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ABSTRACT 
Combinatorial Design such as configuration design, design optioneering, component selection, and 
generative design, is common across engineering. Generating solutions for a combinatorial design task 
often involves the application of classical computing solvers that can either map or navigate design 
spaces. However, it has been observed that classical computing resource power-law scales with many 
design space models. This observation suggests classical computing may not be capable of modelling 
our future design space needs. 
To meet future design space modelling needs, this paper examines quantum computing and the 
characteristics that enables its resources to scale polynomially with design space size. The paper then 
continues to present a combinatorial design problem that is subsequently represented, constrained and 
solved by quantum computing. The results of which are the derivation of an initial set of circuits that 
represent design space constraints. The study shows the game-changing possibilities of quantum 
computing as an engineering design tool and is the start of an exciting new journey for design 
research. 
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1 INTRODUCTION 

Configuration design, design optioneering, component selection, and generative design are common 

Engineering Design tasks. Examples include developing structures that satisfy construction 

requirements, deriving mechanisms that have desired motion profiles and generating toolpaths that 

account for manufacturing constraints (Feng and Kusiak, 1995; Gopsill, Shindler, et al., 2017; Mathias et 

al., 2017; Medland and Mullineux, 1993). Together, they represent forms of combinatorial design. 

Combinatorial design can be generally described as a function of characteristics,   ,            that 

define a design space, such as a parametric Computer Aided Design (CAD) model, a function of 

constraints,   ,           , such as fits, limits and tolerances, and more often than not, an objective 

function that determines how well a solution performs. The task is to then identify solutions in the design 

space that satisfy the constraints, and in the presence of an objective function, select the optimal 

solution(s) for the problem (Biskjaer et al., 2014). However, the challenge lies in the increasingly open 

design spaces we wish to explore (e.g., Additive Manufacturing) and increasing number of constraints 

being imposed on our problems. This is coupled with dimensional representation (e.g., continuous, 

discrete, ordinal, range, and dependency), resulting in complex hyper-parameter design spaces that 

engineers need to navigate to discover a solution. 

Over the years, methods such as constraint-based modelling, hyper-parameter optimisation, genetic 

algorithms, linear programming, and generative approaches have been developed to support engineers in 

traversing design spaces (Lin and Chen, 2002; Sapossnek et al., 1991; Zhang and Xie, 2014). These 

methods tap into the power of classical computing to explore design spaces to a greater extent than that 

of an engineer manually generating and evaluating solutions. In general, these methods can be 

categorised as either design space mapping or directed search (Figure 1). 

 

(a) Optimum solutions to our design problem. 

  

(b) Mapping. The design space is 
computed for a range of input 
parameters (e.g., grid) with each cross-
over representing a solution. These 
computed solutions are stored for later 
retrieval. Challenges arise in the 
computation and storage of enough 
solutions that can suitably represent 
the design space. 

(c) Directed search. Circles represent 
an initial grid-search that is later 
refined, based on the results, to a local 
search represented by the green 
squares. This will occur multiple times 
until a desired solution is reached. 

Figure 1. Combinatorial design modelling approaches. 
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(a) Cube whose length, width and 

depth is integer l . 

(b) Power-law scaling storage 
requirement. 

Figure 2. Modelling a design space cube. 

Design space mapping methods populate the design space with solutions that satisfy the constraints 

(Figure 1b). This can be achieved using techniques such as grid/random sampling and/or contour 

traversal, to produce a map of the design space. The map can then be queried, and solutions selected to 

meet the designer’s needs. Curve/surface fitting algorithms (e.g., linear and polynomial interpolation) are 

often employed to inference between known results. The challenge for design space mapping is in 

generating enough solutions in the permitted product development timeframe to fully characterise the 

design space. This is often countered by increasing computational resource (power, storage). 

Directed search couples the objective function and design space (Figure 1c). Methods start by populating 

the design space with solutions, typically through grid, random or Bayes sampling. The results then 

inform subsequent iterations where algorithms, such as gradient descent/ascent and genetic, are 

employed. This leads to a more focused navigation of the design space. Challenges exist in identifying 

local optima, traversal of disjoint design spaces, and convergence to an optimal solution within the 

permitted product development timeframe. This is also countered by increasing computational resource. 

Thus, no matter the approach, increasing computational resource is often the answer to a higher fidelity 

understanding of the design space. This becomes a barrier if the design problem being solved does not 

scale well with computational resource and has been observed by Gopsill and Hicks (2020) in their 

analysis of design spaces which require power-law scaling computational resource to model them fully. 

To illustrate, let’s consider a design space that can be represented by a cube whose length, width and 

depth is integer  . The cube is then discretised so that   blocks of unit size can be positioned within it 

giving a design space,  , where     representing the candidate block positions. Let’s also allow the 

blocks to be positioned anywhere in   with overlaps and discontinuous structures. The number of 

design solutions,  , can be written as a       : 

        (1) 

Taking      gives a cube volume of      . Realising that 8 bits in a byte results in        

binary sequences, the number of bytes to index the position of a single block can be determined by:  

                   (2) 

Thus, the storage requirement for   becomes         (Figure 2b). What we observe is a design 

problem whose search/storage requirement exhibits power-law scaling and quickly becomes an 

intractable problem for classical computing. 

Thus, it is rare to compute and store all solutions in classical computing but to store only the solutions 

that are valid for a set of constraints. If these constraints were to be updated, then a new traversal of the 

design space has to be made. It is also the reason that the topology of a design space is often described 

rather than individual solutions. However, this can be problematic for discontinuous design and solution 

spaces. Even if one adds constraints, such as the constraint of an individual constructing in the space, the 

power-law scaling remains with the constraints translating the relationship down the y-axis. For example, 

10 Minecraft bricks constrained by being the same type, single starting position, forms a continuous 

structure and features no-overlap produces           design solutions (Gopsill, 2018). 
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Thus, we arrive at the problem of our design spaces requiring power-law computational resource to 

model them fully, and classical computing not scaling well to these types of problem. A problem that this 

paper poses could be solved through the inherent properties of quantum computing. 

 

Figure 3. Polynomial scaling of quantum computing in evaluating      for our      
design space cube. 

 

The paper’s contribution is therefore in design science and the examination of quantum computing’s 

ability to model combinatorial design spaces through both theoretical and empirical study. The 

theoretical discusses the nature of qubits and their ability to represent multiple states in a single instance, 

and how this feature could provide the ability to study design spaces (Section 2). The empirical applies 

quantum computing to a 2D tiling problem where we propose a quantum circuit that can represent all 

valid solutions to the design problem (Section 3). This is extended to consider the placement of 

constraints to the problem and the world’s first set of quantum circuits to represent design constraints 

along with an investigation in combining constraints (Section 4 & Section 5). In doing so, we 

demonstrate the potential of quantum computing to complement and in some cases, supersede classical 

computing in representing design spaces. We also demonstrate quantum design problem structuring is a 

non-trivial process with Section 6 eliciting six research questions for the design community. Solving 

these would open avenues for a new suite of design tools to support us in developing the products of 

tomorrow. The paper then concludes by highlighting the key findings (Section 7). 

2 QUANTUM COMPUTING 

Quantum computing is receiving increasing attention with considerable work on the underlying 

information theory along with the rapid pace of development of real-world quantum computers that 

provide a means to test and validate quantum circuits and algorithms. Here, we define a circuit as the 

ability to represent and perform a computation in a quantum computer, while an algorithm is a quantum 

circuit that has demonstrable performance improvements over classical counterparts. The maturity of the 

National Quantum Technologies Programme in the UK demonstrates the field is starting to deliver 

theory into practice (Anon, 2020). Alexandru et al. (2020) and Linden et al. (2020) are examples of 

taking quantum algorithms from their pure mathematical constructs and contextualising them to real-

world problems, such as Heat Transfer. While researchers are beginning to explore the application of 

Quantum Computing for engineering modelling problems, a search on the Design Society’s website, and 

Design Science, Research in Engineering Design, Design Studies and Mechanical Design journals reveal 

no papers that explore the potential implications it has on the design process and the act of designing. 

Quantum computing has the potential to overcome the power-law scaling challenges exhibited in 

classical computed design spaces through its ability to represent multiple states via superposition. Qubits, 

the quantum equivalent to classical bits, can represent both 0 & 1 compared to 0 or 1 in classical 

computing. This allows 𝑛 qubits to represent 2n
 states in a single instance. This has the potential to 

drastically reduce resource requirements as a design space can be represented as an ensemble of quantum 

states. 
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Returning to our problem of representing      for our design space cube, the number of qubits,  , 

(resource requirement) can be written as: 

        
    (1) 

Figure 3 overlays the result from Figure 2b where we observe polynomial scaling for a quantum 

computer as opposed to power-law scaling in classical computing (n.b., second y-axis). In fact, today’s 

IBM 53 qubit computer is theoretically capable of superseding classical High-Performance Computing 

in representing our design space cube. While the theoretical and increasingly practical capability exists, 

challenges remain in orchestrating the ensemble of states in order to both represent a design space, 

provide solutions with respect to a set of constraints and retrieve solutions through measurement. 

3 REPRESENTING DESIGN SPACES WITH QUBITS 

To examine quantum computing’s capability, let’s take a 2D tiling design problem where two tiles are 

to be placed on a     grid. Each tile can be placed in one of four locations (Figure 4a). Each tile can 

be represented by two qubits, one for each dimension (x, y). To place them in superposition, we use a 

Hadamard gate, , which gives equal probability of the qubit being 0 or 1 when measured. 

Combined, they form all the solutions to placing a single tile in the design space,       . The 

quantum circuit is shown in Figure 4b, which features the four qubits, two for each tile, all set into 

superposition using Hadamard gates and being measured, , to return a classical binary state. 

With two tiles, the number of solutions becomes             and the quantum computer 

represents each of these solutions with equal probability as shown by the results from the classical 

simulation of the quantum circuit
1
, Figure 4c. When measured, the quantum computer returns one of 

the solutions to our tiling problem. To represent all these solutions in a classical computer would 

require         bits. This demonstrates Quantum Computing’s ability to represent the design 

space as an ensemble of quantum states. The next step is in how we can manipulate the quantum 

circuit to report only solutions for our combinatorial design problem. 

  

(a) A 2 tile     tiling problem. (b)     design space QC model 

 

(c) Measurement probabilities for the different configurations of tiles on the     grid. 
 

Figure 4. Tiling problem represented in a quantum computer 

 

                                                      

 
1 
Computed using QisKit. The code for each of these problems can be found at data.bris.ac.uk. 
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(a) Constraint. (b) Quantum algorithm. 

Figure 5. No-overlap constraint. 

  

(a) Constraint. (b) Quantum Algorithm 

Figure 6. No (1,1) constraint. 
 

4 QUANTUM CONSTRAINTS 

In Section 3, we demonstrated how we can take a tiling design problem and represent all the solutions 

using a quantum circuit. However, design is fraught with constraints and it is the role of the engineer to 

navigate around these constraints to develop a solution to the problem. In this section, we present two 

constraints one might apply to our tiling problem, how they can be represented in a quantum circuit and 

how they could be combined to form a multi-constraint model. The development of the quantum circuit 

solutions followed an iterative trial and error design process by researchers with knowledge of quantum 

computing circuits. 

4.1 The no-overlap constraint algorithm 

Design problems typically involve geometric constraints. In our tiling problem, we may want to say the 

tiles cannot be placed in the same location (Figure 5a). Thus, we need to set a constraint in our model to 

remove these from  . Quantum Information theory states that no information can be lost, which results in 

the sum of the measurement probabilities across all combinations the quantum computer always being 1. 

For example, lets say we want to remove 1111 from the set of results in Figure 4c. The 6% measurement 

probability would have to be re-distributed across the remaining combinations in some manner. 

Therefore, we need to manipulate the qubits to only report correct solutions for our problem and this is 

achieved by re-distributing the measurement probability across the solutions that meet our constraint. 

The proposed circuit for this constraint is shown in Figure 5b. 

The circuit starts with the four qubits, q[0-3], to provide the bit string that will represent the locations of 

the two tiles. q[0-1] represents the location of the first tile and q[2-3] represents the location of the 

second tile. We start by setting q[0-3] in superposition through Hadamard gates, as in Section 2, which 

defines our design space. 
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We accompany this with three additional qubits, q[4-6], that we use to detect and control the states of the 

four q[0-3]. Following the Hadamard gates, there is a Toffoli gate comparing q[0] and q[2] followed by 

two Pauli X, , gates, another Toffoli and two more Pauli X gates. A Toffoli (also known as a CCNOT 

gate) is a two-bit input, one-bit output gate which inverts the state of the output bit if and only if, the two 

input bits are 1. In this case, we’re checking whether q[0] and q[2] are 1 and if so, q[4] becomes 1. A 

Pauli X gate inverts the state of a qubit. We’re using Pauli X gates to flip the state of q[0] and q[2] so we 

can check for instances of 00 and 11 and a second set of Pauli X to ensure we return q[0] and q[2] to 

their original state. The combination of gates forms a bit comparator that returns q[4] as 1 when q[0] and 

q[2] are equivalent (Menon and Chattopadhyay, 2020; Ramos et al., 2006). 

The series of gates are repeated for q[1] and q[3] giving us a 1 on q[5], if they are equivalent. The last 

Toffoli gate checks both sets of qubits for equivalency and if so, q[6] becomes |1>. The final element 

is the CNOT gate that applies a Pauli X gate to q[3] (could be any one of q[0-3]) if q[5] is 1. Applying 

the Pauli X gate will flip the state of q[3] so that it is out of sequence with q[1] thereby re-distributing 

the overlapping cases to non-overlapping case and thus, meet our design constraint. The final elements 

in Figure 5b represent the measurements being taken and stored in classical form. These are only taken 

for q[0-3] as these are the ones of interest in terms of representing a solution. 

4.2 The no (1,1) constraint 

Design spaces may also have positions that we would not like to place objects. In the case of our tiling 

problem, let’s say that we would not like a tile in location (1,1) (Figure 6a). The proposed circuit for this 

constraint is shown in Figure 6b. Each qubit set has a Toffoli gate and applies a Pauli X gate to q[4,5], 

respectively. A CNOT gate is then placed after the Toffoli gate. This applies a Pauli X gate to the target 

q[0,3] if q[4,5] are 1, respectively, preventing either tile being present at (1,1). 

4.3 Combined constraints 

With the circuits formed, a further experiment was set-up to examine how they can be combined to 

provide a no overlap scenario where neither tile is in the (1,1) position. The combined model is presented 

in Figure 7. In this case, we chose to simply append the quantum circuits to investigate whether 

combining constraints can be achieved through a trivial addition process. 

 

Figure 7. Combined quantum circuit. 

5 RESULTS 

Table 1 presents the results to the four design problems: constraint free, no overlap, no (1,1) placement 

and combined (no overlap and no (1,1) placement). In the constraint free tiling problem, we can see that 

S  is represented by the circuit and solutions feature the same measurement probability. Moving to the no 

overlap case, we see the circuit is effective in eliminating the overlap solutions for our problem. Given 

the law of conservation of quantum information, it can be seen that the measurement probabilities have 
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been re-distributed from the invalid solutions to the valid solutions. This is also observed in the no (1,1) 

placement constraint. In both cases, the re-distribution is not even across S  with some featuring higher 

probabilities of being measured than others. This presents bias in S  as a result of our quantum circuit 

representation of the combinatorial design problem. 

When combined, we observe the interplay between the two constraints. The combined circuit is effective 

in representing S  except for the presence of one invalid solution (1101). As a result, the combined circuit 

was revised as shown in Figure 8. The circuit features an additional Toffoli gate between q[2] and q[3] to 

check whether they are both 1 and if so, the accompanying CNOT gate alters the state of q[2]. The 

results of which are shown in the final column of Table 1 and demonstrates the additional quantum gate 

series counters the interplay between the two constraints. It reveals that the formation of design problems 

with sets of constraints will be non-trivial. The combination of constraints also shows bias to particular 

solutions in  . 

Table 1. Measurement probabilities and solution correctness of the quantum circuits. 

 

 

Figure 8. Combined constraints v.2. 
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6 DISCUSSION 

The paper demonstrates quantum computing’s potential in representing combinatorial design problems 

and the ability to realise design spaces in a single instance that would be infeasible through classical 

computation. While we have indicated quantum supremacy in representing design spaces, the test 

presented assumes that there is a need to compute all   for a design problem in order to select an 

optimal solution. An issue that is well-recognised in classical computing and has led to the 

advancement of algorithms that navigate design spaces. Therefore, a more suitable test might be one 

that reflects quantum computations’ ability to find optimal solutions faster as well as optimal solutions 

that classical algorithms would not arrive at. This is the next step in the process where we are seeking 

to score the solutions against an objective function and to determine what, if any, quantum algorithms 

exist in returning optimal solutions from  , and whether they provide a computational advantage over 

classical solutions. 

At present, repeated sampling of the quantum circuits is likely to be comparable to random sampling of a 

classical design space representations. However, opportunities exist in manipulating the measurement 

probabilities in order to promote preferred solutions. Subsequent evaluation of the measurement 

distribution would effectively provide the ranking of solutions. In understanding how we may 

manipulate the measurement probabilities and apply known quantum algorithms that outperform their 

classical counterparts, we will be able to evaluate how the methods complement one another, where the 

trade-offs are, and how we can determine where and when a quantum approach should be taken for an 

engineering design problem. We have also provided the first quantum circuits that represent and 

constrain design spaces. The successful will be deployed by the engineering design community to 

evaluate combinatorial design problems. An emergent property that needs to be managed is in the 

shifting probability distributions so as to not bias particular solutions (unless for the purposes of 

promoting them with respect to the objective function). Reflecting on Figure 8, randomly assigning the 

CNOT gate to q[0-3] between each run of the circuit could provide a means of averaging the distribution. 

Thus, it may be that successive runs of different quantum logic-gate configurations are required. 

The challenge in retrieving all the solutions exists with repeated measurement likely to return results that 

we have already measured. Thus, incorporating methods of constraining the design space through the 

inclusion of known solutions could be explored. In addition, being able to retrieve the number of 

solutions that exist would be an interesting metric ahead of investigating the form of   as this may 

indicate the level of uncertainty in our design requirements and whether we need to tighten, relax, add or 

remove constraints. One such metric would be determining the number of solutions that satisfy our 

problem (D’Helon and Protopopescu, 2002). Continuing along this train of thought, it may be that 

describing the topology of the design space would be just as powerful and useful as returning specific 

solutions. 

The algorithms also demonstrate the use of qubits as control bits to constrain the state of the design 

space. While this is crucial for circuit function, we ultimately lose computing capacity in representing the 

design space. Thus, effective use/re-use of these control qubits will become important in maximising the 

capacity of a quantum computer in modelling a design space. 

In summary, the emergent research questions for the design community are: 

1. How can one score solutions against an objective function?  

2. How can measurement probabilities be manipulated to assist solutions identification? 

3. How can we manage bias introduced by the introduction of our constraints? 

4. How does the construction of quantum circuits scale with size? 

5. How could Quantum Computing be used to describe the topology of a design space? 

6. What guidelines, support and design processes for constructing combinatorial design problems for 

Quantum Computing are required? 

7 CONCLUSION 

Combinatorial design problems are widely observed in engineering and are crucial in the derivation of 

solutions to solve our design problems. Design problems that are becoming increasingly complex and 

vast with classical computing exhibiting power-law scaling behaviour in the computational resource they 

require to resolve them. 

https://doi.org/10.1017/pds.2021.512 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.512


2520  ICED21 

To counter this and be able to continue to explore complex design spaces, this paper has successfully 

demonstrated the potential of quantum computing to represent design spaces with polynomial scaling 

resource requirements. The paper has gone further by contributing four circuits to represent and constrain 

a 2 tile 2D tiling design problem. 

Quantum supremacy has been discussed with it potentially being closer than we think. However, 

considerable research is still required in providing the underlying constraint circuits and algorithms that 

will help us construct our design problems for quantum computers to solve. While practical application 

of quantum computing is still years away, this paper has started us on the journey of creating a toolbox 

of circuits and algorithms that engineers will be able to deploy when it arrives. 
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