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Abstract

We give a construction that takes a simple linear algebraic group G over a field and produces a commutative,
unital, and simple non-associative algebra A over that field. Two attractions of this construction are that (1) when
G has type �8, the algebra A is obtained by adjoining a unit to the 3875-dimensional representation; and (2) it is
effective, in that the product operation on A can be implemented on a computer. A description of the algebra in the
�8 case has been requested for some time, and interest has been increased by the recent proof that �8 is the full
automorphism group of that algebra. The algebras obtained by our construction have an unusual Peirce spectrum.

1. Introduction

We present a construction that takes an absolutely simple linear algebraic group � over a field : and
produces a commutative, unital non-associative algebra that we denote by �(g). As a vector space, �(g)
is a subspace of the symmetric square S2 g of the Lie algebra g of�. We give an explicit formula (4.1) for
the product on �(g), which makes our construction effective in the sense that one can perform computer
calculations (Section 11), although we do not rely on computer calculations for our results. There is a
natural symmetric bilinear form on �(g), which we show is associative (Section 6) and nondegenerate
(Section 8) and positive-definite in case : = R and � is compact. We leverage this and the structure of
�(g) as a representation of � to show that it is a simple :-algebra (Corollary 8.6).

This work may be viewed in the context of the general problem of describing exceptional groups as
automorphism groups, which dates back to Killing’s 1889 paper [25]. As an example, the Lie group
�2 can be viewed as the automorphism group of the octonions (E. Cartan [9]), the stabilizer of a cross
product onR7 (F. Engel, [16], [20]), or the symmetry group for a ball of radius 1 rolling on a fixed ball of
radius 3 without slipping or twisting (E. Cartan, [3]). For �8, it is known from [19] that it is the identity
component of the stabilizer of an octic form on the Lie algebra e8 and that it is the automorphism group
of the �8-invariant algebra on its 3875-dimensional irreducible representation. (See also [18, Section 3]
or [19, Section 16] for broader discussions of other realizations.) The latter description of �8 is known to
be true even though this algebra is not well-understood; this paper gives explicit and effective formulas
for calculating in the algebra. We note here that Aut(�(e8)) = �8; see Proposition 9.1.

The algebras �(g) constructed here are ‘non-generic’ in the sense of [28], meaning that �(g) ⊗ :

contains infinitely many idempotents, for : an algebraic closure of : . Moreover, the Peirce spectrum
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of �(g) ⊗ : , that is, the union of the set of eigenvalues for left multiplication by D as D varies over
idempotents of �(g) ⊗ : , is infinite; see Example 4.9. In case : = R and apart from types �1 and �2,
this collection of eigenvalues includes the unit interval, and consequently one might call these algebras
‘continuous’ as we have done in the title of the article. We remark that this kind of situation — where
a popular property holds for generic cases but fails for a structure naturally associated with a simple
algebraic group � — is familiar from the study of homogeneous �-invariant polynomials. In that
setting, a generic homogeneous polynomial is non-singular, yet �-invariant polynomials of degree ≥ 3
are singular [35], such as the determinant on =-by-= matrices.

Ignoring some very small cases, the algebras �(g) are not power-associative. This is not a defect
of our construction. We show that even if one alters the one choice we made in the construction, the
resulting algebra would still not be power-associative; see Proposition 5.3(2) and Remark 9.2.

In the penultimate section, Section 10, we give an alternative realization of �(g) inside End(+),
where + is the natural module for � of type �2, �2, �4, �6, or �7. We use this alternative realization to
explicitly compute �(sl3) (Example 10.9). We conclude with an appendix (Appendix A) giving various
results about adding a unit to a non-associative algebra that we refer to in the body of the paper.

We work over a rather general field : and do not assume that � is split, although our results are new
already in the case where : is the complex numbers C. The additional generality comes at hardly any
cost due to the tools we use. Readers who are not interested in the full generality are invited to assume
throughout that : = C and identify the symbols �0(_) = + (_) = !(_).

An unusual feature of our work is that the case where � is of type �8 is less complicated than other
� in several ways, at least when : = C. For �8, one has extra formulas to use, such as Okubo’s Identity
Tr(c(-)4) = Uc (-, -)4 (Lemma 10.1, which holds for all� of exceptional type) and a similar identity
for Tr(c(-)6) (which holds for type �8). Another way that �8 is less complicated is that the Molien
series 1 + C2 + C3 + 3C4 + 3C5 + 10C6 + 16C7 + · · · for �8 acting on its 3875-dimensional representation +
has coefficients no greater than the Molien series for the corresponding representations of other groups
of type � , � or �. Yet another way is that the second symmetric power S2+ is a sum of 6 irreducible
terms, which is minimal among the types � , � and �.

Our original approach to the material in this paper was to focus on the case of �8 and leverage these
tools. In this way, we discovered the product formula on �(g), and only in hindsight did we see that
it was a general construction that worked for all simple �. Due to this inverted approach, preparing
this document took more than three years. Just before we intended to release this work on arXiv, the
paper [11] appeared, which studies algebras that are almost the same, albeit restricted to the cases
where the root system of � is simply laced and � is split and char : = 0; see Remark 4.6 below. Both
that article and this one view the algebras as subspaces of S2 g and provide an associative symmetric
bilinear form (we say �(g) is metrized, whereas they say Frobenius), but from there our approaches and
results diverge.

2. Background material

Let : be a field of characteristic different from 2, and suppose that g is a Lie algebra over : whose
Killing form,  , is nondegenerate. Then the :-algebra of linear transformations of g, denoted End(g),
has a ‘transpose’ operator ⊤ given by

 () (-), . ) =  (-,)⊤ (. )) for ) ∈ End(g) and -,. ∈ g.

Identification of representations

Another way to view the nondegeneracy of  is that it provides a g-equivariant isomorphism of
g-representations

g
∼
−→ g∗ via - ↦→  (-, ). (2.1)
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This identification extends to an isomorphism of g-modules

g ⊗ g
∼
−→ g ⊗ g∗ = End(g). (2.2)

As char : ≠ 2, the natural surjection of g⊗g onto the second symmetric power S2 g is split by the map

S2 g ↩→ g ⊗ g given by -. ↦→
1

2
(- ⊗ . + . ⊗ -). (2.3)

Definition 2.4. Define % : S2 g ↩→ End(g) as the composition of (2.2) with (2.3). It is g-equivariant,
and its image is the space

H(g) := {) ∈ End(g) | )⊤ = )}

of symmetric operators. We have:

%(-. ) =
1

2
[- ⊗  (., ) + . ⊗  (-, )] for -,. ∈ g.

Example 2.5. For {-8} a basis of g and {.8} the dual basis with respect to  , set 4⊗ :=
∑
-8 ⊗.8 ∈ g⊗g

and 4S :=
∑
-8.8 , the image of 4⊗ in S2 g. Neither 4⊗ nor 4S depends on the choice of the -8s. Moreover,

the identification (2.2) sends 4⊗ ↦→ Idg, so %(4S) = Idg.

The spaces End(g) and H(g) are Jordan algebras under the Jordan product • defined by

) •* :=
1

2
()* +*)) for ),* ∈ End(g). (2.6)

Example 2.7. For -1, -2, -3, -4 ∈ g, we have:

%(-1-2) • %(-3-4) =
1

4
[ (-1, -3)%(-2-4) +  (-1, -4)%(-2-3)

+ (-2, -3)%(-1-4) +  (-2, -4)%(-1-3)] .

Therefore, for any subspace l of g, %(S2 l) is a Jordan subalgebra of H(g). If  (-, -) ≠ 0, then the
element %(-2)/ (-, -) is an idempotent in the Jordan algebra.

Suppose that furthermore l has an orthonormal basis -1, . . . , -A . Then for 8 ≠ 9 , %(-2
8 ) • %(-

2
9 ) = 0

and %(-2
8 ) • %(-8- 9 ) =

1
2%(-8- 9 ). In particular,

∑
%(-2

8 ) is the identity element in %(S2 l).

Global hypotheses

We now add hypotheses that will be assumed until the start of Appendix A. We will assume that g is

the Lie algebra of an absolutely simple linear algebraic group � over : . That is, � is a smooth affine
group scheme of finite type over : , and � × : is simple: � × : is connected, semisimple (= has trivial
radical) and ≠ 1, and its associated root system is irreducible.

We write ℎ for the Coxeter number and ℎ∨ for the dual Coxeter number of (the root system of) �;
some examples are given in Table 1 below. It is true that rank� < ℎ∨ ≤ ℎ, and the root system of � is
simply laced if and only if ℎ∨ = ℎ.

We additionally assume until the start of the appendix that char : is zero or at least ℎ+2. Consequently,
the integers 2, rank�, ℎ∨, ℎ∨ + 1 are not zero in : , so the same is true for dim� = (rank�) (ℎ + 1).
Examining the type of � in turn, we find: (1) the characteristic is ‘very good’ for �; (2) the determinant
of the Cartan matrix is not zero in :; and (3) the ratio a� of the square length of a long root to that of a
short root (equivalently, the valence of the Dynkin diagram of �) is not zero in : .

The discriminant of the Killing form  on g can be expressed as a product of integers we have
already observed are not zero in : [43, p. E-14, I.4.8(a)], and therefore  is nondegenerate. Finally, g is
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a simple Lie algebra that is an irreducible representation of � [21]; it follows that, if � ′ is isogenous to
�, then g′ � g.

Representations

Suppose � is split, and put h for the Lie algebra of a split maximal torus ) . For a dominant weight
_ ∈ )∗, we write !(_) for the irreducible representation of � with highest weight _. The dimension and
character of !(_) may depend on the characteristic of : and not just on root system data. However, there
are representations �0(_) and + (_) of �, both with highest weight _, which equal !(_) when char : is
zero or ‘big enough’ (where what counts as big enough depends on� and _), and whose character is the
same as the character of the irreducible representation over Cwith highest weight _. The representations
+ (_) are called Weyl modules; a basic example of such is the tautological representation of SO=. See
[23] for background on these representations. We use the fact that these representations are defined over
Z; see [23, II.8.3]. See also Section 7 for a discussion of the case where � is not assumed to be split.

Casimir operator

Put 〈 | 〉 for the canonical bilinear form on the weight lattice of �, as defined in [6, Section VI.1.12]
or [15, p. 115]; it is the unique nonzero and Weyl-group-invariant inner product satisfying 〈_ |_′〉 =∑

U〈_ |U〉〈_
′ |U〉, where U varies over the roots. Then 〈U |U〉 = 1/ℎ∨ for every long root U; see [45, p. 150].

More generally, for each root U, define aU := 1 if U is long and aU := a� if U is short. By definition,
then, 〈U |U〉 = (aUℎ

∨)−1 for every root U, and this is not zero in : .
For the next two lemmas, we set ' := Z(char :) , the subring of Q whose nonzero elements are the

fractions with denominator not divisible by char : . Note that ' is a local ring, '/(char :) ⊆ : , and
' = Q if char : = 0.

Lemma 2.8. For weights _, _′, the element 〈_ |_′〉 belongs to '.

Proof. It suffices to find a 2 ∈ '× so that 〈_ |2_′〉 is in '. If _′ is a root, we take 2 := 2/〈_′ |_′〉 = 2a_′ℎ∨.
Because _′ is a root, 〈_ |2_′〉 is an integer and so in '.

If _′ is in the root lattice, then the conclusion follows from the previous case by bilinearity.
For general _′, we take 2 := ℎ. Since ℎ_′ is in the root lattice, 〈_ |ℎ_′〉 is in '. �

We put X for the sum of the positive roots.

Lemma 2.9. Suppose that the representation c : � → GL(+) is equivalent to �0 (_) or + (_) over the

algebraic closure of : for some dominant weight _. Then:

1. For {-8} a basis of g and {.8} the dual basis with respect to  , we have
∑
c(-8) c(.8) =

〈_ |_ + X〉 Id+ , where X is the sum of the positive roots.

2. For all G, H ∈ g we have

Tr(c(G) c(H)) =
〈_ |_ + X〉 dim+

dim�
 (G, H).

In the statement, we have abused notation by writing c also for the differential g → gl(+) of c.

Sketch of proof. In case : is algebraically closed of characteristic zero, this result is about an irreducible
representation and the claims are part of the usual theory of the quadratic Casimir operator

∑
-8.8 ∈ * (g)

as in, for example, [7, Section VIII.6.4, Cor.] or [15, Th. 2.5].
In case char : = 0, it suffices to verify the claims over an extension field, for which we take the

algebraic closure of : .
Now suppose that char : is a prime ? and � is split. There is a split group �' and representation

c', both defined over ', whose base change to : is equivalent to �, c. As 〈_ |_ + X〉 and (dim�)−1 are
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in ', the claims amount to certain polynomials over ' being zero. Those polynomials are zero over the
field of fractions Q of ', so they are also zero over the quotient field F? and therefore over : .

Finally, if char : is prime, again it suffices to verify the claims over the algebraic closure of : , where
� is split. �

3. The representation A(g)

Define a map g ⊗ g → End(g) via - ⊗. ↦→ ℎ∨ (ad -) (ad. ) + - (., ). It is bilinear and so provides a
�-equivariant linear map g ⊗ g → End(g). Composing this with (2.3), we find a �-equivariant linear
map ( : S2 (g) → End(g) such that

((-. ) := ℎ∨ ad(-) • ad(. ) + %(-. ), (3.1)

where % is as in Definition 2.4 and • denotes the Jordan product (2.6).
Since (ad -)⊤ = − ad - for all - ∈ g, we find that ((-. ) belongs to H(g). Since ( is linear in -

and in . and symmetric in the two terms, it extends linearly to all of S2(g). We set:

�(g) := im ( ⊆ H(g). (3.2)

Example 3.3. For - ∈ g, we have

Tr(((-2)) = ℎ∨ (-, -) + Tr(- (-, )) = (ℎ∨ + 1) (-, -).

Linearizing this shows that Tr(((-. )) = (ℎ∨ + 1) (-,. ) for -,. ∈ g.

Example 3.4. For ((4S), we have %(4S) = Idg as in Example 2.5. And by Lemma 2.9(1),∑
(ad -8) (ad.8) = Idg. Therefore, ((4S) = (ℎ∨ + 1) Idg.

The split case

Suppose that � is split: that is, it contains a split maximal torus ) defined over : . (This is automatic if
: is algebraically closed.) Fix a Chevalley basis of g with respect to h := Lie()) in the sense of [44],
[43] or [14, Section XX.2.11]. That is, for each root U, define elements �U ∈ h and -U ∈ g so that -U

spans the U weight space (for the action of ) on g), g = h ⊕
⊕

U :-U,

[�V , -U] = V
∨(U)-U and [-U, -−U] = �U .

(This last equation differs by a sign from the one used in [7, Section VIII.2.2].) We note that for any
root U,

 (-U, -−U) =  (�U, �U)/2 = 2aUℎ
∨ (3.5)

by the formulas in [43, pp. E-14, E-15].

Lemma 3.6. Maintain the notation of the preceding paragraph. Suppose that U and V are roots of �

such that U + V is not a root.

1. If 〈U |V〉 = 0, then ((-U-V) ≠ 0 in �(g).

2. Suppose 〈U |V〉 > 0. Then ((-U-V) ≠ 0 in �(g) if and only if there are two root lengths and U and

V are both short.

Proof. Since -U, -V commute in g, so do ad -U, ad -V in End(g). Therefore,

((-U-V)-−U = (aU − U∨(V))ℎ∨-V +
1

2
 (-V , -−U)-U . (3.7)
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If 〈U |V〉 = 0, then the only nonzero term on the right side of (3.7) is aUℎ∨-V ≠ 0, verifying (1).
We now prove:

(2′) Suppose 〈U |V〉 > 0. Then ((-U-V)-−U ≠ 0 in g if and only if U and V are both not long.

If U = V, then U∨(V) = 2 and (3.7) equals 2(aU − 1)ℎ∨-V . This is nonzero if and only if U is not long,
verifying (2′) in this case.

If U ≠ V, then (3.7) equals (aU −U∨(V))ℎ∨-V . If U is not long, then either (a) V is long, aU = U∨(V),
and (3.7) is zero or (b) V is also not long, U∨(V) = 1, and (3.7) is not zero. If U is long, then
aU = U∨(V) = 1; see, for example, [6, Section VI.1.3]. This completes the verification of (2′).

To complete the proof of the lemma, we assume that 〈U |V〉 > 0 and at least one of U, V is long, and
verify that ((-U-V) = 0. Because ((-U-V)� = 0 for all � ∈ h, it remains to evaluate

((-U-V)-−W = ℎ∨ [-V , [-U, -−W]] for W ≠ U, V. (3.8)

By symmetry, we may assume that U is long, so in the Weyl orbit of the highest root Ũ, and we may
even assume that U = Ũ. If any of Ũ − W, V − W, or Ũ + V − W is not a root, then (3.8) is zero, as claimed.

For sake of contradiction, suppose that all three are roots. This implies V ≠ Ũ, for otherwise
Ũ + V − W = 2Ũ − W is a root, whence W = Ũ, a contradiction. Since W and Ũ − W are roots, W is positive.

Note that if d is any root orthogonal to Ũ, then since at least one of Ũ ± d is not a root, neither can
be. Consequently, 〈Ũ |W〉 ≠ 0. It follows that 〈Ũ |W〉 > 0, since Ũ + W is not a root and Ũ ≠ −W. Now Ũ

is long and 〈Ũ |V〉, 〈Ũ |W〉 are positive, so Ũ∨(V) = Ũ∨(W) = 1, whence 〈Ũ |V − W〉 = 0, contradicting the
hypothesis that Ũ + V − W is a root. �

Corollary 3.9. 2Ũ is not a weight of �(g).

Proof. The 2Ũ weight space in S2 g is spanned by -2
Ũ
, yet ((-2

Ũ
) = 0 by Lemma 3.6(2). �

4. The commutative algebra A(g)

Recall the vector space �(g) defined in (3.2). Define, for �, �, �, � ∈ g:

((��) ⋄ ((��) =
ℎ∨

2
(((�, (ad� • ad�)�) + (((ad� • ad�)�, �))

+
ℎ∨

2
(((�, (ad � • ad �)�) + (((ad � • ad �)�, �))

+
ℎ∨

2
((([�,�], [�, �]) + (([�, �], [�,�])) (4.1)

+
1

4
( (�,�)((�, �) +  (�, �)((�,�))

+
1

4
( (�,�)((�, �) +  (�, �)((�,�))

in �(g), where on the right side we have added extra commas in the arguments for the ( terms (for
example, writing ((-,. ) instead of ((-. )) for clarity.

Lemma 4.2. The formula (4.1) extends to a symmetric bilinear map ⋄: �(g) × �(g) → �(g).

Proof. Since both sides of (4.1) are linear in each of �, �,�, � and symmetric under swapping �, � and
�, �, it remains only to check that ⋄ is well defined: that is, that the expression given for ((��) ⋄ ((E)
is zero for all E ∈ ker (. It is sufficient to check this over an algebraic closure of : , where we are reduced
to the following computation.
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Let ., -1, . . . , -A ∈ g be such that ((
∑
-2
8 ) = 0. The expression for ((.2) ⋄

∑
((-2

8 ) is

ℎ∨
∑

((((ad. )2-8)-8) + ℎ
∨
∑

((((ad -8)
2. ). )

+ ℎ∨
∑

(([., -8] [., -8]) +
∑

 (., -8)((-8. ). (4.3)

As
∑
((-2

8 ) = 0,
∑
%(-2

8 ) = −ℎ∨
∑
(ad -8)2, so the second and fourth terms in (4.3) cancel.

Furthermore, as ( is g-equivariant, we have

[ad /, ((��)] = (([/, �]�) + ((�[/, �]) for �, �, / ∈ g. (4.4)

Adding the first and third terms in (4.3), dividing by ℎ∨ and applying this identity twice gives

[
ad.,

∑
(([., -8]-8)

]
=

1

2
[ad., [ad.,

∑
((-2

8 )]] = 0.

In summary, (4.3) is zero. Therefore, if we write 0, 0′ ∈ �(g) as 0 = ((F) and 0′ = ((F′) for
F, F′ ∈ S2 g, the value of 0 ⋄ 0′ given by (4.1) does not depend on the choice of F, F′. �

With Lemma 4.2 in hand, we view �(g) as a commutative :-algebra with the product ⋄ defined
by (4.1).

Lemma 4.5. The identity transformation 4 of g is the multiplicative identity in �(g): that is, 4 ⋄ 0 = 0

for all 0 ∈ �(g).

Proof. First note that 4 is in �(g) by Example 3.4. We may enlarge our base field and so assume that
: is algebraically closed and in particular that g has an orthonormal basis {-8}. Combining (4.1) and
(4.4), we obtain

((-2
8 ) ⋄ ((.

2) =
ℎ∨

2
[ad., [ad., ((-2

8 )]] + ℎ
∨(((ad -8)

2.,. ) +  (-8 , . )((-8. ).

If we sum both sides over 8, we have (ℎ∨+1)4⋄((.2) on the left by Example 2.5 and 0+ℎ∨((.2) +((.2)

on the right. Consequently ((.2) ⋄ 4 = ((.2), as required. �

Remark 4.6. The paper [11] constructs an algebra � similar to �(g) that is also a subspace of H(g), but
with a different product, which we denote by ∗ for the moment. It defines 0 ∗ 0′ := proj�(0 • 0

′), which
differs from our product defined in (4.1). The analog of (4.1) for their multiplication ∗ has additional
terms. For the case where � has type �8, both algebras can be viewed as different ways of adding
a unit to the irreducible 3875-dimensional representation. Since that representation supports a unique
�8-invariant product, the difference between our multiplications is necessarily minor. That is, if our
�(g) is written as U(+, 5 ) in the notation of Appendix A, then theirs is U(+, 2 5 ) for some invertible
2 ≠ 1 in : .

A Jordan subalgebra

Suppose that l is an abelian subalgebra of g. (For example, one could take l = h.) Define a :-linear map

8 : %(S2 l) → �(g) via 8(%(GH)) := ((GH). (4.7)

Writing out (4.1), we find that

8(%(GH) • %(IF)) = ((GH) ⋄ ((IF).
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That is, 8 is an algebra homomorphism, and the image of %(S2 l) is a Jordan subalgebra of �(g). (Note
that the identity element of %(S2 l) need not map to the identity element of �(g); see the proof of
Proposition 5.3.)

Lemma 4.8. If l is an abelian subalgebra of g and the Killing form  restricts to be nondegenerate on

l, then the homomorphism (4.7) is injective.

Note that when  |l is nondegenerate, the isomorphism g ⊗ g
∼
−→ g ⊗ g∗ restricts to an isomorphism

ℓ ⊗ ℓ
∼
−→ ℓ ⊗ ℓ∗ which identifies %(S2 l) with the Jordan algebra H(l) of symmetric elements in End(l).

Proof. The definition of ( shows that 8(%(S2 l)), as a subspace of End(g), acts on l via 8(%(-2)) (. ) =

%(-2) (. ) for all -,. ∈ l. The nondegeneracy of  then identifies 8(%(S2 l)) with the symmetric
elements in End(l). �

Example 4.9. Suppose � is split and not of type �1 or �2. Fix a Chevalley basis for � as in Section
3. For � ∈ h such that  (�, �) is not zero, the element D� := 8(%(�2))/ (�, �) is an idempotent in
�(g). This provides an idempotent in �(g) for every element of P(h) in the complement of the quadric
hypersurface defined by  (-, -) = 0. Clearly, if : is infinite, there are infinitely many idempotents in
�(g).

Now, there is a positive root W that is orthogonal to the highest root Ũ. For the element ((-Ũ-W),
which is nonzero by Lemma 3.6(1), we have

D� ⋄ ((-Ũ-W) = _� ((-Ũ-W) for _� =
ℎ∨((Ũ + W) (�))2

2 (�, �)
.

The map � ↦→ _� is a rational function h d : that is not constant and therefore is dominant. In
particular, the collection of eigenvalues of the maps G ↦→ D ⋄ G as D varies over the idempotents of �(g)
is not contained in {0, 1

2 , 1}, and therefore �(g) is not power-associative [39, Ch. V].

5. A(g) as an algebra obtained by adding a unit

The usual trace form Tr : End(g) → : is linear and �-invariant. We use it to define a counit, in the
sense of the appendix, as Y := 1

dim�
Tr so that Y(4) = 1, for 4 = Idg the identity element in �(g)

(Lemma 4.5). Thus we obtain a bilinear form g on �(g) via (A.5), g(0, 0′) := Y(0 ⋄ 0′). The form g is
evidently �-invariant (because Tr and ⋄ are), symmetric (because ⋄ is commutative), and bilinear.

Example 5.1. For -,. ∈ g, Example 3.3 gives

g(4, ((-. )) =
ℎ∨ + 1

dim�
 (-,. ) for -,. ∈ g. (5.2)

We also note for future reference:

g(((-2), ((.2)) =
(
ℎ∨+1
dim�

) (
−ℎ∨ ([-,. ], [-,. ]) +  (-,. )2

)

=

(
ℎ∨+1
dim�

)
 (((-2).,. ).

Using the counit Y defined above, the algebra �(g) can be viewed as an algebra U(+, 5 ) as in the
appendix, where + is the vector space ker Y endowed with the commutative product · and 5 as defined
in (A.4). With this notation, we prove:

Proposition 5.3. If � is not of type �1 nor �2, then:

1. The multiplication · on + is not zero.

2. Neither + nor U(+, 2 5 ) is power-associative for any 2 ∈ : .
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For the excluded cases of �1 and �2; see Examples 7.1 and 10.9 respectively.

Proof. For each claim, we may enlarge : and so assume that the Lie algebra h of some maximal torus
in � has an orthonormal basis -1, . . . , -ℓ . We set � := 8(%(S2 h)).

We begin with (1). By (5.2), for 8 ≠ 9 , ((-8- 9 ) is in + . On the other hand, if ℓ ≥ 3,

((-1-2) ⋄ ((-1-3) = 8(%(-1-2) • %(-1-3)) =
1
4((-2-3) ≠ 0

and we are done. If ℓ = 2, then 4′ := ((-2
1 + -2

2 ) is the identity element in � by Example 2.7, yet

B := g(4, 4′) = 2
ℎ∨ + 1

dim�
=
ℎ∨ + 1

ℎ + 1

is not 1 because � is not of type �2. Then 4′− B4 is in+ and (4′− B4) · ((-1-2) = (1− B)((-1-2) ≠ 0,
verifying (1).

For (2), put A := (ℎ∨ + 1)/(dim�), a rational number whose denominator is not divisible by char : .
Since ℎ∨ ≤ ℎ, 0 < A ≤ 1/2. Define a map (+ : S2 g → + by (+(?) = ((?) − Y(((?)) 4. Applying
Example 5.1, we find:

g((+ (-2), (+(-2)) = A (1 − A) (-, -)2 for - ∈ g. (5.4)

Therefore g (equivalently, 5 ) is not zero on + , and in particular 5 is not alternating.
Set 1 := 8(%(-2

1 ) + C%(-
2
2 )), where C ∈ : is neither 0 nor 1, so (1, 0), 1, and 12 = 8(%(-2

1 ) + C
2%(-2

2 ))

are linearly independent (Lemma 4.8). Let � be the subalgebra of U(+, 5 ) generated by (1, 0) and 1.
Then � = U(+ ∩ �, 5 |+∩�), and � is power-associative because 1 generates a Jordan subalgebra of
U(+, 5 ).

We have already observed in Example 4.9 thatU(+, 5 ) itself is not power-associative, so we fix 2 ≠ 1.
By Proposition A.13, U(+ ∩ �, 2 5 |+∩�) is not strictly power-associative, and so U(+, 2 5 ) is not strictly
power-associative either. It follows that U(+, 2 5 ) is not power-associative, because char : ≠ 2, 3, 5 and
U(+, 2 5 ) is commutative. The case 2 = 0 gives that + itself is not power-associative. �

As opposed to defining the product on �(g) via (4.1), one could build �(g) ‘from below’ by starting
with a �-invariant commutative product · on a representation + and a �-invariant bilinear form 5

and setting �(g) to be U(+, 5 ). In case � has type �8 and + is the irreducible 3875-dimensional
representation, both · and 5 are uniquely determined up to a factor in :×. But only the scalar factor on
5 matters (Remark A.3), and (2) says that the resulting algebra is not power-associative, no matter what
choice one makes for that parameter.

Similarly, the conclusion of Lemma 6.1 below would be unchanged by multiplying 5 by a scalar
factor, as is clear from Proposition A.7.

6. Associativity of the bilinear form g

The following property of the symmetric bilinear form g on �(g) is sometimes described as saying that
‘g is associative’, especially in the context of Dieudonné’s lemma as in [22, pp. 199, 239].

Lemma 6.1. The bilinear form g on �(g) satisfies

g(0 ⋄ 0′, 0′′) = g(0, 0′ ⋄ 0′′) for all 0, 0′, 0′′ ∈ �(g). (6.2)

Proof. It suffices to verify this in the case 0 = ((-2), 0′ = ((.2), and 0′′ = ((/2) for -,., / ∈ g.
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Expanding out following the definitions, one finds:

(
dim�
ℎ∨+1

)
g(0 ⋄ 0′, 0′′)

= (ℎ∨)2
(
 ((ad /)2., (ad -)2. ) +  ((ad /)2-, (ad. )2-) +  ((ad /)2 [-,. ], [-,. ])

)

+ ℎ∨
(
 (/,. ) (/, (ad -)2. ) +  (-,. ) ((ad /)2., -) +  (/, -) (/, (ad. )2-)

)

+ ℎ∨ ([-,. ], /)2 +  (-,. ) (-, /) (., /). (6.3)

Put k for the alternating trilinear form k(�, �, �) =  ([��], �) on g and observe that Ψ :=
k([-, /], [-,. ], [., /]) is invariant under permutations of the variables - , . , / . We have:

Ψ =  ([-, /], [[[-,. ], . ], /]) +  ([-, /], [., [[-,. ], /]])

= − ((ad /)2., (ad. )2-) −  ([[-, /], . ], [/, [-,. ]]).

Adding this equation to the same equation with - and . swapped gives that −2Ψ is the first term in
parentheses on the right side of (6.3). That is,

(
dim�
ℎ∨+1

)
g(0 ⋄ 0′, 0′′) = −2(ℎ∨)2Ψ − ℎ∨� + ℎ∨k(-,., /)2 +  (-,. ) (-, /) (., /) (6.4)

with

� = k(-,., [-, /]) (., /) + k(-, /, [., /]) (-,. ) + k(., -, [., /]) (-, /).

Each of the four terms on the right side of (6.4) is unchanged when we swap - and / , and therefore the
claim is verified. �

Remark 6.5. Here is another argument to show associativity of g that works when � has type �8. In
that case, �(g) = :4 ⊕ + , where + is an irreducible representation of � (Lemma 7.2), the restriction
5 of g to + is nondegenerate, and the space (+∗ ⊗ +∗ ⊗ +∗)� of �-invariant trilinear forms on + is
1-dimensional. It follows then that the linear maps defined by sending E ⊗ E′ ⊗ E′′ ∈ ⊗3+ to 5 (E · E′, E′′)
and 5 (E, E′ · E′′) agree up to a scalar factor, where 5 is the restriction of g to + . The two cubic forms
are nonzero (Proposition 5.3(1)) and agree when E = E′ = E′′ is a generic element of + , so the two
forms agree in general: that is, 5 is associative with respect to the product ·, whence g is associative
with respect to the product ⋄ on �(g) by Proposition A.7.

7. A(g) as a representation of G

The counit Y gives a direct sum decomposition �(g) = :4 ⊕ + as a representation of �. In this section,
we describe + as a representation of � and show that its dimension and character depend only on the
root system of � and not on the field : nor even the characteristic of : . We use the notion of a Weyl
module recalled in Section 2.

Example 7.1 (�(sl2)). Suppose � is split of type �1, so g = sl2. By hypothesis, char : is zero or at
least 5, so the Weyl module+ (4) of� with highest weight 4 is irreducible over : [49]. It is a submodule
of H(g) generated by %(-2

Ũ
) and H(g)/: is + (4) by dimension count. As �(g) does not meet + (4)

(Corollary 3.9), it follows that �(sl2) = : as a vector space, spanned by Idg: that is, �(sl2) is identified
with : as a :-algebra.

The notion of a Weyl module still makes sense when � is not assumed to be split. In that case,
one still picks a maximal torus ) defined over : . Pick any Borel subgroup � of � × : containing ) ;
equivalently, pick a cone of dominant weights in the character lattice )∗. There is a natural action of
the Galois group Aut(:/:) on )∗, which maps the cone to itself if and only if � is defined over : . In
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Table 1. Data for some exceptional groups �. The fundamental dominant weights in the formula for _ are numbered as in [6]..

Type of � �2 �2 �4 �6 �7 �8

Dual Coxeter number ℎ∨ 3 4 9 12 18 30
Coxeter number ℎ 3 6 12 12 18 30
Dominant weight _ l1+l2 2l1 2l4 l1+l6 l6 l1

Dim. of irred. rep. !(_) 8 27 324 650 1539 3875

any case, there is a canonical way to modify the action using the Weyl group to produce a new action
of Aut(:/:) on )∗ that does leave the cone invariant; see [4, 6.2] or [46, Section 3.1]. (This action
permutes the simple roots and is determined by how it does so, and therefore is equivalent to an action
of Aut(:/:) on the Dynkin diagram of �.)

Suppose that _ ∈ )∗ is a dominant weight, is in the root lattice, and is fixed by the action of Aut(:/:)
on the dominant weights. (This holds, for example, for _ = 2Ũ and any �, or for � and _ as in Table 1.)
Then there is a unique representation of � over : that becomes isomorphic to + (_) (respectively,
�0 (_); respectively, !(_)) over : . This is proved in [46, Th. 3.3] for the irreducible !(_), and the same
argument works for the other two representations. Therefore, for such a _, it makes sense to also use the
same notation for the representation of � over : .

Proposition 7.2. Suppose char : = 0,

char : ≥
(dim�+1

2

)
/(rank�),

or � is as in Table 1. As a representation of �, �(g) is a direct sum of pairwise non-isomorphic

irreducible modules and H(g) = �(g) ⊕ + (2Ũ). Furthermore, if � and _ are as in Table 1, then

�(g) = : ⊕ !(_).

Note that the displayed lower bound on char : grows like (rank�)3, so it is somewhat more restrictive
than our global hypothesis that char : = 0 or at least ℎ + 2, because ℎ + 2 grows like rank�.

Proof of Proposition 7.2. We first address the case where : is algebraically closed of characteristic zero.
Then H(g) � : ⊕ � ⊕ !(2Ũ), where : is the span of 4 and !(2Ũ) is the �-submodule generated by
%(-2

Ũ
), which does not belong to �(g) by Corollary 3.9. Writing � as a sum of irreducible representations

⊕8!(_8), the values of _8 are known. If � is from Table 1, then � = !(_) is described in [10], where it
is denoted by . ∗

2 . If � has type �1, then � = 0. Otherwise, � is a sum of three irreducible components
for type �4 or two for the other types; see [48] and [30] for more on this decomposition and related
subjects. In all cases, the _8 are distinct, are not zero and are maximal weights for �.

To complete the proof for this : , we must verify that � ⊆ �(g). The bulk of the _8s are of the form
Ũ+ V for a root V obtained by the following procedure. Take the Dynkin diagram for�, delete all simple
roots that are not orthogonal to the highest root Ũ, and select one of the connected components that
remains. It corresponds to a subsystem of the root system of � and is the subsystem for a subalgebra g′

of g normalized by our chosen maximal torus ) . (One says that g′ is a regular subalgebra.) Put V for the
highest root of g′ (in the ordering induced from the chosen ordering on the weights of �). The element
((-Ũ-V) is not zero by Lemma 3.6(1), so we conclude that ((-Ũ-V) is a highest weight vector and
!(Ũ + V) ⊆ �(g).

For types �= and �= with = ≥ 2, one component of � is of the form considered in the previous
paragraph (and so we have shown that it belongs to �(g)) and the other is _ for _ the highest short root.
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For type �=, we set

V 9 := U1 + U2 + · · · + U 9 for 1 ≤ 9 < =,

W 9 := U 9 + U 9+1 + · · · + U= for 1 < 9 ≤ =, and

? := 2ℎ∨-Ũ�
′
l1−l=

−

=−1∑

9=1

[-Ũ, -−V 9
]-V 9

+

=∑

9=2

[-Ũ, -−W 9
]-W 9

∈ S2 g,

where the U8 are the simple roots as numbered in [6] and l8 is the corresponding fundamental dominant
weight. For type �=, _ = Ũ − V for V the simple root not orthogonal to Ũ, and we set

? := 2-Ũ-−V −
∑

`∈Φ(

[-−`, -Ũ] [-`, -−V] ∈ S2 g

for Φ( the set of short roots. In either case, ? has weight _, and a lengthy verification shows that ((?)
is not zero and is fixed by each unipotent subgroup of � corresponding to a positive root, verifying that
_ is a highest weight vector in �(g) and therefore that !(_) is a summand of �(g) and completing the
proof for this : .

Next suppose that : is algebraically closed of characteristic ? ≠ 0. We transfer the results proved
over C to : via ' := Z(?) . We use subscripts C, : , ' to denote corresponding objects over these three
rings. For example, let �' denote the unique split reductive group scheme over ' with the same root
datum as �, so �' × : � �, and put g' := Lie(�'). For each dominant weight [ ∈ )∗, there is a Weyl
module +' ([) of �' defined over ' such that !C ([) = +' ([) × C and +: ([) = +' ([) × : .

The representations +: (_8) and +: (2Ũ) are irreducible. If � is from Table 1, then this fact is
contained in the tables in [31]. Otherwise, ? ≥ (dimH(6))/(rank�), and every representation of � of
dimension at most that of H(g) is semisimple [32, Cor. 1.1.1]. A semisimple Weyl module is irreducible
[23, Cor. II.2.3], proving the claim.

The map ( : S2 g → H(g) is defined over ', and the dimension of its image over C is at least as
large as its image over : by upper semicontinuity of dimension. As the arguments above show that the
irreducible representation !: (_8) belongs to �(g) over : for all 8 and there are no nontrivial extensions
among the !: (_8) [23, II.4.13], we conclude that �(g) � : ⊕ (⊕8!: (_8)) as a representation of �.

As a quotient of vector spaces,H(g)/�(g) is a representation of� with highest weight 2Ũ, so there is
a nonzero homomorphism+: (2Ũ) → H(g)/�(g). The preceding arguments showed that the dimension
of �(g), and hence the dimensions of both the domain and codomain of the map do not depend on : .
Since +: (2Ũ) is irreducible, the map is injective and so an isomorphism by dimension count. There are
no non-trivial extensions among the irreducible representations appearing in the composition series for
H(g), whence the claim in the second sentence of the proposition.

Finally, drop the hypothesis that : is algebraically closed; in particular,� need not be split. The center
of � acts trivially on H(g), so we may assume that � is adjoint. We view � and the representation
�(g) as being obtained from a representation �(g0) of the unique split form �0 of � over : by
twisting by a 1-cocycle [ in Galois cohomology /1 (Aut(:/:),Aut(�0)) as in [40, Section III.1.3].
(Recall that the component group of Aut(�0) can be identified with the automorphism group of the
Dynkin diagram as in [14, Ch. XXIV, 1.3, 3.6, 5.6] or [42, Section 16.3], and the image of [ in
/1 (Aut(:/:),Aut(�0)/Aut(�0)

◦) encodes the ∗-action.) If � is not of type �4, then the _8s are each
fixed by the ∗-action and belong to the root lattice; hence, each representation !(_8) of �0 is naturally
compatible with the twisting by [, giving an irreducible representation of� defined over : , as discussed
before the statement of the proposition. For � of type �4, �(g0) = : ⊕ !(_1) ⊕ !(_2) ⊕ !(_3) as a
representation of �0, and the ∗-action permutes the _8s according to its action on the three terminal
vertices in the Dynkin diagram. As in [46, Th. 7.2], we find that the representation �(g)/: of �,
which is obtained by twisting the representation �(g0)/: of �0 by [, is a sum of > distinct irreducible
representations of � over : , where > is the number of orbits of Aut(:/:) on the set {_1, _2, _3}. �
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For � as in Table 1, dim: �(g) = 1 + dim !(_) as provided in the table. For � of type �, �, �, or �
and under the hypotheses of Proposition 7.2, we have

dim: �(g) =
(dim�+1

2

)
− dim+ (2Ũ), (7.3)

where dim+ (2Ũ) is given by the Weyl dimension formula.

8. g is nondegenerate and �(g) is simple

Proposition 8.1. g is nondegenerate on �(g).

Some authors would summarize Lemma 6.1 and Proposition 8.1, which say that �(g) has an
associative and nondegenerate symmetric bilinear form, by saying ‘�(g) is metrized’.

The proof leverages the following.

Example 8.2. Suppose we are in the situation of Lemma 3.6(1): that is,� is split and U, V are orthogonal
roots and U + V is not a root. Recall from (3.5) that  (-W , -−W) is not zero in : for every root W (and is
positive when : ⊆ R) and that ((-U-V)-−U = aUℎ

∨-V . Bilinearizing Example 5.1, we have

g(((-U-V), ((-−U-−V)) =
(
ℎ∨+1
dim�

)
 (((-U-V)-−U, -−V)

=

(
ℎ∨+1
dim�

)
2(ℎ∨)2aUaV ,

where the second equality is by (3.5). Note that this is not zero in : . Moreover, in case : ⊆ R, the
expression is positive.

Proof of Proposition 8.1. We may enlarge : and so assume that � is split. Recall from Section 7 that
�(g) = :4 ⊕ (⊕8!(_8)) for a set of dominant weights {_8}. This sum is an orthogonal sum with respect
to g, and therefore it suffices to verify the claims for the restriction of g to each !(_8).

Pick ? ∈ S2 g such that ((?) is a highest weight vector in !(_8). In case _8 = Ũ + V for some positive
root V orthogonal to Ũ, we take ? := ((-Ũ-V). Otherwise, _ is the highest short root and � has type
�= for = ≥ 3 or �= for = ≥ 2; in that case, we take ? to be as in the proof of Proposition 7.2.

Define \ to be the automorphism of g such that \ |h = −1 and \ (-W) = -−W for each root W. Then
((\?) is a lowest weight vector in !(_8). We verify that g(((?), ((\?)) is not zero; in the first case this
is Example 8.2, and in the second case a calculation is required. Therefore, the restriction of g to !(_8)
is not zero, so it is nondegenerate, verifying the claim. �

Corollary 8.3. If : = R and � is compact, then g is positive-definite on �(g).

Proof. We continue the notation of the proof of Proposition 8.1. We view g as the subalgebra of the
split complex Lie algebra consisting of elements fixed by the Cartan involution obtained by composing
\ with complex conjugation as in [7, Section IX.3.2]. Then E := ? + \? is in S2 g, ((E) is in !(_8), and
g(((E), ((E)) = 2g(((?), ((\?)) > 0. As � is compact, every nonzero �-invariant bilinear form on
!(_8) is definite, so g is positive definite on !(_8). �

Alternative proofs for exceptional groups. Here are very short proofs of Proposition 8.1 and Corollary
8.3 in case � belongs to Table 1. By (5.4), g is not zero on the irreducible representation + , so it is
nondegenerate on + and hence on all of �(g). Suppose � is a compact real form; then every nonzero
�-invariant bilinear form on the irreducible representation + is definite, as can be seen by averaging. In
particular, g is definite on + and so positive definite on + by (5.4). Corollary 8.3 follows. �

One says that � is isotropic if it contains a copy of the one-dimensional split torus Gm defined over
: , and anisotropic otherwise. In case : = R, � is anisotropic if and only if it is compact. The following
example provides something like a converse to Corollary 8.3.
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Example 8.4. Suppose � is not of type �1 and � is isotropic; we claim that g is isotropic. As � is not
of type �1, �(g)/: is not the trivial representation of � as in the proof of Proposition 7.2, so � acts on
it with finite kernel. It follows that there is a nonzero subspace * of �(g) on which Gm acts with only
positive weights or only negative weights, implying that g(D, D′) = 0 for D, D′ ∈ *: that is, g is isotropic.

The next example shows that the case : = R in Corollary 8.3 is somewhat special.

Example 8.5. We will show that g may be isotropic, even if the group � is anisotropic. Specifically,
let : be a number field and pick an odd number = ≥ 3. There is an associative division algebra � with
center : such that dim: � = =2. The group � = SL1 (�) of norm 1 elements of � is simply connected
of type �=−1 and is anisotropic. However, the group is split at every real place, so g is isotropic at
every real place (Example 8.4). As dim �(g) ≥ 1 + dimg > 5, the form g is isotropic over : by the
Hasse-Minkowski theorem.

We conclude the section with another corollary of Proposition 8.1.

Corollary 8.6. �(g) is a simple :-algebra.

Proof. The nondegeneracy of g and Proposition 7.2 verify the hypotheses of Proposition A.10. �

9. The group scheme Aut(G(g))

There is a natural homomorphism � → Aut(�(g)). It has a finite kernel, the center of �, and it
is injective if and only if � is adjoint. The point of the following result is that in some cases, this
homomorphism is an isomorphism.

Proposition 9.1. If � has type �4 or �8, then Aut(�(g)) = �.

It follows trivially that for �, � ′ of type �4 or �8, we have: � � � ′ if and only if �(g) � �(g′).

Proof of Proposition 9.1. The number dim �(g) is not zero in : , so as in Example A.6 Aut(�(g)) is the
sub-group-scheme of GL(+) preserving the commutative product · on+ (nonzero by Proposition 5.3(1))
as well as the �-invariant bilinear form. In case � has type �4 or �8, it is known that � is the
automorphism group of this product by [19, Lemma 5.1, Remark 5.5, and Section 7]. �

Here is what happens when the argument in the preceding proof is applied to � of the other types in
Table 1: for � adjoint of type �6, the argument shows that � is the identity component of Aut(�(g)).
For � of type �2 or �7, there is a copy of SO7 or Sp56/`2 in GL(+) containing � and preserving
a nontrivial linear map + ⊗ + → + ; as � preserves a two-dimensional space of such products, the
argument provided here is inconclusive in these cases.

For type �2, Aut(�(g)) is the orthogonal group $ (g), whose identity component has type �4; see
Example 10.9.

Remark 9.2. Let � be a simple, commutative and power-associative algebra over C. Then by [2] and
[27], � is a Jordan algebra. The classification of such from [22, p. 204, Cor. 2] or [41, Section 13, 14]
shows that the identity component of Aut(�) cannot be a simple group of type �2, �6, �7 or �8.

This provides an alternative argument that �(g) is not power-associative when � is simple of type
�8 over C, because �(g) is simple (Corollary 8.6) and commutative. (Compare Example 4.9.)

10. Construction #2: G(g) in End(\)

In this section, we leverage a common property of exceptional groups � observed by Okubo to describe
�(g) inside of End(+) for certain small + .

Suppose for this paragraph that : = C and c : � → GL(+) is a representation. The maps - ↦→

Tr(c(-)3) are �-invariant homogeneous polynomial functions on g. It is standard that : [g]� is a
polynomial ring with homogeneous generators. The smallest nonconstant generator can be taken to
be - ↦→  (-, -) of degree 2, and therefore an identity of the form Tr(c(-)2) = 2c (-, -) for all
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- ∈ g, where 2c depends on c, as in Lemma 2.9(2) is inevitable. Similarly, for � as in Table 1, the
homogeneous generators of : [g]� are - ↦→  (-, -) of degree 2, for type �2 one of degree 3, and
no generators of degree 4, and therefore there is an identity of the form Tr(c(-)4) = Uc (-, -)2 for
- ∈ g, where Uc depends only on c.

Okubo calculated the value of Uc in [34] in case : = C; see also [33]. Here we note that the same
result holds over our more general : . In this section, let ' denote the local ring Z(char :) as in Lemma 2.8.

Lemma 10.1. Suppose� is one of the types listed in Table 1 and that the representation c : � → GL(+)
is equivalent to �0 (_) or + (_) over the algebraic closure of : for some dominant weight _. Put

`c := 〈_ |_ + X〉. If the rational number

Uc :=
(6`c − 1)`c dim+

2(2 + dim�) (dim�)

belongs to ', then Tr(c(-)4) = Uc  (-, -)2 for all - ∈ g. If additionally� does not have type �2, then

Tr(c(-)2c(. )2) = −
`c dim+

6 dim�
 ([-,. ], [-,. ]) +

2Uc

3
 (-,. )2 +

Uc

3
 (-, -) (.,. ) (10.2)

for -,. ∈ g.

Sketch of proof. Similar to the proof of Lemma 2.9, let �', c' be lifts of �, c to ', and put  ' for
the Killing form on g'. The map - ↦→ Tr(c' (-)4) − Uc ' (-, -) is a polynomial function on g' (an
element of '[g']) that vanishes over C by Okubo, so it is 0 in '[g']. Similarly, equation (10.2) holds
over C; see [33, p. 284], so it also holds over '. �

Example 10.3. For the adjoint representation, we have

UAd =
5

2(2 + dim�)
,

which belongs to ' for� as in Table 1. (In case� has type �2, UAd = 1/4. For the other types, dim� +2
is of the form 2G3H5I for some G, H, I.) Rewriting a formula for dim� in terms of ℎ∨ from [10, p. 431]
or the polynomial in [34, 3.17] produces this remarkable formula:

4UAd (ℎ
∨)2 = ℎ∨ + 6. (10.4)

(This is just one example from many families of formulas; compare, for example, [12], [13], [29] and
[30].)

Here is the promised embedding.

Proposition 10.5. If � has type �2, �2, �4, �6 or �7 and c : � → GL(+) is an irreducible represen-

tation of dimension 3, 7, 26, 27 or 56, respectively, then the formula

f(((-. )) = 6ℎ∨c(-) • c(. ) −
1

2
 (-,. ) Id� for - ∈ g. (10.6)

defines an injective �-equivariant linear map

f : �(g) ↩→ End(+).

If additionally � is not of type �2, then f satisfies

projc (g) (f(((-
2)) • c(. )) = c

(
((-2).

)
for . ∈ g. (10.7)
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Proof. The representation c is irreducible. Moreover, one checks that in each case we have:

`c =
ℎ∨ + 1

ℎ∨ + 6
,

which by (10.4) is the same as

ℎ∨ =
2 + 3

2(6`c − 1)
=
`c3c

4Uc3
, (10.8)

where we have abbreviated 3c := dim+ and 3 := dim�.
Recall that S2 g = : ⊕ !(_) ⊕ !(2Ũ) as a representation of �, whereas, at least in case : = C,

End(+) and �(g) contain : and !(_) with multiplicity 1 and do not contain !(2Ũ). It follows that
any �-equivariant linear map S2 g → End(+) factors through ( : S2 g → �(g). In particular, the map
-. ↦→ 6ℎ∨c(-) • c(. ) − 1

2 (-,. ) Id+ does so, whence the map f from (10.6) is well defined. This
f is defined over ', and so it is also well defined for : .

We now verify (10.7), so assume � is not of type �2. Linearizing (10.2) in . gives

Tr((c(-)2 • c(. ))c(/)) = −
`c3c

63
 ([-,. ], [-, /])

+
2Uc

3
 (-,. ) (-, /) +

Uc

3
 (-, -) (., /).

As  (., /) = 3
`c3c

Tr(c(. )c(/)) (Lemma 2.9), we have

Uc

3
 (-, -) (., /) = Tr

((
3Uc

3`c3c
 (-, -) Id� •c(. )

)
c(/)

)
.

We obtain

Tr

(((
c(-)2 −

3Uc

3`c3c
 (-, -) Id�

)
• c(. )

)
c(/)

)
=

2Uc

3
 

((
`c3c

4Uc3
(ad -)2 + %(-2)

)
., /

)
.

Multiplying both sides by 6ℎ∨ and applying (10.8) gives (10.7). �

Example 10.9 (�(sl3)). The case g = sl3 was included in Table 1 but excluded from Section 5, so we
now use the preceding construction to describe �(sl3). For -,. ∈ sl3, Tr(-. ) = 1

6 (-,. ) by Lemma
2.9, so the embedding f : �(sl3) → "3 (:) is via

f(((-2)) = 18-2 − 3 Tr(-2)�

and it is an isomorphism by dimension count. We define a product ∗ on "3 (:) via % ∗ & := f−1(%) ⋄

f−1 (&). Putting Y := 1
3 Tr for the counit and chasing through the formulas, we find:

% ∗& =
[

1
2Y(% •&) − 3

2Y(%)Y(&)
]
� + Y(&)% + Y(%)&. (10.10)

That is, "3 (:) with the multiplication ∗ is of the form U(sl3, 5 ) with notation as in the appendix, where
the multiplication on sl3 is taken to be identically zero and 5 (%,&) = 1

2Y(% • &). This is the Jordan
algebra constructed from the bilinear form 5 as in [22, pp. 13, 14] see also Remark A.11.

11. Final remarks

We have defined here a construction that takes a simple algebraic group � (equivalently, a simple Lie
algebra g) over a field : , with mild hypotheses on the field : , and gives an explicit formula (4.1) for the
multiplication on a unital :-algebra �(g) on which � acts by automorphisms. We used the description

https://doi.org/10.1017/fms.2020.66 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.66


Forum of Mathematics, Sigma 17

of �(g) as a representation of � to show that it is a simple algebra, that the bilinear form on it is
nondegenerate, and that for � of type �4 or �8 the automorphism group is exactly �.

Computation

One can construct �(g) using a computer in a way amenable to computations as follows. First, con-
struct � or g together with its adjoint representation or, in the cases where Proposition 10.5 ap-
plies, its natural representation. Pick a basis {-8} of g, and compute ((-8- 9 ) ∈ End(g) in the first
case or f(((-8- 9 )) ∈ End(�) in the second, for 8 ≤ 9 . Among these elements, select a maxi-
mal linearly independent subset; it is a basis for �(g). For each pair of basis elements, one may
calculate the product ⋄ using (4.1) and express the result in terms of the chosen basis. This gives
the ‘structure constants’ for the algebra. Magma [5] code implementing this recipe can be found at
github.com/skipgaribaldi/chayet-garibaldi.

Polynomial identities

Among the algebras �(g) for� in Deligne’s exceptional series, the cases �(sl2) and �(sl3) are unusual
for being Jordan algebras and in particular power-associative, whereas �(g) is not power-associative for
other choices of g (Proposition 5.3(2)). It is natural, then, to ask what identities �(g) does satisfy in those
cases. It does not satisfy any polynomial identity of degree ≤ 4 that is not implied by commutativity
(Proposition A.8). Moreover, in the case � = �2, we verified using a computer that �(g) and also
U(+, 2 5 ) for every 2 ≠ 1 do not satisfy any degree 5 identity not implied by commutativity, leveraging
the classification of such identities from [36, Th. 5].

In case � = �2 or �8, the �-module S2+ has only six summands, which suggests the existence
of an identity of degree ≤ 7 in view of Example A.9. In the case of �2, the 26 nonassociative and
commutative monomials of degree ≤ 7 in an element 0 ∈ �(g2) are linearly dependent. We have found a
‘weighted’ polynomial identity for �(g2) in the sense of [47]: that is, for each nonassociative monomial
< of degree ≤ 7, there is a polynomial function q< on �(g2) so that the function 0 ↦→

∑
< q<(0)<(0)

is identically zero. It would be interesting to know whether a similar identity holds for �(e8).

Appendix A. Adjoining a unit to a :-algebra

We carefully record in this appendix some details concerning adjoining a multiplicative identity to a
:-algebra, because we do not know a sufficient reference for this material. Suppose we are given a :-
algebra + that may not contain a multiplicative identity. That is, + is a vector space over : together with
a :-bilinear map · : + × + → + , which we call the multiplication on + . Given a bilinear form 5 on + ,
we define a unital :-algebra U(+, 5 ) that has underlying vector space : ⊕ + and multiplication

(G0, G1) (H0, H1) = (G0H0 + 5 (G1, H1), G0H1 + H0G1 + G1 · H1) (A.1)

for G0, H0 ∈ : and G1, H1 ∈ + . Then (1, 0) is the multiplicative identity in U(+, 5 ) and + is a subalgebra.

Remark A.2. The construction U(+, 5 ) is discussed from a different point of view in Fox’s paper
[17, Section 5]. A specific example of this construction in earlier literature comes from the 196883-
dimensional Griess algebra+ , whose automorphism group is the Monster. Fox points out (Example 5.7)
that various choices of 5 are used in the literature when authors add a unit to + .

In the literature, one commonly finds the more restrictive recipeU(+, 0) for adjoining a unit to+ (that
is, where 5 is identically zero); see, for example, [39, Ch. II]. This has the advantage of not introducing
the parameter 5 ; however, it has the disadvantage of always producing a non-simple algebra — + is an
ideal inU(+, 0) — and therefore it does not produce popular examples of simple algebras like the =-by-=
matrices over a field, the octonions or Albert algebras. For more on this, see Proposition A.10 below.
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Remark A.3. One could imagine generalizing the construction to add a further parameter ` ∈ : and
defining U(+, 5 , `) to have the same underlying vector space as U(+, 5 ) but with multiplication rule

(G0, G1) (H0, H1) = (G0H0 + 5 (G1, H1), G0H1 + H0G1 + `G1H1).

It is easily seen, however, thatU(+, 5 , `) is isomorphic toU(+, `−2 5 ), so no generality would be gained.

Throughout the remainder of this section, we assume that all algebras considered are finite-

dimensional.

Counit

For a :-algebra � with multiplicative identity 4, we call a :-linear map Y : � → : such that Y(4) = 1
a counit. Such a map gives a direct sum decomposition � = :4 ⊕ + as vector spaces where + := ker Y
and furthermore expresses � as an algebra U(+, 5 ) by setting

5 (E, E′) := Y(EE′) and E · E′ := EE′ − 5 (E, E′) for E, E′ ∈ + . (A.4)

Conversely, every algebra U(+, 5 ) has a natural counit, namely the projection of : ⊕+ on its first factor.
In this way, we may identify the notions of unital :-algebras with a counit on the one hand and algebras
of the form U(+, 5 ) (with specified + and 5 ) on the other.

Additionally, a counit defines a bilinear form g on � by setting

g(0, 0′) := Y(00′) for all 0, 0′ ∈ �. (A.5)

Evidently, the direct sum decomposition � = :4 ⊕ + is an orthogonal sum with respect to g: that is,
g(4, E) = 0 for all E ∈ + , and the restriction of g to + is 5 . From this it follows that g is symmetric
(respectively, nondegenerate) if and only if 5 is symmetric (respectively, nondegenerate).

Example A.6. In the special case where the integer dim � is not zero in : , there is a natural counit
Y : 0 ↦→ 1

dim �
Tr("0), where we have written "0 ∈ End(�) for the linear transformation 1 ↦→ 01.

Therefore there is a natural way of writing � as U(+, 5 ) for+ and 5 as in (A.4). Moreover, every algebra
automorphism of � preserves Y, whence the group scheme Aut(�) is identified with the sub-group-
scheme of GL(+) of transformations that preserve both the multiplication · and the bilinear form 5 .

Recall that a bilinear form on a :-algebra is called associative if it satisfies (6.2).

Proposition A.7. In the notation of the preceding four paragraphs, g is associative (with respect to the

algebra �) if and only if 5 is associative (with respect to the algebra +).

Proof. Write elements 0, 0′, 0′′ ∈ � as 0 = (00, 01), etc. Then g(00′, 0′′) − g(0, 0′0′′) = 5 (01 ·

0′1, 0
′′
1 ) − 5 (01, 0

′
1 · 0

′′
1 ). �

The property of being metrized — that is, of having a nondegenerate and associative bilinear form
— has the following interesting consequence.

Proposition A.8. Let � be a commutative :-algebra where char : ≠ 2, 3, 5, and suppose that � is

metrized. If � satisfies an identity of degree ≤ 4 not implied by commutativity, then � satisfies the

Jordan identity G(G2H) = G2 (GH) and is power-associative.

Proof. Writing ⊤ for the involution on End(�) corresponding to the nondegenerate associative bilinear
form on �, we have "⊤

0 = "0 and ("0"1)
⊤ = "1"0 for all 0, 1 ∈ �. Note that the Jordan identity is

equivalent to the assertion that ["0, "02 ] = 0 for all 0 ∈ �.
According to [36, Th. 4], � satisfies (A.12) or

7. 2((HG)G)G + HG3 = 3(HG2)G or
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8. 2(H2G)G − 2((HG)H)G − 2((HG)G)H + 2(G2H)H − H2G2 + (HG)2 = 0.

Identity 7 is equivalent to the statement 2"3
G +"G3 = 3"G"G2 . Applying ⊤ to this identity, subtracting

it, and dividing by 3, we obtain ["G , "G2 ] = 0.
For (A.12), replacing 0 with G + H, expanding, and taking the terms of degree 1 in H, we find

"G3 + "G"G2 + 2"3
G = 4"G2"G . Applying ⊤ to this identity, subtracting it, and dividing by 5 gives

["G , "G2 ] = 0.
Finally, if Identity 8 holds, then replacing H with H + I and taking the terms of degree 1 in H and I,

replacing H with G, and applying the same procedure as in previous cases again gives ["G , "G2 ] = 0. �

For comparison, the situation when � is not assumed to be metrized is more complicated; see [37]
and [8].

The following example provides a positive statement.

Example A.9. Let � be a commutative :-algebra that is metrized, and suppose that the Aut(�)-module
S2 � has a composition series of length 3. Define %4 : S4 �→ End(�) via

%(0102 · · · 04) :=
∑

permutations f

"0f (1)"0f (2) · · ·"0f (4)

This is Aut(�)-equivariant, and its image �4 is contained in the space of symmetric operators on �
with respect to g, which we identify with S2 �. Setting �0 := : Id� and �4 := �0 + �1 + · · · + �4, we
obtain an increasing chain of submodules 0 ≠ �0 ( �1 ⊆ · · · so that �4 = �4+1 for some 4 < 3. That is, a
symmetric expression

∑

f

0f (1) (0f (2) (0f (3) · · · (0f (4+1)1)) · · · ) ∈ �,

where each summand is a product of at most 3 + 1 terms, can be expressed in terms of symmetric
expressions in the 0s involving products of fewer terms.

Simplicity

A :-algebra � is simple if the only two-sided ideals in � are 0 and � itself. We prove the following
criterion for simplicity.

Proposition A.10. Let � be a unital :-algebra with counit Y. If

1. There is a connected group scheme � ⊆ Aut(�) that stabilizes Y;

2. : is not a composition factor of ker Y as a �-module; and

3. g as defined in (A.5) is nondegenerate,

then � is simple.

Remark A.11. In the case where the multiplication on + := ker Y is identically zero, the algebra � is of
the kind studied in [24].

Proof of Proposition A.10. Put + := ker Y. We first claim that every �-invariant subspace � of � is a
direct sum � = (:4∩ �) ⊕ (+ ∩ �). If the restriction of the projection 1−Y : �→ + to � has a kernel, then
ker(1−Y) = :4 is contained in � and the claim is clear. Otherwise, 1−Y is injective and � = {(c(F), F)}

for F ∈ , := (1 − Y) (�) and some �-equivariant linear map c : , → : . By (2), however, c must be
zero, and the claim follows.

We next verify that every nonzero and �-invariant ideal � of � is equal to �. By the preceding
paragraph, we may suppose that there is a nonzero E ∈ + ∩ �. Since g is nondegenerate, there is an
0 ∈ � so that 0 ≠ g(E, 0) = Y(E0). That is, E0 is a nonzero element of :4 ∩ �, whence � = �.
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Now let � be a nonzero ideal in �. The sum of�-conjugates of �,
∑

6 6� is a nonzero and�-invariant
ideal, so it equals �. We conclude that � itself equals � by arguing as in the proof of [38, Theorem 5],
which concerns the analogous case of a non-unital algebra that is an irreducible representation of a
connected group. �

Power-associativity

A :-algebra � is power-associative if the subalgebra generated by any element 0 ∈ � is associative. It is
strictly power-associative if � ⊗: � is power-associative for every field � containing : . We now focus
on the case where � is commutative, as is the algebra �(g) elsewhere in this paper, and as is the algebra
U(+, 5 ) when + is commutative and 5 is symmetric.

If � is power-associative, then in particular

0(0(00)) − (00) (00) = 0 for all 0 ∈ �. (A.12)

When char : ≠ 2, 3, 5, (A.12) is equivalent to � being strictly power-associative [1, Th. 1], see also
[26, p. 364].

The property of whether U(+, 5 ) is strictly power-associative is rather constrained. In the proposition
below, we write E2 for the element E · E ∈ + .

Proposition A.13. Suppose 5 is not alternating. If the polynomial map E ↦→ E ∧ E2 ∈ ∧2+ is not

identically zero, then there is at most one 2 ∈ : so that U(+, 2 5 ) is strictly power-associative.

Proof. We focus on (A.12) for 0 ∈ U(+, 2 5 ). Writing out 0 = (00, 01) and expanding 0(0(00)) −
(00) (00), we find (2( 5 (01, 01 (0

2
1)) − 5 (02

1, 0
2
1)), G + 2H) for

G = 01 (010
2
1) − 0

2
10

2
1 and H = 5 (01, 0

2
1)01 − 5 (01, 01)0

2
1. (A.14)

By hypothesis, 01, 02
1 are linearly independent for generic 01 ∈ + . And 5 (01, 01) is also nonzero for

generic 01 ∈ + because 5 is not alternating, so we conclude that H is not the zero polynomial on
+ . It follows that the polynomial function G + 2H on + is identically zero for at most one value of
2 ∈ : . �

Remark A.15. For 0 = (00, 01) ∈ U(+, 5 ), we have (1, 0) ∧ 0 ∧ 02 = (1, 0) ∧ (0, 01) ∧ (0, 02
1) in

∧3
U(+, 5 ), where the squaring operation on the left side is relative to the multiplication on U(+, 5 )

and on the right side is relative to the multiplication · on + . As a consequence, the hypothesis of
Proposition A.13 can be phrased in the equivalent form: the polynomial map 0 ↦→ (1, 0) ∧ 0 ∧ 02 is

not zero.

Remark A.16. If the squaring map E ↦→ E2 is the zero function, the identities 020 = 002 and (A.12)
hold in U(+, 2 5 ). If char : = 0, it follows that U(+, 2 5 ) is strictly power-associative for every 2 ∈ : by
[1, Th. 2].

The following lemma allows one to apply Proposition A.13 in situations such as that in Proposition
A.10, by taking � (E) = E2.

Lemma A.17. Suppose dim+ ≥ 2, and let � be a �-equivariant polynomial function + → + that is

homogeneous of degree 3 ≥ 1. If the polynomial map E ↦→ E ∧ � (E) is identically zero, then there is a

�-invariant polynomial function � : + → : that is homogeneous of degree 3 − 1 and � (E) = � (E)E for

all E ∈ + ⊗  for every extension  of : .

Proof. There is a�-invariant function � : + \{0} → : defined implicitly by the equation � (E)E = � (E).
We argue that it is a polynomial function on + .

Fix a basis G1, . . . , G= of +∗. The 8th coordinate G8 |� (E) of � (E) is 58 (E) for some homogeneous

degree 3 polynomial 58 ∈ : [G1, . . . , G=]. On the open set *8 , where G8 does not vanish, � = 58/G8 . For
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8 ≠ 9 , 58/G8 and 5 9/G 9 agree on *8 ∩* 9 , so G8 5 9 = G 9 58 in the polynomial ring. As G8 does not divide
G 9 , it must divide 58 . Setting 5̄8 := 58/G8 , the polynomial function E ↦→ � (E) − 5̄8 (E)E is zero on *8 , so

it is zero on + : that is, � : + → : is a polynomial. �
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