

By Theorem 4(1), this is the expression of £8(Z)d(8)v(A*). In other terms, 
we have the Kirillov formula 

08 = v(A*MS)£5 

ow, wri t ing/(Z) f o r / ( — Z), we have 

ow 

= *<,«*) = v(A*)</(8)" 

^ = 2 /_. 
Z'e08 /A* 

Z'-

Since #0 is M-invariant, we deduce that 

0(î5) = i<yA*i0o(/„z). 

We now remember that 0(5), by definition, is equal to 6(£8 ) for some 
80 G 5. Thus 

«(S) = (p(A*)d(8)rlN(8rl8g8)9 

N(8) being the number of elements of 6 G <^1/2(ATM). On the other hand 
( [11, Theorem 1]; this is easily deduced from Theorem 4): 

|<VA*| = N(8)d(8)2. 

Whence the result. 

3.9 Proof of Lemma 6. We can now prove Lemma 6, thus completing the 
proof of the main results. We rely on Lemmas 12 and 15. Take v such that 
Lemma 12 holds. Assume Z G m, with \Z\ > q2v+r and Z £ /cK 
By Lemma 15, #oC/z) = 0 if and only if 0(8) = 0, 8 being associated to 
the orbit of — Z. Since 
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| - Z | > q2v+\ 

S does not belong to Fv. Since we have assumed Z £ kVy we see that 
05 9!: £F. Lemma 12 then implies that 6(8) = 0. This is Lemma 6. 
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