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Abstract
Given finite configurations 𝑃1, . . . , 𝑃𝑛 ⊂ R𝑑 , let us denote by m

R𝑑 (𝑃1, . . . , 𝑃𝑛) the maximum density a set 𝐴 ⊆ R𝑑
can have without containing congruent copies of any 𝑃𝑖 . We will initiate the study of this geometrical parameter,
called the independence density of the considered configurations, and give several results we believe are interesting.
For instance we show that, under suitable size and nondegeneracy conditions, m

R𝑑 (𝑡1𝑃1, 𝑡2𝑃2, . . . , 𝑡𝑛𝑃𝑛) progres-
sively ‘untangles’ and tends to

∏𝑛
𝑖=1 m

R𝑑 (𝑃𝑖) as the ratios 𝑡𝑖+1/𝑡𝑖 between consecutive dilation parameters grow
large; this shows an exponential decay on the density when forbidding multiple dilates of a given configuration,
and gives a common generalization of theorems by Bourgain and by Bukh in geometric Ramsey theory. We also
consider the analogous parameter m

S𝑑 (𝑃1, . . . , 𝑃𝑛) in the more complicated framework of sets on the unit sphere
S
𝑑 , obtaining the corresponding results in this setting.

1. Introduction

The general problem we consider in this paper can be phrased by the following question: how large can
a set be if it does not contain a given geometrical configuration?

The simplest and most well-studied instance of this problem concerns forbidden configurations
of only two points on R𝑑 , which are then characterized by their distance; since there clearly exist
unbounded sets on R𝑑 which do not span a given distance, the appropriate notion of ‘largeness’ must
take into account their density rather than their cardinality or measure. Define the upper density 𝑑 (𝐴)
of a measurable set 𝐴 ⊆ R𝑑 by

𝑑 (𝐴) = lim sup
𝑇→∞

vol(𝐴 ∩ [−𝑇, 𝑇]𝑑)
vol([−𝑇, 𝑇]𝑑)

,

where vol denotes the Lebesgue measure. Our general problem in this case becomes: what is the
maximum upper density that a subset of R𝑑 can have if it does not contain pairs of points at distance 1?1

This extremal density is commonly denoted 𝑚1 (R𝑑), and it is associated to the measurable chromatic
number2 𝜒𝑚(R𝑑) of the Euclidean space by the simple inequality 𝜒𝑚(R𝑑) ≥ 1/𝑚1 (R𝑑). Indeed, if
no colour class contains pairs of points at unit distance, then each of them has upper density at most
𝑚1 (R𝑑), and it takes at least 1/𝑚1 (R𝑑) such classes to cover the whole space. The parameter 𝑚1(R𝑑)
is many times studied in the context of providing lower bounds for the measurable chromatic number.

Despite significant research on the subject, there is still no dimension 𝑑 ≥ 2 for which the value of
𝑚1 (R𝑑) is known. As far back as 1982, Erdős [9] conjectured that 𝑚1(R2) < 1/4, implying that any

1Note that this problem is dilation invariant, so there is no loss of generality in assuming the forbidden distance to be 1.
2The measurable chromatic number of R𝑑 is the minimum number of measurable sets needed to partition R𝑑 so that no two

points belonging to the same part are at distance 1 from each other.
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measurable planar set covering one fourth of the Euclidean plane contains pairs of points at unit distance;
this conjecture is still open. A celebrated theorem of Frankl and Wilson [11] implies that 𝑚1 (R𝑑) decays
exponentially with the dimension and obtains the asymptotic upper bound 𝑚1 (R𝑑) ≤ (1.2 + 𝑜(1))−𝑑 .
We refer the reader to Bachoc, Passuello and Thiery [1] and to DeCorte, Oliveira and Vallentin [6] for
the best known bounds on 𝑚1 (R𝑑) and 𝜒𝑚(R𝑑).

The situation becomes even more complex and interesting when one forbids multiple distances
𝑟1, . . . , 𝑟𝑛 > 0; let us denote by mR𝑑 (𝑟1, . . . , 𝑟𝑛) the maximum upper density of a set in R𝑑 avoiding all
of these distances. This parameter was first studied by Székely [22, 23] in connection with the chromatic
number of geometric graphs, and it depends not only on the dimension of the space and number of
forbidden distances but also on how these distances relate to each other.

In his first paper, Székely pondered on the connection between the structure of a set of forbidden
distances and the maximum density of a set in Euclidean space which avoids them all, and conjectured
that mR2

(
(𝑟 𝑗 ) 𝑗≥1

)
= 0 whenever the sequence (𝑟 𝑗 ) 𝑗≥1 of forbidden distances is unbounded. His conjec-

ture was proven by Furstenberg, Katznelson and Weiss [12] using methods from ergodic theory, who
obtained the following result:

Theorem 1. If 𝐴 ⊆ R2 has positive upper density, then there is some number 𝑡0 such that for any 𝑡 ≥ 𝑡0,
one can find a pair of points 𝑥, 𝑦 ∈ 𝐴 with ‖𝑥 − 𝑦‖ = 𝑡.

Using Fourier analytic methods, Bourgain [2] was then able to generalize this theorem from two-
point configurations on R2 to d-point configurations in general position on R𝑑 , for any 𝑑 ≥ 2. For
convenience, we shall say that a configuration 𝑃 ⊂ R𝑑 is admissible if it has at most d points and spans
a (|𝑃 | − 1)-dimensional affine hyperplane. Bourgain showed the following:

Theorem 2. Suppose 𝑃 ⊂ R𝑑 is admissible. If 𝐴 ⊆ R𝑑 has positive upper density, then there is some
number 𝑡0 > 0 such that A contains a congruent copy of 𝑡 ·𝑃 for all 𝑡 ≥ 𝑡0.

This result motivates the introduction of the independence density of a given family of configurations
𝑃1, 𝑃2, . . . , 𝑃𝑛 ⊂ R𝑑 , denoted mR𝑑 (𝑃1, 𝑃2, . . . , 𝑃𝑛), as the maximum upper density of a set in R𝑑
which does not contain a congruent copy of any of these configurations. This parameter generalizes
our earlier notion of extremal density mR𝑑 (𝑟1, . . . , 𝑟𝑛) from two-point to higher-order configurations,
and can be seen as the natural analogue of the independence number3 for the (infinite) geometrical
hypergraph on R𝑑 whose edges are all isometric copies of 𝑃 𝑗 , 1 ≤ 𝑗 ≤ 𝑛.

With the notation now introduced, Bourgain’s Theorem can be restated as the assertion that
mR𝑑

(
(𝑡 𝑗𝑃) 𝑗≥1

)
= 0 for all admissible 𝑃 ⊂ R𝑑 and all unbounded positive sequences (𝑡 𝑗 ) 𝑗≥1; his proof,

in fact, implies the stronger result that

mR𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) → 0 as 𝑛 → ∞

whenever the dilation parameters 𝑡 𝑗 grow without bound. Seen in this light, his results might inspire
several further natural questions; for instance:

(Q1) What is the rate of decay of mR𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) with n as the ratios 𝑡 𝑗+1/𝑡 𝑗 between consec-
utive scales get large?

(Q2) What possible values can be taken by the independence density mR𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) of n
distinct dilates of a given configuration P?

(Q3) Are there analogous results which are valid for other (non-Euclidean) spaces?

The goal of the present paper is to initiate the study of the independence density function mR𝑑 and
related geometrical parameters, and the investigation of these three problems will serve as the driving
force behind our analysis.

3Given some finite hypergraph H, its independence number is the maximum size of a subset of vertices which does not entirely
contain any edge. Its independence density can then be defined as the independence number divided by the total number of vertices.
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1.1. Outline of the paper

In Section 2, we will formally define the independence density of a family of configurations, both in
the entire space R𝑑 and when restricted to bounded cubes in R𝑑 , and start our study of this geometrical
parameter. The methods we use are a mix of Fourier analysis, functional analysis and combinatorics.
The Fourier-analytic part is based mainly on Bourgain’s arguments from [2], and the combinatorial part
is based on Bukh’s arguments from [3] (where he considered similar problems to ours but concerning
forbidden distances). We do not assume that the reader is familiar with either of these papers; instead,
we give a presentation of the relevant parts of their reasoning that will be important to us.

The main tools to be used in this section will be a Counting Lemma (Lemma 4) and a Supersaturation
Theorem (Theorem 3), both of which are conceptually similar to results of the same name in graph and
hypergraph theory (see [18, 4, 10]). Intuitively, the Counting Lemma says that the count of admissible
configurations inside a given set does not significantly change if we blur the set a little; this will be proven
by Fourier-analytic methods. The Supersaturation Theorem states that any bounded set 𝐴 ⊆ [−𝑅, 𝑅]𝑑 ,
which is just slightly denser than the independence density of an admissible configuration P, must
necessarily contain a positive proportion of all congruent copies of P lying in [−𝑅, 𝑅]𝑑; this is proven
by functional-analytic methods, via a compactness and weak∗ continuity argument.

We will then use these tools to obtain several results on the independence density parameter, and
in particular, answer questions (Q1) and (Q2) in the case where the considered configuration P is
admissible. Regarding question (Q1), we show that mR𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) tends to mR𝑑 (𝑃)𝑛 as the
ratios 𝑡 𝑗+1/𝑡 𝑗 get large; this generalizes a theorem of Bukh from two-point configurations to k-point
configurations with 𝑘 ≤ 𝑑 and easily implies Bourgain’s Theorem discussed in the Introduction. As for
question (Q2), we show that, by forbidding n distinct dilates of such a configuration P, we can obtain as
independence density any real number strictly4 between mR𝑑 (𝑃)𝑛 and mR𝑑 (𝑃), but none smaller than
mR𝑑 (𝑃)𝑛 or larger than mR𝑑 (𝑃). We also prove:
- The general lower bound mR𝑑 (𝑃1, 𝑃2, . . . , 𝑃𝑛) ≥

∏𝑛
𝑖=1 mR𝑑 (𝑃𝑖), which holds for all configurations

𝑃1, 𝑃2, . . . , 𝑃𝑛 ⊂ R𝑑;
- Continuity of the independence density function mR𝑑 on the set of admissible configurations; and
- Existence of extremizer measurable sets (i.e., having maximal density) which avoid admissible con-

figurations.
In Section 3, we will consider these same questions but related to the more complicated setting of

sets on the unit sphere S𝑑 . We will also present (and prove) a spherical analogue of Bourgain’s Theorem;
this is in line with our question (Q3), as the sphere is the most well-studied non-Euclidean space.

Many of the arguments from the Euclidean setting will be used again in the spherical setting (in
particular, the reliance on our two main combinatorial tools), but there are also some complications we
need to solve that are intrinsic to the sphere. One of them is that harmonic analysis is (for our purposes)
much more complicated on S𝑑 than it is on R𝑑 , which makes our proof of the spherical Counting
Lemma correspondingly harder and more technical than its Euclidean counterpart. Moreover, due to
the lack of dilation invariance in the spherical setting, we will only be able to make a modest progress
towards answering its analogue of question (Q2) (and the answer to question (Q1) will be somewhat
more intricate). The other results proven in the Euclidean space setting will continue to hold in the same
form for sets on the sphere.

Finally, in Section 4, we discuss some related results in the literature and suggest several intriguing
open problems in line with the results presented here.

1.2. Some remarks on notation

The same denomination will be used for both a set and its indicator function; for instance, if we are
given 𝐴 ⊆ R𝑑 , then 𝐴(𝑥) = 1 if 𝑥 ∈ 𝐴 and 𝐴(𝑥) = 0 otherwise. The group of permutations of {1, . . . , 𝑘}

4Whether these boundary values can be attained is not yet clear.
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is denoted by 𝔖𝑘 . Given a group G acting on some space X and an element x of this space, we write
Stab𝐺 (𝑥) := {𝑔 ∈ 𝐺 : 𝑔.𝑥 = 𝑥} for the stabilizer subgroup of x.

The averaging notation E𝑥∈𝑋 is used to denote the expectation when the variable x is distributed
uniformly over the set X. When X is (a subset of) a compact group G, this measure is (the restriction
of) the normalized Haar measure on G, which is the unique Borel probability measure on G which is
invariant by both left- and right-actions of this group. Similarly, we write P𝑥∈𝑋 to denote the probability
under this same distribution.

2. Configurations in Euclidean space

Throughout this section, we shall fix an integer 𝑑 ≥ 2 and work on the d-dimensional Euclidean space
R
𝑑 , equipped with its usual inner product 𝑥 · 𝑦 and associated Euclidean norm ‖𝑥‖. We denote by

vol the Lebesgue measure on R𝑑 and by 𝜇 the normalized Haar measure on the orthogonal group
O(R𝑑) = {𝑂 ∈ R𝑑×𝑑 : 𝑂𝑡𝑂 = 𝐼}.

Given 𝑥 ∈ R𝑑 and 𝑅 > 0, we denote by 𝑄(𝑥, 𝑅) the axis-parallel open cube of side length R centered
at x. We write 𝑑𝑄 (𝑥,𝑅) (𝐴) := vol(𝐴 ∩𝑄(𝑥, 𝑅))/𝑅𝑑 for the density of 𝐴 ⊆ R𝑑 inside the cube 𝑄(𝑥, 𝑅).
The upper density of a measurable set 𝐴 ⊆ R𝑑 can then be written as 𝑑 (𝐴) = lim sup𝑅→∞ 𝑑𝑄 (0,𝑅) (𝐴);
if the limit exists, we shall instead denote it by 𝑑 (𝐴).

A configuration P is just a finite subset ofR𝑑 , and we define its diameter diam 𝑃 as the largest distance
between two of its points. Recall that a configuration 𝑃 ⊂ R𝑑 on k points is said to be admissible if
𝑘 ≤ 𝑑 and if P is nondegenerate (that is, if it spans a (𝑘 − 1)-dimensional affine hyperplane). The
space of k-point configurations can be given a metric induced from the Euclidean norm as follows: if
𝑃 = {𝑣1, . . . , 𝑣𝑘 } and 𝑄 = {𝑢1, . . . , 𝑢𝑘 }, the distance between P and Q is

‖𝑃 −𝑄‖∞ := min
𝜎∈𝔖𝑘

max
1≤𝑖≤𝑘

‖𝑣𝑖 − 𝑢𝜎 (𝑖) ‖,

where the minimum is taken over all permutations 𝜎 of {1, . . . , 𝑘}. It is easy to see that, under the
topology induced by this metric, the set of admissible configurations is an open set and that it is dense
inside the family of all subsets of R𝑑 with at most d elements.

We say that two configurations 𝑃,𝑄 ⊂ R𝑑 are congruent, and write 𝑃 � 𝑄, if they can be made
equal using only rigid transformations; that is, 𝑃 � 𝑄 if and only if there exist 𝑥 ∈ R𝑑 and 𝑇 ∈ O(R𝑑)
such that 𝑃 = 𝑥 + 𝑇 ·𝑄. Given a configuration 𝑃 ⊂ R𝑑 , we say that a set 𝐴 ⊆ R𝑑 avoids P if there is no
subset of A which is congruent to P.

We can now formally define our main object of study in this section, the independence density of a
configuration or family of configurations. There are, in fact, two closely related versions of this parameter
we will need, depending on whether we are considering bounded or unbounded configuration-avoiding
sets. Given 𝑛 ≥ 1 configuration 𝑃1, . . . , 𝑃𝑛 ⊂ R𝑑 , we then define the quantities

mR𝑑 (𝑃1, . . . , 𝑃𝑛) := sup
{
𝑑 (𝐴) : 𝐴 ⊂ R𝑑 avoids 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑛

}
and

m𝑄 (0,𝑅) (𝑃1, . . . , 𝑃𝑛) := sup
{
𝑑𝑄 (0,𝑅) (𝐴) : 𝐴 ⊂ 𝑄(0, 𝑅) avoids 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑛

}
.

These parameters are analogous to the notion of independence number of a hypergraph: if we consider the
hypergraph on vertex set R𝑑 (resp. 𝑄(0, 𝑅)) whose edges are all isometric copies of 𝑃 𝑗 , 1 ≤ 𝑗 ≤ 𝑛, then
mR𝑑 (𝑃1, . . . , 𝑃𝑛) (resp. m𝑄 (0,𝑅) (𝑃1, . . . , 𝑃𝑛)) can be thought of as the density of a largest independent
set in this hypergraph.

Remark. For the sake of clarity and notational convenience, whenever possible the results we give
about independence density will be stated and proved in the case of only one forbidden configuration.
It can be easily verified that these results also hold in the case of several (but finitely many) forbidden
configurations, with essentially unchanged proofs. Whenever we need this greater generality we will
mention how the corresponding statement would be in the case of several configurations.
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We start our investigations by proving a simple lemma which relates the two versions of independence
density just defined.

Lemma 1. For all configurations 𝑃 ⊂ R𝑑 and all 𝑅 > 0, we have

m𝑄 (0,𝑅) (𝑃)(
1 + diam 𝑃

𝑅

)𝑑 ≤ mR𝑑 (𝑃) ≤ m𝑄 (0,𝑅) (𝑃).

Proof. For the first inequality, suppose 𝐴 ⊆ 𝑄(0, 𝑅) is a set avoiding P and consider the periodic set
𝐴′ := 𝐴 + (𝑅 + diam 𝑃)Z𝑑 . This set also avoids P, and it has density

𝑑 (𝐴′) = vol(𝐴)
(𝑅 + diam 𝑃)𝑑

=
𝑑𝑄 (0,𝑅) (𝐴)(
1 + diam 𝑃

𝑅

)𝑑 .

Since we can choose 𝑑𝑄 (0,𝑅) (𝐴) arbitrarily close to m𝑄 (0,𝑅) (𝑃), the leftmost inequality follows.
Now, let 𝐴 ⊆ R𝑑 be any set avoiding P and note that 𝐴 ∩ 𝑄(𝑥, 𝑅) also avoids P for every 𝑥 ∈ R𝑑 .

By fixing 𝜀 > 0 and then averaging over all x inside a large enough cube 𝑄(0, 𝑅′) (depending on A,
diam 𝑃 and 𝜀), we conclude there is 𝑥 ∈ R𝑑 for which vol(𝐴∩𝑄(𝑥, 𝑅)) > (𝑑 (𝐴) − 𝜀)𝑅𝑑 . The rightmost
inequality follows. �

As we are interested in the study of sets avoiding certain configurations, it is useful to also have
a way of counting how many such configurations there are in a given set. For a given configuration
𝑃 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 } ⊂ R𝑑 and a measurable set 𝐴 ⊆ R𝑑 , we define

𝐼𝑃 (𝐴) :=
∫
R𝑑

∫
O(R𝑑)

𝐴(𝑥 + 𝑇𝑣1)𝐴(𝑥 + 𝑇𝑣2) · · · 𝐴(𝑥 + 𝑇𝑣𝑘 ) 𝑑𝜇(𝑇) 𝑑𝑥,

which represents how many (congruent) copies of P are contained in A. This quantity 𝐼𝑃 (𝐴) can, of
course, be infinite if the set A is unbounded, but we will use it almost exclusively for bounded sets. We
can similarly define its weighted version

𝐼𝑃 ( 𝑓 ) :=
∫
R𝑑

∫
O(R𝑑)

𝑓 (𝑥 + 𝑇𝑣1) 𝑓 (𝑥 + 𝑇𝑣2) · · · 𝑓 (𝑥 + 𝑇𝑣𝑘 ) 𝑑𝜇(𝑇) 𝑑𝑥,

whenever 𝑓 : R𝑑 → R is a measurable function for which this integral makes sense (say, for 𝑓 ∈
𝐿𝑘 (R𝑑)). A large part of our analysis consists of getting a better understanding of the counting function
𝐼𝑃 .

When a measurable set 𝐴 ⊆ R𝑑 avoids some configuration P, it is clear from the definition that
𝐼𝑃 (𝐴) = 0; however, it is also possible for 𝐼𝑃 (𝐴) to be zero even when A contains congruent copies of
P. In intuitive terms, the condition 𝐼𝑃 (𝐴) = 0 means only that A contains a negligible fraction of all
possible copies of P. The next result shows that this distinction is essentially irrelevant for most purposes.

Lemma 2 (Zero-measure removal). Suppose 𝑃 ⊂ R𝑑 is a finite configuration and 𝐴 ⊆ R𝑑 is measurable.
If 𝐼𝑃 (𝐴) = 0, then we can remove a zero-measure subset of A in order to remove all copies of P.

Proof. By the Lebesgue Density Theorem, we have that

lim
𝛿→0





 1
𝛿𝑑

∫
𝑄 (𝑥, 𝛿)

𝐴(𝑦) 𝑑𝑦 − 𝐴(𝑥)




 = 0 for almost every 𝑥 ∈ R𝑑 .

Now, we remove from A all points x for which this identity does not hold, thus obtaining a subset 𝐵 ⊆ 𝐴
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with vol(𝐴 \ 𝐵) = 0 and

lim
𝛿→0

1
𝛿𝑑

∫
𝑄 (𝑥, 𝛿)

𝐵(𝑦) 𝑑𝑦 = 1 for all 𝑥 ∈ 𝐵.

We will show that no congruent copy of P remains on this restricted set B.
Suppose, for contradiction, that B contains a copy {𝑢1, . . . , 𝑢𝑘 } of P. By assumption, there exists

some 𝛿 > 0 such that

𝑑𝑄 (𝑢𝑖 , 𝛿) (𝐵) =
1
𝛿𝑑

∫
𝑄 (𝑢𝑖 , 𝛿)

𝐵(𝑦) 𝑑𝑦 ≥ 1 − 1
2𝑑+1𝑘

for all 1 ≤ 𝑖 ≤ 𝑘; (1)

fix such a value of 𝛿. Note that, if 𝑑𝑄 (𝑥, 𝛿) (𝐵) ≥ 1−1/(2𝑑+1𝑘) for some 𝑥 ∈ R𝑑 , then for all 𝑦 ∈ 𝑄(𝑥, 𝛿/2),
we have

𝑑𝑄 (𝑦, 𝛿/2) (𝐵) = 1 −
vol

(
𝑄(𝑦, 𝛿/2) \ 𝐵

)
(𝛿/2)𝑑

≥ 1 −
vol

(
𝑄(𝑥, 𝛿) \ 𝐵

)
(𝛿/2)𝑑

= 1 −
𝛿𝑑

(
1 − 𝑑𝑄 (𝑥, 𝛿) (𝐵)

)
(𝛿/2)𝑑

≥ 1 − 1
2𝑘

.

Our hypothesis (1) thus implies that 𝑑𝑄 (𝑦, 𝛿/2) (𝐵) ≥ 1 − 1/2𝑘 whenever 𝑦 ∈ 𝑄(𝑢𝑖 , 𝛿/2) for some
1 ≤ 𝑖 ≤ 𝑘 .

Let ℓ := max{‖𝑢𝑖 ‖ : 1 ≤ 𝑖 ≤ 𝑘} be the largest length of a vector in our copy of P, and let us
write B(𝐼, 𝛿/(4ℓ)) :=

{
𝑇 ∈ O(R𝑑) : ‖𝑇 − 𝐼 ‖ ≤ 𝛿/(4ℓ)

}
for the ball of radius 𝛿/(4ℓ) in spectral norm

centered on the identity I. Note that, whenever 𝑇 ∈ B(𝐼, 𝛿/(4ℓ)), we have that 𝑇𝑢𝑖 ∈ 𝑄(𝑢𝑖 , 𝛿/2) for
each 1 ≤ 𝑖 ≤ 𝑘 . By the union bound, we then have

∫
R𝑑

𝑘∏
𝑖=1

𝐵(𝑥 + 𝑇𝑢𝑖) 𝑑𝑥 ≥
∫
𝑄 (0, 𝛿/2)

𝑘∏
𝑖=1

𝐵(𝑥 + 𝑇𝑢𝑖) 𝑑𝑥

=

(
𝛿

2

)𝑑
P𝑥∈𝑄 (0, 𝛿/2)

(
𝑥 + 𝑇𝑢𝑖 ∈ 𝐵 for all 1 ≤ 𝑖 ≤ 𝑘

)

≥
(
𝛿

2

)𝑑 (
1 −

𝑘∑
𝑖=1
P𝑥∈𝑄 (0, 𝛿/2) (𝑥 + 𝑇𝑢𝑖 ∉ 𝐵)

)

=

(
𝛿

2

)𝑑 (
1 −

𝑘∑
𝑖=1

(
1 − 𝑑𝑄 (𝑇 𝑢𝑖 , 𝛿/2) (𝐵)

))

≥ 1
2

(
𝛿

2

)𝑑
.

This immediately implies that

𝐼𝑃 (𝐵) ≥
∫
R𝑑

∫
B (𝐼 , 𝛿/(4ℓ))

𝑘∏
𝑖=1

𝐵(𝑥 + 𝑇𝑢𝑖) 𝑑𝜇(𝑇) 𝑑𝑥 ≥
𝜇
(
B(𝐼, 𝛿/(4ℓ))

)
2

(
𝛿

2

)𝑑
> 0,

contradicting our assumption that 𝐼𝑃 (𝐴) = 0 and finishing the proof. �
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Figure 1. An example of a planar set A on the unit square and the corresponding function 𝐴 ∗Q𝛿 , for
some small 𝛿; the shades of gray represent the value this function takes at each point.

2.1. Fourier analysis on R𝑑 and the Counting Lemma

We next show that the count of copies of an admissible configuration P inside a measurable set A does
not significantly change if we ignore its fine details and ‘blur’ the set A a little. The philosophy is similar
to the famous regularity method in graph theory, where a large graph can be replaced by a much smaller
weighted ‘reduced graph’ (which is an averaged version of the original graph which ignores its fine
details) without significantly changing the count of copies of any small subgraph.

The methods we will use are Fourier analytic in nature, drawing from Bourgain’s arguments presented
in [2]. We define the Fourier transform on R𝑑 by

𝑓̂ (𝜉) :=
∫
R𝑑

𝑓 (𝑥)𝑒−2𝜋𝑖𝑥 ·𝜉 𝑑𝑥 and 𝜎̂(𝜉) :=
∫
R𝑑

𝑒−2𝜋𝑖𝑥 ·𝜉 𝑑𝜎(𝑥)

for a (complex-valued) function 𝑓 ∈ 𝐿1 (R𝑑) and a finite Borel measure 𝜎 on R𝑑 . The convolution
between two functions f, 𝑔 ∈ 𝐿1 (R𝑑) is defined by

𝑓 ∗ 𝑔(𝑥) :=
∫
R𝑑

𝑓 (𝑦)𝑔(𝑥 − 𝑦) 𝑑𝑦.

We recall the basic identities �𝑓 ∗ 𝑔(𝜉) = 𝑓̂ (𝜉)𝑔̂(𝜉) and

∫
R𝑑

𝑓 (𝑥) 𝑑𝜎(𝑥) =
∫
R𝑑

𝑓̂ (𝜉)𝜎̂(−𝜉) 𝑑𝜉,

as well as Parseval’s Identity ‖ 𝑓 ‖2 = ‖ 𝑓̂ ‖2 for 𝑓 ∈ 𝐿1 (R𝑑) ∩ 𝐿2 (R𝑑). For background in Fourier
analysis, we refer the reader to the classic textbook of Stein and Weiss [20].

Denote Q𝛿 (𝑥) := 𝛿−𝑑𝑄(0, 𝛿) (𝑥). This way, 𝑓 ∗ Q𝛿 (𝑥) = 𝛿−𝑑
∫
𝑄 (𝑥, 𝛿) 𝑓 (𝑦) 𝑑𝑦 is the average of a

function f on the cube 𝑄(𝑥, 𝛿). Specializing to the indicator function of a set 𝐴 ⊆ R𝑑 , we obtain
𝐴 ∗Q𝛿 (𝑥) = 𝑑𝑄 (𝑥, 𝛿) (𝐴); this represents a ‘blurring’ of the set A considered (see Figure 1). What we
wish to obtain is then an upper bound on the difference |𝐼𝑃 (𝐴) − 𝐼𝑃 (𝐴 ∗Q𝛿) | which goes to zero as 𝛿
goes to zero uniformly over all measurable sets 𝐴 ⊆ 𝑄(0, 𝑅) (for any fixed 𝑅 > 0).

Before delving into the details of our argument, let us present a simple telescoping sum argument
which will be needed here and will be reused several times in this paper. Suppose we wish to bound
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from above the expression

|𝐼𝑃 ( 𝑓 ) − 𝐼𝑃 (𝑔) | =





∫
R𝑑

∫
O(R𝑑)

( 𝑘∏
𝑖=1

𝑓 (𝑥 + 𝑇𝑣𝑖) −
𝑘∏
𝑖=1

𝑔(𝑥 + 𝑇𝑣𝑖)
)
𝑑𝜇(𝑇) 𝑑𝑥






for some given functions f, g and some configuration 𝑃 = {𝑣1, . . . , 𝑣𝑘 }. Since we can rewrite the term
inside the parenthesis above as the telescoping sum

𝑘∑
𝑖=1

( 𝑖−1∏
𝑗=1

𝑓 (𝑥 + 𝑇𝑣 𝑗 )
) (

𝑓 (𝑥 + 𝑇𝑣𝑖) − 𝑔(𝑥 + 𝑇𝑣𝑖)
) ( 𝑘∏
𝑗=𝑖+1

𝑔(𝑥 + 𝑇𝑣 𝑗 )
)
,

it follows from the triangle inequality that |𝐼𝑃 ( 𝑓 ) − 𝐼𝑃 (𝑔) | is at most

𝑘∑
𝑖=1






∫
R𝑑

∫
O(R𝑑)

𝑖−1∏
𝑗=1

𝑓 (𝑥 + 𝑇𝑣 𝑗 )
(
𝑓 (𝑥 + 𝑇𝑣𝑖) − 𝑔(𝑥 + 𝑇𝑣𝑖)

) 𝑘∏
𝑗=𝑖+1

𝑔(𝑥 + 𝑇𝑣 𝑗 ) 𝑑𝜇(𝑇) 𝑑𝑥




.

To obtain some bound for |𝐼𝑃 ( 𝑓 ) − 𝐼𝑃 (𝑔) |, it then suffices to obtain a similar bound for an expression
of the form





∫
R𝑑

∫
O(R𝑑)

ℎ1 (𝑥 + 𝑇𝑢1) · · · ℎ𝑘−1 (𝑥 + 𝑇𝑢𝑘−1)
(
𝑓 (𝑥 + 𝑇𝑢𝑘 ) − 𝑔(𝑥 + 𝑇𝑢𝑘 )

)
𝑑𝜇(𝑇) 𝑑𝑥






whenever each ℎ𝑖 is either f or g, and whenever (𝑢1, . . . , 𝑢𝑘 ) is a permutation of the points of P.

We shall refer to an argument of this form (breaking a difference of products into a telescoping sum,
using the triangle inequality and bounding each term of the resulting expression) as the telescoping
sum trick. It is frequently used in modern graph and hypergraph theory when estimating the number of
subgraphs inside a given large (hyper)graph G with the aid of edge-discrepancy measures such as the
cut norm; such results are usually known as counting lemmas and are an essential part of the regularity
method we have already mentioned (see the surveys [18, 4] for details).

In our arguments, we will also need some analytic facts and estimates, which we now provide. Given
an m-dimensional subspace 𝑈 ⊆ R𝑑 , we denote by 𝜎 (𝑚−1)

𝑈 the uniform probability measure on its unit
sphere S𝑚−1

𝑈 :=
{
𝑥 ∈ 𝑈 : ‖𝑥‖ = 1

}
. This measure is closely related to the Haar measure 𝜇𝑈 on the

orthogonal group O(𝑈): if 𝑋 ⊆ S𝑚−1
𝑈 is a measurable set and 𝑥 ∈ S𝑚−1

𝑈 is any point, then

𝜎 (𝑚−1)
𝑈 (𝑋) = 𝜇𝑈

({
𝑇 ∈ O(𝑈) : 𝑇𝑥 ∈ 𝑋

})
(see, for instance, [5, Appendix A.5] for a simple proof of this fact). Given 𝑇 ∈ O(R𝑑), we write
𝑇𝑈 := {𝑇𝑢 : 𝑢 ∈ 𝑈} for the rotated subspace.

Lemma 3. There are constants 𝐶1, 𝐶2 > 0 (depending on the dimension d) such that

|1 − Q̂𝛿 (𝜉) | ≤ 𝐶1𝛿
2‖𝜉‖2 for all 𝛿 > 0, 𝜉 ∈ R𝑑

and, if V is an m-dimensional subspace of R𝑑 ,

∫
O(R𝑑)

|𝜎̂ (𝑚−1)
𝑇𝑉 (𝜉) |2 𝑑𝜇(𝑇) ≤ 𝐶2‖𝜉‖−(𝑚−1) for all 𝜉 ∈ R𝑑 \ {0}.
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Proof. For the first inequality, note that

Q̂𝛿 (𝜉) =
1
𝛿𝑑

∫
𝑄 (0, 𝛿)

𝑒−2𝜋𝑖𝑥 ·𝜉 𝑑𝑥 =
𝑑∏
𝑗=1

1
𝛿

∫ 𝛿/2

−𝛿/2
𝑒−2𝜋𝑖𝑥 𝑗 𝜉 𝑗 𝑑𝑥 𝑗 =

𝑑∏
𝑗=1

sin(𝜋𝛿𝜉 𝑗 )
𝜋𝛿𝜉 𝑗

(where the j-th term in the product is 1 if 𝜉 𝑗 = 0). It follows from the Taylor expansion of sin(·) that
|𝑥 − sin(𝑥) | ≤ 𝐶 |𝑥 |3 for some 𝐶 > 0 and all 𝑥 ∈ [−1, 1]. As the sine function is bounded, we conclude
there is some constant 𝐶1 > 0 (depending on d) for which

|1 − Q̂𝛿 (𝜉) | =




1 −

𝑑∏
𝑗=1

sin(𝜋𝛿𝜉 𝑗 )
𝜋𝛿𝜉 𝑗





 ≤ 𝐶1

𝑑∑
𝑗=1

(𝛿𝜉 𝑗 )2 = 𝐶1𝛿
2‖𝜉‖2

holds for all 𝛿 > 0, 𝜉 ∈ R𝑑 .
For the second inequality, we use the estimate



𝜎̂ (𝑚−1)
𝑈 (𝜉)



 ≤ 𝐾 ‖𝜋𝑈 𝜉‖−(𝑚−1)/2,

where 𝜋𝑈 𝜉 is the orthogonal projection of 𝜉 onto U and K is an absolute constant. This estimate follows
from

𝜎̂ (𝑚−1)
𝑈 (𝜉) =

∫
R𝑑

𝑒−2𝜋𝑖𝑥 ·𝜉 𝑑𝜎 (𝑚−1)
𝑈 (𝑥) =

∫
𝑈

𝑒−2𝜋𝑖𝑥 ·𝜋𝑈 𝜉 𝑑𝜎 (𝑚−1)
𝑈 (𝑥)

and the well-known asymptotic bound |𝜎̂ (𝑚−1)
R𝑚

(𝜉) | = 𝑂 (‖𝜉‖−(𝑚−1)/2) for the unit sphere on R𝑚 (see,
for instance, Chapter VIII, Section 3 in Stein’s book [19]). For any 𝜉 ∈ R𝑑 \ {0}, we then have that

∫
O(R𝑑)

|𝜎̂ (𝑚−1)
𝑇𝑉 (𝜉) |2 𝑑𝜇(𝑇) ≤

∫
O(R𝑑)

𝐾2‖𝜋𝑇𝑉 𝜉‖−(𝑚−1) 𝑑𝜇(𝑇)

= 𝐾2
∫

O(R𝑑)
‖𝜋𝑉 (𝑇−1𝜉)‖−(𝑚−1) 𝑑𝜇(𝑇)

= 𝐾2‖𝜉‖−(𝑚−1)
∫
S𝑑−1

‖𝜋R𝑚 𝑦‖−(𝑚−1) 𝑑𝜎 (𝑑−1)
R𝑑

(𝑦),

where we performed the change of variables 𝑦 = 𝑇−1𝜉/‖𝜉‖.
It now suffices to show that the last integral above is finite, which we will do by induction on 𝑑 ≥ 𝑚.

In the base case where 𝑑 = 𝑚, the integral is clearly equal to 1 since the projection operator 𝜋R𝑚 is the
identity. If 𝑑 ≥ 𝑚 + 1, parameterize S𝑑−1 by

𝑦 = (𝑧 sin 𝜃, cos 𝜃) for 𝑧 ∈ S𝑑−2, 𝜃 ∈ [0, 𝜋];

denoting by 𝜔𝑑−1 (resp. 𝜔𝑑−2) the total Lebesgue measure of the unit sphere of R𝑑 (resp. R𝑑−1), this
change of variables gives

𝜔𝑑−1 𝑑𝜎 (𝑑−1)
R𝑑

(𝑦) = 𝜔𝑑−2 (sin 𝜃)𝑑−2 𝑑𝜎 (𝑑−2)
R𝑑−1 (𝑧) 𝑑𝜃.
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We then obtain∫
S𝑑−1

‖𝜋R𝑚 𝑦‖−(𝑚−1) 𝑑𝜎 (𝑑−1)
R𝑑

(𝑦)

=
1

𝜔𝑑−1

∫ 𝜋

0

∫
S𝑑−2

(
sin 𝜃 ‖𝜋R𝑚 𝑧‖

)−(𝑚−1)
𝜔𝑑−2 (sin 𝜃)𝑑−2 𝑑𝜎 (𝑑−2)

R𝑑−1 (𝑧) 𝑑𝜃

=
𝜔𝑑−2
𝜔𝑑−1

( ∫ 𝜋

0
(sin 𝜃)𝑑−𝑚−1 𝑑𝜃

) ∫
S𝑑−2

‖𝜋R𝑚 𝑧‖−(𝑚−1) 𝑑𝜎 (𝑑−2)
R𝑑−1 (𝑧)

≤ 𝜔𝑑−2𝜋

𝜔𝑑−1

∫
S𝑑−2

‖𝜋R𝑚 𝑧‖−(𝑚−1) 𝑑𝜎 (𝑑−2)
R𝑑−1 (𝑧),

and the desired bound follows by induction. �

We are now ready to formally state and prove our main technical tool in the Euclidean setting, which
by analogy with methods from graph theory we shall call the Counting Lemma. We note that the main
steps of its proof were already present in Bourgain’s paper [2].

Lemma 4 (Counting Lemma). For every admissible configuration 𝑃 ⊂ R𝑑 , there exists a constant
𝐶𝑃 > 0 such that the following holds: for every 𝑅 > 0 and any measurable set 𝐴 ⊆ 𝑄(0, 𝑅), we have
that

|𝐼𝑃 (𝐴) − 𝐼𝑃 (𝐴 ∗Q𝛿) | ≤ 𝐶𝑃𝛿
1/4𝑅𝑑 for all 𝛿 ∈ (0, 1] .

Moreover, the same constant 𝐶𝑃 can be made to hold uniformly over all configurations 𝑃′ inside a
neighborhood of P.

Proof. Let (𝑣1, . . . , 𝑣𝑘 ) be a fixed permutation of the points of P. We will work a bit more generally
and show that a bound as in the statement of the lemma holds for





∫
R𝑑

∫
O(R𝑑)

𝑓1(𝑥 + 𝑇𝑣1) · · · 𝑓𝑘−1(𝑥 + 𝑇𝑣𝑘−1)
(
𝑓𝑘 (𝑥 + 𝑇𝑣𝑘 ) − 𝑓𝑘 ∗Q𝛿 (𝑥 + 𝑇𝑣𝑘 )

)
𝑑𝜇(𝑇) 𝑑𝑥






whenever 𝑓1, . . . , 𝑓𝑘 : 𝑄(0, 𝑅) → [−1, 1] are measurable functions. By our telescoping sum trick, this
immediately implies the result.

We first exploit the translation invariance of the problem in order to simplify the argument later on.
Let 𝑈 ⊂ R𝑑 denote the (𝑘 −2)-dimensional affine hyperplane spanned by 𝑣1, . . . , 𝑣𝑘−1, and let 𝜋𝑈 𝑣𝑘 be
the orthogonal projection of 𝑣𝑘 onto U (so 𝜋𝑈 𝑣𝑘 is the point in U which is closest to 𝑣𝑘 ). By translating
all points in P by −𝜋𝑈 𝑣𝑘 , we may assume that U contains the origin (being thus a subspace of R𝑑) and
that 𝑣𝑘 belongs to its orthogonal complement 𝑈⊥. Note that 𝑣𝑘 ≠ 0 since the points in P are affinely
independent, and 𝑈⊥ has dimension 𝑑 − 𝑘 +2 ≥ 2; these are the two properties we will need in the proof
which require the assumption that P is admissible.

Let 𝐻 := StabO(R𝑑) (𝑈) denote the subgroup of orthogonal transformations which act trivially on the
subspace U and let 𝜈𝐻 be the Haar measure on H. Let 𝐺 := 𝑓𝑘 − 𝑓𝑘 ∗Q𝛿 and, for a given 𝑇 ∈ O(R𝑑),
define the function 𝐹𝑇 : 𝑄(0, 𝑅) → [−1, 1] by

𝐹𝑇 (𝑥) =
𝑘−1∏
𝑖=1

𝑓𝑖 (𝑥 + 𝑇𝑣𝑖).

The integrand on the expression we wish to bound can then be written more succinctly as 𝐹𝑇 (𝑥)𝐺 (𝑥 +
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𝑇𝑣𝑘 ). By symmetry of the Haar measure 𝜇, we conclude that∫
O(R𝑑)

𝐹𝑇 (𝑥)𝐺 (𝑥 + 𝑇𝑣𝑘 ) 𝑑𝜇(𝑇) =
∫
𝐻

∫
O(R𝑑)

𝐹𝑇 𝑆 (𝑥)𝐺 (𝑥 + 𝑇𝑆𝑣𝑘 ) 𝑑𝜇(𝑇) 𝑑𝜈𝐻 (𝑆)

=
∫

O(R𝑑)

∫
𝐻

𝐹𝑇 (𝑥)𝐺 (𝑥 + 𝑇𝑆𝑣𝑘 ) 𝑑𝜈𝐻 (𝑆) 𝑑𝜇(𝑇),

where we have used that 𝐹𝑇 𝑆 = 𝐹𝑇 for all 𝑆 ∈ 𝐻, since by definition, 𝑆𝑣𝑖 = 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 − 1.
Using this identity, we conclude that the expression we wish to bound is at most





∫
O(R𝑑)

( ∫
R𝑑

∫
𝐻

𝐹𝑇 (𝑥)𝐺 (𝑥 + 𝑇𝑆𝑣𝑘 ) 𝑑𝜈𝐻 (𝑆) 𝑑𝑥
)
𝑑𝜇(𝑇)





. (2)

Now we concentrate on the expression inside the parenthesis in (2) for some fixed 𝑇 ∈ O(R𝑑). We
claim that, when S is distributed according to the Haar measure on H, the variable 𝑦 := 𝑇𝑆(𝑣𝑘/‖𝑣𝑘 ‖) is
uniformly distributed on the unit sphere of the subspace 𝑇𝑈⊥. This follows from the fact that 𝑣𝑘/‖𝑣𝑘 ‖
is on the unit sphere of 𝑈⊥, and 𝐻 := StabO(R𝑑) (𝑈) is isomorphic5 to the orthogonal group of 𝑈⊥.
Denoting by 𝜎 (𝑑−𝑘+1)

𝑇𝑈⊥ the normalized surface measure on the unit sphere of 𝑇𝑈⊥, we can then write the
expression inside the parenthesis in (2) as∫

R𝑑

∫
R𝑑

𝐹𝑇 (𝑥)𝐺 (𝑥 + ‖𝑣𝑘 ‖𝑦) 𝑑𝜎 (𝑑−𝑘+1)
𝑇𝑈⊥ (𝑦) 𝑑𝑥

=
∫
R𝑑

𝐹𝑇 (𝑥)
∫
R𝑑

𝑒2𝜋𝑖𝑥 ·𝜉 𝐺 (𝜉) 𝜎̂ (𝑑−𝑘+1)
𝑇𝑈⊥ (−‖𝑣𝑘 ‖𝜉) 𝑑𝜉 𝑑𝑥

=
∫
R𝑑

𝐹𝑇 (−𝜉)𝐺 (𝜉) 𝜎̂ (𝑑−𝑘+1)
𝑇𝑈⊥ (−‖𝑣𝑘 ‖𝜉) 𝑑𝜉.

Integrating over 𝑇 ∈ O(R𝑑) and applying Cauchy-Schwarz to the inner integral, we conclude that (2) is
at most ∫

O(R𝑑)
‖𝐹𝑇 ‖2

( ∫
R𝑑

|𝐺 (𝜉) |2 |𝜎̂ (𝑑−𝑘+1)
𝑇𝑈⊥ (‖𝑣𝑘 ‖𝜉) |2 𝑑𝜉

)1/2
𝑑𝜇(𝑇)

=
∫

O(R𝑑)
‖𝐹𝑇 ‖2

( ∫
R𝑑

| 𝑓̂𝑘 (𝜉) |2 |1 − Q̂𝛿 (𝜉) |2 |𝜎̂ (𝑑−𝑘+1)
𝑇𝑈⊥ (‖𝑣𝑘 ‖𝜉) |2 𝑑𝜉

)1/2
𝑑𝜇(𝑇),

where we have used Parseval’s Identity and the convolution identity.
Since |𝐹𝑇 (𝑥) | ≤ | 𝑓1 (𝑥 +𝑇𝑣1) | pointwise, it follows that ‖𝐹𝑇 ‖ ≤ ‖ 𝑓1‖2 for all 𝑇 ∈ O(R𝑑). Using this

inequality and applying Cauchy-Schwarz to the outer integral, we see that the expression above is at
most

‖ 𝑓1‖2

( ∫
O(R𝑑)

∫
R𝑑

| 𝑓̂𝑘 (𝜉) |2 |1 − Q̂𝛿 (𝜉) |2 |𝜎̂ (𝑑−𝑘+1)
𝑇𝑈⊥ (‖𝑣𝑘 ‖𝜉) |2 𝑑𝜉 𝑑𝜇(𝑇)

)1/2
. (3)

Finally, the double integral in (3) can be bounded using the Fourier estimates given in Lemma 3, as
we now show. Divide the integral over R𝑑 into two parts, corresponding to the bounded region where
‖𝜉‖ ≤ (𝛿‖𝑣𝑘 ‖)−1/2 and the unbounded region where ‖𝜉‖ > (𝛿‖𝑣𝑘 ‖)−1/2. For the bounded region, we

5Every orthogonal transformation on𝑈⊥ can be identified with an element of StabO(R𝑑 ) (𝑈 ) by tensoring with the identity on
U, with this identification being bijective and measure-preserving.
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12 D. Castro-Silva

note that |𝜎̂ (𝑑−𝑘+1)
𝑇𝑈⊥ (𝜉) | ≤ 1 for all 𝑇 ∈ O(R𝑑), 𝜉 ∈ R𝑑 and use the first inequality in Lemma 3 to obtain

∫
O(R𝑑)

∫
‖ 𝜉 ‖≤(𝛿 ‖𝑣𝑘 ‖)−1/2

| 𝑓̂𝑘 (𝜉) |2 |1 − Q̂𝛿 (𝜉) |2 |𝜎̂ (𝑑−𝑘+1)
𝑇𝑈⊥ (‖𝑣𝑘 ‖𝜉) |2 𝑑𝜉 𝑑𝜇(𝑇)

≤
∫

O(R𝑑)

∫
‖ 𝜉 ‖≤(𝛿 ‖𝑣𝑘 ‖)−1/2

| 𝑓̂𝑘 (𝜉) |2
(
𝐶1𝛿

2‖𝜉‖2)2
𝑑𝜉 𝑑𝜇(𝑇)

≤ 𝐶2
1𝛿

2‖𝑣𝑘 ‖−2‖ 𝑓𝑘 ‖2
2 .

For the unbounded region, we use the simple estimate |Q̂𝛿 (𝜉) | ≤ ‖Q𝛿 ‖1 = 1 and the second inequality
in Lemma 3 to conclude that∫

O(R𝑑)

∫
‖ 𝜉 ‖> (𝛿 ‖𝑣𝑘 ‖)−1/2

| 𝑓̂𝑘 (𝜉) |2 |1 − Q̂𝛿 (𝜉) |2 |𝜎̂ (𝑑−𝑘+1)
𝑇𝑈⊥ (‖𝑣𝑘 ‖𝜉) |2 𝑑𝜉 𝑑𝜇(𝑇)

≤
∫
‖ 𝜉 ‖> (𝛿 ‖𝑣𝑘 ‖)−1/2

4| 𝑓̂𝑘 (𝜉) |2
∫

O(R𝑑)
|𝜎̂ (𝑑−𝑘+1)
𝑇𝑈⊥ (‖𝑣𝑘 ‖𝜉) |2 𝑑𝜇(𝑇) 𝑑𝜉

≤ 4‖ 𝑓𝑘 ‖2
2 sup
‖ 𝜉 ‖> (𝛿 ‖𝑣𝑘 ‖)−1/2

∫
O(R𝑑)

|𝜎̂ (𝑑−𝑘+1)
𝑇𝑈⊥ (‖𝑣𝑘 ‖𝜉) |2 𝑑𝜇(𝑇)

≤ 4𝐶2 (𝛿‖𝑣𝑘 ‖−1) (𝑑−𝑘+1)/2‖ 𝑓𝑘 ‖2
2 .

Summing the bounds obtained for both regions shows that, for 𝑑 ≥ 𝑘 and 0 < 𝛿 ≤ 1, we can bound
expression (3) by

(
𝐶2

1 ‖𝑣𝑘 ‖
−2 + 4𝐶2‖𝑣𝑘 ‖−(𝑑−𝑘+1)/2)1/2

𝛿1/4‖ 𝑓1‖2‖ 𝑓𝑘 ‖2,

and the inequality in the statement of the lemma follows. Since this last bound depends continuously on
the positioning of the points of P (which gives the value of ‖𝑣𝑘 ‖), the claim that the obtained constant
𝐶𝑃 can be made uniform inside a neighborhood of P also follows. �

We remark that the proof above is the only place (in the Euclidean setting) where we make explicit
use of the assumption that a configuration is admissible. However, as the Counting Lemma will be an
essential ingredient of several later results, this requirement will be inherited by them as well.

2.2. Continuity properties of the counting function

Given some configuration P on the space R𝑑 , it is sometimes important to understand how much the
count of congruent copies of P on a set 𝐴 ⊆ R𝑑 can change if we perturb the set A a little. An instance
of this problem was already considered in the Counting Lemma, where the perturbation was given by
blurring, and it was seen that the counting function 𝐼𝑃 is somewhat robust to small perturbations (in the
case of admissible configurations).

Using our telescoping sum trick, it is easy to show that 𝐼𝑃 is also robust to small perturbations
measured by the 𝐿∞ norm; more precisely, 𝐼𝑃 is continuous on 𝐿∞(𝑄(0, 𝑅)) for any fixed 𝑅 > 0. When
P is admissible, we obtain the following significantly stronger continuity property.

Lemma 5 (Weak∗ continuity). If 𝑃 ⊂ R𝑑 is an admissible configuration, then for every fixed 𝑅 > 0, the
function 𝐼𝑃 is weak∗ continuous on the unit ball of 𝐿∞(𝑄(0, 𝑅)).

Proof. Denote the closed unit ball of 𝐿∞(𝑄(0, 𝑅)) by B∞. Since B∞ endowed with the weak∗ topology
is metrizable (see e.g., [15, Corollary 2.6.20]), it suffices to prove that 𝐼𝑃 is sequentially continuous
(i.e., that 𝐼𝑃 ( 𝑓𝑖)

𝑖→∞−−−−→ 𝐼𝑃 ( 𝑓 ) whenever 𝑓𝑖
𝑖→∞−−−−→ 𝑓 ).
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Suppose then ( 𝑓𝑖)𝑖≥1 ⊂ B∞ is a sequence weak∗ converging to 𝑓 ∈ B∞. It follows that, for every
𝑥 ∈ 𝑄(0, 𝑅) and every 𝛿 > 0, we have

𝑓𝑖 ∗Q𝛿 (𝑥) = 𝛿−𝑑
∫
𝑄 (𝑥, 𝛿)

𝑓𝑖 (𝑦) 𝑑𝑦
𝑖→∞−−−−→ 𝛿−𝑑

∫
𝑄 (𝑥, 𝛿)

𝑓 (𝑦) 𝑑𝑦 = 𝑓 ∗Q𝛿 (𝑥).

Since 𝑓 ∗ Q𝛿 and each 𝑓𝑖 ∗ Q𝛿 are Lipschitz with the same constant (depending only on 𝛿, as ‖ 𝑓 ‖∞,
‖ 𝑓𝑖 ‖∞ ≤ 1) and 𝑄(0, 𝑅) is bounded, this easily implies that

‖ 𝑓𝑖 ∗Q𝛿 − 𝑓 ∗Q𝛿 ‖∞ → 0 as 𝑖 → ∞.

In particular, it follows that lim𝑖→∞ 𝐼𝑃 ( 𝑓𝑖 ∗Q𝛿) = 𝐼𝑃 ( 𝑓 ∗Q𝛿).
Since P is admissible, by the Counting Lemma (Lemma 4), we have

|𝐼𝑃 ( 𝑓 ∗Q𝛿) − 𝐼𝑃 ( 𝑓 ) |, |𝐼𝑃 ( 𝑓𝑖 ∗Q𝛿) − 𝐼𝑃 ( 𝑓𝑖) | ≤ 𝐶𝑃𝛿
1/4𝑅𝑑 for all 𝑖 ≥ 1.

Choosing 𝑖0(𝛿) ≥ 1 sufficiently large so that

|𝐼𝑃 ( 𝑓𝑖 ∗Q𝛿) − 𝐼𝑃 ( 𝑓 ∗Q𝛿) | ≤ 𝐶𝑃𝛿
1/4𝑅𝑑 for all 𝑖 ≥ 𝑖0(𝛿),

we conclude that

|𝐼𝑃 ( 𝑓 ) − 𝐼𝑃 ( 𝑓𝑖) | ≤ |𝐼𝑃 ( 𝑓 ) − 𝐼𝑃 ( 𝑓 ∗Q𝛿) | + |𝐼𝑃 ( 𝑓 ∗Q𝛿) − 𝐼𝑃 ( 𝑓𝑖 ∗Q𝛿) |
+ |𝐼𝑃 ( 𝑓𝑖 ∗Q𝛿) − 𝐼𝑃 ( 𝑓𝑖) |

≤ 3𝐶𝑃𝛿1/4𝑅𝑑 for all 𝑖 ≥ 𝑖0(𝛿).

Since 𝛿 > 0 is arbitrary, this implies that lim𝑖→∞ 𝐼𝑃 ( 𝑓𝑖) = 𝐼𝑃 ( 𝑓 ), as wished. �

We will also need an equicontinuity property for the family of counting functions 𝑃 ↦→ 𝐼𝑃 (𝐴) over all
bounded measurable sets 𝐴 ⊆ R𝑑 . In what follows, we shall write B(𝑃, 𝑟) ⊂ (R𝑑)𝑘 for the ball of radius
r centered on 𝑃 = {𝑣1, . . . , 𝑣𝑘 }, where we recall that the distance from P to 𝑄 = {𝑢1, . . . , 𝑢𝑘 } is given by

‖𝑃 −𝑄‖∞ = min
𝜎∈𝔖𝑘

max
1≤𝑖≤𝑘

‖𝑣𝑖 − 𝑢𝜎 (𝑖) ‖.

Lemma 6 (Equicontinuity). For every admissible 𝑃 ⊂ R𝑑 and every 𝜀 > 0, there is 𝛿 > 0 such that the
following holds: if 𝑃′ ∈ B(𝑃, 𝛿), then for all 𝑅 ≥ 1, we have

|𝐼𝑃′ (𝐴) − 𝐼𝑃 (𝐴) | ≤ 𝜀𝑅𝑑 for all measurable 𝐴 ⊆ 𝑄(0, 𝑅).

Proof. We will use the fact that the constant 𝐶𝑃 promised in the Counting Lemma can be made uniform
inside a small neighborhood of P; more precisely, there is 𝑟 > 0 and a constant 𝐶̃𝑃 > 0 such that

|𝐼𝑃′ (𝐴) − 𝐼𝑃′ (𝐴 ∗Q𝜌) | ≤ 𝐶̃𝑃𝜌
1/4𝑅𝑑 for all 𝜌 ∈ (0, 1]

holds for all 𝑃′ ∈ B(𝑃, 𝑟), 𝑅 > 0 and (measurable) 𝐴 ⊆ 𝑄(0, 𝑅).
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Fix constants 𝑅 ≥ 1 and 𝛿, 𝜌 ∈ (0, 1] with 𝛿 < 𝜌. For any set 𝐴 ⊆ 𝑄(0, 𝑅) and any points
𝑥, 𝑦 ∈ 𝑄(0, 𝑅) with ‖𝑥 − 𝑦‖ ≤ 𝛿, we have that

|𝐴 ∗Q𝜌 (𝑥) − 𝐴 ∗Q𝜌 (𝑦) | =


vol(𝐴 ∩𝑄(𝑥, 𝜌)) − vol(𝐴 ∩𝑄(𝑦, 𝜌))




𝜌𝑑

≤ vol(𝑄(𝑥, 𝜌) \𝑄(𝑦, 𝜌))
𝜌𝑑

≤ 𝜌𝑑 − (𝜌 − 𝛿)𝑑

𝜌𝑑
.

Noting that 𝐴 ∗ Q𝜌 is supported on 𝑄(0, 𝑅 + 𝜌) ⊆ 𝑄(0, 2𝑅), we conclude from our telescoping sum
trick that

|𝐼𝑃′ (𝐴 ∗Q𝜌) − 𝐼𝑃 (𝐴 ∗Q𝜌) | ≤ 𝑘
𝜌𝑑 − (𝜌 − 𝛿)𝑑

𝜌𝑑
(2𝑅)𝑑

whenever ‖𝑃′ − 𝑃‖∞ ≤ 𝛿.
Now take 𝜌 ∈ (0, 1] small enough so that 𝐶̃𝑃𝜌

1/4 ≤ 𝜀/4, and for this value of 𝜌, take 0 < 𝛿 <
min{𝑟, 𝜌} small enough so that

(𝜌 − 𝛿)𝑑 ≥
(
1 − 𝜀

2𝑑+1𝑘

)
𝜌𝑑 .

Then, for any configuration 𝑃′ ∈ B(𝑃, 𝛿) and any set 𝐴 ⊆ 𝑄(0, 𝑅), we obtain

|𝐼𝑃′ (𝐴) − 𝐼𝑃 (𝐴) | ≤ |𝐼𝑃′ (𝐴) − 𝐼𝑃′ (𝐴 ∗Q𝜌) | + |𝐼𝑃′ (𝐴 ∗Q𝜌) − 𝐼𝑃 (𝐴 ∗Q𝜌) |
+ |𝐼𝑃 (𝐴 ∗Q𝜌) − 𝐼𝑃 (𝐴) |

≤ 𝐶̃𝑃𝜌
1/4𝑅𝑑 + 𝑘

𝜌𝑑 − (𝜌 − 𝛿)𝑑

𝜌𝑑
(2𝑅)𝑑 + 𝐶̃𝑃𝜌

1/4𝑅𝑑

≤ 𝜀

4
𝑅𝑑 + 𝑘

𝜀

2𝑑+1𝑘
(2𝑅)𝑑 + 𝜀

4
𝑅𝑑 = 𝜀𝑅𝑑 ,

as desired. �

2.3. The Supersaturation Theorem

Now we wish to show that geometrical hypergraphs encoding copies of some admissible configuration
P have a nice supersaturation property: if a set 𝐴 ⊆ R𝑑 is just slightly denser than the independence
density of P, then it must contain a positive proportion of all congruent copies of P. This result is quite
similar, both formally and in spirit, to an important combinatorial theorem of Erdős and Simonovits
[10] in the setting of forbidden graphs and hypergraphs.
Remark. The insight that supersaturation results can be used to better study extremal geometrical
problems of the kind we are interested in is due to Bukh [3]. He introduced the notion of a ‘supersaturable
property’ as any characteristic of measurable sets which satisfies several conditions meant to enable
the proof of a supersaturation result; the prototypical and most important example of supersaturable
property given in Bukh’s paper is that of avoiding a finite collection of distances. Here, we will obtain
similar results in the case of avoiding general admissible configurations, but our method of proof is
more analytical in nature and quite different from his.

Using our zero-measure removal lemma (Lemma 2), we can immediately obtain a weak supersatu-
ration property which holds for any 𝑅 > 0 and any configuration 𝑃 ⊂ R𝑑:
(WS) If 𝑑𝑄 (0,𝑅) (𝐴) > m𝑄 (0,𝑅) (𝑃), then 𝐼𝑃 (𝐴) > 0.
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For our purposes, however, we will need to strengthen this simple property in two ways: first to obtain a
uniform lower bound on 𝐼𝑃 (𝐴) which depends only on R and the slack 𝑑𝑄 (0,𝑅) (𝐴) − m𝑄 (0,𝑅) (𝑃), but
not on the specific set 𝐴 ⊆ 𝑄(0, 𝑅); and then to make the proportion 𝐼𝑃 (𝐴 ∩𝑄(0, 𝑅))/𝑅𝑑 of copies of
P uniform also on the size R of the cube considered.

The first strengthening can be obtained from (WS) by a compactness argument, using the fact that
the counting function of admissible configurations is weak∗ continuous.

Lemma 7 (Weak supersaturation). Let 𝑃 ⊂ R𝑑 be an admissible configuration. For every 𝑅 > 0 and
𝜀 > 0, there exists 𝑐0 > 0 such that the following holds: whenever 𝐴 ⊆ 𝑄(0, 𝑅) satisfies 𝑑𝑄 (0,𝑅) (𝐴) ≥
m𝑄 (0,𝑅) (𝑃) + 𝜀, we have 𝐼𝑃 (𝐴) ≥ 𝑐0.

Proof. Suppose, for contradiction, that the result is false. Then, there exist 𝜀 > 0, 𝑅 > 0 and a sequence
(𝐴𝑖)𝑖≥1 of subsets of 𝑄(0, 𝑅), each of density at least m𝑄 (0,𝑅) (𝑃) +𝜀, which satisfy lim𝑖→∞ 𝐼𝑃 (𝐴𝑖) = 0.

The unit ball B∞ of 𝐿∞(𝑄(0, 𝑅)) is weak∗ compact by the Banach-Alaoglu Theorem, and it is also
metrizable in this topology (see [15, Chapter 2.6]). By possibly restricting to a subsequence, we may
then assume that (𝐴𝑖)𝑖≥1 converges in the weak∗ topology of 𝐿∞(𝑄(0, 𝑅)); let us denote its limit by
𝐴 ∈ B∞. It is clear that 0 ≤ 𝐴 ≤ 1 almost everywhere, and

1
𝑅𝑑

∫
𝑄 (0,𝑅)

𝐴(𝑥) 𝑑𝑥 = lim
𝑖→∞

1
𝑅𝑑

∫
𝑄 (0,𝑅)

𝐴𝑖 (𝑥) 𝑑𝑥 ≥ m𝑄 (0,𝑅) (𝑃) + 𝜀.

By weak∗ continuity of 𝐼𝑃 (Lemma 5), we also have 𝐼𝑃 (𝐴) = lim𝑖→∞ 𝐼𝑃 (𝐴𝑖) = 0.
Now, let 𝐵 :=

{
𝑥 ∈ 𝑄(0, 𝑅) : 𝐴(𝑥) ≥ 𝜀

}
. Since

𝜀𝐵(𝑥) ≤ 𝐴(𝑥) < 𝜀 + 𝐵(𝑥) for a.e. 𝑥 ∈ 𝑄(0, 𝑅),

we conclude that 𝐼𝑃 (𝐵) ≤ 𝜀−𝑘 𝐼𝑃 (𝐴) = 0 and

𝑑𝑄 (0,𝑅) (𝐵) >
1
𝑅𝑑

∫
𝑄 (0,𝑅)

𝐴(𝑥) 𝑑𝜎(𝑥) − 𝜀 ≥ m𝑄 (0,𝑅) (𝑃).

But this set B contradicts (WS) (or Lemma 2), finishing the proof. �

Our desired supersaturation result now follows from a simple averaging argument.

Theorem 3 (Supersaturation Theorem). Let 𝑃 ⊂ R𝑑 be an admissible configuration and let 𝜀 > 0. There
exist constants 𝑐 > 0 and 𝑅0 > 0 such that the following holds for all 𝑅 ≥ 𝑅0: if 𝐴 ⊆ 𝑄(0, 𝑅) satisfies

𝑑𝑄 (0,𝑅) (𝐴) ≥ m𝑄 (0,𝑅) (𝑃) + 𝜀,

then 𝐼𝑃 (𝐴) ≥ 𝑐𝑅𝑑 .

Proof. Take 𝑅1 > 0 large enough so that m𝑄 (0,𝑅1) (𝑃) ≤ mR𝑑 (𝑃) + 𝜀/4 (see Lemma 1). We will show
that the conclusion of the theorem holds for 𝑅0 = 4𝑑𝑅1/𝜀 and some constant 𝑐 > 0 to be chosen later.

Suppose 𝑅 ≥ 4𝑑𝑅1/𝜀, and let 𝐴 ⊆ 𝑄(0, 𝑅) be a set of density

𝑑𝑄 (0,𝑅) (𝐴) ≥ m𝑄 (0,𝑅) (𝑃) + 𝜀.

Since m𝑄 (0,𝑅1) (𝑃) ≤ mR𝑑 (𝑃) + 𝜀/4 ≤ m𝑄 (0,𝑅) (𝑃) + 𝜀/4, we have that

vol(𝐴) = vol
(
𝐴 ∩𝑄(0, 𝑅)

)
≥

(
m𝑄 (0,𝑅1) (𝑃) + 3𝜀/4

)
𝑅𝑑 .

Let 𝐾 := �𝑅/𝑅1�, and note that

𝐾𝑑𝑅𝑑1 >

(
1 − 𝑅1

𝑅

)𝑑
𝑅𝑑 ≥

(
1 − 𝑑𝑅1

𝑅

)
𝑅𝑑 .
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By our assumption on R, we conclude that 𝐾𝑑𝑅𝑑1 ≥ (1 − 𝜀/4)𝑅𝑑 , and thus

vol
(
𝐴 ∩𝑄(0, 𝐾𝑅1)

)
≥ vol(𝐴) − vol

(
𝑄(0, 𝑅) \𝑄(0, 𝐾𝑅1)

)
≥

(
m𝑄 (0,𝑅1) (𝑃) + 𝜀/2

)
𝐾𝑑𝑅𝑑1 .

Partitioning the cube 𝑄(0, 𝐾𝑅1) into 𝐾𝑑 cubes of side length 𝑅1, by averaging, we conclude that at least
𝜀𝐾𝑑/4 of these cubes 𝑄(𝑥, 𝑅1) satisfy

vol
(
𝐴 ∩𝑄(𝑥, 𝑅1)

)
≥

(
m𝑄 (0,𝑅1) (𝑃) + 𝜀/4

)
𝑅𝑑1 . (4)

By Lemma 7, there is some 𝑐0 > 0 (depending on 𝑅1 and 𝜀 but not on A or R) such that 𝐼𝑃 (𝐴∩𝑄(𝑥, 𝑅1)) ≥
𝑐0 holds for each one of the cubes in the partition satisfying (4); summing up all these values, we
conclude that

𝐼𝑃 (𝐴) ≥
𝜀𝐾𝑑

4
𝑐0 >

𝜀𝑐0
4

(
𝑅

𝑅1
− 1

)𝑑
≥ 𝜀𝑐0

4
1

(2𝑅1)𝑑
𝑅𝑑 ,

finishing the proof for 𝑐 = 𝜀𝑐0/(2𝑑+2𝑅𝑑1 ). �

Remark. The arguments used in the proofs of Lemma 7 and Theorem 3 easily extend to the case of
several configurations 𝑃1, . . . , 𝑃𝑛 ⊂ R𝑑 , with only minor and notational modifications. In the case of
the Supersaturation Theorem, one concludes that 𝐼𝑃𝑖 (𝐴) ≥ 𝑐(𝜀)𝑅𝑑 holds for some 1 ≤ 𝑖 ≤ 𝑛 whenever
the density condition 𝑑𝑄 (0,𝑅) (𝐴) ≥ m𝑄 (0,𝑅) (𝑃1, . . . , 𝑃𝑛) + 𝜀 is satisfied (assuming R is large enough
and all the configurations 𝑃𝑖 are admissible).

Following Bukh [3], for each 𝛿 > 0 and 𝛾 > 0, we define the zooming-out operator Z𝛿 (𝛾) as the
map which takes a measurable set 𝐴 ⊆ R𝑑 to the set

Z𝛿 (𝛾) [𝐴] :=
{
𝑥 ∈ R𝑑 : 𝑑𝑄 (𝑥, 𝛿) (𝐴) ≥ 𝛾

}
.

Intuitively, Z𝛿 (𝛾) [𝐴] represents the points where A is not too sparse at scale 𝛿.
Using the Supersaturation Theorem together with the Counting Lemma, we can now show that the

existence of copies of P in a set A follows also from the weaker assumption that its zoomed-out version
Z𝛿 (𝛾) [𝐴] has density higher than mR𝑑 (𝑃) (rather than A itself having this same density). This property
will be important for us later on.

Corollary 1. Given an admissible configuration 𝑃 ⊂ R𝑑 and 𝜀 > 0, there exists 𝛿0 > 0 such that the
following holds for all 𝛿 ≤ 𝛿0: if 𝐴 ⊆ R𝑑 satisfies

𝑑
(
Z𝛿 (𝜀) [𝐴]

)
≥ mR𝑑 (𝑃) + 𝜀,

then A contains a congruent copy of P.

Proof. Let 𝑅0, 𝑐 > 0 be the constants promised in the Supersaturation Theorem applied to P and
with 𝜀 substituted by 𝜀/3. Up to substituting 𝑅0 by some larger constant, we may also assume that
m𝑄 (0,𝑅) (𝑃) ≤ mR𝑑 (𝑃) + 𝜀/3 for all 𝑅 ≥ 𝑅0 (see Lemma 1).

Suppose 𝐴 ⊆ R𝑑 satisfies 𝑑
(
Z𝛿 (𝜀) [𝐴]

)
≥ mR𝑑 (𝑃) + 𝜀 for some 0 < 𝛿 ≤ 1. Since

lim sup
𝑅→∞

𝑑𝑄 (0,𝑅)
(
Z𝛿 (𝜀) [𝐴 ∩𝑄(0, 𝑅)]

)
= lim sup

𝑅→∞
𝑑𝑄 (0,𝑅)

(
Z𝛿 (𝜀) [𝐴]

)
= 𝑑

(
Z𝛿 (𝜀) [𝐴]

)
≥ mR𝑑 (𝑃) + 𝜀,

there must exist some 𝑅 ≥ 𝑅0 such that

𝑑𝑄 (0,𝑅)
(
Z𝛿 (𝜀) [𝐴 ∩𝑄(0, 𝑅)]

)
≥ mR𝑑 (𝑃) + 2𝜀/3.
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Denoting 𝐴′ := 𝐴 ∩𝑄(0, 𝑅), we may then assume that 𝐴′ ⊆ 𝑄(0, 𝑅) satisfies

𝑑𝑄 (0,𝑅)
(
Z𝛿 (𝜀) [𝐴′]

)
≥ m𝑄 (0,𝑅) (𝑃) + 𝜀/3 (5)

for some 𝑅 ≥ 𝑅0, and wish to show that 𝐴′ (and hence A) contains a copy of P if 𝛿 > 0 is small enough
depending on P and 𝜀.

By the Supersaturation Theorem, inequality (5) implies that 𝐼𝑃
(
Z𝛿 (𝜀) [𝐴′]

)
≥ 𝑐𝑅𝑑 . Since 𝐴′ ∗

Q𝛿 (𝑥) ≥ 𝜀 · Z𝛿 (𝜀) [𝐴′] (𝑥) for all 𝑥 ∈ R𝑑 , we obtain from the Counting Lemma that

𝐼𝑃 (𝐴′) ≥ 𝐼𝑃 (𝐴′ ∗Q𝛿) − 𝐶𝑃𝛿
1/4𝑅𝑑 ≥ 𝜀 |𝑃 | 𝐼𝑃

(
Z𝛿 (𝜀) [𝐴′]

)
− 𝐶𝑃𝛿

1/4𝑅𝑑

≥
(
𝜀 |𝑃 |𝑐 − 𝐶𝑃𝛿

1/4)𝑅𝑑 .
Taking 𝛿 > 0 small enough for this last expression to be positive, we conclude that 𝐼𝑃 (𝐴′) > 0, and so
𝐴′ contains a copy of P as wished. �

2.4. Results on the independence density

We are finally in a position to properly study the independence density parameter for a family of
configurations in Euclidean space.

We start by proving a simple lower bound on the independence density of several distinct configura-
tions; this result and the argument we use to prove it are originally due to Bukh [3].

Lemma 8 (Supermultiplicativity). For all 𝑛 ≥ 1 and all configurations 𝑃1, . . . , 𝑃𝑛 ⊂ R𝑑 , we have that

mR𝑑 (𝑃1, 𝑃2, . . . , 𝑃𝑛) ≥
𝑛∏
𝑖=1

mR𝑑 (𝑃𝑖).

Proof. Fix 𝜀 > 0 and choose R large enough so that

min
1≤𝑖≤𝑛

(𝑅 − diam 𝑃𝑖)𝑑 ≥ (1 − 𝜀)𝑅𝑑 .

For each 1 ≤ 𝑖 ≤ 𝑛, let 𝐴𝑖 ⊆ 𝑄(0, 𝑅 − diam 𝑃𝑖) be a set which avoids 𝑃𝑖 and satisfies
𝑑𝑄 (0,𝑅−diam 𝑃𝑖) (𝐴𝑖) > mR𝑑 (𝑃𝑖) − 𝜀 (this is possible by Lemma 1). We then construct the R-periodic set
𝐴′
𝑖 := 𝐴𝑖 + 𝑅Z𝑑 , which also avoids 𝑃𝑖 and has density

𝑑 (𝐴′
𝑖) =

(𝑅 − diam 𝑃𝑖)𝑑

𝑅𝑑
𝑑𝑄 (0,𝑅−diam 𝑃𝑖) (𝐴𝑖) > mR𝑑 (𝑃𝑖) − 2𝜀.

Since each set 𝐴′
𝑖 is periodic with the same fundamental domain 𝑄(0, 𝑅), it follows that the average

of 𝑑
( ⋂𝑛

𝑖=1(𝑥𝑖 + 𝐴′
𝑖)

)
over independent translates 𝑥1, . . . , 𝑥𝑛 ∈ 𝑄(0, 𝑅) is equal to

∏𝑛
𝑖=1 𝑑 (𝐴′

𝑖). There
must then exist some 𝑥1, . . . , 𝑥𝑛 ∈ 𝑄(0, 𝑅) for which

𝑑

( 𝑛⋂
𝑖=1

(𝑥𝑖 + 𝐴′
𝑖)

)
≥

𝑛∏
𝑖=1

𝑑 (𝐴′
𝑖) >

𝑛∏
𝑖=1

(mR𝑑 (𝑃𝑖) − 2𝜀).

Since
⋂𝑛
𝑖=1(𝑥𝑖 + 𝐴′

𝑖) avoids each of the configurations 𝑃𝑖 and 𝜀 > 0 was arbitrary, the desired lower
bound follows. �

Intuitively, one may regard mR𝑑 (𝑃1, 𝑃2, . . . , 𝑃𝑛) being close to
∏𝑛
𝑖=1 mR𝑑 (𝑃𝑖) as some sort of

independence or lack of correlation between the n constraints of forbidding each configuration 𝑃𝑖;
in this case, there is no better way to choose a set avoiding all of these configurations than simply
intersecting optimal 𝑃𝑖-avoiding sets for each i (after suitably translating them). One might then expect
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this to happen if the sizes of each 𝑃𝑖 are very different from each other, so that each constraint will be
relevant in different and largely independent scales.

Our next result shows this is indeed the case whenever the configurations considered are all admissible.
(A theorem of Graham [13] implies this is not necessarily true if the configurations considered are non-
admissible; see Section 4 for a discussion.) The proof we present here is based on Bukh’s arguments for
supersaturable properties and generalizes his result from two-point configurations to general admissible
configurations.

Theorem 4 (Asymptotic independence). If 𝑃1, 𝑃2, . . . , 𝑃𝑛 ⊂ R𝑑 are admissible configurations, then

mR𝑑 (𝑡1𝑃1, 𝑡2𝑃2, . . . , 𝑡𝑛𝑃𝑛) →
𝑛∏
𝑖=1

mR𝑑 (𝑃𝑖)

as the ratios 𝑡2/𝑡1, 𝑡3/𝑡2, . . . , 𝑡𝑛/𝑡𝑛−1 tend to infinity.

Proof. We have already seen that

mR𝑑 (𝑡1𝑃1, 𝑡2𝑃2, . . . , 𝑡𝑛𝑃𝑛) ≥
𝑛∏
𝑖=1

mR𝑑 (𝑡𝑖𝑃𝑖) =
𝑛∏
𝑖=1

mR𝑑 (𝑃𝑖)

always holds, so it suffices to show that mR𝑑 (𝑡1𝑃1, 𝑡2𝑃2, . . . , 𝑡𝑛𝑃𝑛) is no larger than
∏𝑛
𝑖=1 mR𝑑 (𝑃𝑖) + 𝜀

whenever 𝜀 > 0 and the ratios between consecutive scales 𝑡𝑖 are large enough. We shall proceed by
induction, with the case 𝑛 = 1 being trivial.

Let 𝑛 ≥ 2 and suppose the theorem holds for configurations 𝑃1, . . . , 𝑃𝑛−1. Fix 0 < 𝜀 ≤ 1 and let
𝑡1, . . . , 𝑡𝑛−1 > 0 be dilation parameters for which

mR𝑑 (𝑡1𝑃1, . . . , 𝑡𝑛−1𝑃𝑛−1) ≤
𝑛−1∏
𝑖=1

mR𝑑 (𝑃𝑖) + 𝜀;

now, take 𝑅0 > 0 large enough so that

m𝑄 (0,𝑅) (𝑡1𝑃1, . . . , 𝑡𝑛−1𝑃𝑛−1) ≤ mR𝑑 (𝑡1𝑃1, . . . , 𝑡𝑛−1𝑃𝑛−1) + 𝜀

holds for all 𝑅 ≥ 𝑅0 (this quantity exists by Lemma 1).
If 𝐴 ⊆ R𝑑 is a measurable set avoiding 𝑡1𝑃1, . . . , 𝑡𝑛−1𝑃𝑛−1, then clearly

𝑑𝑄 (𝑥,𝑅) (𝐴) ≤ m𝑄 (0,𝑅) (𝑡1𝑃1, . . . , 𝑡𝑛−1𝑃𝑛−1) for all 𝑥 ∈ R𝑑 , 𝑅 > 0. (6)

Moreover, if A also avoids 𝑡𝑛𝑃𝑛 for some 𝑡𝑛 > 0, then 𝐴/𝑡𝑛 avoids 𝑃𝑛 and so by Corollary 1, there is
some 𝛿0 > 0 (depending only on 𝑃𝑛 and 𝜀) for which

𝑑
(
Z𝛿 (𝜀) [𝐴/𝑡𝑛]

)
≤ mR𝑑 (𝑃𝑛) + 𝜀 for all 𝛿 ≤ 𝛿0. (7)

Suppose now that 𝑡𝑛 ≥ 𝑅0/𝛿0 and let 𝐴 ⊆ R𝑑 be any measurable set avoiding 𝑡1𝑃1, . . . , 𝑡𝑛𝑃𝑛. We
conclude from (6) that

𝑑𝑄 (𝑥, 𝑡𝑛 𝛿0) (𝐴) ≤ m𝑄 (0, 𝑡𝑛 𝛿0) (𝑡1𝑃1, . . . , 𝑡𝑛−1𝑃𝑛−1)
≤ mR𝑑 (𝑡1𝑃1, . . . , 𝑡𝑛−1𝑃𝑛−1) + 𝜀

≤
𝑛−1∏
𝑖=1

mR𝑑 (𝑃𝑖) + 2𝜀
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holds for all 𝑥 ∈ R𝑑 , and from (7), we have

𝑑
(
Z𝑡𝑛 𝛿0 (𝜀) [𝐴]

)
= 𝑑

(
Z𝛿0 (𝜀) [𝐴/𝑡𝑛]

)
≤ mR𝑑 (𝑃𝑛) + 𝜀.

This means that the density of A inside cubes 𝑄(𝑥, 𝑡𝑛𝛿0) of side length 𝑡𝑛𝛿0 is at most 𝜀 (when
𝑥 ∉ Z𝑡𝑛 𝛿0 (𝜀) [𝐴]) except at a set of upper density at most mR𝑑 (𝑃𝑛) + 𝜀, when it is instead no more than∏𝑛−1
𝑖=1 mR𝑑 (𝑃𝑖) + 2𝜀. Taking averages, we conclude that

𝑑 (𝐴) ≤ 𝜀 +
(
mR𝑑 (𝑃𝑛) + 𝜀

) ( 𝑛−1∏
𝑖=1

mR𝑑 (𝑃𝑖) + 2𝜀
)
≤

𝑛∏
𝑖=1

mR𝑑 (𝑃𝑖) + 6𝜀

(where we used that 0 < 𝜀 ≤ 1). This inequality finishes the proof. �

As an immediate corollary of the last theorem, we conclude that

mR𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) → mR𝑑 (𝑃)𝑛

as 𝑡2/𝑡1, 𝑡3/𝑡2, . . . , 𝑡𝑛/𝑡𝑛−1 → ∞ whenever 𝑃 ⊂ R𝑑 is admissible; this answers our question (Q1) in the
case of admissible configurations. Let us now show how this result easily implies Bourgain’s Theorem
given in the Introduction.

Proof of Theorem 2. Suppose 𝐴 ⊂ R𝑑 is a measurable set not satisfying the conclusion of the theorem;
thus, there is a sequence (𝑡 𝑗 ) 𝑗≥1 tending to infinity such that A does not contain a copy of any 𝑡 𝑗𝑃.
This implies that 𝑑 (𝐴) ≤ mR𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) for all 𝑛 ∈ N. By taking a suitably fast-growing
subsequence, we may then use Theorem 4 to obtain (say) 𝑑 (𝐴) ≤ 2mR𝑑 (𝑃)𝑛 for any fixed 𝑛 ≥ 1. Since
mR𝑑 (𝑃) < 1,6 this implies that 𝑑 (𝐴) = 0, as wished. �

Going back to our study of the independence density for multiple configurations, we will now consider
the opposite situation of what we have seen before: when the constraints of forbidding each individual
configuration are so strongly correlated as to be essentially redundant. One might expect this to be the
case, for instance, when we are forbidding very close dilates of a given configuration P.

We will show that this intuition is indeed correct, whether or not the configuration considered is
admissible, and the proof is much simpler than in the case of very distant dilates of P (in particular, not
needing the results from earlier sections).

Lemma 9 (Asymptotic redundancy). For any configuration 𝑃 ⊂ R𝑑 , we have that

mR𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) → mR𝑑 (𝑃)

as 𝑡2/𝑡1, 𝑡3/𝑡2, . . . , 𝑡𝑛/𝑡𝑛−1 → 1.

Proof. Assume, by dilation invariance, that 𝑡1 = 1, and note that it suffices to show the convergence
above with mR𝑑 replaced by m𝑄 (0,𝑅) for every fixed 𝑅 > 0. We will then fix an arbitrary 𝑅 > 0 and
prove that m𝑄 (0,𝑅) (𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) → m𝑄 (0,𝑅) (𝑃) as 𝑡2, 𝑡3, . . . , 𝑡𝑛 → 1.

Let (𝑣1, 𝑣2, . . . , 𝑣𝑘 ) be an ordering of the points of P, and consider the continuous function 𝑔𝑃 :
(R𝑑)𝑘 × O(R𝑑) → R given by

𝑔𝑃 (𝑥1, . . . , 𝑥𝑘 , 𝑇) :=
𝑘∑
𝑗=2

‖(𝑥 𝑗 − 𝑥1) − 𝑇 (𝑣 𝑗 − 𝑣1)‖.

Note that min𝑇 ∈O(R𝑑) 𝑔𝑃 (𝑥1, . . . , 𝑥𝑘 , 𝑇) = 0 if and only if (𝑥1, . . . , 𝑥𝑘 ) is congruent to (𝑣1, . . . , 𝑣𝑘 ).

6An easy averaging argument shows that m
R𝑑 (𝑃) ≤ 1 − 1/ |𝑃 |; see Lemma 10 for a proof of this inequality in the spherical

setting.
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Fix some 𝜀 > 0 and let 𝐴 ⊂ 𝑄(0, 𝑅) be a measurable set which avoids P and has density 𝑑𝑄 (0,𝑅) (𝐴) ≥
m𝑄 (0,𝑅) (𝑃) − 𝜀. By inner regularity, we know there exists a compact set 𝐴 ⊆ 𝐴 with 𝑑𝑄 (0,𝑅) (𝐴) ≥
m𝑄 (0,𝑅) (𝑃) − 2𝜀. Denote by 𝛾 the minimum of the continuous function 𝑔𝑃 on the compact set 𝐴𝑘 ×
O(R𝑑); since 𝐴 avoids P, it follows that 𝛾 > 0.

We will now prove that 𝐴 also avoids 𝑡𝑃 whenever t is sufficiently close to 1, say when |𝑡 − 1| <
𝛾/(𝑘 ·diam 𝑃). Indeed, for all 𝑥1, . . . , 𝑥𝑘 ∈ 𝐴 and all 𝑇 ∈ O(R𝑑), by the triangle inequality, we have that

𝑘∑
𝑗=2

‖(𝑥 𝑗 − 𝑥1) − 𝑇 (𝑡𝑣 𝑗 − 𝑡𝑣1)‖ ≥
𝑘∑
𝑗=2



‖(𝑥 𝑗 − 𝑥1) − 𝑇 (𝑣 𝑗 − 𝑣1)‖ − |𝑡 − 1|‖𝑣 𝑗 − 𝑣1‖




>
𝑘∑
𝑗=2

‖(𝑥 𝑗 − 𝑥1) − 𝑇 (𝑣 𝑗 − 𝑣1)‖ − 𝑘 · |𝑡 − 1| diam 𝑃

≥ 𝛾 − 𝑘 · |𝑡 − 1| diam 𝑃,

which is positive if |𝑡 − 1| < 𝛾/(𝑘 · diam 𝑃). In particular, we see that

m𝑄 (0,𝑅) (𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) ≥ 𝑑𝑄 (0,𝑅) (𝐴) ≥ m𝑄 (0,𝑅) (𝑃) − 2𝜀

whenever |𝑡 𝑗−1| < 𝛾/(𝑘 ·diam 𝑃) for 2 ≤ 𝑗 ≤ 𝑛. Since we clearly have that m𝑄 (0,𝑅) (𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) ≤
m𝑄 (0,𝑅) (𝑃), the result follows. �

The proof of this last result actually implies a somewhat stronger and more technical property of
the independence density, namely that every configuration P where mR𝑑 is discontinuous must be a
local minimum across the ‘discontinuity barrier’; more formally, we have that inf𝑃′ ∈B (𝑃,𝛿) mR𝑑 (𝑃′) →
mR𝑑 (𝑃) as 𝛿 → 0, where B(𝑃, 𝛿) is the ball of radius 𝛿 centered on P (the details of the proof are
given below). If the configuration P is admissible, then we can also prove the corresponding limit for
sup𝑃′ ∈B (𝑃,𝛿) mR𝑑 (𝑃′) and conclude that mR𝑑 is, in fact, continuous at this point. This is done in the
next theorem:

Theorem 5 (Continuity of the independence density). For every 𝑛 ≥ 1, the function (𝑃1, . . . , 𝑃𝑛) ↦→
mR𝑑 (𝑃1, . . . , 𝑃𝑛) is continuous on the set of n admissible configurations in R𝑑 .

Proof. For the sake of better readability, we will prove the result in the case of only one forbidden
configuration; the n-variable version easily follows from the same argument. Fix some 𝜀 > 0 and let
𝑅1 ≥ 1 be large enough so that

mR𝑑 (𝑃′) ≤ m𝑄 (0,𝑅) (𝑃′) ≤ mR𝑑 (𝑃′) + 𝜀

holds for all 𝑃′ ∈ B(𝑃, 1) and all 𝑅 ≥ 𝑅1 (this value exists by Lemma 1).
Let 𝑅 ≥ 𝑅1 and let 𝐴 ⊂ 𝑄(0, 𝑅) be a compact P-avoiding set with density

𝑑𝑄 (0,𝑅) (𝐴) ≥ m𝑄 (0,𝑅) (𝑃) − 𝜀.

Proceeding exactly as we did in the proof of the last lemma, we conclude that A also avoids all 𝑃′ close
enough to P; for all such configurations, we then have

m𝑄 (0,𝑅) (𝑃′) ≥ 𝑑𝑄 (0,𝑅) (𝐴) ≥ m𝑄 (0,𝑅) (𝑃) − 𝜀 ≥ mR𝑑 (𝑃) − 𝜀.

Since m𝑄 (0,𝑅) (𝑃′) ≤ mR𝑑 (𝑃′) + 𝜀 whenever 𝑃′ ∈ B(𝑃, 1), this implies that mR𝑑 (𝑃′) ≥ mR𝑑 (𝑃) − 2𝜀
for all 𝑃′ close enough to P.

Now, we suppose that P is admissible, and let 𝑅0, 𝑐 > 0 be the constants promised by the Supersatu-
ration Theorem (Theorem 3). Let 𝑅 ≥ max{𝑅0, 𝑅1}. By equicontinuity (Lemma 6), there is some 𝛿 > 0

https://doi.org/10.1017/fms.2023.43 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.43


Forum of Mathematics, Sigma 21

for which the inequality

|𝐼𝑃′ (𝐴) − 𝐼𝑃 (𝐴) | < 𝑐𝑅𝑑 for all 𝑃′ ∈ B(𝑃, 𝛿) (8)

holds whenever 𝐴 ⊂ 𝑄(0, 𝑅) is a measurable set; fix such a value of 𝛿.
If 𝑃′ ∈ B(𝑃, 𝛿) and 𝐴 ⊂ 𝑄(0, 𝑅) is a measurable set avoiding 𝑃′, we conclude from inequality (8)

that 𝐼𝑃 (𝐴) < 𝑐𝑅𝑑 . By the Supersaturation Theorem, this implies that 𝑑𝑄 (0,𝑅) (𝐴) < m𝑄 (0,𝑅) (𝑃) + 𝜀,
and thus (by optimizing over A), we conclude that m𝑄 (0,𝑅) (𝑃′) ≤ m𝑄 (0,𝑅) (𝑃) + 𝜀. It follows that

mR𝑑 (𝑃′) ≤ m𝑄 (0,𝑅) (𝑃′) ≤ m𝑄 (0,𝑅) (𝑃) + 𝜀 ≤ mR𝑑 (𝑃) + 2𝜀

whenever 𝑃′ ∈ B(𝑃, 𝛿), finishing the proof. �

These last results can now be combined in a very simple way to give an (almost complete) answer
to question (Q2), when restricted to admissible configurations. Let us denote by M𝑛 (𝑃) the set of all
possible independence densities one can obtain by forbidding n distinct dilates of a configuration P;
that is,

M𝑛 (𝑃) :=
{
mR𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) : 0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑛 < ∞

}
.

Recall that (Q2) asked for an explicit description of this set M𝑛 (𝑃).
Theorem 6 (Forbidding multiple dilates). If 𝑃 ⊂ R𝑑 is admissible, then(

mR𝑑 (𝑃)𝑛, mR𝑑 (𝑃)
)
⊆ M𝑛 (𝑃) ⊆

[
mR𝑑 (𝑃)𝑛, mR𝑑 (𝑃)

]
.

Proof. It is clear that mR𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) ≤ mR𝑑 (𝑡1𝑃) = mR𝑑 (𝑃) always holds, and we saw in
Lemma 8 that

mR𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) ≥
𝑛∏
𝑖=1

mR𝑑 (𝑡𝑖𝑃) = mR𝑑 (𝑃)𝑛.

Moreover, Lemma 9 implies that mR𝑑 (𝑃) is an accumulation point of the set M𝑛 (𝑃), and (since P
is admissible) Theorem 4 implies the same about mR𝑑 (𝑃)𝑛. The result follows from continuity of the
function

(𝑡1, 𝑡2, . . . , 𝑡𝑛) ↦→ mR𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃),

which is an immediate consequence of Theorem 5. �

As our final result in the Euclidean setting, we will show the existence of extremizer sets which avoid
admissible configurations. This generalizes a result of Bukh (see Corollary 13 in [3]) from forbidden
distances to higher-order configurations.
Theorem 7 (Existence of extremizers). If 𝑃 ⊂ R𝑑 is admissible, then there exists a P-avoiding measur-
able set 𝐴 ⊆ R𝑑 with density 𝑑 (𝐴) = mR𝑑 (𝑃).
Proof. For each integer 𝑖 ≥ 1, let 𝐴𝑖 ⊆ 𝑄(0, 𝑖) be a P-avoiding set with density 𝑑𝑄 (0,𝑖) (𝐴𝑖) ≥
m𝑄 (0,𝑖) (𝑃) −2−𝑖 . Denote the unit ball of 𝐿∞(R𝑑) by B∞; by the Banach-Alaoglu Theorem, B∞ is weak∗
compact. By restricting to a subsequence if necessary, we may then assume that (𝐴𝑖)𝑖≥1 converges to
some element 𝐴 ∈ B∞ in the weak∗ topology of 𝐿∞(R𝑑). Denote by 𝐴 := supp 𝐴 the support of 𝐴.7

We will first prove that 𝐼𝑃 (𝐴) = 0. Fix some 𝑅 > 0 and (for notational convenience) denote the
indicator function of the cube 𝑄(0, 𝑅) by 𝜒𝑅. Writing 𝜒𝑅𝐴𝑖 for the pointwise product of 𝜒𝑅 and the

7Strictly speaking, 𝐴 is an equivalence class of functions, not a specific function. More formally, our set A is the support of an
(arbitrary) representative of this class, but since this choice of representative makes no difference to our argument, one can ignore
this technicality.
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indicator function of 𝐴𝑖 , one easily sees from the definition that (𝜒𝑅𝐴𝑖)𝑖≥1 converges to 𝜒𝑅𝐴 in the
weak∗ topology of 𝐿∞(𝑄(0, 𝑅)). As P is admissible, the counting function 𝐼𝑃 is weak∗ continuous
(by Lemma 5) and thus, 𝐼𝑃 (𝜒𝑅𝐴) = lim𝑖→∞ 𝐼𝑃 (𝜒𝑅𝐴𝑖) = 0. We now proceed as in the proof of
Lemma 7 to show that 𝐼𝑃 (supp 𝜒𝑅𝐴) = 0 as well: first, approximate 𝐼𝑃 (supp 𝜒𝑅𝐴) by 𝐼𝑃 (𝐵𝜀), where
𝐵𝜀 := {𝑥 ∈ 𝑄(0, 𝑅) : 𝐴(𝑥) ≥ 𝜀} and 𝜀 > 0 is a sufficiently small constant (depending on R), and then
note that 𝐼𝑃 (𝐵𝜀) ≤ 𝜀−|𝑃 | 𝐼𝑃 (𝜒𝑅𝐴) = 0 for all 𝜀 > 0. Since supp 𝜒𝑅𝐴 = 𝐴∩𝑄(0, 𝑅) up to zero-measure
sets and 𝑅 > 0 is arbitrary, we conclude that 𝐼𝑃 (𝐴) = 0 as wished.

Next we prove that 𝑑 (𝐴) = mR𝑑 (𝑃). Since 𝐼𝑃 (𝐴) = 0, it follows from Lemma 2 that 𝑑 (𝐴) ≤ mR𝑑 (𝑃),
and so it suffices to show that

lim inf
𝑅→∞

𝑑𝑄 (0,𝑅) (𝐴) ≥ mR𝑑 (𝑃). (9)

Fix some arbitrary 𝜀 > 0 and take 𝑅0 ≥ 2 large enough so that (𝑅0 + 2diam 𝑃)𝑑 < (1 + 𝜀/4)𝑅𝑑0 . For
any given 𝑅 ≥ 𝑅0, take a P-avoiding set 𝐵𝑅 ⊆ 𝑄(0, 𝑅) with

𝑑𝑄 (0,𝑅) (𝐵𝑅) > m𝑄 (0,𝑅) (𝑃) − 𝜀/4 ≥ mR𝑑 (𝑃) − 𝜀/4.

For all 𝑖 ≥ 𝑅, define 𝐴′
𝑖 := 𝐵𝑅 ∪ (𝐴𝑖 \𝑄(0, 𝑅 + 2diam 𝑃)); note that 𝐴′

𝑖 avoids P and

vol(𝐴′
𝑖) = vol(𝐴𝑖) − vol

(
𝐴𝑖 ∩

(
𝑄(0, 𝑅 + 2diam 𝑃) \𝑄(0, 𝑅)

) )
− vol(𝐴𝑖 ∩𝑄(0, 𝑅)) + vol(𝐵𝑅)

≥ vol(𝐴𝑖) −
(
(𝑅 + 2diam 𝑃)𝑑 − 𝑅𝑑

)
+ vol(𝐵𝑅) − vol(𝐴 ∩𝑄(0, 𝑅))

+ vol(𝐴 ∩𝑄(0, 𝑅)) − vol(𝐴𝑖 ∩𝑄(0, 𝑅))

≥
(
m𝑄 (0,𝑖) (𝑃) − 2−𝑖

)
𝑖𝑑 − 𝜀𝑅𝑑

4
+

(
𝑑𝑄 (0,𝑅) (𝐵𝑅) − 𝑑𝑄 (0,𝑅) (𝐴)

)
𝑅𝑑

+
∫
𝑄 (0,𝑅)

(
𝐴(𝑥) − 𝐴𝑖 (𝑥)

)
𝑑𝑥

≥
(
m𝑄 (0,𝑖) (𝑃) − 2−𝑖

)
𝑖𝑑 − 𝜀𝑅𝑑

2
+

(
mR𝑑 (𝑃) − 𝑑𝑄 (0,𝑅) (𝐴)

)
𝑅𝑑

+
∫
𝑄 (0,𝑅)

(
𝐴(𝑥) − 𝐴𝑖 (𝑥)

)
𝑑𝑥.

Since vol(𝐴′
𝑖) ≤ m𝑄 (0,𝑖) (𝑃) 𝑖𝑑 for all 𝑖 ≥ 𝑅 and

∫
𝑄 (0,𝑅)

(
𝐴(𝑥) − 𝐴𝑖 (𝑥)

)
𝑑𝑥 > −𝜀 for all sufficiently

large i, we conclude that for large enough i, we have

𝑑𝑄 (0,𝑅) (𝐴) > mR𝑑 (𝑃) −
𝑖𝑑

2𝑖𝑅𝑑
− 𝜀

2
− 𝜀

𝑅𝑑
> mR𝑑 (𝑃) − 𝜀,

proving inequality (9).
Finally, since 𝐼𝑃 (𝐴) = 0, it follows from Lemma 2 that we can remove a zero-measure subset of A

in order to remove all copies of P without changing its density. The theorem follows. �

3. Configurations on the sphere

In this section, we turn to the question of whether the methods and results shown in the Euclidean space
setting can also be made to work in the spherical setting.

We shall fix an integer 𝑑 ≥ 2 throughout this section and work on the d-dimensional unit sphere
S
𝑑 :=

{
𝑥 ∈ R𝑑+1 : ‖𝑥‖ = 1

}
. We denote the uniform probability measure on S𝑑 by 𝜎 (𝑑) = 𝜎, and

the normalized Haar measure on O(R𝑑+1) by 𝜇𝑑+1 = 𝜇. These two measures are related as follows: if
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𝑋 ⊆ S𝑑 is a measurable set and 𝑥 ∈ S𝑑 , then

𝜎(𝑋) = 𝜇
({
𝑇 ∈ O(R𝑑+1) : 𝑇𝑥 ∈ 𝑋

})
.

The analogue of the axis-parallel cube in the spherical setting will be the spherical cap: given 𝑥 ∈ S𝑑
and 𝜌 > 0, we denote8

Cap(𝑥, 𝜌) :=
{
𝑦 ∈ S𝑑 : ‖𝑥 − 𝑦‖R𝑑+1 ≤ 𝜌

}
.

We say Cap(𝑥, 𝜌) is the spherical cap with center x and radius 𝜌. Since its measure 𝜎(Cap(𝑥, 𝜌)) does
not depend on the center point x, we shall denote this value simply by 𝜎(Cap𝜌). For a given (measurable)
set 𝐴 ⊆ S𝑑 , we then write

𝑑Cap(𝑥,𝜌) (𝐴) :=
𝜎(𝐴 ∩ Cap(𝑥, 𝜌))

𝜎(Cap𝜌)

for the density of A inside this cap.
We define a (spherical) configuration on S𝑑 as a finite subset of R𝑑+1 which is congruent to a set on

S
𝑑; it is convenient to allow for configurations that are not necessarily on the sphere in order to consider

dilations. Note that, if 𝑃,𝑄 ⊂ S𝑑 are two configurations which are on the sphere, then 𝑃 � 𝑄 if and
only if there is a transformation 𝑇 ∈ O(R𝑑+1) for which 𝑃 = 𝑇 ·𝑄 (translations are no longer necessary
in this case).

A spherical configuration P on S𝑑 is said to be admissible if it has at most d points and if it is
congruent to a set 𝑃′ ⊂ S𝑑 which is linearly independent.9 As before, we shall say that some set 𝐴 ⊆ S𝑑
avoids P if there is no subset of A which is congruent to P.

The natural analogues of the independence density in the spherical setting can now be given. For
𝑛 ≥ 1 configurations 𝑃1, . . . , 𝑃𝑛 on S𝑑 , we define the quantities

mS𝑑 (𝑃1, . . . , 𝑃𝑛) := sup
{
𝜎(𝐴) : 𝐴 ⊂ S𝑑 avoids 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑛

}
and

mCap(𝑥,𝜌) (𝑃1, . . . , 𝑃𝑛) := sup
{
𝑑Cap(𝑥,𝜌) (𝐴) : 𝐴 ⊂ Cap(𝑥, 𝜌) avoids 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑛

}
.

Whenever convenient, we will state and prove results in the case of only one forbidden configuration, as
the more general case of multiple forbidden configurations follows from the same arguments with only
trivial modifications (but heavier notation).

The first issue we encounter in the spherical setting is that it is not compatible with dilations: given
a set of points 𝑃 ⊂ S𝑑 and some dilation parameter 𝑡 > 0, it is usually not true that there exists a set
𝑄 ⊂ S𝑑 congruent to 𝑡𝑃. However, there is a large class of configurations (including the ones we call
admissible) for which this is true whenever 0 < 𝑡 ≤ 1; we shall say that they are contractible.

It is easy to show that any configuration 𝑃 ⊂ S𝑑 which is contained in a d-dimensional affine
hyperplane (e.g., any configuration with at most 𝑑 + 1 points) is contractible. Indeed, let 0 < 𝑡 ≤ 1
and suppose 𝑃 ⊂ S𝑑 ∩ (𝑤 +𝑈), where 𝑈 ⊂ R𝑑+1 is a d-dimensional subspace and w is orthogonal to
U. Then, w is orthogonal to 𝑣 − 𝑤 for every 𝑣 ∈ 𝑃, and one readily checks that10 𝑠𝑤 + 𝑡𝑃 ⊂ S𝑑 for
𝑠 =

(
𝑡2 + (1 − 𝑡2)‖𝑤‖−2)1/2 − 𝑡.

Even when the configuration we are considering is contractible, however, there is no easy relationship
between the independence densities of its distinct dilates. We will then start with the following reassuring

8It is more customary to define the spherical cap using angular distance instead of Euclidean distance as we use. There is no
meaningful (qualitative) difference between these two choices, but the use of the Euclidean distance will be more convenient for us.

9Note that this definition is different from the one in the Euclidean setting, where we required the points to be affinely
independent instead of linearly independent. The reason behind this difference is that the Euclidean space is translation-invariant
while the sphere is not, so affine properties on R𝑑 should translate to linear properties on S𝑑 .

10This is true if 𝑤 ≠ 0, by two applications of Pythagoras’ Theorem. If 𝑤 = 0, then one has instead that (1− 𝑡2)1/2𝑢+ 𝑡𝑃 ⊂ S𝑑
for a unit vector 𝑢 ∈ R𝑑+1 orthogonal to the subspace U.
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lemma, which in a sense assures us the results we will eventually obtain are not true for only trivial
reasons.

Lemma 10. For any fixed contractible configuration 𝑃 ⊂ S𝑑 , we have that

inf
0<𝑡≤1

mS𝑑 (𝑡𝑃) > 0 and sup
0<𝑡≤1

mS𝑑 (𝑡𝑃) < 1.

Proof. For the first inequality, we note that spherical caps are exactly the closed balls of the separable
metric space S𝑑 endowed with the Euclidean distance. This allows us to use the Vitali Covering
Lemma; see, for instance, [14, Theorem 2.1]. For any given 0 < 𝑡 ≤ 1, start with the trivial cover
S
𝑑 =

⋃
𝑥∈S𝑑 Cap(𝑥, diam 𝑡𝑃) and apply the Vitali Covering Lemma to obtain a (necessarily finite) set

of center points {𝑥1, . . . , 𝑥𝑁 } ⊂ S𝑑 such that Cap(𝑥𝑖 , diam 𝑡𝑃) ∩ Cap(𝑥 𝑗 , diam 𝑡𝑃) = ∅ for 𝑖 ≠ 𝑗 and

S
𝑑 =

𝑁⋃
𝑖=1

Cap(𝑥𝑖 , 5diam 𝑡𝑃).

Since the caps Cap(𝑥𝑖 , diam 𝑡𝑃) are pairwise disjoint, it is easy to see that the set

𝐴𝑡 :=
𝑁⋃
𝑖=1

Cap
(
𝑥𝑖 ,

diam 𝑡𝑃

4

)

does not contain any copy of 𝑡𝑃. Finally, as the inequality 𝜎(Cap𝜌) ≥ 𝑐𝑑𝜎(Cap20𝜌) holds for some
constant 𝑐𝑑 > 0 and all 0 < 𝜌 ≤ 2, denoting 𝜌(𝑡) := (diam 𝑡𝑃)/4, we have that

𝜎(𝐴𝑡 ) =
𝑁∑
𝑖=1

𝜎(Cap𝜌(𝑡) ) ≥ 𝑐𝑑

𝑁∑
𝑖=1

𝜎(Cap20𝜌(𝑡) ) ≥ 𝑐𝑑 𝜎

( 𝑁⋃
𝑖=1

Cap
(
𝑥𝑖 , 20𝜌(𝑡)

))
= 𝑐𝑑 ,

and thus, mS𝑑 (𝑡𝑃) ≥ 𝜎(𝐴𝑡 ) ≥ 𝑐𝑑 for all 0 < 𝑡 ≤ 1.
For the second inequality, suppose 𝐴 ⊆ S𝑑 avoids 𝑃 = {𝑣1, . . . , 𝑣𝑘 }. Then,

𝑘∑
𝑖=1

𝐴(𝑅𝑣𝑖) = |𝐴 ∩ 𝑅𝑃 | ≤ 𝑘 − 1 for all 𝑅 ∈ O(R𝑑+1).

Integrating over O(R𝑑+1), we obtain

𝑘𝜎(𝐴) =
∫

O(R𝑑+1)

( 𝑘∑
𝑖=1

𝐴(𝑅𝑣𝑖)
)
𝑑𝜇(𝑅) ≤ 𝑘 − 1,

implying that 𝜎(𝐴) ≤ 1 − 1/𝑘 . Thus, sup0<𝑡≤1 mS𝑑 (𝑡𝑃) ≤ 1 − 1/|𝑃 |. �

Given some configuration 𝑃 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 } ⊂ S𝑑 , we define the counting function 𝐼𝑃 which acts
on a bounded measurable function 𝑓 : S𝑑 → R by

𝐼𝑃 ( 𝑓 ) :=
∫

O(R𝑑+1)
𝑓 (𝑅𝑣1) 𝑓 (𝑅𝑣2) · · · 𝑓 (𝑅𝑣𝑘 ) 𝑑𝜇(𝑅).

In the case where f is the indicator function of a set 𝐴 ⊆ S𝑑 , we note that

𝐼𝑃 (𝐴) = P𝑅∈O(R𝑑+1)
(
𝑅𝑣1, 𝑅𝑣2, . . . , 𝑅𝑣𝑘 ∈ 𝐴

)
.

If the spherical configuration P is not a subset of the sphere, we define the function 𝐼𝑃 as being equal
to 𝐼𝑄 for any 𝑄 � 𝑃 which is contained in S𝑑 .
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As in the Euclidean setting, one can show there is no meaningful difference between requiring that
a measurable set 𝐴 ⊆ S𝑑 avoids some configuration P or that it only satisfies 𝐼𝑃 (𝐴) = 0. This is proven
in the next lemma.

Lemma 11 (Zero-measure removal). Suppose 𝑃 ⊂ S𝑑 is a finite configuration and 𝐴 ⊆ S𝑑 is measur-
able. If 𝐼𝑃 (𝐴) = 0, then we can remove a zero-measure subset of A in order to remove all copies of P.

Proof. It will be more convenient to change spaces and work on the orthogonal group O(R𝑑+1) rather
than on the sphere S𝑑 . For 𝛿 > 0 and 𝑅 ∈ O(R𝑑+1), denote by

B(𝑅, 𝛿) :=
{
𝑇 ∈ O(R𝑑+1) : ‖𝑇 − 𝑅‖ ≤ 𝛿

}
the ball of radius 𝛿 in spectral norm centered on R and let I denote the identity transformation. We will
first show that

lim
𝛿→0





 1
𝜇(B(𝐼, 𝛿))

∫
B (𝐼 , 𝛿)

𝐴(𝑇𝑥) 𝑑𝜇(𝑇) − 𝐴(𝑥)




 = 0 for almost every 𝑥 ∈ S𝑑 . (10)

Let 𝑒 ∈ S𝑑 be an arbitrary point and define on O(R𝑑+1) the (measurable) set 𝐸 := {𝑅 ∈ O(R𝑑+1) :
𝑅𝑒 ∈ 𝐴}. By the Lebesgue Density Theorem on O(R𝑑+1), we have that

lim
𝛿→0





 1
𝜇(B(𝑅, 𝛿))

∫
B (𝑅,𝛿)

𝐸 (𝑇) 𝑑𝜇(𝑇) − 𝐸 (𝑅)




 = 0 for 𝜇-a.e. 𝑅 ∈ O(R𝑑+1).

But this means exactly that the measure of the set

𝐹 :=
{
𝑅 ∈ O(R𝑑+1) : lim

𝛿→0





 1
𝜇(B(𝐼, 𝛿))

∫
B (𝐼 , 𝛿)

𝐴(𝑇𝑅𝑒) 𝑑𝜇(𝑇) − 𝐴(𝑅𝑒)




 ≠ 0

}

of nondensity points is zero. It is clear from the definition of F that it is invariant under the right-action
of StabO(R𝑑+1) (𝑒); this implies 𝜎({𝑅𝑒 : 𝑅 ∈ 𝐹}) = 𝜇(𝐹) = 0, proving (10).

Now we remove from A all points x for which identity (10) does not hold, thus obtaining a subset
𝐵 ⊆ 𝐴 with 𝜎(𝐴 \ 𝐵) = 0 and

lim
𝛿→0

1
𝜇(B(𝐼, 𝛿))

∫
B (𝐼 , 𝛿)

𝐵(𝑇𝑥) 𝑑𝜇(𝑇) = 1 for all 𝑥 ∈ 𝐵.

We will show that no copy of P remains on this restricted set B, which will finish the proof of the lemma.
Suppose, for contradiction, that B contains a copy {𝑢1, . . . , 𝑢𝑘 } of P. Then, there exists 𝛿 > 0 for

which

1
𝜇(B(𝐼, 𝛿))

∫
B (𝐼 , 𝛿)

𝐵(𝑇𝑢𝑖) 𝑑𝜇(𝑇) ≥ 1 − 1
2𝑘

for all 1 ≤ 𝑖 ≤ 𝑘,

which means that P𝑇 ∈B (𝐼 , 𝛿) (𝑇𝑢𝑖 ∉ 𝐵) ≤ 1/2𝑘 for each 1 ≤ 𝑖 ≤ 𝑘 . Thus,

𝐼𝑃 (𝐵) = P𝑇 ∈O(R𝑑+1)
(
𝑇𝑢1, . . . , 𝑇𝑢𝑘 ∈ 𝐵

)
≥ 𝜇(B(𝐼, 𝛿)) · P𝑇 ∈B (𝐼 , 𝛿)

(
𝑇𝑢1, . . . , 𝑇𝑢𝑘 ∈ 𝐵

)
≥ 𝜇(B(𝐼, 𝛿))

(
1 −

𝑘∑
𝑖=1
P𝑇 ∈B (𝐼 , 𝛿) (𝑇𝑢𝑖 ∉ 𝐵)

)

≥ 𝜇(B(𝐼, 𝛿))
2

> 0,

contradicting our assumption that 𝐼𝑃 (𝐴) = 0. �
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3.1. Harmonic analysis on the sphere and the Counting Lemma

The next thing we need is an analogue of the Counting Lemma in the spherical setting, saying we do
not significantly change the count of configurations in a given set 𝐴 ⊆ S𝑑 by blurring this set a little.
As in the Euclidean setting, we will use Fourier-analytic methods to prove such a result; we now give a
quick overview of the definitions and results on harmonic analysis we will need for our arguments.

Given an integer 𝑛 ≥ 0, we write ℋ𝑑+1
𝑛 for the space of real harmonic polynomials, homogeneous of

degree n, on R𝑑+1. That is,

ℋ𝑑+1
𝑛 =

{
𝑓 ∈ R[𝑥1, . . . , 𝑥𝑑+1] : 𝑓 homogeneous, deg 𝑓 = 𝑛,

𝑑+1∑
𝑖=1

𝜕2

𝜕𝑥2
𝑖

𝑓 = 0
}
.

The restriction of the elements of ℋ𝑑+1
𝑛 to S𝑑 are called spherical harmonics of degree n on S𝑑 . If

𝑌 ∈ ℋ𝑑+1
𝑛 , note that 𝑌 (𝑥) = ‖𝑥‖𝑛𝑌 (𝑥 ′) where 𝑥 = ‖𝑥‖𝑥 ′ and 𝑥 ′ ∈ S𝑑; we can then identify ℋ𝑑+1

𝑛 with
the space of spherical harmonics of degree n, which by a slight (and common) abuse of notation, we
also denote ℋ𝑑+1

𝑛 .
Harmonic polynomials of different degrees are orthogonal with respect to the standard inner product

〈 𝑓 , 𝑔〉S𝑑 :=
∫
S𝑑

𝑓 (𝑥)𝑔(𝑥) 𝑑𝜎(𝑥). Moreover, it is a well-known fact (see e.g., [5, Chapter 1.1]) that the
family of spherical harmonics is dense in 𝐿2 (S𝑑), and so

𝐿2 (S𝑑) =
∞⊕
𝑛=0

ℋ𝑑+1
𝑛 .

Denoting by proj𝑛 : 𝐿2 (S𝑑) → ℋ𝑑+1
𝑛 the orthogonal projection onto ℋ𝑑+1

𝑛 , what this means is that
𝑓 =

∑∞
𝑛=0 proj𝑛 𝑓 for all 𝑓 ∈ 𝐿2 (S𝑑) (with equality in the 𝐿2 sense). By orthogonality, we obtain

Parseval’s identity:

‖ 𝑓 ‖2
2 =

∞∑
𝑛=0

‖proj𝑛 𝑓 ‖2
2 .

There is a family (𝑃𝑑𝑛 )𝑛≥0 of polynomials on [−1, 1], usually called ultraspherical or Gegenbauer
polynomials, which is associated to this decomposition. We use the convention that deg 𝑃𝑑𝑛 = 𝑛 and
𝑃𝑑𝑛 (1) = 1. These polynomials can be defined via the addition formula

𝑃𝑑𝑛 (𝑥 · 𝑦) =
1

dimℋ𝑑+1
𝑛

dimℋ𝑑+1
𝑛∑

𝑖=1
𝑌𝑖 (𝑥)𝑌𝑖 (𝑦) for all 𝑥, 𝑦 ∈ S𝑑 , (11)

where {𝑌𝑖 : 1 ≤ 𝑖 ≤ dimℋ𝑑+1
𝑛 } is an (arbitrary) orthonormal basis of ℋ𝑑+1

𝑛 . We refer the reader to
Chapter 1.2 of Dai and Xu’s book [5] for the proof that this formula is independent of the choice of
basis, and that it indeed defines a polynomial on [−1, 1].

The next theorem collects several properties of the Gegenbauer polynomials which will be useful for
us.

Theorem 8. For all integers 𝑑 ≥ 2 and 𝑛 ≥ 0, the following hold:

(i) 𝑃𝑑𝑛 (𝑡) ∈ [−1, 1] for all 𝑡 ∈ [−1, 1].
(ii) The projection operator proj𝑛 : 𝐿2 (S𝑑) → ℋ𝑑+1

𝑛 is given by

proj𝑛 𝑓 (𝑥) = dimℋ𝑑+1
𝑛

∫
S𝑑

𝑃𝑑𝑛 (𝑥 · 𝑦) 𝑓 (𝑦) 𝑑𝜎(𝑦). (12)

https://doi.org/10.1017/fms.2023.43 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.43


Forum of Mathematics, Sigma 27

(iii) For each fixed 𝑦, 𝑧 ∈ S𝑑 , we have∫
S𝑑

𝑃𝑑𝑛 (𝑥 · 𝑦)𝑃𝑑𝑛 (𝑥 · 𝑧) 𝑑𝜎(𝑥) = 1
dimℋ𝑑+1

𝑛

𝑃𝑑𝑛 (𝑦 · 𝑧). (13)

(iv) For any fixed 𝛾 > 0, max𝑡 ∈[−1+𝛾, 1−𝛾 ] 𝑃
𝑑
𝑛 (𝑡) tends to zero as 𝑛 → ∞.

Proof. The first three items follow easily from the addition formula (11). Indeed, fix some orthonormal
basis {𝑌𝑖 : 1 ≤ 𝑖 ≤ dimℋ𝑑+1

𝑛 } of ℋ𝑑+1
𝑛 . Then,



𝑃𝑑𝑛 (𝑥 · 𝑦)

 =





∫

O(𝑑+1)
𝑃𝑑𝑛 (𝑅𝑥 · 𝑅𝑦) 𝑑𝜇(𝑅)






=

1
dimℋ𝑑+1

𝑛






∫

O(𝑑+1)

dimℋ𝑑+1
𝑛∑

𝑖=1
𝑌𝑖 (𝑅𝑥)𝑌𝑖 (𝑅𝑦) 𝑑𝜇(𝑅)





,
which by the triangle inequality followed by Cauchy-Schwarz is at most

1
dimℋ𝑑+1

𝑛

dimℋ𝑑+1
𝑛∑

𝑖=1

( ∫
O(𝑑+1)

𝑌𝑖 (𝑅𝑥)2 𝑑𝜇(𝑅)
)1/2 ( ∫

O(𝑑+1)
𝑌𝑖 (𝑅𝑦)2 𝑑𝜇(𝑅)

)1/2

=
1

dimℋ𝑑+1
𝑛

dimℋ𝑑+1
𝑛∑

𝑖=1

( ∫
S𝑑

𝑌𝑖 (𝑧)2 𝑑𝜎(𝑧)
)
= 1,

proving (𝑖). Item (𝑖𝑖) follows from the chain of equalities

proj𝑛 𝑓 (𝑥) =
dimℋ𝑑+1

𝑛∑
𝑖=1

( ∫
S𝑑

𝑓 (𝑦)𝑌𝑖 (𝑦) 𝑑𝜎(𝑦)
)
𝑌𝑖 (𝑥)

=
∫
S𝑑

( dimℋ𝑑+1
𝑛∑

𝑖=1
𝑌𝑖 (𝑥)𝑌𝑖 (𝑦)

)
𝑓 (𝑦) 𝑑𝜎(𝑦)

= dimℋ𝑑+1
𝑛

∫
S𝑑

𝑃𝑑𝑛 (𝑥 · 𝑦) 𝑓 (𝑦) 𝑑𝜎(𝑦).

To prove item (𝑖𝑖𝑖), note that∫
S𝑑

𝑃𝑑𝑛 (𝑥 · 𝑦)𝑃𝑑𝑛 (𝑥 · 𝑧) 𝑑𝜎(𝑥)

=
1

(dimℋ𝑑+1
𝑛 )2

∫
S𝑑

dimℋ𝑑+1
𝑛∑

𝑖, 𝑗=1
𝑌𝑖 (𝑥)𝑌𝑖 (𝑦)𝑌 𝑗 (𝑥)𝑌 𝑗 (𝑧) 𝑑𝜎(𝑥)

=
1

(dimℋ𝑑+1
𝑛 )2

dimℋ𝑑+1
𝑛∑

𝑖, 𝑗=1

( ∫
S𝑑

𝑌𝑖 (𝑥)𝑌 𝑗 (𝑥) 𝑑𝜎(𝑥)
)
𝑌𝑖 (𝑦)𝑌 𝑗 (𝑧)

=
1

(dimℋ𝑑+1
𝑛 )2

dimℋ𝑑+1
𝑛∑

𝑖=1
𝑌𝑖 (𝑦)𝑌𝑖 (𝑧),

which equals the right-hand side of (13) by definition.
Finally, the last item immediately follows from the more precise asymptotic bound given in [21,

Theorem 8.21.6]. �
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We will follow Dunkl [8] in defining both the convolution operation on the sphere and the spherical
analogue of Fourier coefficients. For this, we will need to break the symmetry of the sphere a little and
distinguish an (arbitrary) point e on S𝑑; we think of this point as being the north pole. Write M(S𝑑; 𝑒)
for the space of Borel regular zonal measures on S𝑑 with pole at e, that is, those measures which are
invariant under the action of StabO(R𝑑+1) (𝑒). We will refer to the elements of M(S𝑑; 𝑒) simply as zonal
measures.

Given a function 𝑓 ∈ 𝐿2 (S𝑑) and a zonal measure 𝜈 ∈ M(S𝑑; 𝑒), we define their convolution 𝑓 ∗𝜈 by

𝑓 ∗ 𝜈(𝑥) :=
∫
S𝑑

𝑓 (𝑇𝑥𝑦) 𝑑𝜈(𝑦) for all 𝑥 ∈ S𝑑 ,

where 𝑇𝑥 ∈ O(R𝑑+1) is an arbitrary element satisfying 𝑇𝑥𝑒 = 𝑥. It is easy to see that this operation
is well-defined, independently of the choice of 𝑇𝑥 : if 𝑆𝑥𝑒 = 𝑇𝑥𝑒 = 𝑥, then 𝑆−1

𝑥 𝑇𝑥 ∈ Stab(𝑒) and so
𝜈(𝑆−1

𝑥 𝐴) = 𝜈((𝑆−1
𝑥 𝑇𝑥)𝑇−1

𝑥 𝐴) = 𝜈(𝑇−1
𝑥 𝐴). The value 𝑓 ∗ 𝜈(𝑥) can be thought of as the average of f

according to a measure which acts with respect to x as 𝜈 acts with respect to the north pole e.
For an integer 𝑛 ≥ 0 and a zonal measure 𝜈 ∈ M(S𝑑; 𝑒), we define its n-th Fourier coefficient 𝜈̂𝑛 by

𝜈̂𝑛 =
∫
S𝑑

𝑃𝑑𝑛 (𝑒 · 𝑦) 𝑑𝜈(𝑦).

The main property we will need of Fourier coefficients is the following result, which is stated in Dunkl’s
paper [8] and can be proven using a straightforward modification of the methods exposed in Chapter 2
of Dai and Xu’s book [5].

Theorem 9. If 𝑓 ∈ 𝐿2 (S𝑑) and 𝜈 ∈ M(S𝑑; 𝑒), then 𝑓 ∗ 𝜈 ∈ 𝐿2 (S𝑑) and

proj𝑛 ( 𝑓 ∗ 𝜈) = 𝜈̂𝑛 proj𝑛 𝑓 for all 𝑛 ≥ 0.

With this, we finish our review of harmonic analysis on the sphere, so let us return to our specific
problem. For a given 𝛿 > 0, denote by cap𝛿 the uniform probability measure on the spherical cap
Cap(𝑒, 𝛿):

cap𝛿 (𝐴) =
𝜎(𝐴 ∩ Cap(𝑒, 𝛿))

𝜎(Cap(𝑒, 𝛿)) for all measurable 𝐴 ⊆ S𝑑 .

Note that each cap𝛿 is a zonal measure. One immediately checks that

(ĉap𝛿)𝑛 =
1

𝜎(Cap𝛿)

∫
Cap(𝑒, 𝛿)

𝑃𝑑𝑛 (𝑒 · 𝑦) 𝑑𝜎(𝑦)

for all 𝑛 ≥ 0, and

𝑓 ∗ cap𝛿 (𝑥) =
1

𝜎(Cap𝛿)

∫
Cap(𝑥, 𝛿)

𝑓 (𝑦) 𝑑𝜎(𝑦)

for all 𝑓 ∈ 𝐿2 (S𝑑). In particular, if 𝐴 ⊆ S𝑑 is a measurable set, then 𝐴 ∗ cap𝛿 (𝑥) = 𝑑Cap(𝑥, 𝛿) (𝐴); this
gives the ‘blurring’ of the spherical sets we shall consider.

Lemma 12. For every 𝑑 ≥ 2 and 𝛾 > 0, there exists a function 𝑐𝑑,𝛾 : (0, 1] → Rwith lim𝛿→0+ 𝑐𝑑,𝛾 (𝛿) =
0 such that the following holds: for all 𝑓 , 𝑔 ∈ 𝐿2 (S𝑑) and all points 𝑢, 𝑣 ∈ S𝑑 with |𝑢 · 𝑣 | ≤ 1 − 𝛾, we
have that 





∫
O(R𝑑+1)

𝑓 (𝑅𝑢)
(
𝑔(𝑅𝑣) − 𝑔 ∗ cap𝛿 (𝑅𝑣)

)
𝑑𝜇(𝑅)





 ≤ 𝑐𝑑,𝛾 (𝛿) ‖ 𝑓 ‖2‖𝑔‖2.
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Proof. Denote by 𝜈𝑒 the Haar measure on Stab(𝑒), and assume without loss of generality that u coincides
with the north pole e. By symmetry, the expression we wish to bound may then be written as





∫
O(R𝑑+1)

𝑓 (𝑅𝑒)ℎ(𝑅𝑣) 𝑑𝜇(𝑅)




 =






∫

O(R𝑑+1)
𝑓 (𝑅𝑒)

( ∫
Stab(𝑒)

ℎ(𝑅𝑆𝑣) 𝑑𝜈𝑒 (𝑆)
)
𝑑𝜇(𝑅)





,
where ℎ = 𝑔 − 𝑔 ∗ cap𝛿 .

Write 𝑡0 := 𝑒 · 𝑣. Note that when 𝑆 ∈ Stab(𝑒) is distributed uniformly according to 𝜈𝑒, the point 𝑆𝑣
is uniformly distributed on S𝑑−1

𝑡0
:= {𝑦 ∈ S𝑑 : 𝑒 · 𝑦 = 𝑡0}. Denote by 𝜎 (𝑑−1)

𝑡0
the uniform probability

measure on S𝑑−1
𝑡0

(that is, the unique one which is invariant under the action of Stab(𝑒)). Making the
change of variables 𝑦 = 𝑆𝑣, we see that∫

Stab(𝑒)
ℎ(𝑅𝑆𝑣) 𝑑𝜈𝑒 (𝑆) =

∫
S
𝑑−1
𝑡0

ℎ(𝑅𝑦) 𝑑𝜎 (𝑑−1)
𝑡0

(𝑦) = ℎ ∗ 𝜎 (𝑑−1)
𝑡0

(𝑅𝑒). (14)

The expression we wish to bound is then equal to




∫

O(R𝑑+1)
𝑓 (𝑅𝑒) ℎ ∗ 𝜎 (𝑑−1)

𝑡0
(𝑅𝑒) 𝑑𝜇(𝑅)





 =





∫
S𝑑

𝑓 (𝑥) ℎ ∗ 𝜎 (𝑑−1)
𝑡0

(𝑥) 𝑑𝜎(𝑥)




.

Using Parseval’s Identity, we can rewrite the right-hand side of the last equality as



 ∞∑
𝑛=0

∫
S𝑑

proj𝑛 𝑓 (𝑥) proj𝑛 (ℎ ∗ 𝜎 (𝑑−1)
𝑡0

) (𝑥) 𝑑𝜎(𝑥)






≤
∞∑
𝑛=0

∫
S𝑑

|proj𝑛 𝑓 (𝑥) | | (𝜎̂
(𝑑−1)
𝑡0

)𝑛 | |proj𝑛ℎ(𝑥) | 𝑑𝜎(𝑥)

≤
∞∑
𝑛=0

| (𝜎̂ (𝑑−1)
𝑡0

)𝑛 | ‖proj𝑛 𝑓 ‖2 ‖proj𝑛ℎ‖2,

where we used Theorem 9 and then Cauchy-Schwarz. As ℎ = 𝑔 − 𝑔 ∗ cap𝛿 , the expression above is
equal to

∞∑
𝑛=0

| (𝜎̂ (𝑑−1)
𝑡0

)𝑛 | |1 − (ĉap𝛿)𝑛 | ‖proj𝑛 𝑓 ‖2 ‖proj𝑛𝑔‖2

=
∞∑
𝑛=0

|𝑃𝑑𝑛 (𝑡0) |




1 − 1

𝜎(Cap𝛿)

∫
Cap(𝑒, 𝛿)

𝑃𝑑𝑛 (𝑒 · 𝑦) 𝑑𝜎(𝑦)




‖proj𝑛 𝑓 ‖2 ‖proj𝑛𝑔‖2.

Fix some 𝜀 > 0. Since 𝑡0 ∈ [−1 + 𝛾, 1 − 𝛾] (by hypothesis), from Theorem 8, we obtain that
|𝑃𝑑𝑛 (𝑡0) | ≤ 𝜀/2 holds for all 𝑛 ≥ 𝑁 (𝜀, 𝛾), while



1 − 1

𝜎(Cap𝛿)

∫
Cap(𝑒, 𝛿)

𝑃𝑑𝑛 (𝑒 · 𝑦) 𝑑𝜎(𝑦)




 ≤ max

−1≤𝑡≤1



1 − 𝑃𝑑𝑛 (𝑡)


 = 2

always holds. Moreover, since each 𝑃𝑑𝑛 is a polynomial satisfying 𝑃𝑑𝑛 (1) = 1, we can choose 𝛿0 =
𝛿0 (𝜀, 𝛾) > 0 small enough so that |1 − 𝑃𝑑𝑛 (𝑒 · 𝑦) | ≤ 𝜀 holds whenever 𝑛 < 𝑁 (𝜀, 𝛾) and 𝑦 ∈ Cap(𝑒, 𝛿0).
This implies that the last sum is at most

∞∑
𝑛=0

𝜀‖proj𝑛 𝑓 ‖2 ‖proj𝑛𝑔‖2 ≤ 𝜀‖ 𝑓 ‖2‖𝑔‖2

whenever 𝛿 ≤ 𝛿0 (𝜀, 𝛾), finishing the proof. �
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Recall that a spherical configuration P is admissible if it has at most d points and if it is congruent to
a set 𝑃′ ⊂ S𝑑 which is linearly independent. We can now give the spherical counterpart to the Counting
Lemma from the last section.

Lemma 13 (Counting Lemma). For every admissible configuration P on S𝑑 , there exists a function
𝜂𝑃 : (0, 1] → (0, 1] with lim𝛿→0+ 𝜂𝑃 (𝛿) = 0 such that the following holds for all measurable sets
𝐴 ⊆ S𝑑:

|𝐼𝑃 (𝐴) − 𝐼𝑃 (𝐴 ∗ cap𝛿) | ≤ 𝜂𝑃 (𝛿) for all 𝛿 ∈ (0, 1] .

Moreover, this upper-bound function 𝜂𝑃 can be made to hold uniformly over all configurations 𝑃′ inside
a neighborhood of P.

Proof. Up to congruence, we may assume 𝑃 ⊂ S𝑑 . Similarly to what we did in the Euclidean setting,
we will first obtain a uniform upper bound for





∫
O(R𝑑+1)

𝑓1(𝑇𝑣1) · · · 𝑓𝑘−1(𝑇𝑣𝑘−1)
(
𝑓𝑘 (𝑇𝑣𝑘 ) − 𝑓𝑘 ∗ cap𝛿 (𝑇𝑣𝑘 )

)
𝑑𝜇(𝑇)





,
valid whenever 0 ≤ 𝑓1, . . . , 𝑓𝑘 ≤ 1 are measurable functions and (𝑣1, 𝑣2, . . . , 𝑣𝑘 ) is a permutation of
the points of P.

Denote by 𝐺 := StabO(R𝑑+1) (𝑣1, . . . , 𝑣𝑘−2) the stabilizer of the first 𝑘 − 2 points of P, and by
𝐻 := StabO(R𝑑+1) (𝑣1, . . . , 𝑣𝑘−2, 𝑣𝑘−1) = Stab𝐺 (𝑣𝑘−1) the stabilizer of the first 𝑘 − 1 points of P. We can
then bound the expression above by∫

O(R𝑑+1)






∫
𝐺

𝑓𝑘−1(𝑇𝑆𝑣𝑘−1)
(
𝑓𝑘 (𝑇𝑆𝑣𝑘 ) − 𝑓𝑘 ∗ cap𝛿 (𝑇𝑆𝑣𝑘 )

)
𝑑𝜇𝐺 (𝑆)





 𝑑𝜇(𝑇), (15)

where 𝜇𝐺 denotes the normalized Haar measure on G.
Denote ℓ := 𝑑 − 𝑘 + 2 ≥ 2. Since P is nondegenerate, we see that 𝐺 � O(Rℓ+1) and that both 𝐺𝑣𝑘−1

and 𝐺𝑣𝑘 are spheres of dimension ℓ. Morally, we should then be able to apply the last lemma (with
𝑑 = ℓ, 𝑓 = 𝑓𝑘−1(𝑇 ·) and 𝑔 = 𝑓𝑘 (𝑇 ·)) and easily conclude. However, the convolution in expression (15)
above happens in S𝑑 , while that on the last lemma would happen in Sℓ ; in particular, if 𝑘 ≥ 3 so that
ℓ < 𝑑, all of the mass on the average defined by the convolution in (15) lies outside of the ℓ-dimensional
sphere 𝐺𝑣𝑘 , so this argument cannot work. We will have to work harder to conclude.

Note that since 𝐺𝑣𝑘 is an ℓ-dimensional sphere while 𝐻𝑣𝑘 is an (ℓ − 1)-dimensional sphere (which
happens because P is nondegenerate), it follows that there is a point 𝜉 ∈ 𝐺𝑣𝑘 which is fixed by H; this
point will work as the north pole of 𝐺𝑣𝑘 .

It will be more convenient to work on the canonical unit sphere Sℓ instead of the ℓ-dimensional sphere
𝐺𝑣𝑘 ⊂ S𝑑 . We shall then restrict ourselves to the (ℓ + 1)-dimensional affine hyperplane H determined
by H ∩ S𝑑 = 𝐺𝑣𝑘 , and place coordinates on it to identify H with Rℓ+1 and 𝐺𝑣𝑘 with Sℓ , noting that G
then acts as O(Rℓ+1). More formally, let 𝑟 > 0 be the radius of 𝐺𝑣𝑘 in R𝑑+1 so that 𝐺𝑣𝑘 is isometric
to 𝑟Sℓ ; take such an isometry 𝜓 : 𝐺𝑣𝑘 → 𝑟Sℓ , and define 𝑒 ∈ Sℓ by 𝑒 := 𝜓(𝜉)/𝑟 . Now, we construct a
map 𝜙 : 𝐺 → O(Rℓ+1) defined by

𝜙(𝑆)𝜓(𝑥) = 𝜓(𝑆𝑥) for all 𝑥 ∈ 𝐺𝑣𝑘

for each 𝑆 ∈ 𝐺. It is easy to check that this map is well-defined and gives an isomorphism between G
and O(Rℓ+1), satisfying 𝜙(𝐻) = StabO(Rℓ+1) (𝑒).

For each fixed 𝑇 ∈ O(R𝑑+1), define the functions 𝑔𝑇 , ℎ𝑇 : Sℓ → [−1, 1] by

𝑔𝑇 (𝑅𝑒) := 𝑓𝑘−1(𝑇𝜙−1 (𝑅)𝑣𝑘−1) and
ℎ𝑇 (𝑅𝑒) := 𝑓𝑘 (𝑇𝜙−1 (𝑅)𝜉) − 𝑓𝑘 ∗ cap𝛿 (𝑇𝜙−1 (𝑅)𝜉),
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for all 𝑅 ∈ O(Rℓ+1). These functions are indeed well-defined on Sℓ since Stab𝐺 (𝑣𝑘−1) = Stab𝐺 (𝜉) =
𝜙−1(StabO(Rℓ+1) (𝑒)). Note that ℎ𝑇 can also be written as a function of 𝑥 ∈ Sℓ by making use of the
isometry 𝜓−1 : 𝑟Sℓ → 𝐺𝑣𝑘 :

ℎ𝑇 (𝑥) = 𝑓𝑘 (𝑇𝜓−1 (𝑟𝑥)) − 𝑓𝑘 ∗ cap𝛿 (𝑇𝜓−1 (𝑟𝑥)).

Denote by 𝑢 := 𝜓(𝑣𝑘 )/𝑟 the point in Sℓ corresponding to 𝑣𝑘 . Making the change of variables
𝑅 = 𝜙(𝑆), we obtain

∫
𝐺

𝑓𝑘−1(𝑇𝑆𝑣𝑘−1)
(
𝑓𝑘 (𝑇𝑆𝑣𝑘 ) − 𝑓𝑘 ∗ cap𝛿 (𝑇𝑆𝑣𝑘 )

)
𝑑𝜇𝐺 (𝑆)

=
∫

O(Rℓ+1)
𝑔𝑇 (𝑅𝑒) ℎ𝑇 (𝑅𝑢) 𝑑𝜇ℓ+1 (𝑅)

=
∫

O(Rℓ+1)
𝑔𝑇 (𝑅𝑒)

( ∫
Stab(𝑒)

ℎ𝑇 (𝑅𝑆𝑢) 𝑑𝜈𝑒 (𝑆)
)
𝑑𝜇ℓ+1 (𝑅),

where we write Stab(𝑒) for StabO(Rℓ+1) (𝑒) and 𝜈𝑒 for its Haar measure. Working as we did to obtain
equation (14), we see that the expression in parentheses is equal to ℎ𝑇 ∗ 𝜎 (ℓ−1)

𝑒 ·𝑢 (𝑅𝑒), where 𝜎 (ℓ−1)
𝑒 ·𝑢 is

the uniform probability measure on the (ℓ − 1)-sphere Stab(𝑒)𝑢 = {𝑦 ∈ Sℓ : 𝑒 · 𝑦 = 𝑒 · 𝑢} (and the
convolution now takes place in Sℓ with e as the north pole). Making the change of variables 𝑥 = 𝑅𝑒, we
then see that the expression above is equal to

∫
O(Rℓ+1)

𝑔𝑇 (𝑅𝑒) ℎ𝑇 ∗ 𝜎 (ℓ−1)
𝑒 ·𝑢 (𝑅𝑒) 𝑑𝜇ℓ+1 (𝑅) =

∫
Sℓ

𝑔𝑇 (𝑥) ℎ𝑇 ∗ 𝜎 (ℓ−1)
𝑒 ·𝑢 (𝑥) 𝑑𝜎 (ℓ) (𝑥).

We conclude that the expression (15) we wish to bound is equal to

∫
O(R𝑑+1)






∫
Sℓ

𝑔𝑇 (𝑥) ℎ𝑇 ∗ 𝜎 (ℓ−1)
𝑒 ·𝑢 (𝑥) 𝑑𝜎 (ℓ) (𝑥)





 𝑑𝜇𝑑+1 (𝑇)

≤
∫

O(R𝑑+1)
‖ℎ𝑇 ∗ 𝜎 (ℓ−1)

𝑒 ·𝑢 ‖2 𝑑𝜇𝑑+1 (𝑇)

≤
( ∫

O(R𝑑+1)
‖ℎ𝑇 ∗ 𝜎 (ℓ−1)

𝑒 ·𝑢 ‖2
2 𝑑𝜇𝑑+1 (𝑇)

)1/2
,

where we applied Cauchy-Schwarz twice.
Let us now compute 𝑒 · 𝑢, which will be necessary for bounding ‖ℎ𝑇 ∗ 𝜎 (ℓ−1)

𝑒 ·𝑢 ‖2
2 . From the identity

‖𝑟𝑒 − 𝑟𝑢‖2
Rℓ+1 = ‖𝜓−1 (𝑟𝑒) − 𝜓−1(𝑟𝑢)‖2

R𝑑+1 = ‖𝜉 − 𝑣𝑘 ‖2
R𝑑+1 ,

we conclude that 𝑟2(2 − 2 𝑒 · 𝑢) = 2 − 2 𝜉 · 𝑣𝑘 , and so

𝑒 · 𝑢 = (𝜉 · 𝑣𝑘 − (1 − 𝑟2))/𝑟2 ∉ {−1, 1}

depends only on the ordering (𝑣1, . . . , 𝑣𝑘 ) of P and not on our later choices (note that this value
depends continuously on the points 𝑣1, . . . , 𝑣𝑘 and so is bounded away from {−1, 1} uniformly over all
configurations 𝑃′ close enough to P).
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Now fix an arbitrary 𝜀 > 0. By Parseval’s Identity and Theorem 9, we have that

‖ℎ𝑇 ∗ 𝜎 (ℓ−1)
𝑒 ·𝑢 ‖2

2 =
∞∑
𝑛=0

‖proj𝑛 (ℎ𝑇 ∗ 𝜎 (ℓ−1)
𝑒 ·𝑢 )‖2

2

=
∞∑
𝑛=0

| (𝜎̂ (ℓ−1)
𝑒 ·𝑢 )𝑛 |2 ‖proj𝑛ℎ𝑇 ‖2

2

=
∞∑
𝑛=0

𝑃ℓ𝑛 (𝑒 · 𝑢)2 ‖proj𝑛ℎ𝑇 ‖2
2 .

Since 𝑒 · 𝑢 ∉ {−1, 1} is a constant depending only on P, by Theorem 8, there exists 𝑁 = 𝑁 (𝜀, 𝑃) ∈ N
such that |𝑃ℓ𝑛 (𝑒 · 𝑢) | ≤ 𝜀 for all 𝑛 > 𝑁 (by that same theorem, this value of N can be made robust to
small perturbations of the value 𝑒 · 𝑢, which corresponds to small perturbations of the configuration P).
Using that |𝑃ℓ𝑛 (𝑡) | ≤ 1 for all −1 ≤ 𝑡 ≤ 1, we conclude that

‖ℎ𝑇 ∗ 𝜎 (ℓ−1)
𝑒 ·𝑢 ‖2

2 ≤
𝑁∑
𝑛=0

‖proj𝑛ℎ𝑇 ‖2
2 +

∑
𝑛>𝑁

𝜀2‖proj𝑛ℎ𝑇 ‖2
2 .

The second term on the right-hand side of the inequality above is upper bounded by 𝜀2‖ℎ𝑇 ‖2
2 ≤ 𝜀2, so

let us concentrate on the first term.
By identities (12) and (13), we have

‖proj𝑛ℎ𝑇 ‖2
2 =

∫
Sℓ

(
dimℋℓ+1

𝑛

∫
Sℓ

ℎ𝑇 (𝑦)𝑃ℓ𝑛 (𝑥 · 𝑦) 𝑑𝜎(𝑦)
)2

𝑑𝜎(𝑥)

= (dimℋℓ+1
𝑛 )2

∫
Sℓ

∫
Sℓ

ℎ𝑇 (𝑦)ℎ𝑇 (𝑧)
( ∫
Sℓ

𝑃ℓ𝑛 (𝑥 · 𝑦)𝑃ℓ𝑛 (𝑥 · 𝑧) 𝑑𝜎(𝑥)
)
𝑑𝜎(𝑦) 𝑑𝜎(𝑧)

= dimℋℓ+1
𝑛

∫
Sℓ

∫
Sℓ

ℎ𝑇 (𝑦)ℎ𝑇 (𝑧) 𝑃ℓ𝑛 (𝑦 · 𝑧) 𝑑𝜎(𝑦) 𝑑𝜎(𝑧).

Since |𝑃ℓ𝑛 (𝑦 · 𝑧) | ≤ 1 for all 𝑦, 𝑧 ∈ Sℓ , we conclude that

∫
O(𝑑+1)

‖proj𝑛ℎ𝑇 ‖2
2 𝑑𝜇𝑑+1 (𝑇)

= dimℋℓ+1
𝑛

∫
Sℓ

∫
Sℓ

( ∫
O(𝑑+1)

ℎ𝑇 (𝑦)ℎ𝑇 (𝑧) 𝑑𝜇𝑑+1 (𝑇)
)
𝑃ℓ𝑛 (𝑦 · 𝑧) 𝑑𝜎(𝑦) 𝑑𝜎(𝑧)

≤ dimℋℓ+1
𝑛

∫
Sℓ

∫
Sℓ






∫

O(𝑑+1)
ℎ𝑇 (𝑦)ℎ𝑇 (𝑧) 𝑑𝜇𝑑+1 (𝑇)





 𝑑𝜎(𝑦) 𝑑𝜎(𝑧).

We now divide this last double integral on the sphere into two parts, depending on whether or not
𝑦 · 𝑧 is close to the extremal points 1 or −1. Thus, for some parameter 0 < 𝛾 < 1 to be chosen later, we
write the double integral as

∫
Sℓ

∫
Sℓ






∫

O(𝑑+1)
ℎ𝑇 (𝑦)ℎ𝑇 (𝑧) 𝑑𝜇𝑑+1 (𝑇)





1{
|𝑦 · 𝑧 | > 1 − 𝛾

}
𝑑𝜎(𝑦) 𝑑𝜎(𝑧)

+
∫
Sℓ

∫
Sℓ






∫

O(𝑑+1)
ℎ𝑇 (𝑦)ℎ𝑇 (𝑧) 𝑑𝜇𝑑+1 (𝑇)





1{
|𝑦 · 𝑧 | ≤ 1 − 𝛾

}
𝑑𝜎(𝑦) 𝑑𝜎(𝑧).
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Since −1 ≤ ℎ𝑇 ≤ 1, the first term is at most

2
∫
Sℓ

∫
Sℓ
1{𝑦 · 𝑧 > 1 − 𝛾} 𝑑𝜎(𝑦) 𝑑𝜎(𝑧) = 2𝜎 (ℓ) (CapSℓ (𝑒,

√
2𝛾)

)
.

To bound the second term, note that for fixed 𝑦, 𝑧 ∈ Sℓ , we have∫
O(𝑑+1)

ℎ𝑇 (𝑦)ℎ𝑇 (𝑧) 𝑑𝜇𝑑+1 (𝑇)

=
∫

O(𝑑+1)

(
𝑓𝑘 (𝑇 𝑦̃) − 𝑓𝑘 ∗ cap𝛿 (𝑇 𝑦̃)

) (
𝑓𝑘 (𝑇 𝑧̃) − 𝑓𝑘 ∗ cap𝛿 (𝑇 𝑧̃)

)
𝑑𝜇𝑑+1 (𝑇),

where 𝑦̃ := 𝜓−1 (𝑟𝑦) and 𝑧̃ := 𝜓−1 (𝑟𝑧). Moreover, we have

‖𝑟𝑦 − 𝑟𝑧‖2
Rℓ+1 = ‖ 𝑦̃ − 𝑧̃‖2

R𝑑+1 =⇒ 𝑦̃ · 𝑧̃ = 1 − 𝑟2(1 − 𝑦 · 𝑧);

thus, whenever |𝑦 · 𝑧 | ≤ 1 − 𝛾, we have | 𝑦̃ · 𝑧̃ | ≤ 1 − 𝑟2𝛾. Using Lemma 12 (with 𝑓 = 𝑓𝑘 − 𝑓𝑘 ∗ cap𝛿 ,
𝑔 = 𝑓𝑘 and 𝛾 substituted by 𝑟2𝛾), we conclude that the second term is bounded by 𝑐𝑑,𝑟2𝛾 (𝛿).

Taking stock of everything, we obtain∫
O(𝑑+1)

‖ℎ𝑇 ∗ 𝜎 (ℓ−1)
𝑒 ·𝑢 ‖2

2 𝑑𝜇𝑑+1 (𝑇)

≤ 𝜀2 +
𝑁∑
𝑛=0

dimℋℓ+1
𝑛

(
2𝜎 (ℓ) (CapSℓ (𝑒,

√
2𝛾)

)
+ 𝑐𝑑,𝑟2𝛾 (𝛿)

)

for any 0 < 𝛾 < 1. Choosing 𝛾 small enough depending on ℓ, 𝜀 and N, and then choosing 𝛿 small
enough depending on d, 𝑟2𝛾, 𝜀 and N (so ultimately only on 𝜀 and P), we can bound the right-hand side
above by 4𝜀2; the expression (15) is then bounded by 2𝜀 in this case.

For such small values of 𝛿, we thus conclude from our telescoping sum trick (explained in Section
2.1) that |𝐼𝑃 (𝐴) − 𝐼𝑃 (𝐴 ∗ cap𝛿) | ≤ 2𝑘𝜀, proving the desired inequality since 𝜀 > 0 is arbitrary. The
claim that the upper bound can be made uniform inside some neighborhood of P follows from analyzing
our proof. �

We remark that the proof of the Counting Lemma given above is the only place where we explicitly
make use of the assumption that a spherical configuration is admissible. This assumption, however, will
get inherited by all later results which make use of the Counting Lemma in their proofs.

3.2. Continuity properties of the counting function

Following the same script as in the Euclidean setting, we now consider other ways in which the counting
function is robust to small perturbations.

It is again easy to show, using our telescoping sum trick, that 𝐼𝑃 is continuous in 𝐿∞(S𝑑) (and even in
𝐿 |𝑃 | (S𝑑)) for all spherical configurations. When the configuration considered is admissible, we obtain
also the following significantly stronger continuity property of 𝐼𝑃 when restricting to bounded functions.

Lemma 14 (Weak∗ continuity). If P is an admissible configuration on S𝑑 , then 𝐼𝑃 is weak∗ continuous
on the unit ball of 𝐿∞(S𝑑).

Proof. Denote the closed unit ball of 𝐿∞(S𝑑) by B∞, and let ( 𝑓𝑖)𝑖≥1 ⊂ B∞ be a sequence weak∗
converging to 𝑓 ∈ B∞. It will suffice to show that (𝐼𝑃 ( 𝑓𝑖))𝑖≥1 converges to 𝐼𝑃 ( 𝑓 ).
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Note that, for every 𝑥 ∈ S𝑑 , 𝛿 > 0, we have

𝑓𝑖 ∗ cap𝛿 (𝑥) =
1

𝜎(Cap𝛿)

∫
Cap(𝑥, 𝛿)

𝑓𝑖 (𝑦) 𝑑𝜎(𝑦)

𝑖→∞−−−−→ 1
𝜎(Cap𝛿)

∫
Cap(𝑥, 𝛿)

𝑓 (𝑦) 𝑑𝜎(𝑦) = 𝑓 ∗ cap𝛿 (𝑥).

Since 𝑓 ∗ cap𝛿 and each 𝑓𝑖 ∗ cap𝛿 are Lipschitz with the same constant (depending only on 𝛿) and S𝑑
is compact, this easily implies that

‖ 𝑓𝑖 ∗ cap𝛿 − 𝑓 ∗ cap𝛿 ‖∞ → 0 as 𝑖 → ∞.

In particular, we conclude lim𝑖→∞ 𝐼𝑃 ( 𝑓𝑖 ∗ cap𝛿) = 𝐼𝑃 ( 𝑓 ∗ cap𝛿).
Since P is admissible, by the spherical Counting Lemma, we have

|𝐼𝑃 ( 𝑓 ∗ cap𝛿) − 𝐼𝑃 ( 𝑓 ) | ≤ 𝜂𝑃 (𝛿) and |𝐼𝑃 ( 𝑓𝑖 ∗ cap𝛿) − 𝐼𝑃 ( 𝑓𝑖) | ≤ 𝜂𝑃 (𝛿) for all 𝑖 ≥ 1.

Choosing 𝑖0(𝛿) ≥ 1 sufficiently large so that

|𝐼𝑃 ( 𝑓𝑖 ∗ cap𝛿) − 𝐼𝑃 ( 𝑓 ∗ cap𝛿) | ≤ 𝜂𝑃 (𝛿) for all 𝑖 ≥ 𝑖0 (𝛿),

we conclude that

|𝐼𝑃 ( 𝑓 ) − 𝐼𝑃 ( 𝑓𝑖) | ≤ |𝐼𝑃 ( 𝑓 ) − 𝐼𝑃 ( 𝑓 ∗ cap𝛿) | + |𝐼𝑃 ( 𝑓 ∗ cap𝛿) − 𝐼𝑃 ( 𝑓𝑖 ∗ cap𝛿) |
+ |𝐼𝑃 ( 𝑓𝑖 ∗ cap𝛿) − 𝐼𝑃 ( 𝑓𝑖) |

≤ 3𝜂𝑃 (𝛿) for all 𝑖 ≥ 𝑖0(𝛿).

Since 𝛿 > 0 is arbitrary and 𝜂𝑃 (𝛿) → 0 as 𝛿 → 0, this finishes the proof. �

Given some spherical configuration 𝑃 = {𝑣1, . . . , 𝑣𝑘 } ⊂ R𝑑+1, let us write B(𝑃, 𝑟) ⊂ (R𝑑+1)𝑘 for
the ball of radius r centered on P, where the distance from P to 𝑄 = {𝑢1, . . . , 𝑢𝑘 } is given by

‖𝑄 − 𝑃‖∞ := min
𝜎∈𝔖𝑘

max
1≤𝑖≤𝑘

‖𝑢𝑖 − 𝑣𝜎 (𝑖) ‖.

If P is an admissible spherical configuration, note that all configurations inside a small enough ball
centered on P will also be admissible.

We will later need an equicontinuity property for the family of counting functions 𝑃 ↦→ 𝐼𝑃 (𝐴) over
all measurable sets 𝐴 ⊆ S𝑑; this is given in the following lemma.

Lemma 15 (Equicontinuity). For every admissible 𝑃 ⊂ S𝑑 and every 𝜀 > 0, there exists 𝛿 > 0 such that

|𝐼𝑄 (𝐴) − 𝐼𝑃 (𝐴) | ≤ 𝜀 for all 𝑄 ∈ B(𝑃, 𝛿), 𝐴 ⊆ S𝑑 .

Proof. We will use the fact that the function 𝜂𝑃 obtained in the Counting Lemma can be made uniform
inside a small ball centered on P. In other words, there is 𝑟 > 0 and a function 𝜂′𝑃 : (0, 1] → (0, 1] with
lim𝑡→0 𝜂′𝑃 (𝑡) = 0 such that

|𝐼𝑄 (𝐴) − 𝐼𝑄 (𝐴 ∗ cap𝜌) | ≤ 𝜂′𝑃 (𝜌) for all 𝑄 ∈ B(𝑃, 𝑟), 𝐴 ⊆ S𝑑 .

Now, for a given 𝜌 > 0 and all 0 < 𝛿 < 𝜌, we see from the triangle inequality that

‖𝑥 − 𝑦‖ ≤ 𝛿 =⇒ Cap(𝑥, 𝜌 − 𝛿) ⊂ Cap(𝑥, 𝜌) ∩ Cap(𝑦, 𝜌),
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and so 𝜎
(
Cap(𝑥, 𝜌) \ Cap(𝑦, 𝜌)

)
≤ 𝜎(Cap𝜌) − 𝜎(Cap𝜌−𝛿). This implies that, for any set 𝐴 ⊆ S𝑑 and

any 𝑥, 𝑦 ∈ S𝑑 with ‖𝑥 − 𝑦‖ ≤ 𝛿, we have

|𝐴 ∗ cap𝜌 (𝑥) − 𝐴 ∗ cap𝜌 (𝑦) | =


𝜎(𝐴 ∩ Cap(𝑥, 𝜌)) − 𝜎(𝐴 ∩ Cap(𝑦, 𝜌))




𝜎(Cap𝜌)

≤
𝜎

(
Cap(𝑥, 𝜌) \ Cap(𝑦, 𝜌)

)
𝜎(Cap𝜌)

≤
𝜎(Cap𝜌) − 𝜎(Cap𝜌−𝛿)

𝜎(Cap𝜌)
.

By our telescoping sum trick, whenever ‖𝑄 − 𝑃‖∞ ≤ 𝛿, we conclude that

|𝐼𝑄 (𝐴 ∗ cap𝜌) − 𝐼𝑃 (𝐴 ∗ cap𝜌) | ≤ 𝑘
𝜎(Cap𝜌) − 𝜎(Cap𝜌−𝛿)

𝜎(Cap𝜌)
.

Take 𝜌 > 0 small enough so that 𝜂′𝑃 (𝜌) ≤ 𝜀/3, and for this value of 𝜌 take 0 < 𝛿 < 𝑟 small enough
so that 𝜎(Cap𝜌−𝛿) ≥ (1− 𝜀/3𝑘) 𝜎(Cap𝜌). Then, for any 𝑄 ∈ B(𝑃, 𝛿) and any measurable set 𝐴 ⊆ S𝑑 ,
we have

|𝐼𝑄 (𝐴) − 𝐼𝑃 (𝐴) | ≤ |𝐼𝑄 (𝐴) − 𝐼𝑄 (𝐴 ∗ cap𝜌) | + |𝐼𝑄 (𝐴 ∗ cap𝜌) − 𝐼𝑃 (𝐴 ∗ cap𝜌) |
+ |𝐼𝑃 (𝐴 ∗ cap𝜌) − 𝐼𝑃 (𝐴) |

≤ 𝜂′𝑃 (𝜌) + 𝑘
𝜎(Cap𝜌) − 𝜎(Cap𝜌−𝛿)

𝜎(Cap𝜌)
+ 𝜂′𝑃 (𝜌)

≤ 𝜀

3
+ 𝑘

𝜀

3𝑘
+ 𝜀

3
= 𝜀,

as wished. �

3.3. The spherical Supersaturation Theorem

Having proven that the counting function for admissible spherical configurations is robust to various
kinds of small perturbations, we next show that it also satisfies a useful supersaturation property.

This is the second main technical tool we need to study the independence density in the spherical
setting, and due to the fact that the unit sphere is compact, both its statement and proof are somewhat
simpler than in the Euclidean space setting.

Theorem 10 (Supersaturation Theorem). For every admissible configuration P on S𝑑 and every 𝜀 > 0,
there exists a constant 𝑐(𝜀) > 0 such that the following holds: if 𝐴 ⊆ S𝑑 satisfies 𝜎(𝐴) ≥ mS𝑑 (𝑃) + 𝜀,
then 𝐼𝑃 (𝐴) ≥ 𝑐(𝜀).

Proof. Suppose, for contradiction, that the result is false; then, there exist some 𝜀 > 0 and some
sequence (𝐴𝑖)𝑖≥1 of sets, each of density at least mS𝑑 (𝑃) + 𝜀, which satisfy lim𝑖→∞ 𝐼𝑃 (𝐴𝑖) = 0.

Note that the unit ball B∞ of 𝐿∞(S𝑑) is weak∗ compact and also metrizable in this topology (see [15,
Chapter 2.6]). By possibly restricting to a subsequence, we may then assume that (𝐴𝑖)𝑖≥1 converges in
the weak∗ topology of 𝐿∞(S𝑑); let us denote its limit by 𝐴 ∈ B∞. It is clear that 0 ≤ 𝐴 ≤ 1 almost
everywhere, and

∫
S𝑑

𝐴(𝑥) 𝑑𝜎(𝑥) = lim𝑖→∞ 𝜎(𝐴𝑖) ≥ mS𝑑 (𝑃) + 𝜀. By weak∗ continuity of 𝐼𝑃 (Lemma
14), we also have 𝐼𝑃 (𝐴) = lim𝑖→∞ 𝐼𝑃 (𝐴𝑖) = 0.

Now let 𝐵 := {𝑥 ∈ S𝑑 : 𝐴(𝑥) ≥ 𝜀}. Since

𝜀𝐵(𝑥) ≤ 𝐴(𝑥) < 𝜀 + 𝐵(𝑥) for a.e. 𝑥 ∈ S𝑑 ,
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we conclude that 𝐼𝑃 (𝐵) ≤ 𝜀−|𝑃 | 𝐼𝑃 (𝐴) = 0 and

𝜎(𝐵) >

∫
S𝑑

𝐴(𝑥) 𝑑𝜎(𝑥) − 𝜀 ≥ mS𝑑 (𝑃).

But this set B contradicts Lemma 11, finishing the proof. �

It will be useful to also introduce a spherical analogue of the zooming-out operator, which acts on
measurable spherical sets and represents the points on the sphere around which the considered set has
a somewhat high density. Given quantities 𝛿, 𝛾 > 0, we denote by Z𝛿 (𝛾) the operator which takes a
measurable set 𝐴 ⊆ S𝑑 to the set

Z𝛿 (𝛾) [𝐴] :=
{
𝑥 ∈ S𝑑 : 𝑑Cap(𝑥, 𝛿) (𝐴) ≥ 𝛾

}
.

The most important property of the zooming-out operator is the following result.

Corollary 2. For every admissible configuration P on S𝑑 and every 𝜀 > 0, there exists 𝛿0 > 0 such that
the following holds for all 𝛿 ≤ 𝛿0: if 𝐴 ⊆ S𝑑 satisfies

𝜎
(
Z𝛿 (𝜀) [𝐴]

)
≥ mS𝑑 (𝑃) + 𝜀,

then A contains a congruent copy of P.

Proof. By the Supersaturation Theorem, we know that

𝜎
(
Z𝛿 (𝜀) [𝐴]

)
≥ mS𝑑 (𝑃) + 𝜀 =⇒ 𝐼𝑃

(
Z𝛿 (𝜀) [𝐴]

)
≥ 𝑐(𝜀)

holds for all 𝛿 > 0. By the Counting Lemma, we then have

𝐼𝑃 (𝐴) ≥ 𝐼𝑃 (𝐴 ∗ cap𝛿) − 𝜂𝑃 (𝛿) ≥ 𝜀 |𝑃 | 𝐼𝑃
(
Z𝛿 (𝜀) [𝐴]

)
− 𝜂𝑃 (𝛿)

≥ 𝜀 |𝑃 |𝑐(𝜀) − 𝜂𝑃 (𝛿).

Since 𝜂𝑃 (𝛿) → 0 as 𝛿 → 0, there is some 𝛿0 > 0 such that for all 𝛿 ≤ 𝛿0, we can conclude 𝐼𝑃 (𝐴) > 0;
this implies that A contains a copy of P. �

3.4. From the sphere to spherical caps

We must now tackle the problem of obtaining a relationship between the independence density mS𝑑 (𝑃)
of a given configuration 𝑃 ⊂ S𝑑 and its spherical cap version mCap(𝑥,𝜌) (𝑃), as this will be needed later.

In the Euclidean setting, this was very easy to do (see Lemma 1), using the fact that we can tessellate
R
𝑑 with cubes 𝑄(𝑥, 𝑅) of any given side length 𝑅 > 0. This is no longer the case in the spherical setting,

as it is impossible to completely cover S𝑑 using nonoverlapping spherical caps of some given radius; in
fact, this cannot be done even approximately if we require the radii of the spherical caps to be the same
(as we did with the side length of the cubes in R𝑑).

We will then need to use a much weaker ‘almost-covering’ result, saying that we can cover almost all
of the sphere by using finitely many nonoverlapping spherical caps with possibly different radii. Such
a collection of disjoint spherical caps is called a cap packing. For technical reasons, we will also want
the radii of the caps in this packing to be arbitrarily small.

Lemma 16. For every 𝜀 > 0, there is a finite cap packing

P =
{
Cap(𝑥𝑖 , 𝜌𝑖) : 1 ≤ 𝑖 ≤ 𝑁

}
of S𝑑 with density 𝜎(P) > 1 − 𝜀 and with radii 𝜌𝑖 ≤ 𝜀 for all 1 ≤ 𝑖 ≤ 𝑁 .
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Proof. We will use the same notation for both a collection of caps and the set of points on S𝑑 which
belong to (at least) one of these caps. The desired packing P will be constructed in several steps, starting
with P0 := {Cap(𝑒, 𝜀)}.

Now, suppose P𝑖−1 has already been constructed (and is finite) for some 𝑖 ≥ 1 and let us construct
P𝑖 . Define

C𝑖 :=
{
Cap

(
𝑥, min{𝜀, dist(𝑥,P𝑖−1)}

)
: 𝑥 ∈ S𝑑 \ P𝑖−1

}
,

and note that C𝑖 is a covering of S𝑑 \ P𝑖−1 by caps of positive radii (since P𝑖−1 is closed on S𝑑). By the
Vitali Covering Lemma, there is a countable subcollection

Q𝑖 =
∞⋃
𝑗=1

{Cap(𝑥 𝑗 , 𝑟 𝑗 )} ⊂ C𝑖

of disjoint caps in C𝑖 such that S𝑑 \ P𝑖−1 ⊆
⋃∞
𝑗=1 Cap(𝑥 𝑗 , 5𝑟 𝑗 ). In particular,

1 − 𝜎(P𝑖−1) = 𝜎(S𝑑 \ P𝑖−1) ≤
∞∑
𝑗=1

𝜎(Cap(𝑥 𝑗 , 5𝑟 𝑗 )) ≤ 𝐾𝑑 𝜎(Q𝑖),

where we denote 𝐾𝑑 := sup𝑟>0 𝜎(Cap5𝑟 )/𝜎(Cap𝑟 ) < ∞. Taking 𝑁𝑖 ∈ N such that

𝑁𝑖∑
𝑗=1

𝜎(Cap(𝑥 𝑗 , 𝑟 𝑗 )) ≥ 𝜎(Q𝑖) −
1 − 𝜎(P𝑖−1)

2𝐾𝑑
,

we see that P ′
𝑖 := {Cap(𝑥 𝑗 , 𝑟 𝑗 ) : 1 ≤ 𝑗 ≤ 𝑁𝑖} ⊂ S𝑑 \ P𝑖−1 satisfies

𝜎(P ′
𝑖 ) ≥

1 − 𝜎(P𝑖−1)
2𝐾𝑑

.

Now, set P𝑖 := P𝑖−1 ∪ P ′
𝑖 ; this is a finite cap packing with

1 − 𝜎(P𝑖) = 1 − 𝜎(P𝑖−1) − 𝜎(P ′
𝑖 ) ≤ (1 − 𝜎(P𝑖−1))

(
1 − 1

2𝐾𝑑

)

≤ (1 − 𝜎(Cap𝜀))
(
1 − 1

2𝐾𝑑

) 𝑖

(where the last inequality follows by induction). Taking 𝑛 ≥ 1 large enough so that (1 − 𝜎(Cap𝜀))
(
1 −

1
2𝐾𝑑

)𝑛
< 𝜀, we see that P := P𝑛 satisfies all requirements. �

We can now obtain our analogue of Lemma 1, relating the two versions of independence density in
the spherical setting.

Lemma 17. For every 𝜀 > 0, 𝜌 > 0, there exists 𝑡0 > 0 such that the following holds whenever
𝑃1, . . . , 𝑃𝑛 ⊂ S𝑑 have diameter at most 𝑡0:

mCap(𝑥,𝜌) (𝑃1, . . . , 𝑃𝑛) − mS𝑑 (𝑃1, . . . , 𝑃𝑛)



 < 𝜀.

Proof. If 𝐴 ⊂ S𝑑 is a set which avoids 𝑃1, . . . , 𝑃𝑛, then for every 𝑥 ∈ S𝑑 , the set 𝐴 ∩ Cap(𝑥, 𝜌) ⊆
Cap(𝑥, 𝜌) also avoids 𝑃1, . . . , 𝑃𝑛. Since E𝑥∈S𝑑 [𝑑Cap(𝑥,𝜌) (𝐴)] = 𝜎(𝐴), there must exist some 𝑥 ∈ S𝑑
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such that

𝑑Cap(𝑥,𝜌) (𝐴 ∩ Cap(𝑥, 𝜌)) = 𝑑Cap(𝑥,𝜌) (𝐴) ≥ 𝜎(𝐴);

optimizing over A, we conclude that mCap(𝑥,𝜌) (𝑃1, . . . , 𝑃𝑛) ≥ mS𝑑 (𝑃1, . . . , 𝑃𝑛).
For the opposite direction, let 𝛾 ≤ 𝜀/4 be small enough so that 𝜎(Cap𝜌+𝛾) ≤ (1 + 𝜀/4) 𝜎(Cap𝜌).

By Lemma 16, we know there is a cap packing

P = {Cap(𝑥𝑖 , 𝜌𝑖) : 1 ≤ 𝑖 ≤ 𝑁}

of S𝑑 with 𝜎(P) ≥ 1 − 𝛾 and 0 < 𝜌1, . . . , 𝜌𝑁 ≤ 𝛾. Now, let 𝑡0 > 0 be small enough so that
𝜎(Cap𝜌𝑖−2𝑡0) ≥ (1 − 𝜀/4) 𝜎(Cap𝜌𝑖 ) for all 1 ≤ 𝑖 ≤ 𝑁; note that 𝑡0 will ultimately depend only on 𝜀
and 𝜌.

Fixing any configurations 𝑃1, . . . , 𝑃𝑛 ⊂ S𝑑 of diameter at most 𝑡0, let 𝐴 ⊂ Cap(𝑥, 𝜌) be a set which
avoids all of them. We shall construct a set 𝐴 ⊂ S𝑑 which also avoids 𝑃1, . . . , 𝑃𝑛, and which satisfies
𝜎(𝐴) > 𝑑Cap(𝑥,𝜌) (𝐴) − 𝜀; this will finish the proof.

For each 1 ≤ 𝑖 ≤ 𝑁 , denote 𝜌̃𝑖 := 𝜌𝑖 − 2𝑡0 < 𝛾. We have that

𝜎(𝐴) =
∫
S𝑑

𝑑Cap(𝑦,𝜌𝑖) (𝐴) 𝑑𝜎(𝑦)

=
∫

Cap(𝑥, 𝜌+𝜌𝑖)
𝑑Cap(𝑦,𝜌𝑖) (𝐴) 𝑑𝜎(𝑦)

≤
∫

Cap(𝑥, 𝜌)
𝑑Cap(𝑦,𝜌𝑖) (𝐴) 𝑑𝜎(𝑦) + 𝜎(Cap𝜌+𝜌𝑖 ) − 𝜎(Cap𝜌).

Since 𝜌̃𝑖 < 𝛾, dividing by 𝜎(Cap𝜌), we obtain

E𝑦∈Cap(𝑥,𝜌)
[
𝑑Cap(𝑦,𝜌𝑖) (𝐴)

]
≥ 𝜎(𝐴)

𝜎(Cap𝜌)
−

𝜎(Cap𝜌+𝜌𝑖 ) − 𝜎(Cap𝜌)
𝜎(Cap𝜌)

> 𝑑Cap(𝑥,𝜌) (𝐴) −
𝜀

4
.

There must then exist 𝑦𝑖 ∈ Cap(𝑥, 𝜌) for which 𝑑Cap(𝑦𝑖 ,𝜌𝑖) (𝐴) > 𝑑Cap(𝑥,𝜌) (𝐴) − 𝜀/4; fix one such 𝑦𝑖 for
each 1 ≤ 𝑖 ≤ 𝑁 , and let 𝑇𝑦𝑖→𝑥𝑖 ∈ O(R𝑑+1) be any rotation taking 𝑦𝑖 to 𝑥𝑖 (and thus taking Cap(𝑦𝑖 , 𝜌̃𝑖)
to Cap(𝑥𝑖 , 𝜌̃𝑖)).

We claim that the set

𝐴 :=
𝑁⋃
𝑖=1

𝑇𝑦𝑖→𝑥𝑖 (𝐴 ∩ Cap(𝑦𝑖 , 𝜌̃𝑖))

satisfies our requirements. Indeed, we have

𝜎(𝐴) =
𝑁∑
𝑖=1

𝜎(𝐴 ∩ Cap(𝑦𝑖 , 𝜌̃𝑖)) =
𝑁∑
𝑖=1

𝑑Cap(𝑦𝑖 ,𝜌𝑖) (𝐴) · 𝜎(Cap𝜌𝑖 )

>
𝑁∑
𝑖=1

(
𝑑Cap(𝑥,𝜌) (𝐴) −

𝜀

4

)
·
(
1 − 𝜀

4

)
𝜎(Cap𝜌𝑖 )

≥
(
𝑑Cap(𝑥,𝜌) (𝐴) −

𝜀

2

)
𝜎(P)

> 𝑑Cap(𝑥,𝜌) (𝐴) − 𝜀.
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Moreover, since diam (𝑃 𝑗 ) ≤ 𝑡0 and the caps Cap(𝑥𝑖 , 𝜌̃𝑖) are (at least) 2𝑡0-distant from each other, we
see that any copy of 𝑃 𝑗 in 𝐴 ⊂

⋃𝑁
𝑖=1 Cap(𝑥𝑖 , 𝜌̃𝑖) must be entirely contained in one of the the caps

Cap(𝑥𝑖 , 𝜌̃𝑖). But then it should also be contained (after rotation by 𝑇−1
𝑦𝑖→𝑥𝑖 ) in 𝐴 ∩ Cap(𝑦𝑖 , 𝜌̃𝑖); this

shows that 𝐴 does not contain copies of 𝑃 𝑗 for any 1 ≤ 𝑗 ≤ 𝑁 , since A does not, and we are done. �

3.5. Results on the spherical independence density

We are finally ready to start a more detailed study of the independence density parameter in the spherical
setting.

We start by providing a general lower bound on the independence density of several different
configurations in terms of their individual independence densities.

Lemma 18 (Supermultiplicativity). For all configurations 𝑃1, . . . , 𝑃𝑛 on S𝑑 , we have

mS𝑑 (𝑃1, . . . , 𝑃𝑛) ≥
𝑛∏
𝑖=1

mS𝑑 (𝑃𝑖).

Proof. Choose, for each 1 ≤ 𝑖 ≤ 𝑛, a set 𝐴𝑖 ⊂ S𝑑 which avoids configuration 𝑃𝑖 . By taking independent
rotations 𝑅𝑖𝐴𝑖 of each set 𝐴𝑖 , we see that

E𝑅1 ,...,𝑅𝑛∈O(R𝑑+1)

[
𝜎

( 𝑛⋂
𝑖=1

𝑅𝑖𝐴𝑖

)]
=

∫
S𝑑

𝑛∏
𝑖=1
E𝑅𝑖 ∈O(R𝑑+1)

[
𝐴𝑖 (𝑅−1

𝑖 𝑥)
]
𝑑𝜎(𝑥)

=
𝑛∏
𝑖=1

𝜎(𝐴𝑖).

There must then exist 𝑅1, . . . , 𝑅𝑛 ∈ O(R𝑑+1) for which

𝜎

( 𝑛⋂
𝑖=1

𝑅𝑖𝐴𝑖

)
≥

𝑛∏
𝑖=1

𝜎(𝐴𝑖).

Since
⋂𝑛
𝑖=1 𝑅𝑖𝐴𝑖 avoids all configurations 𝑃1, . . . , 𝑃𝑛 and the sets 𝐴1, . . . , 𝐴𝑛 were chosen arbitrarily,

the result follows. �

Using supersaturation, we can show that this lower bound is essentially tight when the configurations
considered are all admissible and each one is at a different size scale. Intuitively, this happens because
the constraints of avoiding each of these configurations will act at distinct scales and thus not correlate
with each other.

Theorem 11 (Asymptotic independence). For every admissible configuration 𝑃1, . . . , 𝑃𝑛 on S𝑑 and
every 0 < 𝜀 ≤ 1, there is a positive increasing function 𝑓 : (0, 1] → (0, 1] such that the following
holds: whenever 0 < 𝑡1, . . . , 𝑡𝑛 ≤ 1 satisfy 𝑡𝑖+1 ≤ 𝑓 (𝑡𝑖) for 1 ≤ 𝑖 < 𝑛, we have





mS𝑑 (𝑡1𝑃1, . . . , 𝑡𝑛𝑃𝑛) −
𝑛∏
𝑖=1

mS𝑑 (𝑡𝑖𝑃𝑖)




 ≤ 𝜀.

Proof. We have already seen that mS𝑑 (𝑡1𝑃1, . . . , 𝑡𝑛𝑃𝑛) ≥
∏𝑛
𝑖=1 mS𝑑 (𝑡𝑖𝑃𝑖), so it suffices to show that

mS𝑑 (𝑡1𝑃1, . . . , 𝑡𝑛𝑃𝑛) ≤
∏𝑛
𝑖=1 mS𝑑 (𝑡𝑖𝑃𝑖) + 𝜀 for suitably separated 𝑡1, . . . , 𝑡𝑛 ≤ 1. We will do so by

induction on n, with the base case 𝑛 = 1 being trivial (and taking 𝑓 ≡ 1).
Suppose then 𝑛 ≥ 2 and we have already proven the result for 𝑛 − 1 configurations. Let 𝑓 : (0, 1] →

(0, 1] be the function promised by the theorem applied to the 𝑛 − 1 configurations 𝑃2, . . . , 𝑃𝑛 and with
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accuracy 𝜀, so that whenever 0 < 𝑡2 ≤ 1 and 0 < 𝑡 𝑗+1 ≤ 𝑓 (𝑡 𝑗 ) for each 2 ≤ 𝑗 < 𝑛, we have

mS𝑑 (𝑡2𝑃2, . . . , 𝑡𝑛𝑃𝑛) ≤
𝑛∏
𝑗=2

mS𝑑 (𝑡 𝑗𝑃 𝑗 ) + 𝜀.

By the corollary to the Supersaturation Theorem (Corollary 2), for all 0 < 𝑡1 ≤ 1, there is 𝛿0 =
𝛿0 (𝜀; 𝑡1𝑃1) > 0 such that

𝜎
(
Z𝛿0 (𝜀) [𝐴]

)
≥ mS𝑑 (𝑡1𝑃1) + 𝜀 =⇒ 𝐴 contains a copy of 𝑡1𝑃1.

Applying Lemma 17 with radius 𝜌 = 𝛿0, we see there is 𝑡0 = 𝑡0(𝜀, 𝛿0) > 0 for which

mCap(𝑥, 𝛿0) (𝑡2𝑃2, . . . , 𝑡𝑛𝑃𝑛) ≤ mS𝑑 (𝑡2𝑃2, . . . , 𝑡𝑛𝑃𝑛) + 𝜀

holds whenever 0 < 𝑡2, . . . , 𝑡𝑛 ≤ 𝑡0/2.
Let now 0 < 𝑡1, . . . , 𝑡𝑛 ≤ 1 be numbers satisfying

𝑡2 ≤ 𝑡0(𝜀, 𝛿0 (𝜀; 𝑡1𝑃1))/2 and 𝑡 𝑗+1 ≤ 𝑓 (𝑡 𝑗 ) for all 2 ≤ 𝑗 < 𝑛.

If 𝐴 ⊂ S𝑑 does not contain copies of 𝑡1𝑃1, . . . , 𝑡𝑛𝑃𝑛, then by the preceding discussion, we must have
𝜎

(
Z𝛿0 (𝜀) [𝐴]

)
< mS𝑑 (𝑡1𝑃1) + 𝜀 and, for all 𝑥 ∈ S𝑑 ,

𝑑Cap(𝑥, 𝛿0) (𝐴) ≤ mCap(𝑥, 𝛿0) (𝑡2𝑃2, . . . , 𝑡𝑛𝑃𝑛) ≤ mS𝑑 (𝑡2𝑃2, . . . , 𝑡𝑛𝑃𝑛) + 𝜀

≤
𝑛∏
𝑗=2

mS𝑑 (𝑡 𝑗𝑃 𝑗 ) + 2𝜀.

This means that, inside caps Cap(𝑥, 𝛿0) of radius 𝛿0, A has density less than 𝜀 (when 𝑥 ∉ Z𝛿0 (𝜀) [𝐴])
except on a set of measure at most mS𝑑 (𝑡1𝑃1)+𝜀, when it instead has density at most

∏𝑛
𝑗=2 mS𝑑 (𝑡 𝑗𝑃 𝑗 )+2𝜀.

Taking averages, we conclude that

𝜎(𝐴) = E𝑥∈S𝑑
[
𝑑Cap(𝑥, 𝛿) (𝐴)

]
≤ 𝜀 +

(
mS𝑑 (𝑡1𝑃1) + 𝜀

) ( 𝑛∏
𝑗=2

mS𝑑 (𝑡 𝑗𝑃 𝑗 ) + 2𝜀
)

≤ 6𝜀 +
𝑛∏
𝑖=1

mS𝑑 (𝑡𝑖𝑃𝑖).

It thus suffices to take the function 𝑓 : (0, 1] → (0, 1] given by

𝑓 (𝑡) = min
{
𝑓 (𝑡),

𝑡0
(
𝜀/6, 𝛿0 (𝜀/6; 𝑡𝑃1)

)
2

}

to conclude the induction. �

Note that this result provides a partial answer to the analogue of question (Q1) in the spherical
setting: if P is admissible, then mS𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) decays exponentially with n as the ratios
𝑡 𝑗+1/𝑡 𝑗 between consecutive scales go to zero (recall from Lemma 10 that mS𝑑 (𝑡𝑃) is bounded away
from both zero and one for 0 < 𝑡 ≤ 1).

By considering an infinite sequence of ‘counterexamples’ as we did in our proof of Bourgain’s
Theorem (Theorem 2), we immediately obtain from Theorem 11 the following result.
Corollary 3. Let 𝑃 ⊂ S𝑑 be an admissible configuration. If 𝐴 ⊆ S𝑑 has positive measure, then there is
some number 𝑡0 > 0 such that A contains a congruent copy of 𝑡𝑃 for all 𝑡 ≤ 𝑡0.
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This corollary can be seen as the counterpart to Bourgain’s Theorem in the spherical setting, where it
impossible to consider arbitrarily large dilates (the equivalent result of containing all sufficiently small
dilates of a configuration in the Euclidean setting also holds with the same proof).

We will next prove that the independence density function 𝑃 ↦→ mS𝑑 (𝑃) is continuous on the set
of admissible configurations on S𝑑 . Before doing so, it is interesting to note that a similar result does
not hold for two-point configurations on the unit circle S1 (which can be seen as the very first instance
of nonadmissible configurations). Indeed, it was shown by DeCorte and Pikhurko [7] that mS1 ({𝑢, 𝑣})
is discontinuous at a configuration {𝑢, 𝑣} ⊂ S1 whenever the arc length between u and v is a rational
multiple of 2𝜋 with odd denominator.

Theorem 12 (Continuity of the independence density). For any 𝑛 ≥ 1, the function (𝑃1, . . . , 𝑃𝑛) ↦→
mS𝑑 (𝑃1, . . . , 𝑃𝑛) is continuous on the set of n admissible spherical configurations.

Proof. For simplicity of exposition, we will prove the result in the case of only one forbidden configu-
ration, but the general case follows from the same argument.

Fix some 𝜀 > 0 and some admissible configuration P on S𝑑 and let 𝑐(𝜀) > 0 be the constant promised
by the Supersaturation Theorem (Theorem 10). By equicontinuity (Lemma 15), there exists 𝛿 > 0 such
that

|𝐼𝑄 (𝐴) − 𝐼𝑃 (𝐴) | ≤ 𝜀 for all 𝑄 ∈ B(𝑃, 𝛿), 𝐴 ⊆ S𝑑 .

Suppose 𝑄 ∈ B(𝑃, 𝛿) and 𝐴 ⊂ S𝑑 is a measurable set avoiding Q; we must then have 𝐼𝑃 (𝐴) ≤ 𝑐(𝜀),
and so 𝜎(𝐴) ≤ mS𝑑 (𝑃) + 𝜀. Optimizing over A, we conclude that mS𝑑 (𝑄) ≤ mS𝑑 (𝑃) + 𝜀 whenever
𝑄 ∈ B(𝑃, 𝛿).

Now, write 𝑃 = {𝑣1, . . . , 𝑣𝑘 } and consider the function 𝑔𝑃 : (S𝑑)𝑘 × O(R𝑑+1) → R given by

𝑔𝑃 (𝑥1, . . . , 𝑥𝑘 , 𝑇) :=
𝑘∑
𝑖=1

‖𝑥𝑖 − 𝑇𝑣𝑖 ‖.

Note that this function is continuous and that min𝑇 ∈O(R𝑑+1) 𝑔𝑃 (𝑥1, . . . , 𝑥𝑘 , 𝑇) = 0 if and only if
(𝑥1, . . . , 𝑥𝑘 ) is congruent to (𝑣1, . . . , 𝑣𝑘 ).

By inner regularity, we can find a compact set 𝐴 ⊂ S𝑑 which avoids P and has measure 𝜎(𝐴) ≥
mS𝑑 (𝑃) − 𝜀. The continuous function 𝑔𝑃 attains a minimum on the compact set 𝐴𝑘 × O(R𝑑+1); denote
this minimum by 𝛾 and note that 𝛾 > 0 since A avoids P. Let us show that A also avoids Q, for all
𝑄 ∈ B(𝑃, 𝛾/2𝑘). Indeed, writing 𝑄 = {𝑢1, . . . , 𝑢𝑘 } (with the labels chosen so as to minimize their
distance to the corresponding points of P), for any points 𝑥1, . . . , 𝑥𝑘 ∈ 𝐴 and any 𝑇 ∈ O(R𝑑+1), we have
that

𝑘∑
𝑖=1

‖𝑥𝑖 − 𝑇𝑢𝑖 ‖ ≥
𝑘∑
𝑖=1



‖𝑥𝑖 − 𝑇𝑣𝑖 ‖ − ‖𝑇𝑢𝑖 − 𝑇𝑣𝑖 ‖




≥ 𝑔𝑃 (𝑥1, . . . , 𝑥𝑘 , 𝑇) − 𝑘 ‖𝑄 − 𝑃‖∞,

which is at least 𝛾/2 > 0 if ‖𝑄 − 𝑃‖∞ ≤ 𝛾/2𝑘 . For such configurations, we then obtain

mS𝑑 (𝑄) ≥ 𝜎(𝐴) ≥ mS𝑑 (𝑃) − 𝜀.

We conclude that |mS𝑑 (𝑄) − mS𝑑 (𝑃) | ≤ 𝜀 whenever ‖𝑄 − 𝑃‖∞ ≤ min{𝛿, 𝛾/2𝑘}, finishing the
proof. �

As our definition of the independence density mS𝑑 (𝑃) involved a supremum over all P-avoiding
measurable sets 𝐴 ⊆ S𝑑 , it is not immediately clear whether there actually exists a measurable P-
avoiding set attaining this extremal value of density. In fact, such a result is false in the case where
𝑑 = 1 and we are considering two-point configurations {𝑢, 𝑣} ⊂ S1: if the length of the arc between u
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and v is not a rational multiple of 𝜋, it was shown by Székely [23] that mS1 ({𝑢, 𝑣}) = 1/2, but there is
no {𝑢, 𝑣}-avoiding measurable set of density 1/2.

We will now show that extremizer sets exist whenever the configuration we are forbidding is ad-
missible. Note that the result also holds (with essentially unchanged proof) when forbidding several
admissible configurations; this generalizes to higher-order configurations a theorem of DeCorte and
Pikhurko [7] for forbidden distances on the sphere.

Theorem 13 (Existence of extremizers). If 𝑃 ⊂ S𝑑 is an admissible configuration, then there exists a
P-avoiding measurable set 𝐴 ⊆ S𝑑 attaining 𝜎(𝐴) = mS𝑑 (𝑃).

Proof. Let 𝐴1, 𝐴2, · · · ⊆ S𝑑 be a sequence of P-avoiding measurable sets satisfying lim𝑖→∞ 𝜎(𝐴𝑖) =
mS𝑑 (𝑃). By passing to a subsequence if necessary, we may assume that (𝐴𝑖)𝑖≥1 converges to some
function 𝐴 ∈ B∞ in the weak∗ topology of 𝐿∞(S𝑑). We shall prove two things:

(i) the limit function A is {0, 1}-valued almost everywhere, so we can identify it with its support supp 𝐴;
(ii) after possibly modifying it on a zero-measure set, this set A will avoid P.

With these two results we will be done, since 𝜎(𝐴) = lim𝑖→∞ 𝜎(𝐴𝑖) = mS𝑑 (𝑃).
By weak∗ convergence, we know that 0 ≤ 𝐴 ≤ 1 almost everywhere, and by weak∗ continuity,

(Lemma 14) we also have 𝐼𝑃 (𝐴) = lim𝑖→∞ 𝐼𝑃 (𝐴𝑖) = 0. From this, we easily conclude that 𝐼𝑃 (supp 𝐴) =
0, and also

𝜎(supp 𝐴) =
∫
S𝑑

supp 𝐴(𝑥) 𝑑𝜎(𝑥) ≥
∫
S𝑑

𝐴(𝑥) 𝑑𝜎(𝑥) = mS𝑑 (𝑃). (16)

But Lemma 11 implies that 𝜎(supp 𝐴) ≤ mS𝑑 (𝑃), which by (16) and the fact that 0 ≤ 𝐴 ≤ 1, can only
happen if 𝐴 = supp 𝐴 almost everywhere. This proves (𝑖).

Identifying A with its support and using that 𝐼𝑃 (𝐴) = 0, Lemma 11 implies we can remove a zero-
measure subset of A in order to remove all copies of P. This proves item (𝑖𝑖) and finishes the proof of
the theorem. �

To conclude, let us make explicit what we can say about the possible independence densities when
forbidding n distinct contractions of an admissible configuration P; due to lack of dilation invariance in
the spherical setting, characterizing these values in terms of simpler quantities is much harder than it is
in the Euclidean setting.

Denote MS
𝑑

𝑛 (𝑃) :=
{
mS𝑑 (𝑡1𝑃, 𝑡2𝑃, . . . , 𝑡𝑛𝑃) : 0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑛 ≤ 1

}
. Due to continuity

of mS𝑑 (Theorem 12), this set is an interval and its upper extremity is sup0<𝑡≤1 mS𝑑 (𝑡𝑃). By super-
multiplicativity (Lemma 18), the lower extremity of MS

𝑑

𝑛 (𝑃) is at least inf0<𝑡≤1 mS𝑑 (𝑡𝑃)𝑛, and by
asymptotic independence (Theorem 11), it can be at most inf0<𝑡≤1 mS𝑑 (𝑡𝑃) · lim inf𝑡→0 mS𝑑 (𝑡𝑃)𝑛−1.

4. Concluding remarks and open problems

Our results leave open the question of what happens when the configurations we forbid are not admissible.
There are two different reasons for a given configuration (either on the space or on the sphere) to not be
admissible, so let us examine them separately.

The fist reason is that P is degenerate, meaning that its points are affinely dependent if we are on
R
𝑑 or linearly dependent if we are on S𝑑 . In the Euclidean setting, Bourgain [2] showed an example of

sets 𝐴𝑑 ⊂ R𝑑 (for each 𝑑 ≥ 2) which have positive density but which avoid arbitrarily large dilates of
a degenerate three-point configuration of the form {−𝑣, 0, 𝑣}. These sets then show that the conclusion
of Bourgain’s Theorem (and thus also the conclusion of our Theorem 4) is false for this degenerate
configuration.

This counterexample was later generalized by Graham [13], who showed that a result like Bourgain’s
Theorem can only hold if P is contained on the surface of some sphere of finite radius (as is always the

https://doi.org/10.1017/fms.2023.43 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.43


Forum of Mathematics, Sigma 43

case when P is nondegenerate). In fact, Graham’s result implies (for instance) that

mR𝑑
(
𝑃,

√
3𝑃,

√
5𝑃,

√
7𝑃, . . .

)
> 0

whenever 𝑃 ⊂ R𝑑 is nonspherical, that is, not contained on the surface of any sphere. Some kind of
nondegeneracy hypothesis is thus necessary both for Bourgain’s result and for our Theorem 4.11

It is interesting to note, however, that more recent results of Ziegler [24, 25] (generalizing a theorem
of Furstenberg, Katznelson and Weiss [12] for three-point configurations) show that every set 𝐴 ⊆ R𝑑 of
positive upper density is arbitrarily close to containing all large enough dilates of any finite configuration
𝑃 ⊂ R𝑑 . More precisely, denoting by 𝐴𝛿 the set of all points at distance at most 𝛿 from the set A, Ziegler
proved the following.
Theorem 14. Let 𝐴 ⊆ R𝑑 be a set of positive upper density and 𝑃 ⊂ R𝑑 be a finite set. Then there exists
𝑡0 > 0 such that, for any 𝑡 ≥ 𝑡0 and any 𝛿 > 0, the set 𝐴𝛿 contains a configuration congruent to 𝑡𝑃.

The proof of this theorem is ergodic theoretic in nature, making essential use of deep and difficult
results regarding nilflows and the characteristic factors of nonconventional ergodic averages. It unfortu-
nately does not seem to follow from our methods.

Let us now turn to the second reason for a configuration P on R𝑑 or S𝑑 to be nonadmissible, namely
that it contains 𝑑 + 1 points (if it has more than 𝑑 + 1 points, then it is obviously degenerate). In this
case, we cannot apply the same strategy we used to prove the Counting Lemmas, and it is not clear
whether they or the analogues of Bourgain’s Theorem are true. We conjecture that they are whenever
𝑑 ≥ 2, so that we can remove the cardinality condition from the statement of Bourgain’s result and of
our ‘asymptotic independence’ Theorem 4 and Theorem 11.

In particular, let us make more explicit the simplest case of this conjecture, which is an obvious
question left open since the results of Bourgain and of Furstenberg, Katznelson and Weiss:
Conjecture 1. Let 𝐴 ⊂ R2 be a set of positive upper density and let 𝑢, 𝑣, 𝑤 ∈ R2 be noncollinear
points. Then, there exists 𝑡0 > 0 such that for any 𝑡 ≥ 𝑡0, the set A contains a configuration congruent
to {𝑡𝑢, 𝑡𝑣, 𝑡𝑤}.

Another question we ask is related to a suspected compatibility condition between the Euclidean and
spherical settings. Since S𝑑 resembles R𝑑 at small scales, it seems geometrically intuitive that mS𝑑 (𝑡𝑃)
should get increasingly close to mR𝑑 (𝑃) as 𝑡 → 0 whenever P is a contractible configuration on S𝑑 (it is
easy to show that a configuration 𝑃 ⊂ S𝑑 is contractible if and only if it is contained in a d-dimensional
affine subspace, so we can embed it in R𝑑). We ask whether this intuition is indeed correct (i.e., is it
true that lim𝑡→0 mS𝑑 (𝑡𝑃) = mR𝑑 (𝑃) for all contractible configurations 𝑃 ⊂ S𝑑?).

In a more combinatorial perspective, we wish to know whether an analogue of the Hypergraph
Removal Lemma holds for forbidden geometrical configurations. In intuitive terms, the question we
ask is whether a measurable set A (either on R𝑑 or on S𝑑) which contains ‘few’ copies of some given
configuration P can be made P-avoiding by removing only ‘a few’ of its points.12 Such a result would
then explain geometrical sets having few copies of P as those which are close to a set avoiding this
configuration, and it trivially implies the corresponding Supersaturation Theorem; note that this is a
quantitative and stronger version of our zero-measure removal Lemmas 2 and 11.

Finally, it would be very interesting to have a way of obtaining good upper bounds for the independence
densities of a given configuration or family of configurations. There are several papers (see [1, 6] and
the references therein) which consider this question in the case of a single two-point configuration,
drawing on powerful methods from the theory of conic optimization and representation theory, and it is
already quite challenging in this simplest case. Oliveira and Vallentin also considered the case of several

11We believe that the same is true for the spherical analogue of Theorem 4, namely Theorem 11, though we do not know of a
counterexample.

12On the unit sphere, this property would more formally read: whenever 𝐴 ⊆ S𝑑 satisfies 𝐼𝑃 (𝐴) ≤ 𝜀, there is a subset 𝐸 ⊂ 𝐴
of measure 𝜎 (𝐸) ≤ 𝑜𝜀→0 (1) such that 𝐴 \ 𝐸 avoids P (where 𝑜𝜀→0 (1) denotes a quantity that goes to zero as 𝜀 → 0).
Similarly in the Euclidean setting.
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forbidden two-point configurations in Euclidean space [16] and in arbitrary compact, connected, rank-
one symmetric spaces [17]; they use linear and semidefinite programming methods to prove that the
independence density of n distinct two-point configurations decays exponentially with n if their sizes
are sufficiently far apart.13

We believe that the study of the independence density for higher-order configurations in the opti-
mization setting is also worthwhile, since they serve as model problems for symmetric optimization
problems depending on higher-order relations and might prove very fruitful in new methods developed.
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