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ABSTRACT: Neurodegenerative diseases are characterized by selective degeneration of certain biochemically distinct 
subpopulations of central neurons. Studies of the intrinsic vulnerability of such neurons to injury by excitatory amino 
acids in vitro, as well as study of neurologic syndromes produced in animals or humans by ingestion of environmental 
excitatory amino acid neurotoxins may suggest a link between excitotoxicity, and the pathogenesis of certain neurode­
generative diseases. 

RESUME: Vulnerabilite differentielle a la toxicite induite par des acides amines excitateurs et perte neuronale 
selective dans les amladies neurodegeneratives. Les maladies neurodegeneratives sont caracterisees par une 
degenerescence selective de certaines sous-populations de neurones centraux biochimiquement distinctes. Des etudes 
de la vulnerabvilite intrinseque de ces neurones a une atteinte par des acides amines excitateurs in vitro, ainsi que 
l'etude des syndromes neurologiques causes chez Fanimal ou chez l'humain par l'ingestion de neurotoxines environ-
nementales qui sont des acides amines excitateurs, peuvent suggerer qu'il existe un lien entre l'excitotoxicite et la 
pathogenese de certaines maladies neurodegeneratives. 
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There is now substantial evidence that excitatory amino acid-
induced neurotoxicity (excitotoxicity) can contribute to the neu­
ronal injury triggered by acute insults to the central nervous sys­
tem.12- In part based on this precedent, there has been growing 
recent interest in the possibility that excitotoxicity might also 
participate in the pathogenesis of the selective neuronal loss 
accompanying certain neurodegenerative diseases, including 
Huntington's disease (HD), Alzheimer's disease (AD), and amy­
otrophic lateral sclerosis (ALS). 

While glutamate activates both N-methyl-D-aspartate 
(NMDA), and non-NMDA (kainate, and alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA]/ 
quisqualate) receptors,3 the excitotoxicity associated with several 
acute insults to the central nervous system may be predominantly 
mediated by NMDA receptor activation. This predominance 
may reflect a key role of NMDA receptors in mediating the 
degeneration of cortical or hippocampal neurons induced by brief 
exposure to high concentrations of glutamate.4'5 Yet, with pro­
longed exposures, non-NMDA agonists are also potent neuro­
toxins and can produce widespread neuronal destruction.6 

The injection of kainate into rat striatum destroys intrinsic 
striatal neurons with sparing of afferent axons, a lesion sharing 
some features with the pathology of HD.7'8 In 1985, Ferrante et 
al.9 discovered that the degeneration of striatal neurons in HD 
was strikingly selective, in that the small neuronal subpopula-

tion containing high concentrations of the enzyme, NADPH-
diaphorase (NADPH-d(+) neurons), remained largely intact 
amid extensive loss of other intrinsic striatal neurons. This new 
pathological feature challenged the excitotoxin injection model, 
and Beal et al.10 found that kainate failed to spare NADPH-d(+) 
neurons. In fact, of several excitotoxins studied by those investi­
gators, only the NMDA agonist quinolinate successfully mim­
icked the pattern of striatal neuronal loss sparing NADPH-d(+) 
neurons, favoring the idea that quinolinate might be specifically 
involved in HD pathogenesis.1011 However, other investigators 
did not see NADPH-d(-t-) neuronal sparing with quinolinate 
injection.12-13 

We set out independently to characterize the excitotoxic vul­
nerability of cultured cortical NADPH-d(+) neurons, a popula­
tion sharing the property of somatostatin co-localization with 
striatal counterparts. We reasoned that NADPH-d(+) neurons 
might be intrinsically resistant to excitotoxicity, although such 
intrinsic resistance would only be one of several possible expla­
nations of resistance to excitotoxicity in vivo. The damage 
induced by administration of an excitotoxin in vivo might addi­
tionally reflect cellular access, uptake, and the extent of second­
ary damage induced by release of endogenous excitatory amino 
acids. In the open architecture of cell culture, the first two fac­
tors are attenuated, and intrinsic neuronal vulnerability can be 
quantitatively assessed. 
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Consistent with the results of Beal et al, we found that cul­
tured cortical NADPH-d(+) neurons,14 and their striatal counter­
parts,15 were selectively resistant to quinolinate neurotoxicity; 
however in contrast, we found that this selective resistance gen­
eralized to other NMDA agonists. Since this resistance was not 
absolute, it seemed plausible that divergent results in vivo might 
reflect small differences in technique and resultant differences in 
the concentration profiles of excitotoxin attained. Indeed subse­
quently Beal et al.16 reexamined striatal lesions induced by 
injection of submaximal amounts of NMDA, and found NADPH-
d(+) neuronal sparing that they had not seen previously. 

An attractive site for explaining the resistance of NADPH-
d(+) neurons to damage by NMDA agonists might be at the 
receptor level (e.g., a paucity of NMDA receptors, or reduced 
receptor affinity for NMDA or glycine). NADPH-d(+) cells are 
not simply hard to kill, as they are preferentially destroyed by 
kainate or quisqualate.17 Additional support for involvement of 
NMDA receptor-mediated injury in HD was provided by the 
observation that another neuronal population spared in HD, neu­
rons containing acetylcholinesterase, is also resistant to NMDA 
receptor-mediated injury;15 and the finding that NMDA receptor 
number may be greatly reduced in HD striatum.18 

The possibility that excitotoxicity may participate in the 
pathogenesis of ALS has been raised by suggestions of aberrant 
glutamate metabolism in ALS patients.19"21 Precedent is provided 
by three environmentally-induced motor system diseases, lath-
yrism, the ALS-Parkinsonism-dementia complex of Guam 
(ALS-PD), and domoate poisoning. Lathyrism is characterized 
by spastic paraparesis; it is caused by excessive consumption of 
an unusual excitotoxin, beta-N-oxalylamino-L-alanine (BOAA), 
present at high concentrations in the chickling pea.22-24 Toxicity, 
electrophysiology and binding studies all indicate that BOAA is 
a potent and selective agonist at non-NMDA receptors.25-26 

Guam ALS-PD is a restricted form of ALS that occurs with 
high prevalence among the Chamorro people in Guam,27 often 
in association with some clinical and pathological features of 
Parkinsonism or Alzheimer-type dementia.2829 While the cause 
of Guam ALS-PD is unknown, it appears from epidemiological 
considerations to be environmentally-induced.30 One theory 
links it to consumption of the cycad plant excitotoxin, beta-N-
methylamino-L-alanine (BMAA); in macaques, chronic BMAA 
ingestion can damage upper and lower motor neurons.31 Despite 
lacking the side-chain electronegative group characteristic of 
other excitatory amino acids, BMAA can induce seizures in 
rodents32 and excitotoxic neuronal degeneration in CNS explant 
tissue;25-31 most likely, extracellular bicarbonate/C02 interacts 
with BMAA to produce a combined structure capable of activat­
ing glutamate receptors33 - possibly after carbamate forma­
tion.34 Although the neurotoxicity induced by high concentra­
tions of BMAA may be largely mediated by NMDA 
receptors,25 '3 '-35 low concentrations of BMAA selectively 
destroys NADPH-d(+) neurons and thus may preferentially acti­
vate non-NMDA receptors.35 A recent binding study has also 
suggested that BMAA interacts with non-NMDA receptors.36 

Domoate is a potent kainate agonist.37 Domoate poisoning, 
due to ingestion of contaminated mussels, has been recently rec­
ognized as a clinical entity38 characterized by seizures and other 
neurological disturbances; of note, electrophysiological studies 
have suggested denervation of muscle consistent with damage to 

motor neurons or axons.39 Pathological correlates of this dener­
vation will be an important topic for future investigation. 

The apparent ability of several non-NMDA agonists -
BOAA, BMAA (at least experimentally), and domoate - to dam­
age the primate motor system supports the hypothesis that non-
NMDA receptor overstimulation might contribute to the patho­
genesis of sporadic ALS. Furthermore, electrophysiologic 
studies have suggested that motor neurons are highly sensitive 
to kainate, perhaps more so than to NMDA;40'41 and intrathecal 
injection of kainate has been recently found to preferentially 
damage neurons in ventral horn.42 

Excitotoxicity mediated through NMDA receptors has also 
been proposed to participate in the pathogenesis of AD,43 based 
on several arguments including distribution of pathology. 
Whether or not NMDA receptors are preferentially lost has been 
controversial.4344 We have raised the alternative speculation 
that any excitotoxic involvement in AD may be specifically 
mediated via non-NMDA receptors.45 The small subpopulation 
of cortical neurons containing somatostatin (SS), which as a 
population overlap substantially with the NADPH-d(+) popula­
tion, may be selectively damaged in early AD.46"48 Another cor­
tical neuronal subpopulation possibly sustaining early damage 
in AD may be neurons containing high concentrations of the 
calcium binding protein, parvalbumin (PV).49 Both SS (+) and 
PV (+) neurons are relatively resistant to NMDA receptor-medi­
ated toxicity and unusually sensitive to non-NMDA receptor-
mediated toxicity.50 Also, whatever the cause of Guam ALS-
PD, the concurrence of AD-like features with ALS-like features 
in that disease raises the possibility that AD may share some 
mechanisms with ALS, perhaps including non-NMDA receptor-
mediated toxicity. Glutamate-induced degeneration of cultured 
hippocampal neurons is associated with increased immunostain-
ing with antibodies directed against AD neurofibrillary tangles.51 

Many different specific derangements in the glutamate sys­
tem could eventually lead to the toxic overactivation of NMDA 
or non-NMDA receptors in a neurodegenerative disease. These 
derangements need not be primary disease manifestations, for 
example a direct effect of the HD gene, but could come about 
secondarily after a cascade of earlier pathological events. An 
excitotoxic pattern of neuronal loss would result as long as exci­
totoxicity contributed importantly to net injury. 

Increases in the ambient concentrations of glutamate or other 
endogenous excitatory amino acid, such as aspartate, homo-
cysteate or quinolinate, could result from increased production 
or release, or deficient uptake or metabolism. Another endoge­
nous excitotoxin is the amino acid cysteine, that like BMAA 
may be dependent on bicarbonate for its toxic properties.52 The 
postsynaptic neuron could have an increased density of gluta­
mate receptors, abnormal receptors, or a reduced ability to han­
dle the metabolic stress induced by normal levels of excitatory 
synaptic activity. Calcium metabolism could be particularly 
important.53 Interestingly, neurons in elderly animals appear to 
have greater calcium fluxes through voltage-gated calcium 
channels, and longer lasting calcium action potentials, than neu­
rons in young animals.54'55 Thus it is possible that the calcium 
influx induced by non-NMDA receptor activation could 
increase with aging, a factor which might favor gradual excito­
toxic damage. 
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The postulate of glutamate receptor-mediated neurotoxicity 
in the pathogenesis of HD, ALS OR AD suggests a possible 
avenue for therapeutic intervention. Specific agents might be 
directed at either presynaptic or postsynaptic sites, for example 
decreasing glutamate release, blocking glutamate receptors, 
reducing excitotoxic amplification, or blocking the expression 
of excitotoxicity downstream from receptor overactivation.56 

Given the lack of good animal models for these diseases, clini­
cal trials with suitable anti-excitotoxic agents may be the only 
way to determine the extent to which excitotoxicity contributes 
to pathogenesis. A key task for the future will be the develop­
ment of anti-excitotoxic agents sufficiently free of side effects to 
be suitable for long-term administration in humans. 
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