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Abstract

Objective: The Stricker Learning Span (SLS) is a computer-adaptive digital word list memory test specifically designed for remote assessment
and self-administration on a web-based multi-device platform (Mayo Test Drive). We aimed to establish criterion validity of the SLS by
comparing its ability to differentiate biomarker-defined groups to the person-administered Rey’s Auditory Verbal Learning Test (AVLT).
Method: Participants (N= 353; mean age= 71, SD= 11; 93% cognitively unimpaired [CU]) completed the AVLT during an in-person visit,
the SLS remotely (within 3 months) and had brain amyloid and tau PET scans available (within 3 years). Overlapping groups were formed for
1) those on the Alzheimer’s disease (AD) continuum (amyloid PET positive, Aþ, n= 125) or not (A-, n= 228), and those with biological AD
(amyloid and tau PET positive, AþTþ, n= 55) vs no evidence of AD pathology (A−T−, n= 195). Analyses were repeated among CU
participants only. Results: The SLS and AVLT showed similar ability to differentiate biomarker-defined groups when comparing AUROCs
(p’s> .05). In logistic regression models, SLS contributed significantly to predicting biomarker group beyond age, education, and sex,
including when limited to CUparticipants. Medium (A− vs Aþ) to large (A−T− vs AþTþ) unadjusted effect sizes were observed for both SLS
and AVLT. Learning and delay variables were similar in terms of ability to separate biomarker groups. Conclusions: Remotely administered
SLS performed similarly to in-person-administered AVLT in its ability to separate biomarker-defined groups, providing evidence of criterion
validity. Results suggest the SLS may be sensitive to detecting subtle objective cognitive decline in preclinical AD.
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Introduction

The need for efficient and scalable approaches for identifying
individuals at risk for preclinical and prodromal Alzheimer’s
disease (PAD) is paramount to ongoing clinical trial efforts,
emerging decentralized trials, and for identifying individuals who
will most benefit from currently available pharmacologic or
behavioral treatments, or those on the horizon (Cummings et al.,

2021; Dorsey et al., 2020). Self-administered cognitive measures
that can be completed “remotely” (i.e., outside of a typical clinical
setting, including at home) are a critical component of an early
PAD detection strategy since they require fewer resources to
administer and provide easier access to cognitive screening
compared to person-administered measures (Ashford et al.,
2021; Papp et al., 2021; Sabbagh et al., 2020; Sabbagh et al.,
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2020); for a broader review of digital cognitive assessment for
preclinical AD see Ohman et al.(2021). Frequently, tests originally
designed for and validated within clinic settings are converted to
remote use to increase access for those unable to readily visit
research centers or due to necessity during the COVID-19
pandemic (Bauer & Bilder, 2023, in press; Mackin et al., 2021;
Marra et al., 2020). The limitation of this “conversion” approach is
that tests are not developed specifically with remote self-
administration as a priority for test design decisions, which can
contribute to mixed findings when performance is compared
across settings (Cromer et al., 2015; Mielke et al., 2015; Stricker,
Lundt, Alden, et al., 2020). There is an urgent need for valid self-
administered cognitive assessment tools designed specifically for
remote use. Verbal memory measures are among the most
sensitive to early changes in the Alzheimer’s disease (AD) process
(Caselli et al., 2020) but are also challenging to adapt to remote,
self-administered methods (Bauer & Bilder, in press).

The Stricker Learning Span (SLS) is a digital computer-adaptive
word list memory test specifically designed for remote assessment
(Stricker et al., 2022). The SLS is administered via a web-based
multi-device platform designed for unsupervised self-administra-
tion of digital cognitive tests, Mayo Test Drive (MTD): Mayo Test
Development through Rapid Iteration, Validation and Expansion
(DRIVE) (Stricker et al., 2022). Recent work has highlighted
learning as a key deficit in PAD, conceptualized as a failure to
benefit from repeated exposure (Lim et al., 2020) or a lack of
benefit from practice (Duff et al., 2017; Machulda et al., 2017). In
line with this, the SLS was designed to emphasize learning. The SLS
paradigm was influenced by cognitive science principles and
neural network process simulations (Stricker et al., 2022). The SLS
stresses the contextual system during learning through use of high
frequency word stimuli and variations in word item-level imagery
to increase difficulty.

Preliminary support for the feasibility, reliability, and validity of
the SLS was previously reported in an all-female older adult sample
(Stricker et al., 2022). Whereas that prior study used traditional
approaches to test validation, the current study aimed to establish
test validity using a novel approach to avoid the inherent issues
with existing validation approaches. For example, one common
approach is to correlate a new test with existing cognitive tests.
However, existing tests, while well established, are themselves
imperfect measures of hypothesized underlying constructs (Bilder
& Reise, 2019). Another frequent approach is to establish validity
by examining the ability of a new test to differentiate clinically
defined groups. In the AD field, for example, it is common to
establish the clinical validity of a new test by comparing individuals
who are cognitively “normal” or unimpaired to individuals with
mild cognitive impairment (MCI) or dementia; however, this
introduces circularity because the use of cognitive tests is central to
establishing those syndromal classifications. In vivo biomarkers
offer an alternative ground truth for test validation studies that is
completely independent of cognitive test performance. This is akin
to validation with neuropathological diagnosis at autopsy given the
correspondence between antemortem PET imaging and autopsy
findings but has the notable benefit of being feasible during life
(Chiotis et al., 2017; Wolters et al., 2021). A research framework is
now available to use AD biomarkers to characterize participants
using the amyloid (A), tau (T) and neurodegeneration (N), or the
AT(N), system (Jack et al., 2018). Imaging biomarkers of N are
considered nonspecific to AD and will not be included in the
current manuscript to limit the number of subgroups. Individuals
with evidence of elevated amyloid (Aþ) are considered to show

Alzheimer’s pathologic change. An in vivo biological diagnosis of
AD is defined by the presence of both Aþ and elevated tau (Tþ).

The objective of this study was to determine the criterion
validity of the SLS. Critically, this validation study was limited to
unsupervised completion of the SLS in a remote environment
outside of a typical clinical research setting. Our primary study
hypothesis (Aim 1) was that remotely administered SLS and in-
person-administered Rey’s Auditory Verbal Learning Test (AVLT)
would differentiate AD biomarker-defined groups similarly. This
hypothesis is tested in groups defined by biomarker status alone
(Aþ vs A− and AþTþ vs A−T−) to avoid circularity. That is,
because the AVLT is considered for diagnostic decision-making as
part of the consensus diagnosis process for study participants, it is
important that the primary AVLT vs. SLS comparison is
independent of diagnosis. Secondary hypotheses included that
the SLS would be sensitive to preclinical AD in analyses limited to
CU participants (Aim 2), SLS and AVLT would show significant
correlations to support convergent validity (Aim 3), and that word
list learning vs. delay indices would show similar sensitivity to
biologically defined AD (A−T− vs AþTþ; Aim 4).

Methods

Most participants were recruited from the Mayo Clinic Study of
Aging (MCSA), a longitudinal population-based study of aging
among Olmsted County, Minnesota, residents. Participants are
randomly sampled by age- and sex-stratified groups using the
resources of the Rochester Epidemiology Project medical records-
linkage system, which links the medical records from all county
providers (St Sauver et al., 2012). Participants with dementia are
not eligible for MCSA enrollment. Participants complete study
visits every 15 months that include a physician exam, study
coordinator interview, and neuropsychological testing (Roberts
et al., 2008). The physician exam includes a medical history review,
complete neurological exam, and the Short Test of Mental Status
(STMS) (Kokmen et al., 1991). The study coordinator interview
with an informant includes the Clinical Dementia Rating® scale
(Morris, 1993). Participants complete a multi-domain battery of
nine neuropsychological tests administered by a psychometrist
(Roberts et al., 2008). The interviewing study coordinator,
examining physician, and neuropsychologist initially each make
an independent diagnostic determination. A final diagnosis of
cognitively unimpaired, MCI (Petersen, 2004) or dementia
(American Psychiatric Association, 1994) is then established
through consensus agreement (Petersen, 2004; Roberts et al.,
2008). The diagnostic evaluation does not consider prior clinical
information, prior diagnoses, SLS performance, or knowledge of
biomarker status. Further details about the MCSA study protocol
are available (Roberts et al., 2008).

To enrich the sample for participants with cognitive impair-
ment, additional participants were recruited from the Mayo
Alzheimer’s Disease Research Center (ADRC).

This study was completed in accordance with the Helsinki
Declaration. The study protocols were approved by the Mayo
Clinic and Olmsted Medical Center Institutional Review Boards.
All participants provided written informed consent for the primary
study protocols (MCSA, ADRC); oral consent (which includes
consent provided after reading informed consent elements sent in
an email or described verbally) was obtained for the ancillaryMayo
Test Drive study protocol approved by Mayo Clinic that covered
collection of remote cognitive assessment data. No compensation
was provided for participation in the ancillary study.
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In vivo neuroimaging markers of amyloid and tau

The most recent imaging available ±3 years of baseline SLS was
used. Amyloid and tau positivity is determined using Pittsburgh
Compound B PET (PiB-PET) and tau PET (flortaucipir) (Jack
et al., 2008; Jack et al., 2017; Vemuri et al., 2017). PET images are
acquired using a GE Discovery RX or DXT PET/CT scanner. A
global cortical PiB PET standard uptake value ratio (SUVR) is
computed by calculating the median uptake over voxels in the
prefrontal, orbitofrontal, parietal, temporal, anterior cingulate, and
posterior cingulate/precuneus regions of interest (ROIs) for each
participant and dividing this by the median uptake over voxels in
the cerebellar crus gray matter. For tau PET, we utilize median
uptake over the voxels in the meta regions consisting of entorhinal,
amygdala, parahippocampal, fusiform, inferior temporal, and
middle temporal ROIs normalized to the cerebellar crus gray
matter (Jack et al., 2017). Cutoffs to determine amyloid and tau
positivity are SUVR≥1.48 (centiloid 22) (Klunk et al., 2015)
and≥1.25 (Jack et al., 2017) respectively, to maintain consistency
with our past Cogstate-focused work (Alden et al., 2021; Pudumjee
et al., 2021; Stricker, Lundt, Albertson, et al., 2020).

Person-administered AVLT completed in clinic

The psychometrist reads a list of 15 words (List A) aloud and asks
the participant to repeat back as many words as they can recall.
This is repeated 5 times (learning trials 1–5 total). A distractor list
(List B) is presented, followed by short delay (Trial 6) of list A
words. Recall of List A is again tested after 30 minutes (30-minute
delay), followed by written recognition (Ferman et al., 2005;
Stricker, Christianson, et al., 2020). The primary variable for this
study is AVLT sum of trials (trials 1–5 total þ trial 6þ 30-min
recall; range 0–105), which is sensitive to early changes in memory
(Jack et al., 2015). Additional variables include correct words on
trials 1–5 total (thought to reflect learning), as well as 30-minute
delay. Long-term percentage retention (AVLT 30-minute delay /
trial 5), thought to reflect storage/savings, is also reported.

Self-administered SLS completed remotely (not in clinic)

All participants completed the SLS remotely and without super-
vision or assistance. Participants followed a link provided in an
email to complete the test session. The SLS is administered via the
Mayo Test Drive (MTD) platform (Stricker et al., 2022).

The SLS is a 5-trial adaptive list learning task (Figure 1). Single
words are visually presented sequentially during learning trials.
After each list presentation, memory for the word list is tested with
4-choice recognition. Following a computer adaptive testing
approach, the SLS starts with eight items and then the number of
words either stays the same, increases by five or decreases by two
according to pre-specified rules based on percentage of correct
responses to extend the floor and ceiling relative to traditional
word list memory tests (range 2–23 words; Figure 2). Short delay
follows the Symbols Test (Nicosia et al., 2023; Stricker et al., 2022);
all items presented on any learning trial are tested during delay
(range 8–23). Select screenshots have been previously published
(Stricker et al., 2022).

The SLS uses common, high frequency words that are easier to
recall, but harder to recognize (Lohnas & Kahana, 2013), as
previously described (Stricker et al., 2022). There are 23 item bins
with 4 words each, and words within a bin have similar imagery
ratings (Clark & Paivio, 2004). Each successive item bin has lower

imagery ratings, thus increasing the difficulty of subsequent items.
Most (90%) of the 92 total words used are on the Dolch sight words
reading list (preschool through Grade 3), with half at the preschool
level (Dolch, 1936). Each test session randomly selects 1 word from
each item bin as the “target,” the 3 others serve as the foils and a 23-
item target word list is generated, even if not all items are presented
due to the adaptive procedure. To reduce recency effects, the order
of item presentation is randomized for each trial and the last item
presented is never the first tested. The primary variable is SLS sum
of trials (total correct across learning trials 1–5 plus delay, range 0–
108). Secondary variables include maximum (max) learning span
across any learning trial (range 0–23), total correct across learning
trials (1–5 total, range 0–85), and total correct short delay (range 0–
23). Percent retention (max span/delay) is also reported to allow
within-test comparisons, but this measure is not meant to be
compared to AVLT percent retention as differences are expected
based on differences in test design.

Inclusion criteria

To be included in this study, participants had to have both SLS sum
of trials and AVLT sum of trials available and an amyloid PET scan
within 3 years. All but two participants also had a tau PET scan
available within 3 years. Participants who completed the SLS as of
7/7/22 were included in this study. Parent study data available as of
8/22/22 were included.

Statistical methods

Demographics and clinical characteristics were descriptively
summarized using counts and percentages for categorical data
and means and standard deviations for continuous data. Data
distributions across groups (A− vs Aþ and A−T− vs AþTþ) were
compared using chi-square tests for categorical variables and linear
model ANOVA tests for continuous variables. Pearson correlation
coefficients were used to characterize the linear relationship
between AVLT and SLS variables. Unadjusted and adjusted
Hedge’s G with weighted and pooled standard deviation was used
to assess effect size for group comparisons. Unadjusted and
adjusted logistic regression models were used to determine the
predictive accuracy of AVLT and SLS sum of trials in predicting
abnormal amyloid PET (Aþ vs A−) and abnormal amyloid and
tau PET (AþTþ vs A−T−). To formally compare the ability of
both tests to differentiate biomarker-defined groups, the AUROC
from models with AVLT were directly compared to models with
SLS (Therneau, 2021). For models that adjusted for demographic
variables, age, sex, and education were the adjustment terms for
both Hedge’s G and logistic regression models. A two-sided p-
value <0.05 was considered statistically significant. All analyses
were performed using R version 4.1.2.

Results

Participant characteristics

The mean age of the 353 participants was 71.8 (SD= 10.8) years,
mean education was 15.7 (SD= 2.4), 53.5% were male, 98.0% were
White and 92.6% were cognitively unimpaired (Table 1). MTD
remote testing was completed within half a month (mean) of the
in-person visit. Participant characteristics by biomarker subgroups
are reported in Table 2. As expected, based on known increases in
Aþ and Tþ rates with increased age (Jack et al., 2008; Jack et al.,
2017; Vemuri et al., 2017), biomarker positive groups were older
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than biomarker negative groups (p’s< .05). Biomarker positive
and negative groups showed similar years of education and sex
distribution (p’s> .05).

Aim 1: SLS shows similar ability to differentiate PET-defined
biomarker groups compared to the AVLT (all participants)

AUROC comparisons. Total AUROC values for SLS sum of trials vs.
AVLT sum of trials were similar for differentiating biomarker groups
(p’s> .05; Table 3, Figure 3). This similarity was seen for all pairwise
AUROC comparisons (adjusted and unadjusted models; A− vs
Aþ and A−T− vs AþTþ). These four direct AUROC comparisons

support our hypothesis and represent the primary test of Aim 1 given
that inclusion of all available participants limits concerns about
circularity presentwhen the sample is restricted toCU individuals only.

Amyloid groups. Unadjusted models using only the primary
cognitive variable as the predictor show that both the SLS and
AVLT significantly differentiate A− vs Aþ (AUROCs of 0.63 and
0.64, respectively). Adjusted models that include demographic
variables increase the overall AUROC values of the full model
(both AUROCs= 0.76), and both the SLS and AVLT significantly
improve biomarker group prediction over and above the
demographic variables.

Figure 1. Stricker Learning Span methods. Figure used with permission of Mayo Foundation for Medical Education and Research; all rights reserved.

Journal of the International Neuropsychological Society 141

https://doi.org/10.1017/S1355617723000322 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617723000322


Amyloid and tau groups. Unadjusted models using only the
primary cognitive variable as the predictor show that both the SLS
and AVLT significantly differentiate individuals without AD
biomarkers (A−T−) from those with biological AD (AþTþ;
AUROCs of 0.72–0.73). Adjusted models that include demo-
graphic variables increase the overall AUROC values of the full
model (AUROCs of 0.83–0.84), and both the SLS and AVLT
significantly improve biomarker group prediction over and above
the demographic variables.

Descriptive effect sizes from group difference analyses. We report
effect sizes from mean group comparisons to additionally
characterize the magnitude of these effects for both unadjusted
and adjusted models (see Figure 4 and Supplemental Table 2). The
pattern of results for these parametric analyses is similar to that of
the non-parametric AUROC analyses.

Aim 2: SLS shows sensitivity to preclinical AD (CU
participants only)

Findings show that the SLS is sensitive to preclinical AD, consistent
with our Aim 2 hypothesis.

AUROC comparisons. Total AUROC values for SLS sum of
trials vs. AVLT sum of trials were similar for differentiating
biomarker groups in CU participants (p’s> .05 for each pairwise
comparison; Table 3). Note that direct comparisons of SLS and
AVLT should be viewed cautiously when results are limited to CU
participants given that AVLT has some circularity with diagnosis
(is considered by the neuropsychologist in conjunction with eight
other in-person neuropsychological tests, and then discussed in
consensus meeting) whereas the SLS is independent of diagnosis
(results are not available to consensus team members). Thus, SLS
results for analyses limited to CU participants can be readily
interpreted. AVLT results are presented for reference, but
circularity may impact findings.

Amyloid groups. Unadjusted models using only the primary
cognitive variable as the predictor show that both the SLS and
AVLT significantly differentiate CU A− vs CU Aþ (both
AUROCs= 0.63). Adjusted models that include demographic
variables increase the overall AUROC values of the full model

(AUROCs= 0.76–0.77), and both the SLS and AVLT significantly
improve biomarker group prediction over and above the
demographic variables.

Amyloid and tau groups. Unadjusted models using only the
primary cognitive variable as the predictor show that both the SLS
and AVLT significantly differentiate CU individuals without AD
biomarkers (A−T−) from CU participants with biological AD
(AþTþ; AUROCs = 0.67–0.69). Adjusted models that include
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Figure 2. Stricker Learning Span (SLS) computer adaptive testing approach provides
an expanded ceiling and floor of items presented relative to traditional word list
memory tests. High performers are exposed to an increasing number of words across
trials as shown in blue. Low performers are shown a decreasing number of words
across each trial as shown in orange. Figure used with permission of Mayo Foundation
for Medical Education and Research; all rights reserved.

Table 1. Participant demographic, clinical and neuroimaging characteristics
and devices used for Mayo Test Drive (mean, SD except where otherwise noted)
for all participants (N= 353)

Mean (SD) Range

Age at MCSA or ADRC visit1 70.84 (10.82) 35–94
In-person visit to MTD, months 0.55 (0.42) −0.30 – 2.99
In-person visit to imaging, months −0.78 (1.03) −2.83 – 0.32
Sex, N (%) Male 189 (53.5%) –
Education, years 15.72 (2.36) 11–20
Race (% White)2 346 (98.0%) –
Ethnicity (% Non-Hispanic)3 351 (99.7%) –
Kokmen Short Test of Mental Status4 35.6 (2.4) 22–38
N (%) first MCSA or ADRC visit (visit # range) 60 (17.0%) 1–14
Diagnosis –
Cognitively Unimpaired (N, %) 326 (92.6%) –
MCI (N, %) 21 (6.0%) –
Dementia (N, %) 5 (1.4%) –
Unavailable (N, %)5 1 (0.3%) –
CDR Global score –
0 (N, %) 332 (94.1%) –
0.5 (N, %) 20 (5.7%) –
1 (N, %) 1 (0.3%) –
Subjective memory concerns (N, % Yes)6 201 (58.3%) –
Amyloid meta-ROI 1.54 (0.35) 1.16 – 3.31
Tau meta-ROI7 1.21 (0.13) 0.90 – 2.31
Entorhinal Tau7 1.13 (0.16) 0.78 – 2.30
SLS sum of trials 74.06 (18.27) 16–108
AVLT sum of trials 64.38 (18.77) 17–105
SLS Max Span 16.43 (4.18) 3–23
AVLT Trial 5 11.06 (2.75) 0–15
SLS 1-5 Total 59.45 (14.07) 13–85
AVLT 1-5 Total 45.99 (12.11) 15–75
SLS Delay 14.60 (4.61) 3–23
AVLT 30-min delay 9.06 (3.98) 0–15
SLS Retention 88.28 (15.11) 36.4–133.3
AVLT Retention8 79.03 (27.80) 0–214.3
AVLT Recognition Percent Correct 91.31 (9.34) 53–100
Mayo Test Drive device type used –
Desktop computer or laptop (N, %) 220 (62.3%) –
Smartphone (N, %) 95 (26.9%) –
Tablet (N, %) 37 (10.5%) –
Other / Not Sure (N, %) 1 (0.3%) –

Note. ADRC=Mayo Alzheimer’s Disease Research Center; AVLT= Auditory Verbal Learning
Test; AVLT Sum of Trials = AVLT 1–5 total þ Trial 6þ 30-minute delay; AVLT Recognition
Percent Correct = {[recognition hitsþ (15 – recognition false positive errors)]/30} × 100; AVLT
Retention = AVLT 30-minute delay / Trial 5; CDR= Clinical Dementia Rating Scale;
MCSA=Mayo Clinic Study of Aging; MTD=Mayo Test Drive; SLS= Stricker Learning Span; SLS
Max Span =maximum number of words recognized across any learning trial; SLS 1–5 Total=
sum of words correctly recognized across trials 1–5; SLS Retention = SLS Delay / SLS Max
Span; SLS Sum of Trials = SLS 1–5 total þ delay. Table used with permission of Mayo
Foundation for Medical Education and Research; all rights reserved.
1n= 8 Mayo Alzheimer’s Disease Research Center (ADRC); n= 345 Mayo Clinic Study of Aging
(MCSA)
2n= 2 Asian, n= 3 Black, n= 2 More than one
3n= 1 missing
4n= 1 missing
5consensus diagnosis not yet available for this participant; CDR= 0; amyloid and tau PET
negative status.
6n= 8 missing; subjective memory concern is “yes” when subjective memory complaints are
on the Blessed Memory Test questions 1-4 is marked as worse or question 5 indicates any
other problems with thinking or memory.
7n= 2 missing
8n= 1 missing due to AVLT Trial 5 score of 0.
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Table 2. Demographic and clinical characteristics of biomarker subgroups and means (SDs) for cognitive variables

A− vs Aþ A−T− vs AþTþ
All participants CU participants only All participants CU participants only

A− (N= 228) Aþ (N= 125) CU A− (N= 215) CU Aþ (N= 111) A−T− (n = 195) AþTþ (n= 55) CU A−T− (n= 185) CU AþTþ (n= 42)

Age at MCSA visit 67.6 (10.6) 76.8 (8.4) 67.3 (10.6) 76.7 (8.4) 66.3 (10.3) 77.1 (8.7) 66.1 (10.3) 77.3 (8.8)
Sex, N (%) Male 119 (52.2%) 70 (56.0%) 111 (51.6%) 63 (56.8%) 102 (52.3%) 32 (58.2%) 96 (51.9%) 26 (61.9%)
Education, years 15.8 (2.4) 15.7 (2.5) 15.9 (2.3) 15.6 (2.3) 15.9 (2.3) 15.8 (2.5) 16.0 (2.3) 15.7 (2.0)
Visit to imaging, months −0.8 (1.0) −0.7 (1.0) −0.9 (1.0) −0.8 (1.1) −0.8 (1.1) −0.5 (0.9) −0.9 (1.1) −0.6 (1.0)
STMS 35.8 (2.2) 35.2 (2.6) 36.07 (1.79) 35.72 (1.94) 35.3 (2.1) 34.6 (3.0) 36.06 (1.75) 35.67 (1.78)
CDR 0, N (%) 222 (97.4%) 112 (86.8) 215 (100.0%) 106 (95.5%) 190 (97.4%) 43 (78.2%) 185 (100.0%) 40 (95.2%)
CDR 0.5, N (%) 6 (2.6%) 16 (12.4%) 0 (0.0%) 5 (4.5%) 5 (2.6%) 11 (20.0%) 0 (0.0%) 2 (4.8%)
CDR 1, N (%) 0 (0%) 1 (0.8%) – – 0 (0.0%) 1 (1.8%) – –
CU, N (%) 215 (94.7%) 111 (88.8%) – – 185 (95.4%) 42 (76.4%) – –
MCI, N (%) 12 (5.3%) 9 (7.2%) – – 9 (4.6%) 8 (14.5%) – –
Dementia, N (%) 0 (0.0%) 5 (4.0%) – – 0 (0.0%) 5 (9.1%) – –
Unavailable, N (%) 1 (0.4%) 0 (0.0%) – – 1 (0.5%) 0 (0.0%) – –
Primary Variables
SLS sum of trials 77.25 (16.64) 68.23 (19.67) 78.77 (15.45) 71.06 (17.69) 77.92 (16.62) 62.42 (20.50) 79.17 (15.67) 67.31 (17.78)
AVLT sum of trials 67.92 (17.89) 57.92 (18.68) 69.50 (17.03) 61.30 (16.81) 68.65 (17.66) 53.13 (17.62) 70.01 (16.94) 59.81 (13.93)
Secondary Variables
SLS 1-5 Total 61.88 (12.88) 55.03 (15.08) 63.07 (11.91) 57.11 (13.62) 62.29 (12.83) 50.67 (15.83) 63.28 (12.05) 54.26 (13.76)
AVLT 1-5 Total 48.24 (11.67) 41.89 (11.88) 49.24 (11.12) 43.88 (10.87) 48.59 (11.62) 39.11 (10.99) 49.44 (11.19) 43.00 (9.00)
SLS Delay 15.37 (4.19) 13.20 (5.00) 15.71 (3.98) 13.95 (4.49) 15.63 (4.20) 11.75 (5.07) 15.90 (4.05) 13.05 (4.38)
AVLT 30-min delay 9.72 (3.70) 7.84 (4.19) 10.06 (3.50) 8.64 (3.71) 9.94 (3.58) 6.75 (4.08) 10.23 (3.41) 8.36 (3.14)

Note. A= amyloid; ADRC=Mayo Alzheimer’s Disease Research Center; AVLT= Auditory Verbal Learning Test; AVLT 1–5 Total = sum of words correctly recalled across trials 1–5; AVLT Sum of Trials = AVLT 1–5 totalþ Trial 6þ 30-minute delay; CDR= Clinical
Dementia Rating Scale; CU= Cognitively Unimpaired; MCI =Mild Cognitive Impairment; MCSA=Mayo Clinic Study of Aging; MTD=Mayo Test Drive; SLS= Stricker Learning Span; SLS 1–5 Total= sumof words correctly recognized across trials 1–5; SLS Sumof
Trials = SLS 1–5 total þ delay; STMS= Kokmen Short Test of Mental Status; T= tau. See Supplemental Table 2 for group difference comparison results for additional SLS and AVLT variables. Table used with permission of Mayo Foundation for Medical
Education and Research; all rights reserved.
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Table 3. Logistic regression analysis predicting a) Aþ vs. A- and b) Aþ Tþ vs A-T- for both unadjusted models (cognition as the only predictor, on left) and models that also include age, sex, education, in addition to
cognition (on right). The p-value comparing the AUROCs of the remotely administered Stricker Learning Span and in-person administered Auditory Verbal Learning Test provides a direct comparison of test performance for
differentiating biomarker-defined groups

A. Accuracy of SLS and AVLT in Predicting Abnormal Amyloid PET (Aþ vs A−)

Unadjusted AgeþSexþEduc Adjusted

Characteristic Odds Ratio1 (95% CI) p-value AUROC2 (95% CI)
p-value comparing
AUROCs Odds Ratio1 (95% CI) p-value AUROC2 (95% CI)

p-value comparing
AUROCs

All participants (N= 353)
SLS sum of trials 0.760 (0.669, 0.860) <.001 0.63 (0.57, 0.70) 0.76 0.966 (0.940, 0.992) .013 0.76 (0.71, 0.81) 0.90
AVLT sum of trials 0.741 (0.653, 0.841) <.001 0.64 (0.58, 0.70) 0.965 (0.939, 0.992) .012 0.76 (0.71, 0.81)
CU only (N= 326)
SLS sum of trials 0.753 (0.652, 0.869) <.001 0.63 (0.56, 0.69) 0.98 0.969 (0.940, 1.000) .013 0.77 (0.71, 0.82) 0.57
AVLT sum of trials 0.752 (0.653, 0.866) <.001 0.63 (0.57, 0.69) 0.974 (0.945, 1.004) .012 0.76 (0.71, 0.81)

B. Accuracy of SLS and AVLT in Predicting Abnormal Amyloid and Tau PET (AþTþ vs A−T−)
Unadjusted AgeþSexþEduc Adjusted

Characteristic Odds Ratio1 (95% CI) p-value AUROC2 (95% CI)
p-value comparing

AUROCs Odds Ratio1 (95% CI) p-value AUROC2 (95% CI)
p-value comparing

AUROCs

All participants (N= 250)
SLS sum of trials 0.638 (0.536, 0.759) <.001 0.72 (0.64, 0.80) 0.81 0.944 (0.920, 0.970) <0.001 0.84 (0.78, 0.90) 0.67
AVLT sum of trials 0.610 (0.503, 0.738) <.001 0.73 (0.65, 0.80) 0.946 (0.921, 0.972) <0.001 0.83 (0.77, 0.90)
CU only (N= 227)
SLS sum of trials 0.659 (0.537, 0.810) <.001 0.69 (0.60, 0.78) 0.68 0.960 (0.931, 0.988) .007 0.83 (0.77, 0.90) 0.26
AVLT sum of trials 0.679 (0.545, 0.847) <.001 0.67 (0.59, 0.76) 0.971 (0.942, 1.001) .059 0.81 (0.74, 0.88)

Note. The biomarker negative group is the reference group (e.g., A− vs Aþ for part A; A−T− vs AþTþ for part B). AUROC= area under the receiver operating characteristic curve; AVLT= Rey’s Auditory Verbal Learning Test; AVLT sum of trials= trials 1–5 total
correctþ trial 6 short-delay correctþ 30-minute delay correct, in raw score units. SLS= Stricker Learning Span; SLS sum of trials= 1–5 correctþ delay correct, in raw score units. Table used with permission of Mayo Foundation for Medical Education and
Research; all rights reserved.
1Note that SLS and AVLT odds ratios cannot be compared directly since these two scores are on a different scale (raw scores are used). AUROC data are the focus of test comparisons. Lower test performance is associated with higher odds of being in the
biomarker positive group. For example, for the A−T− vs AþTþ comparison (all participants, unadjustedmodel OR= 0.638), each 10-point decrease in SLS sum of trials is associated with 57% increased odds of being AþTþ (95% CI 32% – 87%) calculated as
e−1 * ln (OR).
2Note, for yes/no responses the AUROC is equivalent to concordance, the probability that a randomly selected participant with a yes outcome (positive biomarker group) will have a larger predicted probability than a randomly selected participant with a no
outcome (negative biomarker group).
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demographic variables increase the overall AUROC values of the
full model (AUROCs = 0.81–0.83). The SLS significantly improved
biomarker group prediction over and above the demographic
variables; the AVLT approached significance (p= 0.06).

Descriptive effect sizes. Effect sizes from mean group compar-
isons are also reported (see Figure 4 and Supplemental Table 2).

Aim 3: Convergent validity

SLS sum of trials and AVLT sum of trials were strongly correlated
(r= 0.62, p< .001). Additional correlations are reported in Table 4
and Supplemental Figure 1.

Aim 4: Learning measures show similar ability as delay
memory measures to differentiate A−T− and AþTþ groups
for both the SLS and the AVLT (all participants)

All secondary SLS and AVLT variables show results in the expected
direction with lower performance in the AþTþ compared to A−T
− group (p’s< .05 for both unadjusted and adjusted analyses), with
generally similar effect sizes across comparable SLS and AVLT
variable pairs (Figure 5). Within-test descriptive comparisons
show that learning variables (1–5 total) show effect sizes that are
similar in magnitude as delay variables. For example, SLS 1–5
(g=−.86) and delay (g=−.88) both show large unadjusted effect

All CU
A− vs A+

A−T− vs A+T+

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

AVLT sum of trials (adj.)

AVLT sum of trials (unadj.)

SLS sum of trials (adj.)

SLS sum of trials (unadj.)

AVLT sum of trials (adj.)

AVLT sum of trials (unadj.)

SLS sum of trials (adj.)

SLS sum of trials (unadj.)

AUC

Figure 3. Area Under the Receiving Operating Curve (AUROC, 95% CI) values for remotely-administered SLS sum of trials and in-person administered AVLT sum of trials. Note. All
models significantly differentiate biomarker groups better than chance (no AUROC confidence intervals include 0.5). Stricker Learning Span (SLS) sum of trials= 1–5 total correct
þ delay. Auditory Verbal Learning Test (AVLT) sum of trials= 1–5 totalþ Trial 6þ 30-minute delay recall. Unadj.= unadjustedmodels. Adj.=model adjusts for age, education and
sex. Figure used with permission of Mayo Foundation for Medical Education and Research; all rights reserved.

Table 4. Convergent validity: Pearson correlations (r) between remotely administered Stricker Learning Span measures and in-person administered Auditory Verbal
Learning Test measures for all participants.

Remotely administered Stricker Learning Span (SLS)

In-Person AVLT SLS Sum of Trials SLS 1-5 Total SLS Max Span SLS Delay

AVLT Sum of Trials 0.62 0.61 0.60 0.61
AVLT 1-5 Total 0.60 0.60 0.58 0.58
AVLT Trial 5 0.56 0.55 0.53 0.55
AVLT 30-min Delay 0.58 0.57 0.56 0.59

Note. All correlations are significant (p’s < 0.001). Correlations in bold show the relationship between the most similar AVLT and SLS measures. AVLT= Auditory Verbal Learning Test; AVLT Sum
of Trials= AVLT 1–5 totalþ Trial 6þ 30-minute delay; SLS= Stricker Learning Span; SLS Max Span=maximumnumber of words recognized across any of the five learning trials; SLS 1–5 Total=
sum of words correctly recognized across trials 1–5; SLS Sum of Trials = SLS 1–5 totalþ delay. See Supplemental Figure 1 for a full correlation matrix with additional measures. Table used with
permission of Mayo Foundation for Medical Education and Research; all rights reserved.
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sizes, and AVLT 1–5 (g=−.82) and delay (g=−.86) also show
large unadjusted effect sizes (Figure 4). Trials 1–5 total (g=−.86
SLS and−.82 AVLT)may be a slightly more advantageous learning
measure for group discrimination relative to SLS max span (−.81)
or AVLT Trial 5 (−.74) (Supplemental Table 2). Similarly,
comparison of two different types of delayed memory measures
suggests a slight advantage for delay total correct relative to
retention (−.88 vs −.55 for SLS, respectively and −.86 vs −.79 for
AVLT, respectively). See Figure 6 for a visualization of trial-by-trial
data for both the SLS and AVLT. See Supplemental Tables 1 and 2
for results of adjusted analyses, other subgroup comparisons, and
results of other memory tests.

Discussion

This study followed a novel approach to test validation and
established the criterion validity of an unsupervised computer
adaptive word list memory test (SLS) completed outside of a clinic
setting. The SLS differentiates AD biomarker-defined groups as
well as a traditional word list recall test administered by trained
psychometrists in a clinic setting (AVLT). Specifically, our Aim 1
hypothesis was supported by AUROC comparisons that showed
remotely administered SLS sum of trials and in-person-adminis-
tered AVLT sum of trials have comparable ability to differentiate
individuals on the Alzheimer’s continuum (Aþ) or not (A−) and
individuals meeting a research framework for a biological

diagnosis of AD (AþTþ) or not (A−T−) in a predominantly
cognitively unimpaired sample.

In line with our prior results showing that the AVLT has the
potential to be useful for detecting subtle objective cognitive
decline in preclinical AD (Stricker, Lundt, Albertson, et al., 2020),
our current results extend this prior AVLT finding and suggest that
the SLS also has promise in this regard (Aim 2). Specifically, when
limiting the sample to CU participants, our AUROC results show
that the SLS by itself could help predict, better than chance, which
individuals had elevated brain amyloid vs. did not and which had
elevated brain amyloid and tau vs did not. In contrast, our prior
work examining the utility of the Learning/Working Memory
index comprised of visual recognition and working memory tasks
from the Cogstate Brief Battery administered in clinic did not
significantly differentiate biomarker groups better than chance
(CU A−T− vs CU AþTþ or CU A−T− vs CU AþT−) and
showed that the AVLT was significantly better than the Learning/
Working Memory Index for differentiating CU A−T− vs CU
AþT− when comparing total AUROCs. While the predictive
ability of the SLS by itself is relatively modest, predictive ability
improves when demographic variables are added to the model, and
the SLS continues to show an independent effect over and above
demographic variables. For example, a model with age, sex,
education, and SLS sum of trials together had an AUROC of 0.83
for predicting AþTþ status in CU participants. Thus, our current
results suggest that the SLS could be a scalable, easily accessible

All CU
A− vs A+

A−T− vs A+T+

−1.2 −0.8 −0.4 0.0 −1.2 −0.8 −0.4 0.0

AVLT sum of trials (adj.)

AVLT sum of trials (unadj.)

SLS sum of trials (adj.)

SLS sum of trials (unadj.)

AVLT sum of trials (adj.)

AVLT sum of trials (unadj.)

SLS sum of trials (adj.)

SLS sum of trials (unadj.)

Hedge's G Effect Size

Figure 4. Hedge’s g effect sizes with 95% confidence intervals to show themagnitude of group differences for remotely administered Stricker Learning Span (SLS, red shades) and
in-person Auditory Verbal Learning Test (AVLT) measures (blue shades) across biomarker groups (A- vs Aþ top; A-T- vs AþTþ bottom) in all participants (left) and Cognitively
Unimpaired participants (right). Note. Groups do not significantly differ when the CI includes 0 (dashed line). Unadj. = unadjusted models. Adj.=model adjusts for age, education
and sex. Remote SLS Sum of Trials = SLS trials 1-5 correct þ delay correct. In-person AVLT Sum of Trials = AVLT 1-5 correct þ Trial 6 (short-delay) correctþ 30-minute recall
correct). See Tables 4 and 5 for direction of effect sizes and confidence intervals. See Supplemental Table 2 for numeric results. Figure usedwith permission of Mayo Foundation for
Medical Education and Research; all rights reserved.
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addition to a multivariable model approach that improves overall
prediction of AD risk. For example, the addition of a word list
recall measure has previously shown added utility for predicting
elevated brain amyloid in individuals without dementia, over
and above age alone or age combined with APOE ϵ4 carrier
status (Maserejian et al., 2019). Given its capacity for remote
self-administration, the SLS would be a good candidate screening
measure in nonspecialty care settings to use in combination with
such predictive models to inform the need for further work-up.
Plasma biomarkers will also likely be a critical component of future
predictive models, particularly for preclinical disease stages (Brand
et al., 2022). Establishing evidence of some independent utility for
cognitive measures of interest is an important first step prior to
inclusion in research to develop such models in the future. It will
also be critical for any such future investigations to include
adequate representation of individuals from under-represented
groups to ensure broader applicability of results (Ashford et al.,
2021).

The highly overlapping results for the ability of the SLS and
AVLT to discriminate AD biomarker groups are particularly
interesting given that although the SLS was designed to mimic the
sensitivity of the AVLT, it was not designed to be a one-to-one
adaptation of the AVLT. Results of correlation analyses align with
this intent and support our hypothesis that the SLS and AVLT
would show a significant correlation (r= 0.62), and therefore
further support convergent validity (Aim 3). Our initial pilot study
similarly supported the convergent validity of the SLS, but with
slightly lower correlation coefficients likely due to homogeneity
of that sample (e.g., all female, restricted age range, excluded
individuals with dementia), and potentially due to a longer
duration between in-person and remote testing in that study
(average 10 months) (Stricker et al., 2022). Our results are
particularly notable given that a previous study using an exact
computerized replication of the AVLT facilitated by audio
recording and speech recognition to allow self-administration
on an iPad showed only slightly higher correlations (r= 0.63–0.70)
with the AVLT as typically administered in a well-controlled cross-
over design completed in a clinic setting (Morrison et al., 2018).

We also qualitatively compared commonly derived supraspan
wordlist indices within each test given that learning indices may
have equivalent utility as delayed memory indices for the early
detection of AD (Belleville et al., 2017; Weissberger et al., 2017).
Results supported our hypothesis that word list learning measures
would show similar sensitivity as word list delay memory measures
to biologically defined AD (A−T− vs AþTþ; Aim 4). The effect
sizes of learning trials and delayed memory are similar (Figure 5).
We chose to focus on delay items correct instead of percent
retention (i.e., savings) for the comparison to learning indices. It is
important to note that retention is largely dependent on specific
test design characteristics including the influence of serial position
effects (Atkinson & Shiffrin, 1968; Gavett & Horwitz, 2012; Greene
et al., 1996). The SLS randomizes word order to minimize the
recency effects often observed in individuals with Alzheimer’s
dementia that leads to an over-estimate of true forgetting (Cunha
et al., 2012). For example, learning to criterion studies demonstrate
that individuals in the early stages of AD take a longer time to reach
criterion, which is reflective of lower learning ability; however,
once learning is equated by reaching criterion rates of forgetting
are similar to healthy control participants (Greene et al., 1996;
Grober & Kawas, 1997; Stamate et al., 2020). Accordingly, SLS
learning indices (1–5, max span) demonstrate a larger effect size
than SLS retention in biologically defined AD versus those without
AD biomarkers, whereas AVLT retention effect size is more similar
to AVLT learning indices (see Supplemental Table 2).

This study has several strengths. Most studies examining the
ability of cognitive measures to differentiate biomarker groups have
focused on differentiation of Aþ versus A− individuals (Baker et al.,
2017; Duke Han et al., 2017). Our inclusion of tau status defined by
PET imaging, in addition to amyloid, is a strength. Our population-
based sample helps to increase generalizability to clinical settings
where comorbidities are common. Our approach of reporting both
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Figure 6. Stricker Learning Span (SLS, left panel) and Auditory Verbal Learning Test
(AVLT, right panel) learning slopes and delayed memory performances across all
participants without AD biomarkers (A-T-, blue) and all participants with biological AD
(AþTþ, red). Note. Sum of trials is the primary variable for each test; these figures
show the data comprising sum of trials for each measure (sum of trials = total correct
items for all trials displayed in each respective figure). SLS items presented differ by
trial based on computer adaptive testing rules, thus the highest possible number of
presented across trials vary (see Figure 1 for ceiling and floor values for Trials 1-5; the
delay trial can range from 8-23). The SLS uses 4-choice recognition to test item
memory. In contrast, 15 words are presented each time for AVLT trials (constant range
of 0-15) and item memory is tested with free recall. See Supplemental Table 2 for
numeric results. AVLT Trial 6 = short delay. AVLT delay = 30-minute delay. Figure used
with permission of Mayo Foundation for Medical Education and Research; all rights
reserved.
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Figure 5. Hedge’s g unadjusted effect sizes comparing ability of learning and delay
trials to differentiate individuals without AD biomarkers from those with biological AD
(A−T− vs AþTþ). Note. Stricker Learning Span (SLS) Trials 1–5 = trials 1–5 total
correct; Auditory Verbal Learning Test (AVLT) Trials 1–5= 1–5 total correct; AVLT
Delay =30-minute delayed recall. See Supplemental Table 2 for numeric results. Figure
used with permission of Mayo Foundation for Medical Education and Research; all
rights reserved.

Journal of the International Neuropsychological Society 147

https://doi.org/10.1017/S1355617723000322 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617723000322
https://doi.org/10.1017/S1355617723000322
https://doi.org/10.1017/S1355617723000322


unadjusted and adjusted effect sizes illustrates the robust biomarker-
group difference effect sizes observed in unadjusted analyses. For
example, the SLS showed a large group difference effect size across A
−T− and AþTþ groups in all participants (−0.88), that decreased
to a medium effect size when controlling for demographics (−0.53)
and was further attenuated when limited to CU only (−0.74
unadjusted, −0.37 adjusted). There is growing evidence that
cognitive decline is not a normal part of the aging process, but
rather is reflective of previously undetected neuropathologies that
increase in prevalence with increasing age (Bos et al., 2018; Boyle
et al., 2021; Harrington et al., 2018). To maximize the utility of
cognitive measures for informing risk of AD biomarker positivity,
we recommend the use of raw scores and argue that the effect of age
should not be routinely “adjusted” away as it decreases the predictive
power of cognition.

Several limitations should also be noted. First, because this is a
population-based study, the racial and ethnic characteristics reflect
that of Olmsted County from which participants are randomly
sampled, resulting in a predominantly White, Non-Hispanic
sample. Second, the predominantly CU composition of this sample
may have decreased AUROC values and magnitude of effect sizes
for differentiating biomarker positive and negative groups, as
suggested by the highly similar results seen when limiting analyses
only to CU participants. A more balanced sample design, with
more inclusion of individuals with mild to moderate dementia,
could support greater utility of these memory measures for
identifying individuals at risk for biomarker positivity; the current
results are more relevant for preclinical detection given that 93% of
our sample is CU. In addition, the population-based nature of the
MCSA sample may produce lower AUROC values for predicting
elevated brain biomarkers than studies that use a convenience
sample that frequently includes a higher number of individuals at
risk of Alzheimer’s disease based on family history of subjective
concerns and studies that have strict inclusion criteria to limit
potential comorbidities (Maserejian et al., 2019). MCSA partic-
ipants have higher rates of comorbid conditions given that
exclusionary criteria are limited to terminal illness or hospice care
(Roberts et al., 2008). Third, a majority of the sample (83%) had
prior exposure to the AVLT given the longitudinal nature of the
MCSA and ADRC studies, thus practice effects could have
impacted the ability of the AVLT to discriminate biomarker
groups. Because biomarker negative participants benefit more
from practice effects than biomarker positive participants, it is
possible this could have amplified group difference effects for the
AVLT (Alden et al., 2022; Machulda et al., 2017). Future work is
needed to replicate these results in a setting where both the SLS and
AVLT are baseline administrations. Similarly, the entirely
unsupervised and remote approach for the SLS could dampen
the sensitivity of the SLS as the results presented in this study
include all available remote data.

We capture participant-reported information about test
interference, noise in the test environment, and participant
comments that can provide additional information about test
interruptions or environmental considerations. However, because
our goal was to establish the robust criterion validity of the SLS “in
the wild,”we did not apply any exclusionary criterion based on this
information in the present study. Another reason we did not apply
such exclusionary criteria is that individuals who are less able to
follow instructions provided for the recommended test environ-
ment may be more likely to have cognitive impairment. Thus,
increased likelihood of lower test performance in an uncontrolled

environment, worsened by environmental distractions, could also
be related to risk of cognitive decline. If cognitive screening/risk for
cognitive decline is the goal, worse performance in remote settings
may help identify risk in a way not captured by controlled clinical
settings, adding an element of ecological validity or ability to adapt
to a new task without assistance. Future work will examine whether
and to what degree these factorsmay influence test performance, as
increased distractions in the home environment can negatively
impact performance (Madero et al., 2021). Similarly, individuals
with low technological literacy may perform more poorly on the
SLS because of a lack of familiarity or comfort with mobile devices
or computers. Our approach of allowing individuals choose to use
the device they are most comfortable with helps address this to
some degree. Even though most adults in the U.S. have access to
some device, individuals from disadvantaged backgrounds may
not have access to cellular service, wifi or broadband internet at
home, although only 7% of Americans report they do not use the
internet across any of these access methods and this has
dramatically declined since 2000 (Perrin & Atske, 2021). We also
cannot rule out the possibility that some individuals may have
written down words to benefit their performance; however, given
that this is a research study there would be no apparent incentive to
artificially increase performance. In addition, there are elements of
test design that help to deter this to some extent. First, word order
is randomized for each trial; since the words are not presented in
the same order, this makes it more difficult to write them down
each time. Second, by the 4th learning trial, for high performers
there are 23 words. Thus, it would be quite burdensome to write all
the words down. In addition, if this was occurring, this would
greatly increase the time to complete the measure. We review the
data for outliers with regards to time to completion overall and for
each test, and we did not have specific concerns this occurred in the
current sample. Finally, while use of a strictly biomarker-defined
ground truth is a novel aspect of this study, in vivo PET biomarkers
also have some limitations such as high but imperfect reliability
(manifested by “noise” in the trajectories of imaging results over
time in some individuals), and the fact that PET measures of
amyloid and tau pathology have a sensitivity floor and medically
significant pathology can exist that lies beneath this detection
threshold (Lee et al., 2022). Also, we adopted a liberal window for
inclusion of available biomarker data to allow for some missed
scanning opportunities during the COVID-19 pandemic, to
maximize the sample size and because of the generally good
stability of amyloid and tau classifications (Jack et al., 2019), but this
also decreases study precision relative to a narrower time window.

In summary, SLS test design prioritized remote assessment
needs and a computer-adaptive approach (Stricker et al., 2022).
Even though the SLS is not a direct adaptation of the AVLT, our
results show highly similar ability of the remotely-administered
SLS and in-person-administered AVLT to differentiate AD
biomarker-defined groups. These results challenge preconceived
notions about memory assessment by showing that creative use of
a recognitionmemory paradigm that emphasizes learning in an all-
remote unsupervised sample differentiates AD biomarker-defined
groups as effectively as a traditional word list memory measure
based on free recall responses.
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