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In geochemistry, (scanning) transmission electron microscopy ((S)TEM) has emerged as an 

advantageous technique for studying minerals and rocks for its excellent spatial resolution (down to sub-

nm). Further, using STEM mode for energy-dispersive X-ray spectroscopy (EDS) mapping enables a 

robust and quick analysis of the composition of samples. However, several problems currently limit the 

analytical capability of STEM-EDS. First, the commonly used two-dimensional (2D) EDS scan merely 

captures an average of the 2D chemical information projected along the probe’s direction, which can be 

problematic for phase quantification when phases are severely overlapped in the projection. While 

electron tomography can help retrieve the chemical composition of each phase in this overlapping 

scenario, it is not feasible for materials which are beam sensitive such as the Earth mantle minerals of 

interest here. Second, the fact that TEM samples are thin results in low counting statistics for the STEM-

EDS signal, limiting its sensitivity and reliability when analyzing minor and trace elements. Considering 

data analysis in general, machine learning (ML) has begun to make an impressive impact in various 

fields [1]. Here we address the challenges of STEM-EDS quantification by exploiting several ML 

algorithms, and appropriately applying them to the data analysis. Ultimately, we can automatically 

identify, segment, and precisely quantify mineral phases in the heavily overlapping scenario. This 

improved phase quantification further enables us to gain a better understanding of the mineralogy of the 

deep Earth mantle and conjecture the processes which formed it in the mantle differentiation. 

 

In this paper, the starting material is a synthetic pyrolite glass doped with Nd, Sm, Hf, Lu, and U (0.3 

wt.% for each). Four samples were made by compressing the pyrolite across a range of pressures from 

46 GPa to 88 GPa, using a diamond anvil cell. The samples were molten by double-sided laser heating 

and then slowly cooled down below the solidus temperature before quenching. Thin sections for STEM 

analysis were made by the focused ion beam lift-out technique from the samples recovered after 

decompression. The 71 GPa sample is used as an exemplar to demonstrate the effectiveness of ML 

algorithms in the un-mixing of phases and improving their quantification. 

 

Figure 1(a)-(d) presents a high-angle annular dark-field (HAADF) image and EDS elemental maps of 

the 71 GPa sample. Three phases are identified: ferropericlase (Fp), bridgmanite (Brg), and Ca-rich 

perovskite (CaPv). All three phases are partially overlapping, with Brg being the dominant matrix phase, 

as shown in the spectra of the selected region of interests (ROIs) (i.e. Si exists in ROI_2 and Mg exists 

in ROI_3 in Figure 1(f), (g)). Brg can be quantified directly, though with an inadequate signal-to-noise 

ratio (SNR) for revealing trace elements, such as U, that may be incorporated in its structure, as shown 

in the inset of Figure 1(e). As for Fp and CaPv, they can only be quantified indirectly. The ROI mixtures 

are first quantified; the mixing level of Fp/CaPv and Brg is then calculated; lastly, Brg constituent is 

subtracted from the mixtures to obtain Fp and CaPv compositions. Similar to Brg quantification, each 

ROI has a limited SNR, while error propagation further increases the uncertainty of quantification. 
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If all three phases can instead be identified and segmented spatially, the signal of each summed 

spectrum would be increased to the maximum extent, thus greatly increasing the SNR. Here, we use 

non-negative matrix factorization (NMF) [2] and penalized clustering [3] cooperatively to achieve this 

task. No matter how small the phase area is, or how complicated the phase morphology, the combined 

algorithms can easily and precisely manage the segmentation. From this, the pure spectra of Fp, CaPv, 

and Brg are obtained and presented in Figure 2(d)-(f), ready for a direct quantification. It is noted that U 

indeed exists in Brg under the synthesized condition, as displayed in the inset of Figure 2(d). Although 

not presented here, the SNR for the EDS peaks of the other trace elements, Nd, Sm, Lu, and Hf are also 

considerably increased. This allows us to analyze the partition behavior of the elements, including that 

of trace amounts, between phases in a fast and reliable approach, from simple 2D STEM-EDS data. 

Additionally, the abundance map of each phase (i.e. Figure 2(a)-(c)) is computed by a fully constrained 

least squares linear spectral mixture analysis [4]. We believe that, when applied appropriately, the 

proposed workflow of algorithms can further be extended to the quantification of other spectroscopic 

data, such as from electron energy-loss spectrometry. 
 

 
Figure 1.  (a) HAADF image and (b)-(d) Si Kα, Mg Kα, and Ca Kα elemental maps of the 71 GPa 

sample; (e)-(g) spectra of the ROI_1, ROI_2, and ROI_3, respectively. 
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Figure 2.  (a)-(c) phase abundance maps of Brg, Fp, and CaPv; (d)-(f) integrated spectra of Brg, Fp and 

CaPv. 
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