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Abstract

Some properties of the singular ideal are established. In particular its behaviour when passing to one-sided
ideals is studied. Obtained results are applied to study some radicals related to the singular ideal. In
particular a radical S such that for every ring R, S(R) and R/S(R) are close to being a singular ring and
a non-singular ring, respectively, is constructed.
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1. Introduction

Studying properties of rings one can usually say more assuming that the considered
rings are either singular or non-singular. It is natural to ask whether one can reduce
studies of arbitrary rings to these two particular cases. In this paper we examine a
radical approach to the question namely, we study whether one can construct a radical
5 such that for every ring R, S(R) is not far from being a singular ring whereas
R/S(R) is close to being a non-singular ring.

In the first two sections of the paper we study properties of the singular ideal of a
ring. In particular we study how it behaves when passing to ideals or one-sided ideals.
Obtained properties are applied in the third section to find a radical of the above
specified type. The radical seems to be quite satisfactory. It satisfies the required
conditions, is quite regular (it is an ^-radical in the sense of A.D.Sands [14]) and
related to some other classical radicals (it contains the prime radical and is contained
in the strongly prime radical). We study also some related radicals. In particular we
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show that the class of rings (cf. [3] and the papers quoted therein) whose all prime
homomorphic images are non-singular is an /V-radical class.

In the last section we obtain some results on the singular ideal of rings satisfying
the ascending chain condition on principal right ideals.

Some of the ideas of this paper are contained in the unpublished paper [4].
All rings considered in this paper are associative but, unless otherwise stated, are

not assumed to have identity. The ring obtained from a ring R by adjoining an identity
will be denoted by R*.

To denote that / is an ideal (right ideal, left ideal) of a ring R we write / < R
(I <r R, I <, R).

Given a subset S of a right (left) /?-module M, the annihilator annR (S) of S in R is
defined as {r e R | Sr = 0}({r € R | rS = 0}). Ifw e M, then annR({m}) is denoted
by annR(m). In case when M = RR (respectively M = RR), annR(S) is denoted by
rR(S) (respectively lR(S)) (if the context is clear, just by r(S) or l(S)) and called the
right (respectively left) annihilator of S in R. Instead of rR({a}) (respectively lR({a}),
where a is an element of R, we write simply rR(a) (respectively lR(a)).

For background on the theory of radicals of rings we refer the reader to any standard
text such as [2, 17]. Recall that a radical 3ft is called left (right) hereditary if L <, A
(H <,. A) and A e 3ft imply L e 3ft (H e M). A radical which is left and right
hereditary is called one-sided hereditary. A radical ^ is said to be left {right) strong
if for every ring A, 3ft(A) contains all left (right) ^-ideals of A. A radical which is
left and right strong is called strong. The prime radical will be denoted by /3.

2. Properties of the singular ideal

Let M be a right module over a ring R. The singular submodule ZR{M) of M is
defined as {m e M \ annR(m) is an essential right ideal of R}.

The singular submodule of the right R-module RR is called the {right) singular
ideal of the ring R and denoted by Z(R), that is, Z(R) = [x € R \ rR(x) D H ^ 0
for every non-zero right ideal H of R}. It is well known (see [7], p. 30) that Z(R) is
indeed an ideal of R.

Rings R such that Z(R) = R are called singular whereas those for which Z(R) = 0
are called non-singular. We start with some examples of singular and non-singular
rings.

PROPOSITION 2.1. Every commutative nil ring R is singular.

PROOF. Take any a e R and 0 ^ b e R. If n is the smallest natural number such
that a"bR* = 0, then 0 # a"~]bR* c r(a). However a"~xhR* = ba"~l R* c bR\ so
bR* n r(a) ^ 0. Thus Z(R) = R.
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A ring R is said to be (right) strongly prime [8] if every non-zero ideal I of R
contains a finite subset F such that rR(F) = 0. An ideal P of a ring A is called
strongly prime if the ring A/P is strongly prime.

PROPOSITION 2.2. Every strongly prime ring R is non-singular.

PROOF. If Z(R) =£ 0, then since Z(R) < R and /? is right strongly prime, there
exists a finite subset F — [f\, . . . , / „ } c Z(/?) such that r ( / i ) n - • -n/-(/n) = r (F ) =
0. However /, € Z(/?), so r{ft) is an essential right ideal of R for / = 1 , . . . , n.
Consequently r(F) is an essential right ideal of R, a contradiction.

Let R be a non-nilpotent finitely generated ring. For every natural number n, the
ring R" is finitely generated as well. Hence applying Zorn's lemma one can find an
ideal M of R maximal with respect to R" % M for n = 1, 2, The ring R/M is
strongly prime. Indeed, if I /M is a non-zero ideal of R/M, then the maximality of
M implies that there exists a natural number n, such that R" c / . Let Z7 be a finite
set generating the ring R". Then rR/M(F + M) = rR/M(R" + M/M) = J/M for an
ideal J of /?. If M ^ 7, then the maximality of M implies that S ' c j for a natural
number m. However in this case R"+m c 7?"7 c M, a contradiction.

Now from Proposition 2.2 it follows that the ring R/M is non-singular. Taking in
particular R a finitely generated non-nilpotent nil ring (see [6]) one gets that R/M
is a non-singular nil ring. This shows that Proposition 2.1 does not hold for non-
commutative nil rings.

Another class of non-singular rings is given by the following

PROPOSITION 2.3. Every reduced ring R is non-singular.

PROOF. Take any a € R. If x e r(a) n aR*, then for some y e R*, x = ay and
a2y = 0. This implies that (ayRa)2 — 0. Hence, since R is reduced, ayRa = 0.
Consequently xRx = ay Ray = 0. However the ring /? being reduced is semiprime,
so x = 0. Consequently r(a) n a/?* = 0. This implies that Z(R) = 0.

Note that for every family {Ra} of rings Z(URa) = riZ(/?a) and Z(©# a ) =
@Z(Ra). Hence the class of singular rings as well as the class of non-singular rings
is closed under products and direct sums. However the classes are not closed under
taking homomorphic images and ideals, as we will see in the following examples.

First note that the class of non-singular rings is not closed under taking homo-
morphic images. Indeed, the ring xAr[x] of polynomials with zero constant term over
a field K is a non-singular ring whereas its homomorphic image xK[x]/x2K[x] is a
singular ring.
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EXAMPLE 2.4. The class of singular rings is not homomorphically closed.

Indeed, let R be a commutative nil ring which is not nil of bounded index and
let P be the product of an infinite number of copies of R. By Proposition 2.1 and
the foregoing remark, the ring P is singular. Obviously fi(P) ^ P. Since P is
commutative, the ring P/fi(P) is reduced. Hence the ring P/fi(P) is non-singular
by Proposition 2.3.

Recall that a class M of rings is said to be hereditary if / < / ? , / ? e M imply
I &JK.

EXAMPLE 2.5. The class of singular rings is not hereditary.

Indeed, let K be a field and A a singular /f-algebra such that A2 ^ 0. We
claim that the ring R = (Q *) is singular. For, take any a = Q !) e R. Clearly if
/ = rA{{x, y, z}), then (J,') c rR{a). For every 0 ± b = (*' %)"e /?, fcfl = («' £)
for some right ideals /,, /2, /3 of A. If some of /, ^ 0 (or, equivalently, bR ^ 0),
then since Z(A) = A, / n /,• ^ 0. Hence 0^ bRn^',) ^ bR n rR(a). Suppose
that bR = 0 and denote by P the subring of K generated by 1. The right ideal of
R generated by b is equal Pb and the right ideals of A generated by b, are equal
Pbj. Since A = Z(A), there are non-zero elements kx, k2, ki, € P such that k,b, e /,
/ = 1, 2, 3. Putting k = kxk2h, we get that 0 ^ kb e PbD^ ',) c. Pbf\ rR(a).
Therefore for every a e R, rR(a) is an essential right ideal of R. Thus Z(R) = R.

Now / = (Q g) < /?. Take a e A such that H = rA (a) y£ A (such an element
exists because A2 7̂  0). Then there exists a non-zero A'-subspace V of A with
H n V = 0. Note that 0 ^ O <r / and (° v

0) n ry(^ °) = O n (o
w J) = 0. Hence

a?Z(J).

From the above example it also follows that the class of singular rings is not closed
0 A-
0 0-under extensions. Indeed, the ring / is not singular but both / = (° Q ) and / / / ~ A

are singular rings.

EXAMPLE 2.6. The class of non-singular rings is not hereditary.

Indeed, let K be a field and R = (£<>). Clearly / = (°K °) < R and Z(/) = /.
However Z(fl) = 0. In fact, for each 0 ^ x € R, rR(x) = I but H = (*0°) <r /? and
/ fl H = 0. Thus rR(x) is not an essential right ideal of R.

The following proposition implies in particular that the class of semiprime non-
singular rings is hereditary.

PROPOSITION 2.7. / / / < / ? and the ring I is semiprime, then Z(I) = / n Z(R).
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PROOF. Let / e Z(I) and 0 ^ H <r R. If HI = 0, then (IH)2 = 0. However
/ is a semiprime ring and IH <,. /, so IH = 0. Consequently H c rR(I) c rR(7).
Thus in this case H C\ rR(i) ^ 0. If / / / ^ 0, then 0 ^ / / / <r /. Hence, since
/' € Z(/), HI fl /-/(/) ^ 0. However HI c // and r;(/) c rR(/), so also in this case
// n rR(i) ^ 0. Therefore / e Z(R) n /.

Now let / e / n Z(7?) and 0 ^ // <, / . Since the ring / is semiprime, / / / ^ 0.
Obviously / / / <, /?. Hence HI n /-«(/) ^ 0. However / / / c //, so 0 ^ / / / n
rR(/) c // n /-/?(/) = // n /-,(/). This implies that / e Z(/).

3. Behaviour of the singular ideal with respect to one-sided ideals

Now we shall study the behaviour of Z() with respect to one-sided ideals. The
main result of this section is the following

THEOREM 3.1. / / / is a one-sided ideal of a ring R and I* is the two-sided ideal of
R generated by I, then Z(I*/f3(I*)) ^ 0 if and only if Z(I//?(/)) ^ 0.

The proof of the theorem is split in several parts. We start with Lemma 3.2
which allows us to assume that R is semiprime (then of course one has to prove that
Z(/*) ^ 0 if and only if Z(/ /^(/)) ^ 0). In the semiprime case the result is the
conjunction of Corollaries 3.7, 3.9 and Propositions 3.12, 3.13.

LEMMA 3.2. Let K be a one-sided ideal of A and let K* be the ideal of A generated
by K. Then K = (K + P(A))/f3(A) is a one-sided ideal of A/f3(A) and (K* +
P(A))/P(A) is the ideal of A/ P( A) generated by K. Moreover {K* + P(A))/ P(A) ~
K*/P(K") and K/P(K) ~ K/P(K).

PROOF. Straightforward.

Before passing to the semiprime case we shall prove the following

PROPOSITION 3.3. / / / <r R, then Z(I)I c Z(R).

PROOF. Take z e Z(I), i' e I and 0 ± H <,. R. If iH = 0, then ziH = 0, and
so in this case H c rR(zi). If iH =£ 0, then 0 ^ iH <, / . Hence, since z e Z(I),
iH fl r,(z) ^ 0. Consequently in any case there is 0 ^ h e H such that zih = 0.
This implies that H D rR(zi) ^ 0, so zi e Z(R).

LEMMA 3.4. // R is a semiprime ring and I <,. R (L <, R) , then p(I)I = 0
{Lp(L) = 0).
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PROOF. Note that /?(/)/ <r R and P(I)I c p(I). Hence /?(/)/ is a right /3-ideal
of R. Since /? is semiprime, P(I)I = 0.

Proposition 3.3 and Lemma 3.4 give

COROLLARY 3.5. If R is a semiprime non-singular ring and I <r R, then Z(I) =
P(D-

PROOF. By Proposition 3.3, Z( / ) / c Z(R) = 0. This obviously implies that
Z(/) c P(I). The converse inclusion is an immediate consequence of Lemma 3.4
and the definition of Z(/).

PROPOSITION 3.6. IfR is a semiprime ring and I <,. R,then(inZ(R)+P(I))/P(I)

PROOF. Take z € / n Z(R) and 0 ^ H/f3(I) <,. I/p(I). Clearly 0 # / / / c //
and / / / <,. /?. Hence rR(z) n / / / ^ 0. Since /? is semiprime and HI n rR(z) <r /?,
wehave///nr,(z) = HIDrR(z) £0(1). NowO^ ((Hinr,(z)) +P(1))/P(I) C

+p(l))/pu)) c (Hi+p(i)/p(i))nrimn(z+p(i)) c
r///J(/)(z + ^(/)) . Hence z + /3(/) € Z(I/p(I)).

COROLLARY 3.7. / / /? w a semiprime ring, I <r R and Z(I/P(I)) = 0,
Z(/*) = 0, where I* = R*I.

PROOF. By Proposition 3.6, if Z(I/P(I)) = 0, then / n Z(R) c ^( / ) . Hence
IHZ(R) is a yS-radical right ideal of R. However R is a semiprime ring, so IC\Z(R) =
0. Consequently IZ(R) = 0. Thus by Proposition 2.7, (Z(/*))2 c R*IZ(I*) c
R*IZ(R) = 0 and semiprimeness of /? implies that Z(/*) = 0.

PROPOSITION 3.8. If R is a semiprime ring and L </ R, then LK c Z(L*), where
L* = LR* and K is the ideal of L containing P(L) such that Z(L/P(L)) = K/P(L).

PROOF. Let 0 ̂  H <r L*. Suppose first that HL c p(L). Then by Lemma 3.4,
LHL = 0 and hence LHL* = LHLR* = 0. This gives LH = 0, because R is
semiprime. Consequently H c rL.(L) c rL.(LK). Suppose now that //L 2 P(L).
Then for every i t e f , ((HL + P(L))/P(L)) D rL/0(L)(k + P(L)) ± 0. Hence there
is / € //L \ P(L) such that it? € j6(L). By Lemma 3.4, Lkt = 0, which gives
0^t e HLn rL.(Lk) c / / n /-L. (£,£).

The foregoing shows that for every 0 7̂  // <,. L*andeach& e K,HC\rL.(Lk) ^ 0.
Hence L/C c Z(L*).
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Proposition 3.8 gives

COROLLARY 3.9. Under the assumptions of Proposition 3.8, if Z(L/P(L)) ^ 0,
then Z(L*) ^ 0.

It is much more complicated to get the symmetric versions of Corollaries 3.7 and
3.9. We begin with two auxiliary lemmas.

LEMMA 3.10. If R is a semiprime ring and 0 ^ L <, R, then L2R* is an essential
ideal of LR*.

PROOF. Suppose that / < LR* and / D L2R* = 0. Then 1L2R* = 0. However
P c ILR*LR* = IL2R*. Hence / = 0, because R is semiprime.

LEMMA 3.11. (cf. [11], Lemma 2). For every element a of a ring R

(i) / = rR(a)a < Ra, J = alR{a) < aR;
(ii) Rail ~ aR/J;

(iii) Ra/P(Ra)~aR/P(aR).

PROOF, (i) Straightforward.
(ii) Note first that if for some ru r2 € R, rxa = r2a, then r{ — r2 e lR{a). Hence

arx + J = ar2 + J. This implies that putting f(ra) = ar + J, we get a well
denned map f : Ra —> aR/J. Clearly f(rxa + r2a) = f{r\a) + f(r2a). Now
f(rlar2a) = arxar2 + J = f{rxa)f{r2a). Hence / is a ring homomorphism such
that f(Ra) = aR/J. It suffices to prove that Ker / = /. The inclusion / c Ker / is
clear. If ra e Ker/ , then ar e / . Hence there exists r' e lR(a) such thatar = ar'.
This implies that r — r' e rR(a) and ra = (r — r')a e I. The proof is complete.

(iii) Note that I2 = J2 = 0. Hence / c fl(Ra), J c p(aR) and so ${Ra/I) =
P(Ra)/I, P(aR/J) = P(aR)/J. Consequently the isomorphism Ra/I ~ aR/J
induces an isomorphism of the rings P(Ra)/I and P(aR)/J as well as an isomorphism
of the rings Ra/P(Ra) and aR/P(aR). The result follows.

PROPOSITION 3.12. If R is a semiprime ring, L <, R and Z(L/P(L)) = 0, then
Z(L*) = 0 , where L* = LR*.

PROOF. Suppose that Z(L*) ^ 0. By Lemma 3.4, L2R* = E/e/.\/i(z.)L//?*- O b v i "
ously all LIR* are ideals of L*. In a semiprime ring an ideal which intersects a sum of
ideals must intersect one of them. Hence applying Lemma 3.10 and Proposition 2.7,
we get that for some/ e L\P(L),Z(LIR*) ^ 0. Since LIR* < R*IR*, by Proposition
2.7, Z(R*IR*) =£ 0. Now 1R* <,. R, so by Corollary 3.7, Z(IR*/pilR*)) ^ 0. Ap-
plying Lemma 3.11, we get that IR*/P(IR*) ~ R*l/P(R*l), so Z{R*l/P(R*l)) ^ 0.
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Now, since R*l </ L and the ideal of L generated by R*l is equal R*l + R*IL,
Lemma 3.2 and Corollary 3.9 give Z{{R*l + R*lL)/P(R*l + R'lL)) ^ 0. However
R*l + R*IL < L, so by Proposition 2.7, Z(L/p(L)) ^ 0. The result follows.

PROPOSITION 3.13. If R is a semiprime ring, I <,. R and Z(I/P(I)) ^ 0, then
Z(I*) ^ 0, where I* = R*I.

PROOF. Take i e / such that 0 ^ / + P(I) e Z(I/P(I)). Clearly ;/?* <r /,
y = //?* + //ft* < / and (7 + P(I)/P(I)) n Z(I/P(I)) ^ 0. Hence by Proposition
2.7, Z(7 + P(I)/P(I)) ~ Z(J/P(J)) ^ 0. Since 7 is the ideal of / generated
by /fl*, applying Lemma 3.2 and Corollary 3.7, we get that Z(iR*/P(iR*)) ^ 0.
Now by Lemma 3.11, iR*/P(iR*) ~ R*i/P(R*i), so Z(R*i/'P(R*i)) ^ 0. However
^*/ <; /*, so by Corollary 3.9, Z(/T/ + R*il*) / 0. Now Proposition 2.7 gives
Z(I*) ^ 0. The result follows.

4. Radicals

As we have mentioned in the introduction we would like to find a radical 3$ such
that for every ring R, 3#(R) is close to being a singular ring whereas R/3?(R) is close
to being a non-singular ring. Of course the best would be to have £#.{R) = Z(R).
However Z( ) is not a radical. Namely there are rings R for which Z(R/Z(R)) ^ 0.

EXAMPLE 4.1. Let A" be a field, y an ordinal number and PY = K{Xa | a < y}/l,
where K{Xa \ a < y] is the ^-algebra of polynomials with zero constant terms in
non-commuting indeterminates Xa indexed by ordinal numbers a < y and / is the
ideal of K{Xa \ a < y] generated by the set {Xai Xa2 \ ot) < a2 < y). Denote by xa

the image of Xa in PY. Observe that x0Py = 0 and x0P* n rPy (xa) = 0 for all a > 0.
These imply that Z(Py) = (x0), the ideal generated by x0. Note that Py/(x0) ~ Py

when y is infinite and Py/(x0) ~ PY-\ when y is finite and greater than 1. Hence
Z(Py/Z(Py)) ^ 0 for y> 1.

Now we shall apply a construction similar to that of the lower Baer radical.
Given a ring R we put Z0(R) = 0. For any ordinal a > 0 we define Za(R) by:
(i) If a = 8 + 1 is not a limit ordinal, then Za(R) is the ideal of R such that

Za(R)/Zs(R) = Z(R/ZS(R));
(ii) If a is a limit ordinal, then Za(R) = \Js<aZs(R).
There exists an ordinal p such that ZP(R) = Zy(R) for each ordinal y > p. We

denote ZP(R) by 2C{R) and call it the generalized singular ideal of ft.
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For the ring Py in Example 4.1, the chain Za(Py) stabilizes at y when y is a limit
ordinal and at y — 1 otherwise. This in particular shows that the number of steps in
which one gets the generalized singular ideal is not bounded.

As an immediate consequence of the definition of 2?{R) we have that 2f(R/3f(R))
— 0. However 3f(-) still is not a radical. It follows from Example 2.4 which shows that
the class {R \ 3f{R) = 7?} is not even homomorphically closed. The same example
shows that the lower radical determined by the class of singular rings contains some
domains, which are very far from being singular. Thus the lower radical determined
by the class of singular rings is not of the type we are looking for.

There is another way for constructing in each ring R an ideal G(R) such that
R/G{R) is a non-singular ring ([16], Ch. 6, §1 and §6). Consider R/Z(R) as a right
/?-module and define G(R) to be the right ideal of R containing Z(R) and such that
G(R)/Z(R) = ZR(R/Z(R)). We have the following (cf. [7], Ex. 20, p. 37 and [16],
Proposition 6.2 in Ch. 6).

PROPOSITION 4.2. For every ring R, G(R) is an ideal of R such that ZR(R/G(R))
= 0andZ(R/G(R)) = 0.

PROOF. If a e G(R), then rR{a + Z{R)) = {b <= R \ ab e Z(R)} is an essential
right ideal of R. Also, for any r e R, rR(a + Z{R)) c rR(ra + Z(R)). Hence
ra € G(R) and so G(R) is an ideal of R.

Suppose that a + G(R) e ZR(R/G(R)) and H is a non-zero right ideal of R. If
H n Z(R) ^ 0, then since a(H n Z(R)) c Z(R), there exists 0 ^ b e H such
that ab e Z(R). Suppose now that H n Z(R) = 0 and take 0 ^ b e H such that
ab e G(R). Then b g Z{R) and so there exists a non-zero right ideal F of R with
F n rR(b) = 0. Also rR(ab + Z(R)) n F / 0. Hence there exists O ^ c e F such
that abc € Z(R). Since 6c e // and Z?c ^ 0, we have that rR{a + Z{R)) n // ^ 0 in
any case. This shows that a e G(R) and consequently ZR(R/G(R)) = 0.

Finally, if a + G(R) € Z(R/G(R)), then rR/C(R)(a + G(R)) is an essential right
ideal of R/G(R). Write rR/G(R)(a + G(R)) = I/G(R). Then it is easy to see
that / is an essential right ideal of /?. Since rR(a + G(R)) — I, it follows that
a + G(/?) € ZR(R/G(R)) = 0 . Thus Z(R/G(R)) = 0 and the proof is complete.

The ideal G(/?) is reached in two steps, so it would be more convenient to use it
instead of 3f(R). However the following shows that G(R) is larger than 2?{R) and
because of that not useful in constructing the desired radical.

PROPOSITION 4.3. For every ring R, 3f(R) c G(R).

PROOF. Applying transfinite induction, it suffices to show that if ZY(R) c G(R)
and a = y + 1, then Za(R) c G(R).
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Leta e Za(R). Puta =a + G(R) e R/G(R) and rR(a) = {x e R \ ax € G(R)}.
Let H be a non-zero right ideal of R. If H c G(/?), then since G(fi) c rR(a),
rR(a) n // = // ^ 0. If / / ^ G(/?), then // £ Zy(/?). In this case consider
(// + Zy(R))/ZY (R) which is a non-zero right ideal of R/ZY {R). Since a + ZY (R) e
Z(R/ZY(R)), there exists b e H + ZY(R) with afr e Zy(R) and 6 £ Zy(/?). Thus
we easily obtain x e H with a* e ZY{R) c G(/?) and x ^ 0. This shows that
rff(a) n // ^ 0 in any case and so a e ZR(R/G{R)). Consequently a e G(R) and
we are done.

It is easy to see that if PY is the A"-algebra of Example 4.1, then 3?{P*) = PY and
G(P*) = P*. This shows that in general G(R) is strictly larger than 2f(R).

Let Jf? = {R | for every homomorphic image R' of R, 2?(R') = R'}. It is not hard
to see that Jf = {R | for every non-zero homomorphic image R' of R, Z(R') ^ 0}.

Obviously the class Jf is homomorphically closed. We also have

PROPOSITION 4.4. The class 3^ is closed under extensions, that is, if I < R, I and
R/I are in Jf, then R is in Jf.

PROOF. We shall prove first that for every non-zero ring R, if / < R, 2f(l) = I
and 2f(R/I) = R/I, then Z(R) ^ 0. Suppose to the contrary that Z(R) = 0. Then
/ ^ 0 and by Proposition 3.3, Z( / ) / = 0. Assume now that / c J < R, Z(I)J = 0
and Z(R/J) = Z/J. We claim that Z(I)Z = 0. Indeed, let z e Z(/), a € Z and
0 / // <r /?. Put / / ' = {/i e // | ah € / } . Obviously // ' <,. R. Moreover, since
a e Z, H' j^0. Now, since Z(1)J = 0, we have zaH' = 0. Hence H' c rR(za)
which implies that rR(za) n H / 0. Consequently za e Z(/?) = 0, which proves
the claim. By Zorn's Lemma there is an ideal M such that Z(I)M = 0 and M is
maximal for this. Let Z/M = Z(R/M). By the foregoing Z(I)Z = 0,soM = R.
This obviously implies that 0 ^ Z(/) c Z(R), a contradiction.

Now to get the proposition it suffices to show that for every proper ideal J of R,
Z(R/J) ^ 0. Obviously 3T(R/(I + J)) = R/(I + J) and, since (/ + J)/J ~
/ / ( / n / ) , 2f((I + / ) / / ) = (/ + J)/J. Hence by the foregoing, Z(R/J) / 0.

The class J4? has already quite good properties (from the theory of radicals point
of view) but still is not a radical class. Obviously nilpotent rings are in the class
rff. Thus to show that the class is not radical it suffices to find a non-zero /6-radical
non-singular ring. The following shows that such rings exist.

EXAMPLE 4.5. Let R be the ring of all infinite strictly upper triangular matrices
which have only finitely many non-zero rows with entries in a field K. It is easy to
check that R e p. We shall show that Z(R) = 0. Let 0 ^ a e R. If all entries of
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a outside the n'th column are equal to zero, then rR(a) consists of all matrices in R
whose entries in the n-th row are equal to zero. The set / of all matrices in R whose
entries outside the n-th row are equal to zero is a non-zero right ideal of R such that
/ n rR(a) = 0. Thus a g Z(R). Suppose now that a is an arbitrary non-zero element
in R and the (k, /)-entry of a is non-zero. Let b be the matrix with the (/, / + 1) entry
equal to 1 and all other entries equal to zero. Clearly b e R and ab is a non-zero
matrix in R whose all entries except some in / + 1 -th column are equal to zero. Hence
by the foregoing, ab g Z(R) and so a g Z(R). Consequently Z(R) = 0.

Modifying slightly the definition of the class Jj? we obtain a radical satisfying the
earlier postulated conditions.

Let y = {R | every non-zero homomorphic image of R contains a non-zero ideal
which is a singular ring }. Applying Proposition 2.7 and the fact that for every ring
A, f}(A) ^ 0 if and only if A contains a non-zero ideal / with I2 = 0 one obtains
that y = {R | for every non-zero homomorphic image R' of R, fi(R') / 0 or
Z(R') ^ 0}. Equivalently y={R | R cannot be homomorphically mapped onto a
non-zero semiprime non-singular ring }. We shall call y the (right) singular radical.

From Proposition 2.7 it follows that the class of semiprime non-singular rings is
weakly special, that is, is hereditary and such that if / is in the class and / is an
essential ideal of R, then R is in the class. Hence the general results concerning upper
radicals give the following.

PROPOSITION 4.6. The singular radical is equal to the upper radical determined by
the class of semiprime non-singular rings. It is a hereditary radical containing fi.

Recall that the (right) strongly prime radical is defined [8, 10] as the upper radical
determined by the class of (right) strongly prime rings. From Proposition 2.2 it follows
that y is contained in the strongly prime radical. It is known that the (right) strongly
prime radical is not one-sided hereditary [10] and it is right but not left strong [12].
We shall show that the singular radical is an N-radical, that is, contains /?, is strong
and one-sided hereditary.

THEOREM 4.7. The singular radical is an N-radical.

PROOF. Suppose that 0 / L <, RandL e y . We shall show that L* = LR* e y'.
If / is a semiprime ideal of L\ then / i s an ideal of/?. Hence L*// = ((L+I)/I)R*/I.
This implies that if / is a proper ideal of L*, then (L + I)/1 g fi. Thus, since
L e y,we have Z(L/fi(L)) ^ 0, where L = (L + I)/1. Theorem 3.1 implies that
Z(L*/1) ^ 0. Consequently L* e y , which proves that y is a left strong radical.
Applying dual arguments and Theorem 3.1 one gets that y is a right strong radical.

We shall show now that if L <, R and 0 ^ R e y , then Ley. Suppose that / is
a semiprime ideal of L and let M be an ideal of R maximal with respect toMflL c /.
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Assume first that M = 0. It is easy to see that R is a semiprime ring and L* = LR* is
an essential ideal of R. Since R € y , Z(L*) ^ 0 by Proposition 2.7. Now, LIR < R
and LIRL c /. Hence (LIR D L)2 c / . However / is a semiprime ideal of L, so
LIR D L c /. This implies that LIR = 0. Since the ring R is semiprime, LI = 0.
This shows that / = £(L). Hence by Theorem 3.1, Z(L/I) ^ 0.

If M ^ 0, then passing to the factor ring R/M we reduce the situation to that
considered above. This implies that L e y . Therefore y is a left hereditary radical.
Applying dual arguments we get that y is right hereditary.

We do not know whether the radical y is special. Proposition 2.7 implies that the
class 2? of prime non-singular rings is a special class. Thus the upper radical y
determined by the class & is a special radical. We call it the special (right) singular
radical. Clearly y c y . We raise the following

QUESTION. DO the singular and special singular radicals coincide?

Note that the above question is equivalent to the question of whether every
semiprime non-singular ring can be homomorphically mapped onto a prime non-
singular ring.

One can check that y is an A?-radical. The proof is very similar to that of
Proposition 4.7 but one has to use in addition the following lemma.

LEMMA 4.8. If R is a semiprime ring and 0 ^ L <, R (respectively 0 ^ H <, R),
then L/fi(L) (respectively H/fi(H)) is a prime ring if and only if LR* (respectively
R*H) is a prime ring.

PROOF. If I\/P(L) and I2/fi(L) are non-zero ideals of L/fi(L), then LIXR and
LI2R are non-zero ideals of LR* and LI{RLI2R c L/,/2/?. Hence if /,/2 c /3(L),
then by Lemma 3.4, LI\RLI2R = 0. This implies that if LR* is a prime ring, then
L/ji(L) is a prime ring.

Conversely, suppose that /j and I2 are non-zero ideals of L R* such that /, I2 = 0.
Since/? is semiprime, LR*lfLR* ^ 0,/ = 1, 2. NowL/?*/,2L/?* = L(R*l,)IiLR* c
L(LR*)ItLR* c LliLR*, so L/,L ^ 0 and by Lemma 3.4, I,L % P(L), i = 1,2.
However I\LI2L c I{I2 — 0. Hence L/fi(L) is not prime. The result follows.

In a number of papers (cf. [3] and the papers quoted therein) there were studied
rings R whose all prime homomorphic images are non-singular rings. Denote the
class of all these rings by 2T.

THEOREM 4.9. & is an N-radical.
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PROOF. Clearly the class & is homomorphically closed. Applying Proposition 2.7
one easily checks that every ring which is the union of a chain of ^-ideals is in 3T.
Suppose now that I < R and both / and R/I are in ST. Let P be a prime ideal of R.
If / c P, then R/P is a homomorphic image of R/I. Hence R/P is a non-singular
ring. If / g P, then / = (/ + P)/P is a non-zero ideal of the prime ring R = R/P.
By Proposition 2.7, / n Z(R) = Z(I). Since / is a prime homomorphic image of
/ and / is in &, Z(I) = 0. Consequently Z(R) = 0 and it follows that R is in &.
Therefore S? is a radical.

Suppose that L </ R and L is in ^ . If P is a prime ideal of L* = LR*, then P is
an ideal of R. Let M be an ideal of R maximal with respect to M D L* = / \ Then
A/ is a prime ideal of P. and L*/P ~ Z,^*, where L = (L + M)/M and 7? = R/M.
By Lemma 4.8, ^(L) is a prime ideal of L. Hence L/f)(L) is a non-singular ring.
Applying Theorem 3.1 one gets that L*/P is a non-singular ring. This shows that L*
is in ^ . Consequently the radical S? is left strong. Similarly, £F is right strong.

Suppose now that L <, R and F is in 3T. Let P be a prime ideal of L and M be
an ideal of R maximal with respect t o M f l i c P. It is easy to see that M is a prime
ideal of R. Hence R/M is a non-singular ring. Note that {{LPR* + M) n L)2 c P.
Since F is a prime ideal of L, (L/5/?* + M) n L c F. Consequently LF/?* c M
which easily implies that (P + M)/M c p((L + M)/M). Now (L + M)/(F + M) =
(L + P + M)/(P + M) ~ L/L n (F + M) = L/(F + L n M) = L/P. Thus
(F + Af )/M = )8((L + M)/M) and applying Proposition 2.7 and Theorem 3.1, we
get that (Z. + M)/(P + M)isa non-singular ring. Consequently L/P is a non-singular
ring. This shows that L is in &. Hence the class 3T is left hereditary. Similarly, !?
is right hereditary.

The proof is complete since clearly fi c &.

In [15] Snider proved that if ^ , and ^ 2 are hereditary radicals, then (^, : !%2) =
{Fv | Stfi\R') c ^i(Fv') for every homomorphic image /?' of Fv} is the pseudocomple-
ment of ^ 2 relative to ^ , in the lattice of all radicals, that is, (£fr\ :<̂ ?2) is the largest
among the radicals Sf. satisfying ^ n ^ 2 ^ ^ i •

Note that ^ c (0 : ^ ' ) . The radical (0 : ^") is an /V-radical [13]. However it
seems that the radicals ST and (fi : S*") do not coincide.

5. On rings satisfying the ascending chain condition
on principal right annihilators

It was proved in [9] that if Fv is a ring satisfying the ascending chain condition on
principal right annihilators, then Z(R/P(R)) = 0. This implies that for such rings R,
y(R) = P(R). We shall show that the generalized singular ideal of rings of that type
is contained in the prime radical.
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We start with the following

LEMMA 5.1. Let a be an ordinal number and R a ring. If a e Za{R) and b e
R \ Za(R), then for some x e R*, ax = 0 and bx ^ 0.

PROOF. If a = 0, then one can take x = 1. Thus suppose a > 1 and, by transfinite
induction, the results holds for smaller ordinals. If a = y + 1 is not a limit ordinal,
then there exists t e R such that at e ZY(R) and bt $. Zy(R). By the induction
assumption there exists x' e R* such that atx' = 0 and btx' ^ 0. Hence for x = tx'
we have ax = 0 and bx ^ 0. If a is a limit ordinal, then there exists y < a such that
a G Zy(R) and b e R\ ZY(R). Hence the result follows by the induction assumption.

PROPOSITION 5.2. If a ring R satisfies the ascending chain condition on principal
right annihilators, then 3f(R) c

PROOF. Suppose that the result is not true and a is the smallest ordinal number
for which Za(R) % ji(R). Obviously a > 0 is not a limit ordinal. Suppose that
a = y + 1. Let r(a) be a maximal ideal in the set [r(z) \ : e Za(R) \ P(R)}. Since
a g fi(R), there exists x e R such that axa g fi{R). Maximality of r(a) implies
that r(axa) = r(a). Since a g P(R), aR <2 Zy(R). On the other hand ax e Za(R)
and Za(R)/ZY(R) = Z(R/ZY(R)), so there exists y e R such that ay g Zy(R) and
axay e ZY(R). Applying Lemma 5.1 we get that for some t e /?*, ayt / 0 and
axayt = 0. This contradicts the equality r(axa) = r{a). The result follows.

Recall that an ideal / of a ring R is said to be right T-nilpotent if for every sequence
X\, X2, • • • of elements of / there exists an n such that xnxn_| • • • X\ = 0 .

PROPOSITION 5.3. If a ring R satisfies the ascending chain condition on principal

right annihilators, then Zn(R) is right T-nilpotent for every integer n.

PROOF. We proceed by induction on n. There is nothing to prove for n = 0.

Suppose that n > 0 and Zn_) (/?) is right T-nilpotent. Let v,, x2, • • • be a sequence of

elements of Zn(R). If for every integer / there exists p such that x/+p ••• xt e Zn_i(/?)

we are done. Indeed, in this case there exist mu m2, • • • with xm] • • • X\ e Zn_\(R),

xmt+mi_ • • -xmi+i € Zn_i(R), Hence there exist / with xmi+...+m, • • • xx = 0 , since
Zn_,(/?) is T-nilpotent.

Thus assume that there exists an integer / such that x/+p • • • x: g Zn^\{R) for every
p > 0. Changing indices we can assume that / = 1. Since r (A,) C r(x2x]) c . . . is an
ascending chain of principal right annihilators, there exists an m with r(xmb) = rib),
b = xm_x • • -X\. Now xm e Zn(R) and b g Zw_i(/?), so there exists y e R* with
xmby € Zn_x{R) and by g Zn_,(/?). By Lemma 5.1 there exists / e R* such that
xmbyt = 0 and byt ^ 0. Hence r{b) / r(xmb), a contradiction.
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The symmetric version of Proposition 1.5 in [5] shows that if a ring R satisfies the
ascending chain condition on right annihilators, then an ideal of R is 7-nilpotent if
and only if it is nilpotent. Combining this result with Proposition 5.3 we obtain the
following extension of Theorem 1.6 in [1].

COROLLARY 5.4. If R is a ring satisfying the ascending chain condition on right
annihilators, then Zn(R) is nilpotent for each integer n.
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