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A MEAN ERGODIC THEOREM FOR 
MULTIPARAMETER SUPERADDITIVE 
PROCESSES ON BANACH LATTICES 

FELIX LEE 

Introduction. Let E be a Banach Lattice. We will consider E to be weakly 
sequentially complete and to have a weak unit u. Thus we may represent E as a 
lattice of real valued functions defined on a measure space (X, 7, /x). There is 
a set R C X such that /? supports a maximal invariant function O for a postive 
contraction T on E [5]. Let TV = X — /? be the complement of R. Akcoglu and 
Sucheston showed that XN(^ Yll=o Vf) A g —• 0 for any / , g G £+, where 
£+ is the positive cone of E. If in addition a monotone condition (UMB) is 
satisfied, then the same authors showed [4] that XR(± 5XÔ Vf) converges 
in norm. A sequence {fn}n^o £ E is called superadditive with respect to a 
positive contraction 7 if for n, k ^ 0,/n+£ ^ 7 ^ +./**• A moderately superaddi­
tive sequence is one such that lim inf„11 ^ YH=o (./*'+1 ~ Tfi)\\ < °°. If {/w} *s 

moderately superadditive we have also XN{^ fn) /\ g —> 0 for all g G E+, and 
XR(^fn) converging in norm. Millet and Sucheston [13] had expanded the the­
ory to general multiparameter cases. For k arbitrarily many positive commuting 
contractions 7i, Ti,... ,7* on £, there is also a set R C X such that it supports 
a maximal invariant (under the TVs) function O. If TV = X — R, then we have 
^l~Tk E ^ d • • • EI'=o Ï Î • • • 7?/) A g -^ 0, for all / , g G £+. For the 
superadditive case, only Z4 results are known. Using a Markovian semi-group of 
operators, Akcoglu and Sucheston [3] showed that a bounded superadditive pro­
cess converges in norm on the support of an invariant function; the convergence 
is stochastically to zero on the complement of the support. 

This paper will show the mean convergence theorems for multiparameter 
superadditive processes. 

In order to simplify the equations and notations involved all the theorems 
and proofs will be stated in a two-parameter setting. The extension to general 
multiparameter case is mostly obvious. It should be noted that the definition we 
use for superadditive process here is due to Krengel and Derriennic 19]. 

1. Preliminaries 

Definition 1.1. Let E be a Banach Space. Assume that E satisfy the following. 
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MEAN ERGODIC THEOREM 1019 

(a) There is a partial ordering ' ^ ' defined on E. 
(b) For every pair of JC,y G £ ,xV y = sup (x,y) and x A y = inf (JC, j ) both 

exist in £. We will define: JC+ = JC V 0,JC~ = - I V 0 and |JC| = x+ +x~. 
(c) For any pair of x,y G £ such that |JC| ^ |v| we have ||JC|| ^ ||y||. The 

partial ordering ' ^ ' is said to be norm compatible. 

Such a £ is called a Banach Lattice. We denote its positive cone by E+ and 
its conjugate space by E*. 

Example. All Lp spaces are Banach Lattices. Simply consider the usual or­
dering of functions, the usual definition for sup and inf of functions and the Lp 

norms. Basic properties of Banach Lattices can be found in [12] and [14]. We 
will only consider Banach Lattice that has a weak unit and is weakly sequentially 
complete, that is they satisfy: 

(A) There is an element u e E+ such that if / G E+ and if u Af — 0, then 
/ = 0. Such a u is called a weak unit. 

(B) Every norm bounded increasing sequence in E has a strong limit. This 
implies order continuity, so every order interval \f1g] = {h : / S h ^ g} 
is weakly compact ([12] p. 28). 

If we consider Lp[09l] say, then u can be any function in Lp having support of 
measure 1. Note that if u is a weak unit, then lim ^oo f Aku — f. For any 
Banach Lattice satisfying (A) and (B), we may apply the following representation 
theorem from [12] p. 25. 

THEOREM 1.2. Let E be an order continuous (condition (B)) Banach lat­
tice which has weak unit (condition (A)). Then there exists a probability space 
(X, f, fi), an (in general not closed) ideal X (an ideal X is a linear subspace 
for which x G X whenever \x\ ^ |jc| for some x G X) of L\(X, f, /x) and a 
lattice norm || • ||^ on X so that 

(a) E is order isometric to (Z, || • ||^). 
(b) X is dense in L\(X, J, /i) and L^X, 7, [i) is dense in X. 

M 11/111 ^ ||/Hx = 2 H/IU whenever f E L^X, 7^). 
(d) The dual of the isometry given in (a) maps E* onto the Banach Lattice 

X* of all \i measurable functions g for which 

llsllx* = SUP I / hà\i H/H* ^ 1 I < oo. 

The value taken by the functional corresponding to g atf G X is Jx fgdfi. 

This says that we may assume our Banach lattice E to be a lattice of (equiv­
alence class of) real valued measurable functions on a a finite measure space 
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(X, 7, \i). Henceforth elements of E will be denoted / , g and /i, etc, to sig­
nify the fact that £ is a function space. We will consider two-parameter cases, 
which means that we will consider two operators T and S on E. An operator 
T : E —• E is a contraction if ||r|| ^ 1, and is positive if T : E+ —» Zs+. In this 
paper r and 5 will always denote two positive commuting contractions on E. For 
a sequence {/(«>} G E, (h) is actually a double subscript («1,^2) with nt a non-
negative integer for / = 1,2. We write ^fin) to denote ^/(n, ,n2) . lim*-»,/^) 
means the limit of the sequence {/(«>} as each of the indices n\ and n-i tends to 
infinity independently of each other. We will use '—•' for strong convergence, 
'—>'for weak convergence and ' j \ ' j ' for monotone convergence. We now 
define an additive sequence. 

Definition 1.3. A sequence {/„} G E+ is called additive with respect to an 
operator T if there exist some / G E+ such that fn = Xw=o ^V- For t w o" 
parameter case, fin) is additive with respect to two commuting operators T and 

S if/(«) = E ^ ô 1 £ £ 0 * r 5 7 / f o r s o m e / e £+• I n t h e i r PaPer [2] Akcoglu 
and Sucheston introduced the notion of truncated limit. 

Definition 1.4. Let {/n} be a sequence in E. A function O is called a truncated 
limit of {fn} if for each positive integer k we have limn^oo/n A ku = O* exist 
and limfc-+oo ̂  Î <£• We then write TL/n = <E>. For w^a/: truncated limit we only 
require fnAku —• O^. We write WTLfn = O. A sequence {/„} is called TL null 
if TL [/J, I = 0. For general multiparameter case we replace the single index n by 
(n\, «2? • •. 7 wjt) in the definition. 

Definition 1.5. A non-negative sequence {/„} is said to converge stochasti­
cally to zero if for g G E+, we have /„ A g —* 0 or another way of saying this 
is that TLfn — 0. Properties and theorems concerning TL limit can be found in 
[5] and [6]. We state the three following lemmas without proof. 

LEMMA 1.6 ((1.2) of [13]). Let U be a strictly positive element in E* and let 
{fn} be a sequence in E+ such that lim^oo U(fn) = 0. Then 

(a) TLfn = 0 and 
(b) The strong limit of fn as n —• 00 is 0 if supnfn G E. 

LEMMA 1.7 ((1.9) of [5]). Let E satisfy (A) and (B). Letfnjgn G £+, WTLfn = 
®, WTLgn = T. 

(a) If WTL(fn + gn) = *F exist then H* = O + T. 
(b) IfT : E —> E is a positive linear operator and Tfn = gn then TO S V. 

LEMMA 1.8 ((1.8) of [5]). If {fn} ^ 0 is a sequence of functions in a Banach 
Lattice E satisfying (A) and (B) and sup ||/n|| = M < 00, then there is a 
subsequence {fni} such that WTLfni = <D exists. If{fn} is not a TL null sequencey 
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then this subsequence can be chosen so that O ^ 0. 

2. Two-parameter results. Let T and S be two positive commuting contrac­
tions on E. We will investigate the convergence of : {4T/(«>}; fn) an additive 
sequence. In the one parameter case (one operator T), this is just the Cesâro 
averages An(T)f = £ YH=o T*f for the operator T and the function / . We 
write A(n)f for 4r/(n) to be consistent with the one parameter notation. In [13] 
Millet and Sucheston showed that if there exist non TL null additive sequence 
then subinvariant functions can be found. To obtain an invariant function for the 
general multiparameter case we need to impose a monotone condition (C) [5] 
on the lattic: 

(C) For every O G E+ and for every number a > 0, there is a number 
B = £(<D, a) > 0 such that if g G £+, \\g\\ ^ 1,0 ^ / ^ O and if 
11/11 ^ a, then | | / + g|| ^ | | s | |+£ . 

M /̂z J/HS Millet and Sucheston proved the following theorem. 

THEOREM 2.1 (2.5 of [13]). Let E satisfy (A), (B) and (C). Let T and S be two 
positive commuting contractions on E. Then there is a function O with maximal 
support such that O is invariant under T and S. Moreover let R be the support 
o/O and N be the complement of R. Then X^A^f converges stochastically to 
zero for f G E+. 

This gives us the existence of an invariant function on a (C) lattice. The 
existence of invariant function is important because many useful results can be 
deduced from it. First of all we have that for a function / having support on 
that of an invariant function, A(h)(T, S)f converges in norm. 

LEMMA 2.2 (2.1 of [13]). Let O be a T, 5 invariant function in E+. T and S 
are two positive commuting contractions on E. Let R be the support of O. Let 
f be a function in E+ such that its support is included in R. Then An(T)f —> 
Aoo(7Y, An(S)f — AOQ(S)f and Am(T, S)f — A00(T)A00(S)f. 

Another condition that we may impose on E is called (Q). [5] 

(CO Iff,g£E+ andf^O, then \\f + g\\ > \\g\\. 

This is readily seen to be a weaker condition than (C). If there is an invariant 
function, however, (C\) is sufficient to conclude the following lemma. 

LEMMA 2.3. Assume that the Banach lattice E satisfies the conditions (A), (B) 
and (C\). Given O G E+ with TO = O, and SO = O, and a number a > 0. 
Then there is a number a — cr(0, a) > 0 such that ifO ^ / ^ O and | | / | | ^ a, 
then \im(n)-«x>\\A(n\f\\ ^ o. 
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Proof. The proof of this resembles that of lemma (2.3) of [5]. For g G E, 
if \im(n}-*ocA(n)8 exists we will denote it be g. If the lemma is false then there 
is an invariant function O G E+, an a > 0, and a sequence {/„} in E+ such 
that for each njn ^ O, ||/„|| > ajn exists and limrt_^oo||/n|| = 0- Passing to a 
subsequence, we may assume that ||/w|| ^ e„, with en —• 0 and £)n

 e« < °°. Let 
gn = Vjg^/* and g = lim J gn. Then as each of the ||/„|| > or; \\gn\\ > a, and 
\\g\\ > a as well. For e > 0 it is possible to find a m such that gn = V™=n /* + hm 

with ||/im|| ^ e. Let g{nm) = V£Ln/*. Then g„ - g('„m) = Am. By definition, 
gmg(nm) anc* m̂ all have support on that of O so we may apply lemma (2.2), 
then taking the norm to obtain 

ll^-S(n,m)H = I I M < C 

Note also | |^ | | [ \\g\\. Now g[n^ = V™=n /* g ^?=„ /*• So if we take 
the average and then the limit as (r) —> oo, we have lim^j-KxAr)^,, m) ^ 
lim(r)-KX)E?=nA(r/*» or just simply g('nm) ^ E*U/*- s i n c e e i s arbitrary, we 
then have 

m oo oo 

which is a decreasing sequence, so ||g|| = 0 as well. Consider 

| |0| | = \\Am(p + g-g)\\ £ \\ACn)(g)\\ + \\A(fl)(<t>-g)\\. 

The first term tends to zero as (h) —̂  oo as \\g\\ = 0; the last term is less than 
| |0 — g\\ as T,S are contractions. We are left with | |0| | ^ | |0 — g\\. As g is 
non-negative, (Q) forces g to be zero. This contradicts the fact that \\g\\ ^ a, 
so lim^^oollA^/H ^ a > 0. • 

We will now introduce yet a stronger monotone condition (UMB) (first intro­
duced by Birkoff in [8]). 

(UMB) For every number a > 0, there is a number B — B(a) > 0 such that 
| | / + g|| = | |g| |+# whenever/,g G £+, \\g\\ ^ 1 and | | / | | ^ a. For convenience 
we also have that B(0) = 0. 

The (UMB) condition is stated in many different forms. In an Orlicz Space it is 
equivalent to the À2 condition (see [7]). One very convenient form which will 
be used is the following: 

(2.4) If 0 ^ ¥ ^ ¥ and | |0| | ^ M, ||*F|| è a then 

| | 0 - * F | | ^ | |0 | | -MB(a/M). 
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Clearly the (UMB) condition implies the condition (C), which in turn implies 
the condition (Q). Condition (B) is also a consequence of (UMB). However, 
for the sake of explicitness, these conditions will still be mentioned separately. 
In [13] Millet and Sucheston proved the following theorem for a (UMB) lattice. 

THEOREM 2.5. Let E satisfy (A), (B) and (UMB). Let O be an invariant func­
tion under two positive commuting contractions T and S. Let R be the support 
of Q>. Then for any function f G E+,XRÀ(n)f converges strongly to an invariant 
function. 

3. Superadditive results. We adopted the definition of Krengel and Derri-
ennic [9] for a superadditive process. Let 'C' — {(«1,^2) = à, at non-negative 
integer}. ' / ' = {[â,b),à and b G C,at =5 btli = 1,2}. [à,b) = {c\c G C,ax =? 
ct < btli = 1,2}. For u = (uuu2) G C, we write Tu to denote TUlSU2. Since T 
and S commute, T = {Tu where u G C} is actually a semi-group of positive 
bounded linear operators on F; ie, we have TuoT* = Tu+v where w, v G C. A 
set function F : / G / —• F/ G £ is called a superadditive process (with respect 
to T and 5) if the following two conditions are satisfied. 

(3.1) TuFj = F /+û whenever I e I and w G C That is, let / = \a,b\ then 
I + u = [(a\ + u\, «2 + "2)? (£1 + wi, ^2 + «2))-

(3.2) If / i , / 2 are disjoint sets in I and if I\ U 72 is also in J, then F/lU/2 ^ 
F7 l+F / 2 . 

To simplify notations we write F ^ for F ^ . We will consider non-negative 
superadditive processes. Applying (3.1) in (3.2) we then obtain the following 
useful form of (3.2): 

F(m+h) = F(jh) + TmF(n). 

for all (n) and (m). Let { F(^} be a non-negative superadditive process in F. We 
write T4T F(a) to mean ^ - F ^ for non-negative integers « i^ - Then the bound-
edness of TA- F(„) for all (Â) by an invariant function O implies the convergence 
of the sequence {T|T F ^ } . First we need a generalization of equation (3.2) so 
that we can deal with more than two rectangles at a time. 

LEMMA 3.3. Let E be a Banach Lattice. Let { F(^)} be a superadditive process 
on E+ with respect to two positive commuting operators T and S on E. Let (h) 
and (in) be given such that there exist k\,k2 and that m\ — n\ • k\,m2 = «2 * &2-
Then 

* i - l k2-\ 

M0,m) = Z^i Z^i MO,/*)-
i=0 j=0 
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Proof. It is easy to see that 

* i - l k2-\ 

( J ( J Wnu jm), ((i + l)«i, U + l)n2)) = [Ô, ( M i , M2)) 

= [Ô, m). 

We have cut up the rectangle [Ô, m) into k\ki smaller rectangles, it is then 
possible to apply equation (3.2) to two of the rectangles at a time and obtain 

Jfam) = E t ô 1 E ^ ô 1 [̂(m,j»2),((«-+i)«i,(/+i)n2))- However by condition (3.1) we 
know that for each (i, y), TinxSjniF[bn) = F[(inujnMm)nu{j+i)n2)), hence the lemma 
is proved. • 

LEMMA 3.4. Le£ E be a Banach lattice satisfying (A), (B) and (C). Let F be a 
superadditive process on E+ with respect to two positive commuting contractions 
T and S on E. Let O be an invariant function such that -^F^ ̂  O for all 
(n). We define g{n) = ^F{n) and lim(^)_00A(^)^^) = g~j- if it exists. Then 
lim^ny-KxyWl^ ~W)A S(n)\\ = 0 for any fixed (k). 

Proof With (C) we have the existence of invariant functions. Let O be a 7, S 
invariant function. By lemma (2.2) g^) exists for all (k). For a fixed (k), consider 
5XÔ1 EJio1 TisJF(k) w i t h (") > (*)• If (n) is sufficiently large, we may write 

n\ = m\k\ + n 0 ^ r i < f c i ; rc2 = m2&2 + r2 0 ̂  r2 < /c2. 

To estimate X^i"1 ^ i " 1 FS^F^, we rewrite: 

« i — l «2 — 1 Â: 1 — 1 /c2 — 1 tn\ rri2 

E E r '^)^EEEEr^s^FCk). 
i=0 y=0 w=0 v=0 1=0 7=0 

By lemma (3.3), we have for (0,0) ^ (11, v) < (iti, fc2), Ef=o E£L2o Tik<+uSjk2+vF(-k) 

— F(n+3ky Since there are &i • fc2 of these inequalities in the above equation, it 
can be rewritten as: 

Mj — l «2 — 1 

EE^)^1'-^*. or 

/=o 7=0 

< _1_ _ (m +3fci)(w2 + 3fc2) 
( f t ) g * = (/*) ( s + 3 f o " m/12 g{h^ky 

If (Ai) is sufficiently larger than (k), one can replace (h — 3k) for (h) to get 

, < (fti • n 2 ) 

V-3*)S(fi = ( W l _ 3 ^ ) . ( W 2 - 3 ^ 2 ) *<*> 

3«iA:2 + 3rc2&i — 9&ifc2 

(«1 — 3A:i)(n2 — 3&2) 
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as g(h) = <& for all (n). By splitting up the sum appropriately we have 

_ (m - 3kx)(n2 - 3k2) 
A(n)g(k) - n n

 A(n-3~k)8(k) 

1 n\—3k]—\ n2 — \ 

+ 
n\ri2 

1 

n\ri2 

1 
+ — 

n\n2 . 

/=0 j=n2-3k2 

«i — l «2—3^2 — 1 

E E *̂(D 
i—n\ —3k\ j—0 

«i—l «2 — 1 

E E ™sa> 
/=« i —3/ci j=n2—3k2 

= A(n-3k)8(k) + ^ " l + 3/:iAi2 + 27*ifeJO 
«1AZ2 

^ g(«) + 7 ^7-7 ^— [6k2ni + 6*1 «2 + 18*1*210. 
(nx - 3ki)(n2 - 3k2) 

Now if a, /?, c ^ 0 and a ^ & + c, then a — (a A b) ^ c. Hence A ^ g ^ — 
A(n)g(-k) A ftft) ^ ^ f ^ f f <*>. Now as O is fixed, letting (n) - 0 0 we get 
lim^ny^ooWArngfa -A{n)g{l) Ag(n)|| = 0. Therefore if e > 0 is given, it is possible 
to write 

\\W)~W) A8(n)\\ - il^Ôt) - A ( « ) ^ ) l l + \\A(n)g(k) ~ A(n)8k^g(n)\\ 

< C. • 

LEMMA 3.5. L /̂1 E be a Banach lattice satisfying the conditions (A), (B) and 
(C). Let {F(n)} be a superadditive process on E+ with respect to two positive 
commuting contractions T and S. Let O be a maximal invariant function under 
T and S. If ~ p F^ ^ O for all (h), and we define g(«),g^ a$ in lemma (3.4), 
then lim i n f ^ ^ l i m sup^^Hg^) - g{h) A ~g^\\ = 0. 

Proof Let a(k) = lim s u p ^ ^ o ^ - g(«) A J$)\\. Assume that 
lim inf^^^aC*) > a > 0. Then there exists a (*0) such that if (*) ^ (*0) 
then a(k) > a > 0. Let (n\) — (ko)- For e > 0 we have by lemma (3.4) 
that there exists (N\) such that for (h) ^ (#1), ||g(^j — g(n)A~g^\\ < e; since 
a(h\) > a one can actually pick a large enough («), calling it («2) such that we 
have 

Um - 8m A g^\\ > a and \\g^ - gm A J^\\ < e 
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for any e > 0. To simplify notation we define for each index j , 

Qj = gj^pT) ~ 8(*j) A S^pTV Pj = 8(nj) ~ Sin,) A g = y 

Choose a sequence of {e(i) > 0} such that £ \ e(i) < oo. Repeating the process 

above we obtain a sequence of indices {(«0, («2)5 • • • •> } a n d two sequences of 

PhQi such that 

| |G / | | <c ( i ) \\Pi\\>a gini) = gto7)+Pi-Qi 

for each /. By construction Pt and Qi are both less than or equal to O. By 

lemma (2.2) Pt = lim(ny-^xA(n)Pi^Qi — ^kny-*ocA(n)Qi both exist. By lemma 

(2.3) ||P/|| > cr(0, a ) > 0, and it is easy to see that | |g/ | | ^ e(/). So by taking 

the average we have g^ = ]£&=) +Pi - Qi with ||P/|| > a, | |g/ | | < e(i). So 

(3.5.1) | | ^ - 1 = | | = | | p : _ â | | > a - c ( i ) , 

which does not converge to zero. Now g^y + Qt ^ g ( w - 1 ) ; as P/ ^ 0. So 

The sequence {g^> + 5^/=2 Ô/} *s n e n c e a n increasing sequence in /. Now 

~g(n~)+Yl)=2 Qj i s a norm bounded increasing sequence in /. By (B), this sequence 

converges strongly. The sequence {Yl)=2 Qj} *s a ^ s o a n o r m bounded increasing 

sequence and converges as well. The sequence {gzjr} hence also converges 

strongly, which contradicts (3.5.1). • 

Combining lemma (3.4) and (3.5) we obtain that for any positive superadditive 

process that is bounded by an invariant function, the average of the process will 

converge in norm. 

THEOREM 3.6. Let E be a Banach lattice satisfying (A), (B) and (C). Let 

F be a superadditive process on E+ with respect to two positive commuting 

contractions T and S on E. If there exists a T,S invariant function O such that 

^-~ F(n) ^ O for all h where h = («1,^2) then ^ - F^) converges strongly. 

Proof Let e > 0 be given. Let g^) be as defined in (3.4). Using lemma (3.5) 

and the definition of a(k) we can find (ko) such that a(ko) < e. For this (ko) 

find (h0) such that for (h) > (ho), \\g^ - (g&) A g ^ ) | | < c by Lemma (3.4). 

By the definition of a(k0) it is possible to find (h\) such that for (h) > («1), 

\\g(n) ~ (g(n) A g^>|| < e. Let (h2) = max((n0), (hi)). Then for (n), (m) > (h2), 

\\g(h) - g(m)\\ < \\g(n) - goù^gmll + \\8<h) A 8(h) ~ I$~)\\ 

+ \\gfa - g(m) A g^\\ + \\gfa A gm - g(fh)\\ 

< 4c. 
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By (3.5), e can be arbitrarily small by picking (ko) sufficiently large. Hence g&) 
converges. • 

COROLLARY 3.7. Let E, T, S and O be as defined in lemma (3.6). Let { F(h)} be 
an arbitrary non-negative superadditive process on Ey then 4r F(„)AO converges 
strongly. 

Proof. Define F{n) = F{n) A (nxn2<S>). Then l/(nln2)F[-) ^ O. {F[n)} can 
be easily shown to be another superadditive process. Now just apply (3.6) to 

Definition 3.8. Let {F^} be a non-negative superadditive process on a 
Banach lattice E with respect to two positive commuting contractions T and 
S on E. Let 

i=0 y=0 

{F(^)} is said to be moderately superadditive if M — lim inf(^)_KX)||0^|| is finite. 
In the multiparameter case we would define for (h) = («i, n2 ... «m), 

1 «i—l «2 — 1 " m - 1 

nxn2---nm . . 
M=0 '2=0 *m=0 

— T\T2-- TmF(iui2^jm), 

and M is defined in the obvious way corresponding to the two-parameter model. 
For ù G C we write 0(Â)+(Û) to mean rM,5M20(n, „2) and 0 (n+s) as 0 ( n 

l+«l ,«2+"2) ' 

LEMMA 3.9. Ifa,b and c are three non-negative elements in a Banach lattice 
E then the following inequalities hold: 

(3.9.1) a + b - (a + b) A2c ^ (a - a A c) + (b - b A c), 

(3.9.2) a-aAc^-a + b-(a + b)Ac. 

The proof of these are obvious and will be omitted here. 

LEMMA 3.10. Suppose {an} is a sequence in E+ such that there exists another 
sequence {ln} in E+ with an =5 lnfor all n. If the weak limit of {an} exists and 
is equal to a, then \\a\\ ^ lim in^^ooUl^H. 

Proof. Let L — {aa, a is a complex number}. Define a functional/ on L by 
f(aa) = a\\a\\. Then | | / | | = 1, and/(a) = ||a||. By the Hahn-Banach Theorem 
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there is another functional F defined on the entire Banach Lattice E such that 
||F|| = 1 and that F(a) = \\a\\. As an - ^ a, we have 

F(an) —• F(a) and . || F(an)\\ —> ||a||. 

But we also have |F(crn)| ^ || F||||an | | ^ \\an\\ ^ ||7n|| for each n. Hence 

H = l i m i n f \\F(an)\\ Û liminf ||7„||. 
n « 

LEMMA 3.11. Given two non-negative sequences {a(h)} and {1(h)} that con­
verge weakly to a and 1 respectively, then 

(a(h) -Kn)^ -^ (a -if. 

Proof. The proof of this can be found in p. 51 of [14]. 

LEMMA 3.12. Let E be a Banach lattice satisfying the conditions (A), (B) and 
(UMB). Let {ip(n)} be a sequence in E+ such that there exists a number K with 
\\^(h)\\ = K for each (h). Let T and S be two positive commuting contractions 
on E. Let (ÏÏ) = (u\, u^) be fixed, and assume 

(3.12.1) WTL^n) = * and WTL^yHu) = *(«) 

both exist. Now let v be the weak unit and define 

(3.12.2) (T= lim (limsup ||V>(*) - (</>(«) Ayv)||), 
j—+oo (n)—KX> 

(3.12.3) a{u) = lim (limsup ||̂ (n)+(«) ~ (̂ («)+(s> Ajfv)||). 
j—+oo (n)—KX> 

Then we have a ^ a(-u), and if ||*F(fi) - TU^SU2X¥\\ > a > 0, then 

(3.12.4) a~a{ù)^KB(a/K), 

where B(a/K) is the factor derived from the (UMB) condition. 

Proof We shall use the symbol x/j^ and V^M*) a nd these are defined in a 
similar way as that of definition (3.8). Let k be a fixed integer, arbitrarily chosen. 
Let 

f(nun2) = V V i , « 2 ) A ^ V a n d 8(nun2) = V>(/ii,/i2> ~ f(nun2)-

We substitute Tu'SU2f(nh TUxSU2g{n) and> for a,b and c into lemma (3.9) to get 

(3.12.5) T«Su*gih) - (Tu>SU2g(Fl) A 2/v) ^ ^ w s ) - ( ^ w « ) A 2/v) 

+ [ r , S % - r ' 5 % A ; v ] . 
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By definition we may find for sufficiently large j, a function hj such that kTuv ^ 
jv + hj, with \\hj\\ —• 0. Hence we can write: 

lim (lim sup ||r"S"*/ (a) - (Tu<S"if(-n) Ajv)\\) = 0. 
j—*oo (n)—KX) 

Using this and (3.12.5), it is seen that by taking limits, we in fact have 

(3.12.6) <r(fi) = lim (limsup \\Tug(-n) - (Tug{n) Ayv)||). 
j—xx> (n)—KX> 

Assume that 11̂ F(«) — Tux¥\\ > a > 0. We will proceed to show that if k is chosen 
large enough, there exists (ho), jo such that ||rag(a) Ayv|| > a for all (h) ^ (no), 
and j ^jo- Given e > 0, there exists ko such that if k ^ ko, 

w lim f(n) = w lim (1/;̂ ) A kv) — 4^ exists satisfying ||*F — *Fjt|| < e. 
(«)—KX> («)—>oo 

Let *F(Û),; = w lim(S)_KX)(f
û^(n)_Ayv), then l i m , ^ ^ j = *F(Û). We also 

have w lim^^ootf^cn) A 7V - ff i/w] = 4%^ - f"^. It is easy to see that 
(f"V(«) A7V - 7%))+ ^ Tag(-n) Ajv. So by lemma (3.10) and (3.11) we obtain 

(3.12.7) I K ^ - r ^ ) ! ^liminf \\T*gm Ajv\\. 

By the definition of *F(S), there exists a7i such that for 7 >7i, 114%) —H^yH < e. 
So 

||¥(fi) - r^F|| û pf{u) - v ( û ) j + ||v(û),; - r ^ , | | + | | r ^ - r ^ | | 

Û | |V ( f i ) J -7*^11+26 

for any 7 ^71 and k ^ ko- Rewritting, we get: 

(3.12.8) \\vCu)J - rvk\\ > ||v(fi) - r ^ | | - 26. 

The next step is to show that there exists a 72 such that IK^sy — r " ^ ) - ! ! < e f° r 

7 ^72. As v is a weak unit, we can find 7 sufficiently large and a % ) j such that 
ktuv ^ jv+h(n)j. Hence once k is chosen, we may write Tuf(h) = h(n)j+Tuf(h)Ajv 
with p(n)j|| < e. We claim that %)?y ^ [ ( f " ^ ) A7V) — Tuf{n)\~. This can be 
checked easily. Again applying lemma (3.10) and (3.11) we have 

w lim H ( r ^ ) AJV - f%))-|| = ||0F(fi)J - r ^ ) - | | 
(«)—XX) 

^ liminf ||/r<fi)J| < e 
(n)—KX) 

https://doi.org/10.4153/CJM-1990-054-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-054-x


1030 FELIX LEE 

if y ^72- Now lety'o = max (/i, 72). Combining this with equations (3.12.7) and 
(3.12.8) we obtain 

(3.12.9) liminf \\Tug(n)Ajv\\ > ||¥ (s ) - TUV\\ - 3e 
(n)—>oo 

for j > jo and k > ko. First we will show (3.12.4), and here we assumed 
IÎ CÛ) — Tux¥\\ > a > 0. By equation (3.12.9) we have, for k sufficiently large, 
(ho) and jo such that for (h) ^ (ho) and j ^ y0, H^g^) Ayv|| > a as e > 0 
is arbitrary. (Really we have || Z™̂ («) A y v 11 >a — e = af>0. e can be made 
arbitrarily small by picking ko sufficiently large.) Let 

^ = 7**01) Ayv IÎ H > a fory, (h) ^ j 0 , (no), 

* = T*gm \\0\\û\\gm\\ûUm\\ÛK. 

By equation (2.4), \\Tug(Fl) - ( f " m Ayv)|| ^ ||f"g(,)|| - 0 ( f ), for y, (n) ^ 
jOi(no)- By the definition of a, for e > 0, one can find k\,(h\) such that for 

M")^M"i)> 

l|7*S(n)ll ^ llswll = H ^ ) - ( ^ ) A/:v)|| < a + e. 

So for & ^ A:i,lim sup(S)_KX)||f
I'g(S)|| ^ a + e. Taking lim/-^ lim sup^^oo of 

this, and using (3.12.6) we get a^ ^ a + e — KB(j). As e is arbitrary, we 
have cr — o-(ji) ^ KB(f). (Again we really have a^) = cr + e — KB(^). However 
as k becomes much larger than ko and k\ we will have e —> 0 and 0/ —•» a. 
The important point is that there is a positive difference between the two.) To 
complete the proof note that by definition ||rwg(^) — Tug^) Ayv|| ^ ||^M*(n)|| < 
a + e; if we have k ^ k\ in defining g(h). Taking limits as j and (h) go to infinity, 
with e arbitrary, we get a^) = o as desired. • 

LEMMA 3.13. Let E be a Banach lattice satisfying the conditions (A), (B) and 
(UMB). Let T and S be two positive commuting contractions on E. Let {ip(n)} 
be a sequence in E+ such that HV ÎI = K for all (h) and some finite number 
K. Assume that \ij) — WTL(TlS-iip(n)) exists for each pair (/, j) ^ (0,0). Let 

e(ni,n2) = S U P ll^(«i+*i,«2+*2) — TlS 2\(num)\\ 
' (*,,*2>i(0,0) 

for each pair («1,^2) = (0,0). Then lim^y-KX) e ^ = 0. 

Proof If {e(h)} does not converge to zero, then there exists a number a > 0 
such that for infinitely many (h)y the corresponding C(h) > a. In any case, let 
{(ni), («2),...} be a enumerated set of such (râ)'s. We can pick and a set of 
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{(*/)} such that 0 ^ fa) < (/*,•+*,•) £ (n£D and | |A (^ ( ) - fk>X{hi)\\ > a for 
each /. Now define 

a(iJ) = lim (limsup ||r"S^(n) - (FS^M A /v)||) 
/—KX> (n)—>oo 

By the results of lemma (3.12), we see that (J(iui2) = c"(/2,y2) — 0 if 'i = ht j \ = h-
So the sequence {a(i, j)} is non-increasing. Set *F = A .̂) and H0^ = A^ .^ . 
Then we have for each pair of (n,-,jfc/), | | ^ . ) - 7*''*F|| > a. By (3.12.4) we 
have o-fo.) — cr(/j(+jt() — KB(a/K) > 0. This means that a(i, y) will eventually 
be negative as /, j —» oo, this is a contradiction as by definition a^) cannot be 
negative. • 

In the one parameter case, Akcoglu and Sucheston in [4] introduced a se­
quence of asymptotic dominants. Basically it is a sequence of functions in E 
such that their averages almost dominates the superadditive process in question. 
We define for the multiparameter system a corresponding sequence of asymp­
totic dominants. 

Definition 3.14. Let {F^h)} be a non-negative superadditive process on a 
Banach lattice E. A sequence A(^ in E will be called a sequence of asymptotic 
dominants for {F(h)} if there are functions *F ĵ such that: 

(3.14.1) — L - F(s) ^ A{n)XCk) + ¥ * and 

(3.14.2) lim (limsup | |¥S| | ) = 0. 

The extension to multi-parameter case is again obvious. We simply replace both 
of the doubly indexed (Â), (k) by any m-dimensional (h) and (k) in equations 
(3.14.1) and (3.14.2). 

Remarks 3.15. We will proceed to show that if F(„) is moderately super­
additive, then it has a sequence of asymptotic dominants. Moreover, the sequence 
A(*(.) will have support on that of the invariant function O. By lemma (2.2) then 
the sequence A^X^) will converge. By picking (&,) large we will have ^ - F^ 
dominated (up to e in norm) by a convergence sequence. Its own convergence 
then follows. 

LEMMA 3.16. Let E be a Banach Lattice satisfying conditions (A), (B) and 
(UMB). Let { F(n)} be a positive superadditive process in E with respect to two 
positive commuting contractions T and S on E. Let O(^) = ~^rn ^?=ô ^?=ô 
(F(I-+U+1) - TSF(iJ)). Then m{m2 Zt~Q

l T,fJ T9<!>imm^[{mx - nx + 1) • 
(m2-n2 + l)]F(n)for(mi,m2) ^ (nun2). 
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Proof. First of all observe the following. Let {an} and {bn} (n G /, a set of 
indices) be two sequences in E such that an ^ bn for all n. Suppose we would 
like to show that ^2neI (an — bn) === / . Then 

(a) as each term is non-negative in the summation, it is sufficient to show 
that the sum over some of the indices will majorize/. That is, if we can 
find a subset IQ G / such that ^2neIo (an — bn) ^ / we are done. The 
reader should not be alarmed if many non-negative terms are discarded 
in the proof. 

(b) Suppose ao,a\,... ,am£ {an} is identical to bk,bk+\,... ,bk+m G {bn}. 
Then consider 

^2 (an -bn)= ^T (an -bn)+ ^ (an - bn). 
n n=0,...,m n^0,...,m 

By (a) we will show that the first term is sufficient to give us the desired 
inequality. 

(c) From the definition of superadditivity we see that Tk)SjoF(UQ^o) 2t ThSji 

F(Ml?Vl) if we have wo = «b vo = vi? wo + *o = u\ + M a nd lastly vo +70 = 
vi + 7 i . 

In our proof, we will simplify the notation so that afj = TlSjF(UyV). This is 
translated to be df0^0 =̂  a"1 'J71 if w/, v, etc satisfy the said conditions. We will 
now look at which terms cancel out each other in the summation 

ni — 1 M2 —1 «i — l ri2 — 1 mi —1 m2 —1 

« ^ £ £ r̂ o».,-*) - E E E É r̂ F(„+1,v+1) 
(=0 j=0 1=0 7=0 u=0 v=0 

- Tl+lSJ+lFlu,v). 

We see that £ ^ 7 ' E ^ T ' E ^ 2 E ^ < J 1 ' V + 1 a n d E ^ 2 E ^ 2 5 X 7 ' 
X^i i a?+vi,7+i c a n c e^ e a c n other. Therefore using (b) we will consider only the 
following: 

Ail—2 «2—2 mi —1 m2 —1 «i — 1 «2~ 1 rri\—2 m^—l 

£££ EC-EEE Ê v-
/=0 7=0 w=l v=l /=1 j=\ w=0 v=0 

We would like to write [k
k
2][r

r
2] to mean Ylu=kx EvLr, • We w^^ further partition 

the sum into many blocks according to the indices /, j . Consider the case when 
/ = 0 and j = 0. We are looking at: 
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(3.16.1) 
mi — 2 rri2 — 2 

0 
/ K+2,V+2 _ M,VX 

« i — 3 

0 

mi — 2 

« i — 2 

« 2 _ 3 

0 

«i—3 

0 

«2 — 3 

0 

mi — 2 

«1—2 

ÏY12—2 

«2 — 2 

«72 — 2 

« 2 ~ 2 

/ «+2,v+2 _ w,vx 
^ 0 , 0 a 2 ,2^ 

/ w+2,v+2 _ «,vx 
V%0 fl2,2^ 

The terms «oJ2v+2 ~~ aYi a r e a ^ non-negative. We will drop all of them except 
the lower right block of (3.16.1), namely 

(3.16.2) 
mi — 2 

«1—2 

«72 — 2 

«2 — 2 

/ w+2,v+2 _ u,vx 
V"0,0 ^ 2 , 2 ^ 

We will leave this momentarily and move onto / = 1 and j = 0. This block will 

be cut up in a slightly different way. 

(3.16.3) 
mi — 2 

0 

«72 — 2 

0 

mi — 2 

/ w+2,v+2 _ w,vx 
\a\,0 a3,l) 

0 

mi — 2 

mi — 2 

«2 — 3 

0 

rri2 — 2 

«2 — 2 

« 1 — 4 

0 

«Î2 — 2 

«2 — 2 

mi — 3 

«1—3 

«72 

«2 

) / w+2,v+2 _ w,v 
^ 1 , 0 fl3,2 

H+2,V+2 ^w,v\ 
'1,0 ~~ "3 ,2 /" 

Consider again only the lower right hand block of (3.16.3). We will com­

bine the positive part of this with the negative part of (3.16.2) getting 

Q-lKl-iKo^2 ~ Q-lKl'l^ia w h i c h c a n b e rewritten as 

mi — 3 

« i — 3 

«72 — 2 

«2 — 2 
(à ,H+2,V+2 „u+\,v 

1,0 2,2 ")• 

We will drop these and all the other three summations in (3.16.3) as they are 

easily seen to be non-negative. What we are left with is the positive term of 

(3.16.2) and the negative term of the lower right block of (3.16.3). That is the 

following: 

(3.16.4) mi 

«i 

«72 — 2 

«2 — 2 

_u+2,v+2 
"0,0 

mi 

«i 

«72 

«2 - '3,2-
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From here we may try to move say from (/, 7) = (1,0) to (1,7) = (1,1). We 
can go through a similar procedure in cutting up this block appropriately. Then 
combining part of it and (3.16.4) we will obtain the following: 

[mi — 2 
[ n\ — 2 

where all other non-negative terms are again discarded. By a simple induction 
it is possible to move from (/, 7) = (0,0) to (/, 7) = (n\ — 2, n2 — 2). It does not 
matter which path we take. We will eventually arrive at (/, 7) = (n\ — 2, ri2 — 2) 
and be left with the following terms: 

[mi — 2 
[«1—2 

We may now write it out in the origin notation and collect terms by making the 
appropriate changes to get: 

(3.16.5) YJ E (/r(«+»1,v+«2)-7'",5n2F(„)V)). 
u=0 v=0 

By superadditivity, each of the difference terms in (3.16.5) is positive and is 
greater than or equal to F^y And there are a total of (mj — ti\ + l)(m2 — «2 + 1) 
terms. Hence if we only consider the terms in (3.16.5) and drop off all the 
others, we would have the inequality we desire. • 

THEOREM 3.17. Let E be a Banach lattice satisfying the conditions (A), (B) 
and (UMB). Let {F(n)} be a superadditive process in E+ with respect to two 
positive commuting contractions T and S on E. Let {F(«)} be moderately su­
peradditive. Then F^ has a sequence of asymptotic dominants. 

Proof Since M is finite, it is possible to find a sequence {(m^)} such that 

M = sup | |0 ( m J | < 00 

where (m^) ^ (mj^î). We may assume that A(/, 7) = WTL{fhky^00(T
lSj^>(ihk)) 

exists for each (1,7), /, 7 = 0 ,1 ,2 , . . . (To get this use lemma (1.8); and if 
necessary, by going to a subsequence of O^).) We will also assume 0>(mk) is 
not TL null, so by (1.8) A(/, 7) ^ 0 for each (/, 7). We claim that A(/, 7) is a 
sequence of asymptotic dominants for {F^)}. To prove this, consider any fixed 
(h) and a k such that (m^) St (h). By lemma (3.16) we get for (m*) ^ («), 

A I ] — 1 « 2 — 1 

m*i * mki X ] X I ^ ^ O * * ) ~ Km*i ~ "l + l)(mk2 - n2 + \)]F{n) 
i=0 7=0 

m2 — 2 

«2 — 2 
_u+2,v+2 

"0,0 ~" 
mi — 3 

/7i — 3 

mi ~ 3 

«2 — 3 

HÎ2 -- 2 " t/+2,v+2 mi -nx~ m2 — «2 
/ T M , V 

n2- -2_ ^0,0 
.n\ - n \ _ «2 — «2 

an\,n2 
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This can be rewritten to get: 

tl\— 1 ft2 — \ 

E V ~ / e , ^ > [(mi* ~ "\ + 1)0% ~ n2 + 1)] 

/=0 y=0 
/Wjfe.mfo 

Taking the limit as (m*) —> oo we obtain: X^=o 2/=ô WiJ) — F(n)- By 
lemma (1.7) we know that there exist non-negative functions P[fj)2) for all 
(k\,k2) such that 

(3.17.1) \(i + klJ + k2)-T
k*Sk*\{iJ) = P$£2). 

Lemma (3.13) concludes that for all e > 0, there exists (k, jo) such that 
||P(

(5f2)|| < e for all (ij) 2; (i0,;o),(*) ^ 1. Let (n) è (1,7) 2; (i0,7o). We 
have 

« 1 - 1 «2 — 1 

"1/22 n l " 2 ^ ^ 

i - l 7 - 1 i - l n 2 - l 

1 z v
 M=0 v=0 w=0 v=/ 7 

u=\ v=0 

Changing variables for the last term and adding extra terms, the equation be­
comes: 

nxn2 

F(n)^ 
n\n2 

i-\ y -1 i - l n 2 - l 

EE^v)+EE^v> 
u—0 v—0 u—0 v=j 

n , - l 7 - 1 
1 

+ V V A(w, v) + V V X(u + i, v +7). 
w=i v=0 w=0 v=0 

By equation (3.17.1), X(u + i, v +7) = TuSvX(i, 7) + P ^ . So we may rewrite 
the last equation as 
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1 (n) = 

n\ri2 n\ri2 

i-\ y - 1 i - 1 n 2 - l 

YJYJ A ^ V ) + E E A(M'V) 

L u—0 v=0 u—0 v—j 

" 1 - 1 7 - 1 

u—i v = 0 

ni—1 nj — \ 

+ E E A M +A<«)Ao\ J)+—- E E pô-/ 
W l « 2 

w=0 v = 0 

= A{h)\{i,j) + V%. 

where 

u/(0 _ 
« i n 2 

I - l 7 - 1 ï - 1 « 2 - 1 

Y, E M«,V)+E E A("'v) 
L

 M = 0 v = 0 « = 0 v—j 

m - l 7 - 1 

+ E E A ^ v > 
W=ï V=0 

1 
ni—1 n2 —1 

+ „,n2 ^ ^ t J ? -
M =0 v = 0 

It remains to show that lim(7)_KX)(lim sup^^ooH^^H) = 0. Consider each of the 
first three terms of the last equation, as ||A(/,y)|| < M < oo for each pair of 
(i, j) each of those terms tends to zero as (n) —• oo. (Note that in the summation 
of each of the terms, at most one but not both of the indices ni,«2 appears.) 
As we had set (ij) > (i0J0), each of the term in ^ J ^ 1 Yl?Jo P«j) 
has norm less than or equal to e. So the sum is less than or equal to e as 
there are a total of n\ • ni terms. Hence, for any e > 0, it is possible to pick 
Oo,7o) such that limsup^^ooH^H < e f o r (h J) = (h, jo)> As e is arbitrary, 
lim(i)̂ )_KX)(limsup(^>_>oo||̂ (Ji'/)||) = 0- So A(/, j) constructed this way is a se­
quence of asymptotic dominants for F(„). • 

4. Multiparameter mean ergodic theorem. 

THEOREM 4.1. Let E be a Banach Lattice satisfying the conditions (A), (B) and 
(UMB). Let { F(n)} be a moderately superadditive process on E+ with respect to 
two positive commuting contractions T and S. Then let A be a maximal invariant 
function and N — {x \ A(x) — 0} and then (XN-^-F(n)) A g = 0 strongly for 
each g E E+. 

Proof Given any e > 0, we use theorem (3.17) to obtain a À G E+ and 
*¥(n) € E+ such that -^F{h) = A^A+^F^) and such that limsup(^)_,001I^F^H < e. 
So 

(XN — F{h) ) A ^ XN(A(n)\ + ¥(*)) A g 
V n\n2 J 

ÛXNA(n)\Ag+V( («)• 
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By theorem (2.1), XNA(n)X A g —> 0, so as limsup(^)_KX) 11̂ (n) 11 < e, then for all 
e > 0 we have l i m ^ ^ l l ^ ^ F ^ ) A g\\ < e. Hence (XNJ^F(n)) A g —• 0 
strongly for all g G E+. • 

THEOREM 4.2. Let E be a Banach lattice satisfying the conditions (A), (B) and 
(UMB). Let { F(n)} be a moderately superadditive in E+ process with respect to 
two positive commuting contractions T and S. Let O be an invariant function 
under T and S. Let P be the projection onto the support S(<E>) of 0, then 
P ( ^ ) F ( " ) converges strongly. 

Proof Once again we have 

F(h) = A(n)X + *F(Â) 
n\ -n2 

with XF(̂ ) G E+ for all (n), and limsup^j-Kx, 11^)11 < e. Hence 

_ 1 
F(n) S PA{fl)X + PVw S PAmX + V(fl). 

/11/1 2 

By theorem (2.5), PA^A in fact will converge to an invariant function £. By a 
simple calculation PA^A A £ —• £ as well. We can also prove that 

P — Fm-P — FmA£ £ PA{n)X - PA{n)X A £ + Vm. 
n\n2 n\n2 

We then write 

limsup ||P FCn) -P F(n) A Cil 
(«)—oo nifi2 ni/12 

^ limsup ||PA(,)A - PA(,)A A £ + ¥<*)|| 
(n)—KX> 

^ limsup ||PA(̂ )A — e|| 
(n)—KX) 

+ limsup||PA (,)AA4-^|| 

+ limsup I I ^ H 
(n)—KX> 

^ limsup ll^n)!! < c 
(n)—KX> 

As e > 0 is arbitrarily chosen, 

lim sup P F(a) - P F(n) A £ 
Wl«2 w l w 2 

Now £ is an invariant function under the operators T and S. {P(n)} is a super-
additive sequence and so is the sequence {PF^}. So by corollary (3.7) we have 
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P ~ p F(n)/\£ converging strongly. Hence P ~^- F^) converges strongly as well. 

We will now state the general multiparameter superadditive theorem: 

THEOREM 4.3. Let E be a Banach lattice satisfying the conditions (A) (B) 

and (UMB), Let {F^} be a superadditive process in E+ with respect to k 

positive commuting contractions T\, T2l... 7*. Let R be the support of a maximal 

invariant function O in E+ under T\, T2l . . . 7*. N is the complement of R. Let 

the following condition be satisfied: 

lim inf 
(n) 

m-l nk-\ 
Z ^ ' " 7 , (^(ii+i,.../t+D - h ' ' TkF{h^jk)) 

n\n2'-nk 
i\=0 ik=0 

< 00. 

Then 

1 
n\n2---nk 

converges strongly, and for all g G E+, 

UN Fm) Ag — 0 
V n\n2'-nk J 

In the one parameter case Akcoglu and Sucheston obtained further results 

(theorem 4.6 of [4]) if one additional condition is satisfied — namely that the 

convergence of the Cesâro averages for a l l / G E+. 

LEMMA 4.4. Let E be a Banach lattice satisfying the conditions (A), (B) and 

(UMB). Let {F(n)} be a moderately superadditive process in E+ with respect 

to two positive commuting operators T and S. Let T and S be chosen so that 

A(^)(r, S)f converges in norm for every f G E+. Then —— F(h) converges in 

norm to an invariant function. 

Proof Let O be the maximal invariant function with support R and TV be the 

complement of R. By theorem (4.2) we have XR ^ - F(„) converging strongly. 

It is sufficient to show that XN ^ - F{h) also converges (to zero in norm). Once 

again we obtain a sequence of asymptotic dominants for { F^} such that 

(4.4.1) J-Fw^AmX + Vw 
n\n2 

with lim s u p ^ ^ o o l l ^ ) ! ! < e. Now A^X converges as À is in £+. So XNA(h)X 

converges strongly as well. From theorem (2.1) we get that TLXNA^n)X = 0. If 

all the limits exist, then 

lim inf g{h) ^ TLg(-n) ^ lim sup gCn) 
(n)—KX> (n)—•oo 
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So if a sequence has a limit, it is in fact the TL limit. So X^A^X converges to 

zero. Going back to equation (4.4.1), we first multiply it with XN and then take 

lim sup^^oo of the whole equation. Note that lim sup^)_^00||X^A^)A|| = 0, and 

lim sup(^)_O011^(w) 11 < e. So XN -—^ F(h) converges strongly to zero as well, as 

e is arbitrary. Rewriting equation (4.4.1) we obtain 

XR F(n) ^ XRA(h)\ + X/?*F(Â) ^ XRA(h)X + *¥(„) 

nxn2 

with R — X — N. Now let lim(/j)_^00X^ -~- F&) = x¥. As e > 0 is arbitrary, 

lim XR F(h) = lim sup XR F(n) 
(n)-̂ oo 1î\ri2 (n)—KX> n\JÏ2 

= XRX + h 

where À = l im^^ooA^A, and \\h\\ ^ e. Since XN -^- F{Fl) - > 0 w e have 

(4.4.2) lim F{h) = lim XR F{h) ^XRX + h^X + h. 

Since e > 0 is arbitrary, -ir F^h) = X and by theorem (3.6) we know that 

A F(n) converges in norm. Though not obvious, it is not difficult to show that 

the limit of ~ F^h) is invariant as well. • 

It can be shown and is known that for a reflexive Banach Lattice, A ^ / 

converges for all / G E+ if T and S are contractions. Hence for a reflexive 

Banach Lattice we have the following theorem in the multiparameter form. 

THEOREM 4.5. Let E be a reflexive Banach lattice satisfying the conditions 

(A), (B) and (UMB). Let {F^} be a superadditive process in E+ with respect 

to k positive commuting operators T\,T2,... ,7*. Let 

lim inf 
1 1l~} nk ~x 

~~ / , Z_J (^(/i+i,...'*+D - T \ ' - TkF(i,,.../,) = M < oo. 

77i^n T̂T F(/j) converges in norm to an invariant function. 

The material of this paper is condensed from the author's doctoral thesis at the Uni­
versity of Toronto, 1988. 
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