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Abstract

Bayesian model updating (BMU) is frequently used in Structural Health Monitoring to investigate the structure’s
dynamic behavior under various operational and environmental loadings for decision-making, e.g., to determine
whether maintenance is required. Data collected by sensors are used to update the prior of some physics-based model’s
latent parameters to yield the posterior. The choice of prior may significantly affect posterior predictions and subsequent
decision-making, especially under the typical case in engineering applications of little informative data. Therefore,
understanding how the choice of prior affects the posterior prediction is of great interest. In this article, a robust Bayesian
inference technique evaluates the optimal and worst-case prior in the vicinity of a chosen nominal prior and their
corresponding posteriors. This technique derives an interacting Wasserstein gradient flow that minimizes and maxi-
mizes/minimizes the KL divergence between the posterior and the approximation to the posterior, with respect to the
approximation to the posterior and the prior. Two numerical case studies are used to showcase the proposed algorithm: a
double-banana-posterior and a double-beam structure. Optimal and worst-case priors are modeled by specifying an
ambiguity set containing any distribution at a statistical distance to the nominal prior, less than or equal to the radius.
The resulting posteriors may be used to yield the lower and upper bounds on subsequent calculations of an engineering
metric (e.g., failure probability) used for decision-making. If the metric used for decision-making is not sensitive to the
resulting posteriors, it may be assumed that decisions taken are robust to prior uncertainty.

Impact statement

Bayesian model updating may be significantly sensitive to assumptions about the prior distributions chosen for the
latent parameters of the physics-based model used to represent the structure’s behavior, especially if, due to some
restrictions, such as time constraints and cost, the number of observations available is limited. In these cases, the
selection of prior distributions may significantly affect the resulting posterior distributions, and as a consequence, the
decisions about engineering metrics, such as reliability, useful lifetime, and maintenance of the structure. To address
these limitations, a robust Bayesian inference approach based on interactingWasserstein gradient flows is proposed in
this article. It is shown that the proposed approach estimates the optimal and worst cases of prior distributions and
calculates their corresponding approximations to the posterior distribution thatmay be used as lower and upper bounds
on subsequent metric calculations used for decision-making. These bounds on the resultingmetric can be readily used
in decision-making to assess if the decisions taken are robust to prior distribution uncertainty or otherwise.

©TheAuthor(s), 2025. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

Data-Centric Engineering (2025), 6: e19
doi:10.1017/dce.2025.8

https://doi.org/10.1017/dce.2025.8 Published online by Cambridge University Press

https://orcid.org/0000-0003-3953-5531
https://orcid.org/0000-0002-6556-2149
mailto:felipe.igea@hotmail.com
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/dce.2025.8
https://doi.org/10.1017/dce.2025.8


1. Introduction

Bayesian inference techniques have been frequently used in engineering to estimate the inherent
variability of the uncertain latent parameters and/or to identify unknownmodel parameters of the physical
models of real-world structures when measurements on the real-world structure become available
(Mottershead and Friswell, 1993; Green and Worden, 2015; Lye et al. 2021; Igea, 2023). The so-called
Bayesian model updating (BMU), starting from a physics-based model, a prior distribution on the
uncertain parameters, and a suitable description of the discrepancy between the measurements and model
predictions (the likelihood), yields the posterior distribution of the uncertain latent parameters (Beck and
Katafygiotis 1998; Sedehi et al., 2019; Kennedy andO’Hagan, 2001). This updated probabilistic model is
then used to assess the performance of the real-world structure under various conditions, including its
reliability (Straub et al., 2015), remaining useful life (Sankararaman, 2015), and to support maintenance
decision-making (Verzobio et al., 2018). Bayesian inference is actively used in structural health moni-
toring (SHM) (Yuen et al., 2006; Farrar andWorden, 2013; Rocchetta et al., 2018). SHM focuses on non-
intrusive detection of an abnormal structural condition. SHM can provide early warnings on the health
status of engineering structures (Farrar andWorden, 2013). The updated models can be used to locate and
assess the damage (Rytter, 1993; Farrar and Worden, 2013; Simoen et al., 2015; Ebrahimian et al., 2017;
Verzobio et al., 2018). Once the health state of the structural system is identified, optimal maintenance
decisions can be identified (Kamariotis et al., 2020). Real-time engineering decisions (repairment, further
observation, etc.) may be mathematically performed using Bayesian decision analysis methods
(Kamariotis et al., 2023). In this decision-making process, the target is to define a group of actions
(e.g., repair, inspection, or maintenance) that minimize the expected life-cycle costs of the structure.
Therefore, the results obtained with BMU are critical in decision-making in engineering. However, those
results can be sensitive to: the prior distribution assumption, the likelihood, and the computational
strategy employed to evaluate the posterior distribution. Robust Bayesian inference, is a methodology
used to investigate the robustness of Bayesian inference results to uncertainty of the prior, and/or
likelihood, and/or computational strategy (Berger et al., 1994). When the result does not sensitively
depend on the assumptions and calculations made, it is said to be robust. Robustness can be quantified in
terms of the range of the result: if the range is small, the result is not sensitive to the different assumptions
or calculations explored. This article focuses on the robustness of the BMU results with respect to the prior
distribution. A review on recent progress in computational strategy and likelihood approximations used in
Bayesian inference is given below.

Bayesian inference techniques obtain approximations to the posterior distributions for given sets of
data by using numerical approaches. Approximation techniques are mostly used due to the frequently
occurring intractability of the posterior distribution. Two common cases of these approximation methods
are Markov Chain Monte Carlo (MCMC) and Variational Inference (VI). The machine learning com-
munity has been using optimization methods based on VI to approximate posterior distributions (Blei
et al., 2017). Put simply, VI shapes the inference problem into an optimization one. In this optimization
problem, the chosen distribution is a member of a family of distributions that shows a smaller Kullback-
Leibler (KL) divergence to the posterior (Blei et al., 2017). Methods based onMCMC extract the samples
directly from the posterior. These MCMC approaches have as disadvantages their slow convergence and
the difficulties that occur when assessing if convergence has been reached (Cheng et al., 2023). The VI
methodologies recently developed (Kingma et al., 2016; Acerbi, 2018; Campbell and Li, 2019) if
compared to sampling approaches like MCMC benefit from higher numerical scalability, and due to
their more advanced optimization features, are better suited to be employed in a more comprehensive
range of situations. Recent advances of MCMC strategies in BMU for engineering applications can be
found in Lye et al. (2021), while VI methods to BMU to efficiently deal with multimodal posterior
distributions can be found in Igea and Cicirello (2023). An ideal combination of the VI and MCMC
techniques has been recently developed within the machine learning community: the particle-based VI
methods (ParVIs) (Chen et al., 2018; Alvarez-Melis et al., 2021; Fan et al., 2021; Cheng et al., 2023).
In these ParVIs approaches, a set of particles is used to represent the distribution to be approximated.
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These distributions are updated in an iterative manner throughminimization of their KL divergence to the
posterior. ParVI methods show greater particle efficiency than MCMC approaches due to particle
interactions, and compared to typical VIs, the ParVIs exhibit greater flexibility as a consequence of their
non-parametric character (Cheng et al., 2023). The Stein Variational Gradient Descent (SVGD) is the
most used VI technique based on particles (Liu and Wang, 2016). In SVGD, the distribution space is
chosen in such a manner that inside of it, the gradient flows are tractable (Liu, 2017; Chewi et al., 2020),
and the particles are updated by simulation of the KL divergence gradient flows.

Unreliable approximations of the system’s posterior distributions are mainly produced by not account-
ing for all plausible values of the observations that may be obtained from experiments or ignoring spatial
and temporal correlation in the measurements (Simoen et al., 2013; Koune et al., 2023). In engineering,
this is of particular interest, as the number of experiments that may be run is limited due to the high cost
incurred and time constraints. In these cases where the complexities of the likelihood are increased to
improve the models’ accuracy, and therefore, the reliability of the inferences, techniques such as: mixture
models, nonparametric or semiparametric models, and models with heavier tails have been used as
likelihood functions (Hooker and Vidyashankar, 2011; Ghosh and Basu, 2016; Chérief-Abdellatif and
Alquier, 2019;Matsubara et al., 2021). Nonetheless, the introduction of thosemethodologies to define the
likelihood functions frequently leads to a set of new issues: higher numerical cost, definition of
parameters, and harder interpretability. Although these techniques to define complex likelihood functions
may improve the model’s specification, some amount of inaccuracy is unavoidable. As a result, when a
limited number of observations is available, the choice of the prior distributionmay substantially affect the
posterior distribution obtained. In engineering, this may affect subsequent decisions such as thosemade to
assess the reliability of a structure, its remaining useful lifetime, and whether a structure requires
predictive maintenance. Therefore, a method able to quantify the robustness of the posterior prediction
when the assumptions of the prior distribution are changed is of great interest. This is the focus of the
present article that focuses on the development of a robust Bayesian inference strategy for application to
decision-making in engineering.

This work investigates the sensitivity of the posterior distribution to the prior distribution’s uncertainty.
More specifically, if the prior distributions that either maximize or minimize a certain metric, defined as
the worst-case prior and optimal prior distributions, respectively (or vice versa depending on the metric’s
definition), can be determined, the resulting posterior distribution of each case can be used as lower and
upper bounds on subsequent calculations used for decision-making. If the difference between the upper
bound and lower bound found using the method is low for the metric used to support a decision, then it
may be confirmed that the decision taken is robust to the prior distribution uncertainty. More specifically,
it might not be possible to define exactly the prior distribution for the latent variables. This type of
situation could arise in the presence of limited prior knowledge on the latent parameters and/or conflicting
opinions from experts. For those cases, we would like to explore how the approximation to the posterior
might be affected by distributions that are in the neighborhood of an assumed nominal prior distribution,
as this might have consequences on subsequent calculations. Therefore, it would be useful to develop a
method that could determine theworst or optimal distributions inside that neighborhood of distributions in
terms of a particular functional of interest. Differently from a method that uses an a priori defined
(typically by experts) informative or non-informative prior distribution for the BMU, the proposed
method seeks to obtain the optimal and worst-case prior distributions inside an ambiguity set for a given
functional. Therefore, it enables one to quantify how confident one is about the chosen nominal prior
distributions by exploring distributions in its neighborhood through the definition of an ambiguity set. In
this article, the problem of robustness to prior uncertainty in Bayesian inference is dealt with by
developing an interacting Wasserstein gradient flow (WGF) combined with an ambiguity set. An
interacting WGF is derived to find: (a) the best approximation to the posterior by minimizing the KL
divergence between the posterior and the approximation to the posterior, where the posterior is subject to
change (due to the prior distribution also changing); (b) the optimal or worst-case prior distributions—
defined as the distribution that either minimizes or maximizes the KL divergence between the posterior
and the approximation to the posterior, respectively. The proposed approach calculates the resulting
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optimal or worst-case prior distributions by constraining the space of distributions to be explored using an
ambiguity set. This ambiguity set is defined by a nominal distribution and all the distributions that lie
within a specified value of a statistical distance, where both are assumed to be known. The robustness of
the method is derived from this distance metric. A useful property of the Wasserstein distance is that
distributions that do not share the same support may be investigated inside the ambiguity set (Kuhn et al.,
2019). The support of a distribution refers to the values of the random variable that have a probability
density bigger than zero. A particle-based interacting WGFWasserstein-2 space algorithm is developed,
and the results from two numerical case studies are presented.

2. Robust Bayesian inference framework

The proposed robust Bayesian inference approach is based on the WGF formulation (Santambrogio,
2016). This method has been developed to deal with situations where the prior distribution is uncertain,
but it can be described by an ambiguity set (Bayraksan and Love, 2015). This is useful, as in some
Bayesian inference problems, notable difficulties arise to define the prior distributions of the latent
parameters to be inferred. For example, when the suggestions of different experts about which prior
distributions should be used significantly differ. For the cases where the amount of observed data is
limited, significant changes of posterior may be found for different choices of prior distribution, and
therefore, decisions to be taken for predictive maintenance may be affected. In these situations, an
ambiguity set defined by a nominal prior distribution, a statistical distance, and a radius may be assumed,
and the posteriors resulting from identifying the optimal and the worst-case prior distributions can be
investigated by limiting the distribution space to priors within a statistical distance ε of the nominal prior
distribution. In the next section, the concept of an ambiguity set is defined.

2.1. Ambiguity set

An ambiguity set is a set of distributions close to a distribution p θð Þ with respect to some statistical
distance r (Bayraksan and Love, 2015). An ambiguity set is defined by the nominal distribution p θð Þ, a
statistical distance r, and a radius ε. The ambiguity set is used to restrict the space of distributions that the
prior distribution could, in theory, take to solve the optimization of the chosen functional. Figure 1 shows
an ambiguity set that is centered at a nominal distribution p θð Þ and contains any distribution p∗ within a
statistical distance r less or equal to ε, this may be expressed as:

A ε,pð Þ= p∗ : r p∗ θð Þkp θð Þð Þ≤ εf g (1)

When the ambiguity set is defined, two conditionsmust bemet (Go and Isaac, 2022):
R
Ω
p∗ θð Þdθ = 1 and

r p∗ θð Þkp θð Þð Þ≤ ε.
Any statistical distance may be used to define the ambiguity set, but care should be taken in choosing

this distance, as the distributions that lie inside that ambiguity set are defined by that statistical distance’s
properties. For example, if a phi divergence is used as the statistical distance in the ambiguity set, all

Figure 1. Ambiguity set centered at p θð Þ with radius ε.
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distributions inside the ambiguity set must be absolutely continuous w.r.t. the nominal distribution (van
Parys et al., 2017). However, if the 2-Wasserstein distance is used to define the ambiguity set, then the
distributions that lie within the ambiguity set do not need to be absolutely continuous w.r.t. the nominal
distribution (Kuhn et al., 2019). The use of the 2-Wasserstein distance alsomeans that distributions that lie
within the ambiguity set do not need to share the same support (Kuhn et al., 2019).

Depending on the information that the practitioner has available, the nominal distributionmay be given
by either an empirical distribution or a parametric distribution (e.g., Gaussian distribution) as shown in
Figure 2. In Figure 2, bp is a possible nominal distribution, N is the number of data points, δ is the

Kronecker delta function, ξ is the parameter of the data, andN bμN ,bΣN

� �
is a Gaussian distribution with a

sample mean bμN and sample covariance bΣN , obtained from N data points.
The chosen statistical distance for the ambiguity set is the 2-Wasserstein distance. As previously

mentioned, this allows us to explore distributions that do not need to share the same support as the nominal
distribution.

2.2. Simultaneous optimization of approximated posterior and optimal or worst-case prior distribution

In this article, we explore the problem of the simultaneous optimization of the approximation to the
posterior and the optimal or worst-case prior distribution by using an interacting WGF scheme. The
proposed approach differs from current Bayesian inference WGF-based approaches, as it formulates a
new problem that requires interacting WGFs for the simultaneous optimization of the chosen functional.
This interacting WGF simultaneously obtains the best approximation to the posterior and the optimal or
worst-case prior distribution that either minimizes or maximizes a certain functional. The ambiguity set is
used to restrict the space of distributions that the prior distribution could, in theory, take to solve the
optimization of the chosen functional E ρ θð Þ,p θð Þð Þ. In this article, the min-max (or min-min) formulation
problem that needs to be solved is:

min
ρ θð Þ∈P Ωð Þ

min or max
p∗ θð Þ∈W p θð Þ,p∗ θð Þð Þ≤ ε

E ρ θð Þ,p θð Þð Þ

where

E ρ θð Þ,p θð Þð Þ≔
Z

ρ θð Þ log ρ θð Þ
p θð Þp yobsjθð Þ
� �

(2)

The distribution ρ θð Þ is the approximation to the posterior, the likelihood distribution is p yobsjθð Þ, the
density p θð Þ is the prior distribution, andW is the 2-Wasserstein distance chosen to define the ambiguity
set. The chosen functional E ρ θð Þ,p θð Þð Þ is the KL divergence between the unnormalized posterior

Figure 2. Nominal distributions: empirical vs. parametric distribution.
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p θ,yobsð Þ and the approximation to the posterior ρ θð Þ. This functional is chosen as it recently has been
used to derive a WGF for Bayesian inference (Gao and Liu, 2020; Wang et al., 2022; Chen et al., 2023).

By using the properties of the logarithm, the functional in equation (2) can be rewritten as:

E ρ θð Þ,p θð Þð Þ≔
Z

ρ θð Þ log ρ θð Þð Þdθ�
Z

ρ θð Þ log p θð Þð Þdθ�
Z

ρ θð Þ log p yjθð Þð Þdθ

The first term of the equation corresponds to the definition of entropyℋ w.r.t. the approximation to the
posterior, therefore, the functional can be further expressed as:

E ρ θð Þ,p θð Þð Þ≔�ℋ ρ θð Þð Þ�
Z

ρ θð Þ log p θð Þð Þdθ�
Z

ρ θð Þ log p yjθð Þð Þdθ (3)

The purpose of deriving an interacting WGF is to locate the pair of probability distributions ρ∗,p∗ð Þ
that balances the simultaneous minimization and maximization (or minimization) of the functional in
equation (3). In other words, we are interested in finding simultaneously the distribution ρ θð Þ that
minimizes the KL divergence between the unnormalized posterior p θ,yobsð Þ and the approximation to
the posterior ρ θð Þ, and the prior distribution(s) that minimizes/maximizes the KL divergence between the
unnormalized posterior p θ,yobsð Þ and the approximation to the posterior ρ θð Þ.

In numerous occasions, efforts have been made to prove the convergence of algorithms with
interacting WGFs to their global solution (Chizat and Bach, 2018; Mei et al., 2018), but these attempts
generally require entropy regularization. The entropy regularization is already included in the formulation
of the functional shown in equation (3), where the first term regularizes the partial differential equation of
theWGF that minimizes the KL divergence between the posterior and the approximation to the posterior.
The second term in equation (3) serves as a regularizer of the WGF that minimizes/maximizes the KL
divergence between the posterior and the approximation to the posterior to obtain the optimal or worst-
case prior distribution, respectively. In this article, it is assumed that the regularizers allow convergence to
the pair of probability distributions that are sought. Proving convergence to this pair of probability
distributions is still a problem currently under investigation and not attempted to be solved in the current
article; the reader is referred to the Mixed Nash Equilibria literature for more details (Lin et al., 2019; Lu,
2022; Ding et al., 2023).

2.3. Proposed algorithm and workflow

The proposed approach is schematically summarized in Figure 3, and it is composed of three main parts:
the inputs, the simultaneous functional optimization, and the outputs. The physics-based model
(analytical, numerical, or equivalent surrogate model) of the engineering system of interest, a nominal
prior distribution on the unknown latent parameters with a specified radius, a statistical distance to define
the ambiguity set, an assumed likelihood, and measurements taken from the engineering system are
needed as inputs. The main outputs, as shown in Figure 3, are the optimal or worst-case prior distribution
and, consequently, the approximation to the posterior. The optimal or worst-case prior distribution is
defined as the distribution that either minimizes or maximizes the KL divergence between the posterior
and the approximation to the posterior, respectively.

In Figure 4, the elements of the optimization block shown in Figure 3 of the proposed approach are
described. At first, we allow the approximation to the posterior to minimize the KL divergence between
the posterior and the approximation to the posterior without changing the prior distribution. This is done
by making the step size τ equal to zero on theWGF that results from either maximizing or minimizing the
functional in equation (3) with respect to the prior distribution for a prescribed number of iterations Na.
The optimization to find the best approximation to the posterior is performed as follows. For the first
iteration,N0 initial particles are chosen at random (usually drawn from the nominal prior distribution), and
the same set of particles is used for both the initial prior distribution p0 θð Þ and the initial approximation to
the posterior ρ0 θð Þ. At each iteration i<Na, the physics-based model PM θð Þ is run at the corresponding
particle positions ΘN

i of the approximation to the posterior. These numerical simulations at the particle
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positions ΘN
i are then used to calculate the gradient of the logarithm of the likelihood ∇θ logp yobsjθð Þ at

those respective locations. The gradient of the logarithm of the prior distribution ∇θ log p θð Þð Þ and the
gradient of the logarithm to the approximation to the posterior∇ logρt θð Þ, are approximated using a kernel
density estimation (KDE) approach, where the bandwidth is chosen using the median approach (Liu and
Wang, 2016). Using equation (17), a new set of N particles ΘN

iþ1 � ρiþ1 θð Þ is obtained. This process is
repeated until the iteration number reaches i=Na, this is done to ensure that the approximation to the

Figure 3. Main inputs, functional optimization, and main outputs of the proposed approach.

Figure 4. Pictorial description of simultaneous optimization of chosen functional.
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posterior has converged to the true posterior. For the cases studied, it was first assumed and later validated
that the parameter Na was enough to obtain convergence of the approximation to the posterior
(by checking the 2-Wasserstein distance between successive iterations).

Once the prescribed number of iterations has been reached, the step size τ is allowed to be non-zero and
positive, such that at every iteration i≥Na, a new set of prior particles θNprior,iþ1 is obtained using the second
equation (40). At this stage, both the approximation to the posterior and prior distributions are updated using
equation (40), such that the resulting new set of particles corresponds to independently and identically
distributed samples from the distributions ρiþ1 θð Þ and piþ1 θð Þ of the next iteration number iþ1.

Additionally, with the purpose of constraining the distribution to be optimized inside the ambiguity set,
the 2-Wasserstein distance from the nominal prior distribution to the prior at iteration i is calculated at each
iteration of the proposed method. If the distribution lies outside the ambiguity set, the distribution is
discarded, and the size of the step in the particle flow algorithm is reduced until the distribution lies within
the ambiguity set. In this way, the step size is controlled to restrict the prior distributionwithin the radius of
the Wasserstein ambiguity set. This is based on the assumption that the distribution that maximizes or
minimizes the KL divergence between the actual posterior and the approximation to the posterior lies at
the radius of the ambiguity set. Moreover, if a preset number Nb of distributions are discarded when
determiningwhether a distribution belongs in the ambiguity set, the distribution at iteration iþ1 is reset to
the distribution from an earlier iteration i�Nc to avoid the optimization getting trapped at one of the local
optima. Convergence of the prior distribution to the optimal or worst-case prior distribution is assumed if
the previouslymentioned resetting occursNreset times. In this case, the prior distribution is no longer reset,
and in a manner similar to the one defined at the beginning of the algorithm, an additional number of
iterations are allowed, so the approximation to the posterior can converge. At this stage, the algorithm
checks if the stopping criteria have been fulfilled, if it has not, a new iteration iþ1 is started. The stopping
criteria are set as: (i) the maximum number of allowed iterations Nmax is reached; (ii) a maximum number
of prior distributions Nreset are reset to the distribution from an earlier iteration, and an additional number
of iterations Na are allowed for the approximation to the posterior to converge.

A summary of the steps to be run for the proposed method is given below:

1. Calculate approximation to the posterior for the initial prior distribution (by setting τt = 0)
a. Obtain N0 initial particles from the prior distribution and approximation to the posterior.
b. Calculate next set of particles of the approximation to the posterior using equation (17).
c. Repeat from (1a) until iteration number reaches i=Na.

2. Simultaneous optimization of equation (2) to calculate the approximation of the posterior and
optimal or worst-case prior distribution (allow τt > 0):
a. Calculate the next set of particles of the approximation to the posterior and prior distributions

using equations (17) and (37) or (39).
b. Check if the prior distribution lies outside the defined ambiguity set:

i. if false, continue to (2c).
ii. if true:

1. reduce the time step τt until it is inside ambiguity set.
2. check if the number of discarded distributions is less than Nb.

a. if true, continue.
b. if false, reset current prior particles to prior particles from iteration i�Nc.

3. check if the number of times prior distributions have been reset is less than Nreset .
a. if true, continue.
b. if false, skip to step 3.

c. Repeat from (2a) until iterations reach Nmax and stop running the algorithm.
3. Calculate the approximation to the posterior for the final prior distribution (by setting τt equal to

zero, and allowing an additional number of iterations Na):
a. Calculate next set of particles of the approximation to the posterior distribution using equation (17).
b. Repeat from (3a) until iterations reach Nmax or the additional number of iterations is reached.
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The system illustrated in Figure 5 is used to show the main results that would be obtained by using the
proposed algorithm. A 1D mass-spring system with mass m = 1 [kg], stiffness k = 1 [N/m], and angular

frequency ω=
ffiffiffi
k
m

q
[rad/s] is studied. In this example, a Gaussian observational error is assumed when

obtaining a numerical observation of the angular frequency ωobs =
ffiffiffi
k
m

q
þ ζ, where ζ �N 0,σð Þ. It is also

assumed that the uncertain parameter is the spring stiffness k = θ [N/m]. The initial Gaussian prior
distribution (which is the same as the nominal prior distribution of the ambiguity set) is assumed to be
p θð Þ=N 1,0:1ð Þ. Two different runs to obtain the optimal prior distribution and the worst-case prior
distribution (and their corresponding approximations to the posterior) w.r.t. the chosen functional in
equation (2) are shown in Figure 6. An ambiguity set with a radius ε= 0:005 is chosen. For both the
optimal and worst-case prior distributions, the step sizes in the interacting particle flow WGF algorithm
cases are and τ = 3∗10�4. The values of,Nb,Nc,Nreset, andNmax used to run the algorithm are the same as
the two numerical examples shown in Section 6, and they can be found in the introduction of that section.
Also, in this example, the number of initial particles N0 = 100 is chosen. The obtained probability density
functions (pdf) plotted in Figure 6 are calculated using the kde function in MATLAB (2022) with the
standard options and using 100 samples from their respective distributions.

As expected, it can be seen in Figure 6 that the optimal prior distribution case assigns higher probability
density at regions of high posterior density, while the worst-case prior distribution moves prior density
away from regions of high posterior density. The optimal prior distribution has its support reduced
w.r.t. the initial prior distribution, while for the worst-case prior distribution, its support is increased. A
slight multimodality can be seen for the optimal prior distribution, with its mainmode at the same location

Figure 5. 1-Degree of freedom mass-spring system.

(a) (b)

Figure 6. Kernel density estimates of the distributions for a 1D mass-spring system given an initial/
nominal prior distribution (red—initial prior distribution; blue—final approximation to the posterior
distribution; and black—final prior distribution): (a) Optimal prior distribution case and (b) Worst-case

prior distribution case.
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as the only mode found for the approximation to the posterior distribution. Both the optimal and worst-
case prior distributions are non-Gaussian and non-symmetric, even though the initial prior distribution
was Gaussian and therefore symmetric. It should be noted that in this example, the radius and statistical
distance used to define the ambiguity set are assumed to be known. The radius should be chosen in such a
way that it captures uncertainty on the nominal prior distribution and allows to explore distributions that
lie inside the ambiguity set.

The following sections of this article build upon the knowledge needed to understand the main
concepts and algorithmic approximations required for the proposed approach.

3. Wasserstein gradient flow

In this article, to be able to consider the optimization of functionals with respect to probability measures,
the WGF (Santambrogio, 2015) concept is introduced. The WFG applies on a probability measure space
where a 2-Wasserstein metric has been defined.

Let us first consider the functional E ρð Þ, where E :P Ωð Þ!ℝ maps a probability measure to a real
value, P Ωð Þ is the space of probability measures on Ω⊂ℝD, and D is the number of dimensions.

To investigate the optimization of the functional E ρð Þ as a WGF, the Jordan Kinderleher Otto (JKO)
scheme (Ambrosio et al., 2005; Santambrogio, 2016) is used. The JKO scheme solves the variational
problem by defining the time discretization of the diffusion process; for this discretization, the approxi-
mate probability density, ρiþ1τ at the iþ1 timestep is calculated:

ρτiþ1 = argmin
ρ

E ρð ÞþW2
2 ρ,ρτi
� �
2τ

( )
(4)

Where W2 is the 2-Wasserstein distance, τ > 0 is the size of the timestep, and as the size of the timestep
approaches zero τ! 0, the expression above converges to the exact WGF. The 2-Wasserstein distance
(curve length between two distributions) is defined as (Santambrogio, 2015):

W2
2 μ,νð Þ= inf

γ∈Γ μ,νð Þ

Z
Ω ×Ω

θ�θ∗k k22γ dθ,dθ∗ð Þ (5)

where γ is the deterministic coupling that minimizes equation (5), and γ is inside the set of all possible
couplings or joint distributions Γ μ,νð Þ over θ and θ∗, where μ and ν are the marginal distributions of θ and
θ∗. In the context of transport optimization, the calculation of the 2-Wasserstein distance can be
interpreted as the transformation of elements in the domain μ to the domain ν at a minimum cost. Then,
from this perspective, in equation (5) of the 2-Wasserstein distance, θ�θ∗k k22 is the transportation cost of
θ in μ, to θ∗ in ν (Santambrogio, 2015). By defining the cost function c as θ�θ∗k k22, equation (5) can be
rewritten to:

W2
2 μ,νð Þ≔ inf

T

Z
Ω
c θ,T θð Þð Þdμ θð Þ (6)

For the cases where there is a unique solution for the problem of minimum transportation cost from θ in μ,
to θ∗ in ν, the unique solution can also be expressed as a mapping T :ℝD !ℝD, that pushes elements θ of
the domain μ to the domain ν (Chen et al., 2018). The solution is unique when the marginal distribution of
probability μ is absolutely continuous w.r.t. the Lebesgue measure (Chen et al., 2018).

If μtf gt∈ 0,1½ � is an absolutely continuous curve with finite second-order moments in the probabilistic
space P Ωð Þ, then the changes of μt in that curve will be defined through investigation of W2

2 μt,μtþτ

� �
.

Studying the changes of μt, is related to the original JKO problem (Ambrosio et al., 2005; Santambrogio,
2016) of theminimization of the functional shown in equation (4). These changes can be described using a
velocity field given by: vt θð Þ≔ lim

τ!0

T θtð Þ�θt
τ . This velocity field vt θð Þ defines in P Ωð Þ the gradient flow

(Ambrosio et al., 2005):
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∂tμtþ∇ � vtμtð Þ= 0 (7)

Solving equation (7) requires finding a velocity field v tð Þ such that its flow agrees with lim
τ!0

θτ tð Þð Þ. The
WGF can be shown to have a velocity field v tð Þ that minimizes the functional E ρð Þ, with the following
form v tð Þ= �∇∂E ρð Þ

∂ρ (Ambrosio et al., 2005), where ∂E ρð Þ
∂ρ is called the first variation of E ρð Þ at ρ. Based

on this, the WGF may be expressed as:

∂tρt = �∇ � vtρtð Þ=∇ � ρt∇
∂E ρtð Þ
∂ρt

� �
(8)

Therefore, to derive the WGF for the optimization of the functional E ρð Þ, the following requirements are
introduced:

1. The first variation of the functional E ρð Þ with respect to the density ∂E ρð Þ
∂ρ needs to be calculated.

2. A perturbation that follows the formal definition of a derivative in the probability space has to be
introduced.

3. The probability ρ is a probability density ρ∈P Ωð Þ that has to be perturbed to ρþ εχ, which is also
another probability density such that it also lies in the probability spaceP Ωð Þ, in this way,E ρþ εχð Þ
is well defined.

4. For all small ε> 0, both the perturbed probability density is defined in the probability space
ρþ εχ ∈P Ωð Þ and σ = ρþ χ ∈P Ωð Þ.

This can also be rewritten as ρþ εχ = ρþ ε σ�ρð Þ= ρ 1� εð Þþ εσ, where ρ 1� εð Þþ εσ ∈P Ωð Þ, as long as
ρ and σ are also probability densities.

Now that the requirements have been introduced, the first variation of E ρð Þ, ∂E ρð Þ
∂ρ can be found, and it is

given as (Ambrosio et al., 2005; Santambrogio, 2016):

∂

∂ε
E ρþ εχð Þ

				
ε= 0

=

Z
Ω

∂E ρð Þ
∂ρ

χ θð Þdθ (9)

for all χ = σ�ρ. If a constant C is added,
R
Ω

∂E ρð Þ
∂ρ þC

� �
χ θð Þdθ, it can be found that the first variation may

be defined uniquely only up to additive constants, as that second integral
R
Ω
χ θð Þdθ includes the difference

of 2 probability densities χ = σ�ρ.

4. Wasserstein gradient flow for Bayesian inference

Approximations to the posterior can be obtained using many different methods. Recently, methods based
onVI have been gaining popularity (Blei et al., 2017). Thesemethods are based on theminimization of the
KL divergence between the posterior p yobsjθð Þ and a probability density (usually parametric) defined
inside a family of distributionsQ, to quantify the degree of dissimilarity between two distributions over
the same domain:

ρ∗ = argmin
ρ∈Q

KL ρkp θjyobsð Þð Þ (10)

where the KL divergence is defined as:

KL ρjp θ jyobsð Þð Þ=
Z
Ω

ρ log
ρ

p θ jyobsð Þ
� �

dθ (11)

The approximation to the posterior is obtained by finding the member of the family and its respective
hyperparameters that best minimize the KL divergence (Blei et al., 2017).
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An alternative to VI would be to use the WGF to define an iterative procedure that uses the set of data
yobs to update a chain of ρn θð Þ with the purpose of approximating p θ jyobsð Þ given the minimization of a
suitable functional E ρð Þ. In WGF, the optimization of the functional can be solved by using equation (8).
To be able to solve this equation, the velocity field v tð Þ given the chosen functional is required. In a first
analysis, it may be thought that as the posterior p θ jyobsð Þ is not known in advance because of the presence
of the normalization constant p yobsð Þ), then the functional of equation (11) cannot be used to derive aWGF.
But as the first variation of the functional is only uniquely defined up to additive constants, a simpler
functional E ρð Þ where the posterior p θ jyobsð Þ is replaced for the unnormalized posterior p θ,yobsð Þ may be
used (Gao and Liu, 2020). Therefore, the velocity field that results from replacing the posterior with the
unnormalized posterior would be the same as the velocity field as in the functional in equation (11).

By obtaining a WGF of the functional E ρð Þ, the partial differential equation can be solved to flow the
approximation of the posterior ρt θð Þ to its equilibrium p θ jyobsð Þ for the observed data. The dynamic
system is defined by an initial density ρ0 θð Þ that is given by the prior distribution p θð Þ and ρ∞ θð Þ tends to
the posterior distribution (Gao and Liu, 2020). In a more rigorous manner, in a manifold M in the
parameter space, a pushforward density ρt θð Þ= T t#p θð Þ∈M is considered, where # is the push forward
operator, and the best curve (under certain restrictions) ρt, that drives ρ0 to ρ∞ has to be found (Gao and
Liu, 2020).

The WGF of the chosen functional E ρð Þ, may be performed by first calculating the first variation
(where the bounds are omitted for clarity):

∂

∂ε
E ρþ εχð Þ

				
ε= 0

=
∂

∂ε

Z
ρþ χεð Þ log ρþ χεð Þð Þdθ�

Z
ρþ χεð Þ log p θ,yobsð Þð Þdθ


 �				
ε= 0

=

=

Z
χ log ρþ χεð Þdθþ

Z
ρþ χεð Þ χ

ρþ χεð Þdθ�
Z

ρþ χεð Þ log p θ,yobsð Þð Þdθ

 �				

ε= 0

=

=

Z
χ log ρð Þdθþ

Z
χdθ�

Z
χ log p θ,yobsð Þð Þdθ =

Z
log ρð Þþ1� log p θ,yobsð Þð Þð Þχdθ (12)

The first variation of the functional E ρð Þ with respect to the density ρ is then given by:

∂E ρð Þ
∂ρ

= log ρð Þþ1� log p θ,yobsð Þð Þ (13)

and the velocity field is:

v tð Þ = �∇
∂E ρð Þ
∂ρ

=∇ log p θ,yobsð Þð Þ� log ρð Þ�1ð Þ=∇ log p θ,yobsð Þð Þ�∇ log ρð Þ (14)

If the first variation of the functional E ρð Þ is introduced into the continuity equation, the following
equation is obtained (Wang et al., 2022):

∂tρt =∇ � ρt ∇ log p θ,yobsð Þð Þ�∇ log ρtð Þð Þð Þ (15)

The KL WGF is an approximation in continuous time of the deterministic mean-field particle system
called mean-field Wasserstein dynamics (Wang et al., 2022):

dθt = ∇ log p θ,yobsð Þð Þ�∇ log ρtð Þ½ �dt (16)

The mean-field term is derived from the fact that the dynamics’ evolution varies with the current density
function ρt. The deterministic particle descent WGF may be obtained from the mean-field Wasserstein
dynamics (Wang et al., 2022):

θtþ1 = θtþαt ∇ log p θ,yobsð Þð Þ�∇ log ρtð Þð Þ (17)
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Equation (17) represents one of the two particle discretization WGF equations needed for the simultan-
eous optimization of the chosen functional in equation (3) shown in Section 2. In equation (17), an
approximation of ∇ log ρtð Þ is required, as no analytical expression is available. Many different methods
may be used to obtain an approximation. In this article, a KDE approach is chosen and explained in
Section 5.1. It should be noted that the WGF follows a deterministic rule for the updating, and therefore
the initial positions of the system determine the particle interactions and randomness.

5. Approximations in Wasserstein gradient flow for robust Bayesian inference

This section provides a more detailed explanation of some of the mathematical tools required for the
application of the algorithm described in Figure 4.

5.1. Approximation to ∇θ log ρð Þ from samples

When the velocity field v tð Þ is to be approximated, one of the difficulties that arises is the estimation of

∇ logρ θð Þ (Liu et al., 2018). Only a finite set of samples θ ið Þ
n oN

i = 1
of ρ θð Þ is known. However, a direct

approximation of ρ θð Þ using the empirical distribution bρ θð Þ≔ 1
N

PN
i = 1

δ θ�θ ið Þ� �
, where δ is the Dirac delta

function is not possible. The reason why a direct approximation cannot be performed is because the WGF
of the KL divergence at bρ θð Þ is not defined, a consequence of bρ θð Þ not being absolutely continuous. Using
the absolutely continuous approximated expression ~ρ θð Þ≔ bρ∗Kð Þ θð Þ= 1

N

PN
i = 1

K θ,θ ið Þ� �
(“∗” symbolizes

convolution), the velocity field v tð Þ can be well-defined by smoothing bρ θð Þ through a smooth kernel K on θ.
In this article, the approximation of ρ θð Þ is produced using theKDE~ρ θð Þ, whereK θ,θ ið Þ� �

:ℝD ×ℝD !ℝ
is a given positive and differentiable kernel function, and the Gaussian kernel is used:

K θ,θ∗ð Þ= 2πhð Þ�N
2 exp � θ�θ∗k k22

2h

 !
(18)

where N is the number of samples used to define the kernel function K θ,θ∗ð Þ, h is the bandwidth and it is
defined by h=med2= log Nð Þ, andmed represents the median of distances of the samples (Liu andWang,
2016).

The reasoning behind this choice of kernel function is based on the fact that
P
j
k θi,θj
� �

≈ n

exp �1
hmed2

� �
= 1, therefore, for each point θi, its own gradient contribution and the effect from

the other points balance each other (Liu and Wang, 2016).
When the KDE is used as an approximation of ρ θð Þ, the following expression may be used to calculate

an approximation of ∇ logρ θð Þ (Wang et al., 2022):

∇ log~ρ θð Þ= ∇~ρ θð Þ
~ρ θð Þ =

PN
i = 1∇θK θ,θ ið Þ� �PN
i = 1K θ,θ ið Þ� � (19)

The kernel chosen does not affect the solution of the gradient flow if the size of the ensemble tends to
infinity (Lu et al., 2019). Nonetheless, the distribution of particles for a finite number of them may not be
unique. An alternative manner to explain this is that for different given kernels, that is, with different
particle flows, different results (final positions in the state space of the particles) are obtained. However,
for those kernels, as their number of particles increases, the representation of the posterior pdf becomes
more accurate.
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5.2. Approximation to ∇θ log p θ,yobsð Þð Þ
In this article, two different ways to estimate the gradient of log-likelihood are considered. The first one
uses local estimations of that Jacobian matrix of the model’s ensemble, whereas the second one uses
Gaussian processes. The first approach is only able to obtain estimates of the gradient of log-likelihood at
particle positions where the model has been run previously. However, the Gaussian process approach is
able to obtain estimates of the gradient of log-likelihood at particle positions that have not been evaluated
by leveraging on the prior distribution assumptions and previous model runs. The choice of approach is
usually based on the computational cost of dealing with the physics-based model involved.

In general, ∇θ log p θð Þð Þ can be calculated analytically, as most of the log p θð Þð Þ chosen in Bayesian
inference are differentiable. However, if an analytical expression is not available, ∇θ log p θð Þð Þ may be
approximated using equation (19) as long as samples from the prior a distribution are available.

5.2.1. Gradient of log-likelihood using the ensemble method
Assuming a multivariate Gaussian likelihood, p yobsjθð Þ can be written as:

p yobsjθð Þ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þddet Σð Þ

q exp �1
2
yobs�ymodelð ÞTΣ�1 yobs� ymodelð Þ

� �
(20)

In the above expression, d refers to the dimensionality of the observation space (the number of
observations), ymodel and yobs, respectively, are the n× 1 vectors of simulated and observed states, and
the inverse of the n× n error covariance matrix Σ is denoted by Σ�1.

By taking the gradient of the logarithm of themultivariate Gaussian likelihood, the below expression is
obtained:

∇θ logp yobsjθð Þ= 1
2
∇θymodel

TΣ�1 yobs�ymodelð Þ (21)

In equation (21),∇θymodel is a matrix of dimensions n×D. The number of model parameters is denoted
byD. The elements of the∇θymodel matrix are the partial derivatives of each simulated state (associated to
rows 1, …, n) w.r.t. each parameter (associated to columns 1, …, D). The states are simulated by
introducing input parameters θ into a computational model:

ymodel =PM x,θð Þ (22)

The expression above assumes that the observed states are directly simulated by the model. If the
Jacobian is defined as J θð Þ=∇θPM x,θð ÞT , the matrix of dimensions (D× n), equation (21) can be
rewritten as:

∇θ logp yobsjθð Þ= 1
2
J θð ÞTΣ�1 yobs� ymodelð Þ (23)

As a result, using equation (23), the log-likelihood gradient may be evaluated using local estimations of
that Jacobian matrix. Computational difficulties arise during the evaluation of the Jacobian matrix J θð Þ of
dimensions n×Dð Þ, as the closed form of this matrix is frequently unavailable.

To solve the mentioned difficulty, an approach that consists of obtaining nonintrusive estimations of
the Jacobian J θð Þ may be taken (Ramgraber et al., 2021). The vector θ, that has the parameters as
elements, is perturbed in a small increment in each of its D dimensions, and the Jacobian matrix J θð Þ is
approximated using the obtained two- or three-point finite difference derivatives. This computational
differentiation may produce very accurate results, but it becomes unpractical if the model has a high
number of parameters D. If the ensemble size or number of particles is denoted N, and a set of local
Jacobians is to be required, the model has to be run Dþ1ð ÞN times if two-points finite difference
derivatives are used, or evenmore times 2Dþ1ð ÞN, if three-points finite difference derivatives are chosen
(Ramgraber et al., 2021). Those numbers are well above the number of evaluations of the model that
practitioners may consider affordable.
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A technique that requires onlyNmodel evaluationsPM x,θð Þ, and it is able to produce the estimation of
the Jacobian matrix J θð Þ, directly from the ensemble, may be found in Ramgraber et al. (2021). This
methodology makes use of the relative differences between particles:

~J θrð Þ= P
N

XN
r = 1

PM θrð Þ�PM θsð Þ
PM θrð Þ�PM θsð Þk k �

PM θrð Þ�PM θsð Þk k
θr�θsk k �θr

T �θsT

θr�θsk k (24)

In equation (24), P is the rank expected for the Jacobian matrix J θð Þ, this expected rank is the smallest
value between N�1 and D. Inside the summation symbol, three fractions are found in correlative order:
the vector from particle θr to the particle θs (normalized), the scalar gradient between the observation and
the parameter space, and the normalized vector in parameter space. Equation (24) may be simplified as
follows (Ramgraber et al., 2021):

~J θrð Þ= P
N

XN
r = 1

PM θrð Þ�PM θsð Þð Þ θrT �θsT
� �

θr�θsk k2 (25)

The factor PN external to the sum is made up of a correction factor P to consider that the maximum possible
contribution of each vector to the rank of the Jacobian is one, and a factor 1

N to account for an arithmetical
average. For N!∞ and an isotropic arrangement of particles, the Jacobian in equation (25) should
converge against the correct one (Ramgraber et al., 2021).

5.2.2. Gradient of log-likelihood using Gaussian process
For cases where the physics-basedmodel is expensive to evaluate, an approximation of the gradient of the
log-likelihood may be produced using a Gaussian process. This methodology allows the estimation of the
gradient at particle positions where the physics-based model has not been evaluated.

Assuming that the likelihood function is given by a multivariate Gaussian with zero error mean and
covariance Σ, the log-likelihood function is:

logp yobsjθð Þ= �d
2
log 2πð Þ�1

2
log det Σð Þð Þ�1

2
yobs� ymodelð ÞTΣ�1 yobs� ymodelð Þ (26)

Focus is placed on the last term of equation (26), as the gradient of the log-likelihood function w.r.t. the
parameter θ only depends on that term. Consequently, the partially observed potential is modeled as
(Dunbar et al., 2022):

VL θð Þ= 1
2
yobs� ymodelð ÞTΣ�1 yobs� ymodelð Þ (27)

Where VL θð Þ is a Gaussian process f �GP 0,kð Þ and κ denotes a positive definite kernel on ℝD that has
been chosen according to the explanations below.

In this article, κ is a Gaussian radial basis function kernel that has the form:

κ θ,θ∗;λ, lð Þ= λexp � θ�θ∗k k2
2l2

 !
In this expression, l> 0 denotes the kernel bandwidth and λ > 0 is the amplitude of the kernel. A

function f is sought so that for some σ > 0, and for some noisy evaluations of the potential at the ensemble
of points Θt = Θ1

t ,…,ΘN
t

� �
∈ℝN ×D, then (Dunbar et al., 2022):

VL Θi
t

� �
= f Θi

t

� �þσξ i, ξ i = ξ1,…,ξN
� ��N 0, Ið Þ (28)

The mean function of the associated Gaussian process posterior for f is (Rasmussen, 2003):

μ θ∗ð Þ= κ θ∗,Θð ÞK Θ,Θð Þ�1VL Θð Þ (29)

and the expression for the variance function is (Rasmussen, 2003):
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σ2 θ∗ð Þ= κ θ∗,θ∗ð Þ�κ θ∗,Θð ÞK Θ,Θð Þ�1κ Θ,θ∗ð Þ (30)

Where K Θ,Θð Þ= diag σ2ð Þþκ Θ,Θð Þ. Equations (31) and (32) express the well-defined gradient of the
posterior mean (Rasmussen, 2003):

E ∂VL θ∗ð Þ
∂θ∗d


 �
=
∂E VL θ∗ð Þ½ �

∂θ∗d
=
∂κ θ∗,Θð Þ

∂θ∗d
K Θ,Θð Þ�1VL Θð Þ (31)

∇θVL Θð Þ= ∂κ θ∗,Θð Þ
∂θ∗d

				
θ∗ =Θ

K Θ,Θð Þ�1VL Θð Þ (32)

Both the energy term VL θð Þ and the hyperparameters σ,λ, lð Þ are updated at each iteration and are
calculated considering the new incoming data (Rasmussen, 2003).

5.3. Derivations of Wasserstein gradient flow equations for optimal or worst-case prior distribution

In Section 4, theWGF for the casewhen the approximation to the posterior ismade to vary tominimize the
KL divergence between the posterior and the approximation to the posterior has been derived. Now, the
WGF that either maximizes or minimizes the KL divergence between the posterior and the approximation
to the posterior with respect to the prior distribution needs to be calculated. Currently, the interactingWGF
has the following form:

∂tρt =∇ � ρt ∇ log p θ,yobsð Þð Þ�∇ log ρtð Þð Þð Þ
∂tpt θð Þ= η �∇ � pt θð Þ∇ ∂E

∂p θð Þ ρ,p θð Þð Þ
� �� �� �8<: (33)

The first step is to calculate the first variation of the functional E ρ θð Þ,p θð Þð Þ with respect to the prior
distribution p θð Þ. When the optimal prior distribution is of interest, this results in the minimization of
equation (3), to obtain an expression of the first variation, we first need to calculate the following:

∂

∂ε
E p θð Þþ εχð Þ

				
ε= 0

=
∂

∂ε

Z
ρ logρdθ�

Z
ρ log p θð Þþ εχð Þdθ�

Z
ρ log p θjyobsð Þð Þdθ


 �				
ε= 0

=

= �
Z

ρ
χ

p θð Þþ χεð Þdθ

 �				

ε= 0

= �
Z

ρ
p θð Þχdθ (34)

Now an expression of the first variation of the functional to be optimized can be obtained, and it is given
by:

∂E
∂p θð Þ p θð Þð Þ= � ρ

p θð Þ (35)

and the velocity field is:

v tð Þ= �∇
∂E
∂ρ

ρð Þ=∇ ρ
p θð Þ
� �

=
p θð Þ
p θð Þ∇

ρ
p θð Þ
� �

=
ρ

p θð Þ ∇ logρ�∇ logp θð Þð Þ (36)

The resulting particle-based WGF, using an Euler discretization, is given as:

θNprior,tþ1 = θ
N
prior,tþ τt

ρt θprior
� �

pt θprior
� � ∇ logpt θprior

� ��∇ logρt θprior
� �� � !

(37)
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If the maximization of the KL divergence is sought instead, this requires the calculation of the worst-case
prior distribution, and the resulting velocity field is given as the negative of the previously calculated
velocity field:

v tð Þ= ρ
p θð Þ ∇ logp θð Þ�∇ logρð Þ (38)

Therefore, the resulting particle-based WGF using an Euler discretization is given as:

θNprior,tþ1 = θ
N
prior,t� τt

ρt θprior
� �

pt θprior
� � ∇ logpt θprior

� ��∇ logρt θprior
� �� � !

(39)

Now that the particle-based WGF for the minimization or maximization of the functional with respect to
the prior distribution has been derived, an interacting particle-based WGF can be defined as follows:

θNtþ1 = θNt þαt ∇ log pt θ,yobsð Þð Þ�∇ log ρtð Þð Þ

θNprior,tþ1 = θ
N
prior,t ± τt

ρt θprior
� �

pt θprior
� � ∇ logpt θprior

� ��∇ logρt θprior
� �� � !8>><>>: (40)

The resulting simultaneous equations (40) are composed of: (a) the top equation, which is the particle
discretization of the WGF that results from the minimization of the KL divergence between the posterior
and the approximation to the posterior w.r.t. the approximation to the posterior; (b) the bottom equation
that results from either minimizing or maximizing the KL divergence between the posterior and the
approximation to the posterior w.r.t. the prior distribution. These simultaneous equations may be used to
obtain the prior distribution that either maximizes or minimizes the functional and their resulting
approximations to the posterior. For the case where the step size τt of the bottom equation in the
simultaneous equation (40) is zero, the original particle-based WGF for Bayesian inference would be
recovered, as this would mean the prior distribution is static (it does not change with time).

5.4. Density ratio estimation from samples

Equations (37) and (39) require the calculation of the pdf of the ρt θprior
� �

and the pdf of pt θprior
� �

. This
may be done, for example, using KDE. In this article, rather than doing the direct estimation of the
densities, the density ratio is calculated directly:

g θprior
� �

=
ρt θprior
� �

pt θprior
� � (41)

Numerous methods have been developed for the calculation of the density ratio in equation (41); the
method chosen in this article is the one called Relative unconstrained Least-Squares Importance Fitting
(RuLSIF), and the interested reader can find it in (Yamada et al., 2011).

6. Data and numerical models

In this section, the proposed method is validated using two numerical examples. These two case studies
have been selected to showcase the applicability of the proposed approach to deal with problems of
different complexities, and an engineering case study is included. In the first example, the 2D double-
banana posterior problem (Detommaso et al., 2018) is used to show the resulting particles obtained from
the optimal and worst-case prior distributions and also the resulting particles from the approximation to
the posterior. In the second example, a double-beam system is used to show the differences between the
ensemble method and the Gaussian process to numerically estimate the gradient of the logarithm of the
likelihood at the particle positions.
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In both case studies, the number of initial samples is N0 = 100 for the approximation to the posterior
and also the prior distribution, and those initial samples are picked from identically and independently
distributed draws from the nominal prior distribution. Each iteration of the algorithm uses the same
number of particles (N = 100), and it corresponds to evaluations of the physics-based model at the
positions of those particles. The choice of N0 =N = 100 samples was validated both in terms of
convenience and computational cost constraints. It was chosen in terms of convenience, as using a lower
number of particles was found easier to explain some of the key results, and it also allowed to reduce the
computational cost that would have been incurred by having a higher number of samples, as in each
iteration of the algorithm the physics-based model would have had to be run at the particle locations. For
more complex, higher-dimensionality problems, or where higher accuracy is required, a larger number of
samples would typically be necessary. As described in Section 2, in the beginning of the method τ is set to
zero until the number of iterations reaches Na = 50.

The Gaussian kernel in equation (18), is used to produce the estimations of∇ logρ and∇ logp θð Þ, and
the bandwidth is chosen using the median methodology.

If the distribution that is being optimized lies outside the ambiguity set, the size of the step in the
particle flow algorithm is reduced to half until the distribution lies within the ambiguity set. Also, the
distribution at iteration iþ1may be reset to a distribution from an earlier iteration i�Nc, whereNc = 10, if
a preset number of distributions (Nb = 5) are discarded when determining whether a distribution belongs
to the ambiguity set. The maximum number of prior distributions that are allowed to be reset is Nreset = 2,
once this number is reached, an additional number of iterations Na are allowed. The total maximum
allowed number of iterations Nmax = 400.

6.1. Double-banana posterior example

This first example is based on the paper (Detommaso et al., 2018) that results in a 2D double-banana-
shaped posterior distribution. The equation that defines the model used is given by the logarithmic
Rosenbrock function used in Detommaso et al. (2018):

PM θð Þ= log 1�θ1ð Þ2þ100 θ2�θ21
� �2� �

(42)

The initial prior distribution chosen is a standard multivariate Gaussian, N 0, Ið Þ. The numerical
observation used to update the prior knowledge is obtained by yobs =PM θtrueð Þþ ζ , where θtrue is a
random variable drawn from the assumed prior distribution, the standard deviation of the observational
error is σ = 0.3, and ζ �N 0,σ2Ið Þ.

For the ambiguity set, the nominal prior distribution is chosen to be the same as the initial prior
distribution. The statistical distance used is the 2-Wasserstein distance, and a radius ε= 0:05 has been
chosen.

Using the algorithm inputs described above, the interacting WGFs are used to find the resulting
distributions for two different cases: (a) the optimal prior distribution and its resulting approximation to
the posterior; (b) the worst-case prior distribution and its resulting approximation to the posterior. In this
example, the ensemble method described in Section 5.2.1 is used to calculate an approximation to the
gradient of the log-likelihood at the particle positions to be evaluated.

The step sizes in the interacting particle flowWGF algorithm for the optimal prior distribution case are
α= 3∗10�3 and τ = 1:5∗10�3. For the worst-case prior distribution case, the step sizes in the interacting
particle flow WGF algorithm are α= 3∗10�3 and τ = 3∗10�4.

In this numerical case, two different subcases are run; Figures 7 to Figure 13 correspond to the
situations when the optimal prior distribution and its approximation to the posterior are calculated.
Figures 14 to 16 correspond to the situations when the worst-case prior distribution and its approximation
to the posterior distribution are calculated.

In Figures 7 and 8, respectively, is shown, for each iteration, the positions of the particles from the
optimal prior and from the approximation to the posterior distribution. In both plots of Figure 7, it may be
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seen that after iteration i=Na, the inner particles of the prior distribution initially tend inwards, i.e., to the
direction of smaller absolute values of parameters θ1 and θ2, this is due to the fact that the prior distribution
tries to move the closest particles to the positions of the particles of the approximation to the posterior. It can
also be seen that the prior particles after a number of approximately 150 iterations do not change much of
position; this occurs because of the step size decrease performed with the purpose of constraining the prior
distribution inside the defined ambiguity set. Figure 8 illustrates how the particle positions of the approxi-
mation to the posterior start moving into the regions of higher probability density. After iteration i=Na, the
particles’ positions of the approximation to the posterior concentrate even more into regions of high
probability density due to the prior distribution having a greater effect on the positions of the particles.

Figures 9 and 10 show, respectively, for each iteration, the values of the gradient of the logarithm of the
prior distribution and the gradient of the logarithm of the likelihood at the particlesΘN

i positions. Figure 9
shows how the values of the gradient of the logarithm of the prior distribution at the particle positions of
the approximation to the posterior start to decrease as the prior particles start concentrating around the
particles of the approximation to the posterior. As the iterations progress, the values of the gradient of the

(a) (b)

Figure 7. Optimal prior particle positions at different iterations: (a) particle positions at θ1; (b) particle
positions at θ2.

(a) (b)

Figure 8.Approximation to posterior particle positions at different iterations: (a) particle positions at θ1;
(b) particle positions at θ2.
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logarithm of the prior distribution at the approximation of the posterior particle positions start decreasing;
this is because the particles of the prior become closer to the particles of the approximation to the posterior.
This also means that the particles of the approximation to the posterior are becoming closer to regions of
high prior density as the iterations progress. Figure 10 shows that during the initial iterations, high
absolute values of the gradient of the logarithm of the likelihood may be found. This happens because
during the initial stages of the algorithm, there are particles that are still distant from the regions of high
likelihood density. After around 20 to 30 iterations, the values concentrate in a more defined region, even
though some occasional extreme values can still be found.

In Figure 11, the initial particle positions (where the prior distribution and approximation to the
posterior particles are the same, shown in red), the final particle positions of the prior (black), and the
approximation to the posterior (blue) can be seen. As expected, the final positions of the particles from the
approximation to the posterior are shown to resemble the double-banana posterior in Detommaso et al.
(2018). It can also be observed that most of the final positions of the particles from the prior distribution
(optimal prior distribution) are near the particles of the approximation to the posterior, and a smaller
number of particles lie close to the initial prior particles. This means that the optimal prior assigns a high

(a) (b)

Figure 9. Gradient of log prior at different iterations and at particle positions ΘN
i w.r.t.: (a) latent

parameter θ1; (b) latent parameter θ2 .

(a) (b)

Figure 10. Gradient of log-likelihood at several iterations and at particle positions ΘN
i w.r.t.: (a) latent

parameter θ1; (b) latent parameter θ2 .

e19-20 Felipe Igea and Alice Cicirello

https://doi.org/10.1017/dce.2025.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.8


probability to the region close to the approximation to the posterior and a lower probability to the outer
particles far from the approximation to the posterior density.

Figure 12 shows a quiver plot, also known as a vector plot, that is produced by the generic function
quiver inMATLAB (2022). The scaling of the quiver function’s default setting is chosen to prevent arrow

Figure 11. Initial prior, final approximation to the posterior and final prior particle positions.

Figure 12. Gradient/Quiver Plot of log prior and log-likelihood.
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length overlap. In this plot, the gradients of the logarithm of the prior distribution and the logarithm of the
likelihood at the particle’s positions from the approximation to the posterior in the final iteration are
plotted. The gradients of the logarithm of the prior distribution at the final prior particle positions are also
shown.

Figure 13 illustrates the 2-Wasserstein distances at each iteration. Three plots can be found. The
following distances at each iteration are plotted: the first is from the initial prior distribution to the
approximation of the posterior distribution; the second is from the approximation to the posterior
distribution and the prior distribution; and the third is from the initial prior to the prior distributions.

In Figures 14 and 15, respectively, the positions of the particles from the worst-case prior distribution
and from the approximation to the posterior are shown for each iteration. In Figure 14 (a and b), it may be
seen that the inner particles of the worst-case prior distribution tend to move outwards to the direction of
higher absolute values of parameters θ1 and θ2 as more iterations occur. Figure 14 also illustrates that after
approximately 200 iterations, the prior particles do not change much in their positions. This is due to the
decreasing size of the time step that is introduced with the purpose of limiting the prior distribution inside
the ambiguity set. In a similar manner towhat occurs for the optimal prior distribution case, in Figure 15, it
can be observed that the particle positions of the approximation to the posterior also move to areas of
higher probability density as iterations advance.

(a)  (b)

(c)

Figure 13. 2-Wasserstein distance at different iterations i between: (a) initial prior distribution and
approximation to posterior distribution; (b) approximation to posterior and prior distributions; and

(c) initial prior and prior distributions.
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The final particle positions of the worst-case prior distribution (black), initial particle positions (where
the prior distribution and approximation to the posterior particles are the same, shown in red), and its
approximation to the posterior (blue) can be seen in Figure 16. As anticipated, the layout of the final
positions of the particles from the approximation to the posterior takes a shape similar to the one shown by
the double-banana posterior in (Detommaso et al., 2018). The worst-case prior distribution assigns a
higher density to areas of a low posterior density and vice versa. In a manner consistent with the previous
statement, Figure 16 also shows that most of the final positions of the particles from the prior distribution
(worst-case prior distribution) are positioned away from the final positions of the approximation to the
posterior distribution.

A direct comparison of the optimal prior and worst-case prior distributions in the form of scatter plots
and histograms of the latent variables is found in Figure 17. Figure 17 has been produced using the
plotmatrix function fromMATLAB (2022). It can be clearly seen that the optimal andworst-case prior
distributions differ from the initial prior distribution and are no longer a Gaussian distribution. A very
similar support can be seen of the optimal prior distribution w.r.t. the worst-case prior distribution.

(a) (b)

Figure 15. Approximation to posterior particle positions at different iterations: (a) particle positions at
θ1; (b) particle positions at θ2.

(a) (b)

Figure 14. Worst-case prior particle positions at different iterations: (a) particle positions at θ1;
(b) particle positions at θ2.
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Figure 17. Scatterplots and histograms show the prior distribution, black—optimal prior distribution
case, and red—worst-case prior distribution.

Figure 16. Initial prior, final approximation to the posterior and final worst-case prior particle positions.
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Figure 18. Scatterplots and histograms show the approximation to the posterior distribution, black—
optimal prior distribution case, and red—worst-case prior distribution.

Figure 19. Theoretical model of a coupled beam structure.

Table 1. Coupled beam dimensions, distances from edges to connections, and mechanical
characteristics

Thickness Width Length L1 L2 Young’s modulus Density

[mm] [GPa] [Kg/m3]

Beam A 6 25 600 20 20 210 7800
Beam B 3

Springs k1 k3 k2

[MN/m] [Nm/rad]

100 10 500
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Scatter plots and histograms can also be found in Figure 18. For the cases where the optimal prior and
worst-case prior distributions have been estimated, the scatter plots and the histograms of the latent
variables of the resulting approximation to the posterior are plotted. Very small differences are found
when comparing the resulting approximations to the posterior distributions. This is a consequence of the
small sensitivity of the posterior distribution to changes of the considered uncertain prior distribution.

6.2. Double-beam structure example

The model used in this second example is based on the coupled beam structure illustrated in Igea (2023).
The structure is shown in Figure 19, two connecting fixtures composed of three springs each: one

translational, one shear, and one rotational that link two beams. This example shows practical interest, as it
can be used to depict structural conditions where the attaching ensembles between elements show

Table 2. Coupled beam structure natural frequencies [Hz]

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

16.0 50.2 92.8 134.6 245.3 260.7 428.0 478.6

(a)                                                                                       (b)

(c)                  (d)

Figure 20. Optimal prior particle positions at different iterations for different latent parameters: (a) θ1;
(b) θ2; (c) θ3; and (d) θ4.
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uncertainty. The causes of such uncertainty can be derived from boundary conditions and manufacturing
variability. More specifically, the four uncertain parameters chosen are the spring stiffnesses and the
Young’s modulus of both beams: the rotational springs k2 = 500θ1 [Nm/rad], the shear springs k3 = 107θ2
[N/m], the translational springs k1 = 1010θ3 [N/m], and the Young’s modulus of both beams
E1 =E2 = 210∗109θ3 [Pa]. For those four uncertain parameters, the initial prior distribution is a multi-
variate Gaussian prior distribution chosen as N I,0:03Ið Þ.

Dimensions and mechanical characteristics of the double-beam model may be found in Table 1.
Using the data on Table 1, the first eight natural frequencies of the model were assessed and introduced

in Table 2.
The numerical frequencies obtained in Table 2 were produced using a Finite Element (FE) code. The

code assumes a 2D Euler-Bernoulli beam model. Uniform discretization with two hundred FEs for each
beam was used. Each FE has two nodes, and each node has two degrees of freedom.

The likelihood function is assumed to be a multivariate Gaussian distribution; the mean is given by the
deterministic value of the eight natural frequencies in Table 2, and the covariance is assumed to be a
diagonal covariance matrix that has standard deviations of 2% of their deterministic values (σi = 0:02f i).

In this example, for the definition of the ambiguity set, the statistical distance used is also the
2-Wassertein distance, where the radius is ε= 0:04, and a nominal prior distribution equal to the initial
prior distribution is selected.

#

(a) (b)

(c) (d)

Figure 21. Approximation to posterior particle positions at different iterations for different latent
parameters: (a) θ1; (b) θ2; (c) θ3; and (d) θ4.
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The values described above are used as inputs of the algorithm, and the interacting WGFs are used to
find the resulting distributions for two different cases: (a) the optimal prior distribution and its resulting
approximation to the posterior; (b) the worst-case prior distribution and its resulting approximation to the
posterior. In this example, the Gaussian process method described in Section 5.2.2 is used to calculate an
approximation to the gradient of the log-likelihood at the particle positions evaluated.

The values of step size used in the interacting particle flow WGF algorithm for the optimal prior
distribution case are α= 5∗10�5 and τ = 2:5∗10�3. The values used for the worst-case prior distribution
case are α= 5∗10�5 and τ = 5∗10�5.

Figures 20 and 21, respectively, illustrate the positions of the particles from the optimal prior and from
the approximation to the posterior for each iteration. In Figure 20, after iteration i=Na, it can be seen that
for θ1, θ2, and θ4, the prior particle positions start concentrating at values close to one. It can also be seen
that θ4 has the most rapid change out of all the latent variables; this is probably due to being the latent
variable, which most affects the model output. However, the opposite effect can be observed for θ3, this is
most likely due to the low sensitivity of the model output to changes of the latent variable θ3. Figure 21
shows how the particles of the approximation to the posterior also concentrate to values closer to one as
the number of iterations progresses for all the latent variables except for θ3.

Figure 22 shows scatter plots and a histogram produced by the plotmatrix function of MATLAB
(2022), of the initial particles from the prior distribution approximation to the posterior (red), the final
particles from the optimal prior distribution (black), and the final particles from the approximation to the
posterior distribution (blue). It can be seen that the particle positions from the optimal prior distribution
and the approximation to the posterior distribution are quite similar for all latent variables except for θ3.
From the histogram, it can be also seen that for the latent variable θ3, the optimal prior distribution has a
bigger support than the initial prior distribution.

Figure 22. Scatterplots and histograms show: red—initial prior distribution; blue—final approximation
to the posterior distribution; and black—optimal prior distribution.

e19-28 Felipe Igea and Alice Cicirello

https://doi.org/10.1017/dce.2025.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.8


The positions of the particles from the worst-case prior distribution and from the approximation to the
posterior for each iteration are shown in Figures 23 and 24, respectively. Figure 23 shows that after
iteration i=Na for θ1, θ2, and θ4, the prior particle positions part from values close to one. This is the
opposite of what occurs for the optimal prior distribution case. In amanner similar to what happens for the
optimal case, the latent variable θ4 experiments the fastest change of all the uncertain parameters. This is
most likely due to the higher sensitivity of themodel output to the changes of this latent variable. Figure 24
illustrates how, as the number of iterations progresses, the particles of the approximation to the posterior
depart from values close to one. However, in this case, the change in the positions of the particles of the
approximation to the posterior is not as significant as in the case for the optimal prior distribution.

Histograms and scatter plots produced by the plotmatrix function of MATLAB (2022), can be
found in Figure 25. The graphs illustrate the positions of the particles. In blue, the final particles from
approximation to the posterior. In black, the final particles from the optimal prior distribution. In red, the
initial particles from the prior distribution approximation to the posterior distribution. From the histo-
grams, it can be deduced that in the worst-case prior distribution, the supports of the graphs of all latent
variables are bigger compared to the ones of the initial prior distribution. The scatterplots show that worst-
case prior particles have moved in such a manner that most of their particles lie in regions of lower
posterior density.

Figure 26 directly compares the optimal prior andworst-case prior distributions using theplotmatrix
function fromMATLAB (2022) by plotting scatter plots and the histograms of the latent variables. In general,

(a)        (b)

(c)                (d)

Figure 23. Worst-case prior particle positions at different iterations for different latent parameters:
(a) θ1; (b) θ2; (c) θ3; and (d) θ4.
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for most of the latent variables, it can be seen that the support of the worst-case prior distribution is bigger
than the optimal prior distribution.

Figure 27 also has scatter plots and the histograms of the latent variables of the resulting approximation
to the posterior distribution when the optimal prior distribution and worst-case prior distribution have
been calculated. When comparing the resulting approximations to the posterior distributions, it can be
seen that for the case with the optimal prior distribution, the resulting approximation to the posterior
distribution is more concentrated compared to the approximation to the posterior distribution that results
from the worst-case prior distribution. In this example, it is seen that the posterior distribution is slightly
sensitive to the considered uncertain prior distribution.

7. Conclusion

BMU is widely used in engineering applications for evaluating the latent parameters’ posterior distribu-
tion of a physics-based model, given informative measurement data. These updated models are used to
investigate the structure’s dynamic behavior under various operational and environmental loading and are
critical, for example, in maintenance planning, reliability analysis, and remaining useful life estimations.
Therefore, the results obtained with BMU are critical in decision-making in engineering. However, they
can be sensitive to: the prior distribution assumptions, especially in the presence of limited data. In this
article, a robust Bayesian inference approach, based onWGFs has been proposed. This approach yields an

(a) (b)

(c) (d)

Figure 24. Approximation to posterior particle positions at different iterations for different latent
parameters: (a) θ1; (b) θ2; (c) θ3; and (d) θ4.
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estimation of the posterior distribution of the latent parameters by finding the optimal andworst-case prior
distributions. This estimation is produced by an algorithm that combines an interactingWGF formulation
with an ambiguity set. The ambiguity set is defined by a nominal distribution, a statistical distance, and a
radius. In this article, the 2-Wasserstein distance is used as the statistical distance. Due to the properties of
the 2-Wasserstein distance, the distributions that lie inside the prescribed radius do not need to have the
same support. The ambiguity set may be used to explore the sensitivity of the posterior distribution
prediction of the system to uncertainty in the prior distribution. This application may be of particular
interest for cases where the opinions of different experts are conflicting. The approximations to the
posterior distribution found with the proposed approach can be used as lower and upper bounds on
subsequent metric calculations used for decision-making. These bounds on the resulting metric can be
readily used in decision-making to assess if the decisions taken are robust to prior uncertainty or
otherwise.

The interacting WGF formulation is derived from first principles, obtaining particle discretization
equations for the calculation of the optimal and worst-case prior distributions. The derivation of the
interacting WGFs allows the development of the proposed method, which may reduce the computational
cost incurred if all the possible prior distributions that lie inside the ambiguity set were to be tested directly.
A KDE is used to obtain estimates of the gradient of the logarithm of the prior distribution and of the
gradient of the logarithm of the approximations to the posterior distribution with respect to the particle
positions.

Figure 25. Scatterplots and histograms show: red—initial prior distribution; blue—final approximation
to the posterior distribution; and black—worst-case prior distribution.
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The article illustrates how the gradient of the logarithm of the likelihood may be estimated either using
an ensemble method or a Gaussian process regression method. Two numerical examples have been used
to show both the optimal and worst-case prior distributions and their resulting approximation to the
posterior distribution. In these examples, it is shown that for the optimal prior distribution case, the
particles’ positions tend to be near the particles of the approximation to the posterior distribution, this
means the optimal prior distribution assigns a higher prior density close to regions of high posterior
density. For the worst-case prior distribution, the opposite behavior may be seen; the particles tend to
move to positions far from the particles of the approximation to the posterior density. As a consequence,
the worst-case prior distribution has a bigger support than the initial prior distribution. The proposed
approach is general, and it may be relevant for application areas outside decision-making in engineering.

In the numerical studies, the choice of 100 samples was validated both in terms of convenience and
computational cost constraints. It was chosen in terms of convenience, as using a lower number of
particles, it was found easier to explain some of the key results and figures shown throughout the article.
This also allowed to reduce the computational cost that would have been incurred by having a higher
number of samples, as in each iteration of the algorithm, the physics-based model would have had to be
run at the particle locations. Currently, both the effects of the KDE andGP approximations are assumed to
be insignificant on the approximations of the gradient of the logarithm of the prior and likelihood.
However, it should also be noted that the dimensionality of the posterior has a big effect on these
approximations because kernel functions are affected by it. For more complex, higher-dimensionality
problems, or where higher accuracy is required, a larger number of samples would typically be necessary.
Future work may focus on the convergence properties of the proposed approach, increasing the sample
size and the dynamic selection of step sizes, the latter would allow the proposed approach to becomemore
computationally efficient. The method would also benefit from the development of a sample-efficient
strategy, in which the reuse of samples from previous iterations may be integrated into the proposed
methodology, reducing the number of simulations further. Another potential direction of interest is the

Figure 26. Scatterplots and histograms show the prior distribution; black—optimal prior distribution
case; and red—worst-case prior distribution.
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development of a principled approach for the selection of the nominal prior distribution and its radius, as at
this stage it is assumed to be known. These topics are currently under investigation.

Data availability statement. The data that support the findings of this study will be made available upon request.
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