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Abstract
Let M be a von Neumann algebra, let 𝜑 be a normal faithful state on M and let 𝐿𝑝 (𝑀, 𝜑) be the associated
Haagerup noncommutative 𝐿𝑝-spaces, for 1 ≤ 𝑝 ≤ ∞. Let 𝐷 ∈ 𝐿1 (𝑀, 𝜑) be the density of 𝜑. Given a positive
map 𝑇 : 𝑀 → 𝑀 such that 𝜑 ◦ 𝑇 ≤ 𝐶1𝜑 for some 𝐶1 ≥ 0, we study the boundedness of the 𝐿𝑝-extension
𝑇𝑝,𝜃 : 𝐷

1−𝜃
𝑝 𝑀𝐷

𝜃
𝑝 → 𝐿𝑝 (𝑀, 𝜑) which maps 𝐷

1−𝜃
𝑝 𝑥𝐷

𝜃
𝑝 to 𝐷

1−𝜃
𝑝 𝑇 (𝑥)𝐷

𝜃
𝑝 for all 𝑥 ∈ 𝑀 . Haagerup–Junge–Xu

showed that 𝑇𝑝, 1
2

is always bounded and left open the question whether 𝑇𝑝,𝜃 is bounded for 𝜃 ≠ 1
2 . We show that

for any 1 ≤ 𝑝 < 2 and any 𝜃 ∈ [0, 2−1 (1 −
√
𝑝 − 1)] ∪ [2−1 (1 +

√
𝑝 − 1), 1], there exists a completely positive T

such that 𝑇𝑝,𝜃 is unbounded. We also show that if T is 2-positive, then 𝑇𝑝,𝜃 is bounded provided that 𝑝 ≥ 2 or
1 ≤ 𝑝 < 2 and 𝜃 ∈ [1 − 𝑝/2, 𝑝/2].
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1. Introduction

Let M be a von Neumann algebra equipped with a normal faithful state 𝜑. Let 𝑇 : 𝑀 → 𝑀 be a positive
map such that 𝜑 ◦ 𝑇 ≤ 𝐶1𝜑 on the positive cone 𝑀+, for some constant 𝐶1 ≥ 0. Assume first that 𝜑 is a
trace (that is, 𝜑(𝑥𝑦) = 𝜑(𝑦𝑥) for all 𝑥, 𝑦 ∈ 𝑀) and consider the associated noncommutative 𝐿𝑝-spaces
L𝑝 (𝑀, 𝜑) (see, e.g., [6, 19] or [10, Chapter 4]). Let 𝐶∞ = ‖𝑇 ‖. Then for all 1 ≤ 𝑝 < ∞, T extends to a
bounded map on L𝑝 (𝑀, 𝜑), with
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��𝑇 : L𝑝 (𝑀, 𝜑) −→ L𝑝 (𝑀, 𝜑)
�� ≤ 𝐶

1− 1
𝑝

∞ 𝐶
1
𝑝

1 ; (1.1)

see [16, Lemma 1.1]. This extension result plays a significant role in various aspects of operator theory
on noncommutative 𝐿 𝑝-spaces, in particular for the study of diffusion operators or semigroups on those
spaces; see, for example, [1, 7, 11] or [14, Chapter 5].

Let us now drop the tracial assumption on 𝜑. For any 1 ≤ 𝑝 ≤ ∞, let 𝐿𝑝 (𝑀, 𝜑) denote the
Haagerup noncommutative 𝐿𝑝-space 𝐿 𝑝 (𝑀, 𝜑) associated with 𝜑 [8, 9, 10, 22]. These spaces extend
the tracial noncommutative 𝐿 𝑝-spaces L𝑝 (· · · ) in a very beautiful way and many topics in operator
theory which had been first studied on tracial noncommutative 𝐿𝑝-spaces were/are investigated on
Haagerup noncommutative 𝐿𝑝-spaces. This has led to several major advances; see in particular [9],
[16, Section 7], [4], [2] and [13].

The question of extending a positive map𝑇 : 𝑀 → 𝑀 to 𝐿𝑝 (𝑀, 𝜑) was first considered in [16, Section
7] and [9, Section 5]. Let 𝐷 ∈ 𝐿1 (𝑀, 𝜑) be the density of 𝜑, let 1 ≤ 𝑝 < ∞ and let 𝜃 ∈ [0, 1]. Let
𝑇𝑝,𝜃 : 𝐷

1−𝜃
𝑝 𝑀𝐷

𝜃
𝑝 → 𝐿 𝑝 (𝑀, 𝜑) be defined by

𝑇𝑝,𝜃

(
𝐷

1−𝜃
𝑝 𝑥𝐷

𝜃
𝑝

)
= 𝐷

1−𝜃
𝑝 𝑇 (𝑥)𝐷

𝜃
𝑝 , 𝑥 ∈ 𝑀. (1.2)

(See Section 2 for the necessary background on D and the above definition.) Then [9, Theorem 5.1]
shows that if 𝜑 ◦ 𝑇 ≤ 𝐶1𝜑, then 𝑇𝑝, 1

2
extends to a bounded map on 𝐿 𝑝 (𝑀, 𝜑), with

‖𝑇𝑝, 1
2

: 𝐿 𝑝 (𝑀, 𝜑) −→ 𝐿 𝑝 (𝑀, 𝜑)‖ ≤ 𝐶
1− 1

𝑝
∞ 𝐶

1
𝑝

1 .

This extends the tracial case (1.1); see Remark 2.5. Furthermore, [9, Proposition 5.5] shows that if T
commutes with the modular automorphism group of 𝜑, then 𝑇𝑝,𝜃 = 𝑇𝑝, 1

2
for all 𝜃 ∈ [0, 1].

In addition to the above results, Haagerup–Junge–Xu stated as an open problem the question whether
𝑇𝑝,𝜃 is always bounded for 𝜃 ≠ 1

2 (see [9, Section 5]). The main result of the present paper is a negative
answer to this question. More precisely, we show that if 1 ≤ 𝑝 < 2 and if either 0 ≤ 𝜃 < 2−1 (1−

√
𝑝 − 1)

or 2−1 (1 +
√
𝑝 − 1) < 𝜃 ≤ 1, then there exists 𝑀, 𝜑 as above and a unital completely positive map

𝑇 : 𝑀 → 𝑀 such that 𝜑 ◦ 𝑇 = 𝜑 and 𝑇𝑝,𝜃 is unbounded; see Theorem 6.1.
We also show that for any 𝑀, 𝜑 as above and for any 2-positive map𝑇 : 𝑀 → 𝑀 such that 𝜑◦𝑇 ≤ 𝐶1𝜑

for some 𝐶1 ≥ 0, then 𝑇𝑝,𝜃 is bounded for all 𝑝 ≥ 2 and all 𝜃 ∈ [0, 1]; see Theorem 4.1. In other
words, the Haagerup–Junge–Xu problem has a positive solution for 𝑝 ≥ 2, provided that we restrict to
2-positive maps. We also show, under the same assumptions, that 𝑇𝑝,𝜃 is bounded for all 1 ≤ 𝑝 ≤ 2 and
all 𝜃 ∈ [1 − 𝑝/2, 𝑝/2]; see Theorem 4.3.

Section 2 contains preliminaries on the 𝐿𝑝 (𝑀, 𝜑) and on the question whether 𝑇𝑝,𝜃 is bounded.
Section 3 presents a way to compute ‖𝑇𝑝,𝜃 ‖ in the case when 𝑀 = 𝑀𝑛 is a matrix algebra, which plays
a key role in the last part of the paper. Section 4 contains the extension results stated in the previous
paragraph. Finally, Sections 5 and 6 are devoted to the construction of examples for which 𝑇𝑝,𝜃 is
unbounded.

2. The extension problem

Throughout we consider a von Neumann algebra M and we let 𝑀∗ denote its predual. We let 𝑀+ and
𝑀+

∗ denote the positive cones of M and 𝑀∗, respectively.

2.1. Haagerup noncommutative 𝐿𝑝-spaces

Assume that M is 𝜎-finite, and let 𝜑 be a normal faithful state on M. We shall briefly recall the definition
of the Haagerup noncommutative 𝐿 𝑝-spaces 𝐿 𝑝 (𝑀, 𝜑) associated with 𝜑, as well as some of their main
features. We refer the reader to [8], [9, Section 1], [10, Chapter 9], [19, Section 3] and [22] for details
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and complements. We note that 𝐿𝑝 (𝑀, 𝜑) can actually be defined when 𝜑 is any normal faithful weight
on M. The assumption that 𝜑 is a state makes the description below a little simpler.

Let (𝜎𝜑
𝑡 )𝑡 ∈R be the modular automorphism group of 𝜑 [20, Chapter VIII], and let

R = 𝑀 �𝜎𝜑 R ⊂ 𝑀⊗𝐵(𝐿2 (R))

be the resulting crossed product; see, for example, [20, Chapter X]. If 𝑀 ⊂ 𝐵(𝐻) for some Hilbert
space H, then we have R ⊂ 𝐵(𝐿2 (R;𝐻)). Let us regard M as a sub-von Neumann algebra of R in the
natural way. Then (𝜎

𝜑
𝑡 )𝑡 ∈R is given by

𝜎
𝜑
𝑡 (𝑥) = 𝜆(𝑡)𝑥𝜆(𝑡)∗, 𝑡 ∈ R, 𝑥 ∈ 𝑀, (2.1)

where 𝜆(𝑡) ∈ 𝐵(𝐿2 (R;𝐻)) is defined by [𝜆(𝑡)𝜉] (𝑠) = 𝜉 (𝑠 − 𝑡) for all 𝜉 ∈ 𝐿2 (R;𝐻). This is a unitary.
For any 𝑡 ∈ R, define 𝑊 (𝑡) ∈ 𝐵(𝐿2 (R;𝐻)) by [𝑊 (𝑡)𝜉] (𝑠) = 𝑒−𝑖𝑡𝑠𝜉 (𝑠) for all 𝜉 ∈ 𝐿2 (R;𝐻). Then the
dual action �̂�𝜑 : R→ Aut(R) of 𝜎𝜑 is defined by

�̂�
𝜑
𝑡 (𝑥) = 𝑊 (𝑡)𝑥𝑊 (𝑡)∗, 𝑡 ∈ R, 𝑥 ∈ R.

(See [20, §VIII.2].) A remarkable fact is that for any 𝑥 ∈ R, �̂�𝜑
𝑡 (𝑥) = 𝑥 for all 𝑡 ∈ R if and only if 𝑥 ∈ 𝑀 .

There exists a unique normal semifinite trace 𝜏0 on R such that

𝜏0 ◦ �̂�
𝜑
𝑡 = 𝑒−𝑡𝜏0, 𝑡 ∈ R;

see, for example, [10, Theorem 8.15]. This trace gives rise to the ∗-algebra 𝐿0 (R, 𝜏0) of 𝜏0-measurable
operators [10, Chapter 4]. Then for any 1 ≤ 𝑝 ≤ ∞, the Haagerup 𝐿𝑝-space 𝐿 𝑝 (𝑀, 𝜑) is defined as

𝐿 𝑝 (𝑀, 𝜑) =
{
𝑦 ∈ 𝐿0 (R, 𝜏0) : �̂�𝜑

𝑡 (𝑦) = 𝑒−
𝑡
𝑝 𝑦 for all 𝑡 ∈ R

}
.

At this stage, this is just a ∗-subspace of 𝐿0 (R, 𝜏0) (with no norm). One defines its positive cone as

𝐿 𝑝 (𝑀, 𝜑)+ = 𝐿 𝑝 (𝑀, 𝜑) ∩ 𝐿0 (R, 𝜏0)
+.

It follows from above that 𝐿∞(𝑀, 𝜑) = 𝑀.
Let 𝜓 ∈ 𝑀+

∗ , that we regard as a normal weight on M, and let 𝜓 be its dual weight on R[20, §VIII.1].
Let ℎ𝜓 be the Radon–Nikodym derivative of 𝜓 with respect to 𝜏0. That is, ℎ𝜓 is the unique positive
operator affiliated with R such that

𝜓(𝑦) = 𝜏0

(
ℎ

1
2
𝜓𝑦ℎ

1
2
𝜓

)
, 𝑦 ∈ R+.

It turns out that ℎ𝜓 belongs to 𝐿1 (𝑀, 𝜑)+ for all 𝜓 ∈ 𝑀+
∗ and that the mapping 𝜓 ↦→ ℎ𝜓 is a bijection

from 𝑀+
∗ onto 𝐿1 (𝑀, 𝜑)+. This bijection readily extends to a linear isomorphism 𝑀∗ −→ 𝐿1 (𝑀, 𝜑),

still denoted by 𝜓 ↦→ ℎ𝜓 . Then 𝐿1 (𝑀, 𝜑) is equipped with the norm ‖ · ‖1 inherited from 𝑀∗, that
is, ‖ℎ𝜓 ‖1 = ‖𝜓‖𝑀∗

for all 𝜓 ∈ 𝑀∗. Next, for any 1 ≤ 𝑝 < ∞ and any 𝑦 ∈ 𝐿 𝑝 (𝑀, 𝜑), the positive
operator |𝑦 | belongs to 𝐿 𝑝 (𝑀, 𝜑) as well (thanks to the polar decomposition) and hence |𝑦 |𝑝 belongs to
𝐿1 (𝑀, 𝜑). This allows to define ‖𝑦‖𝑝 = ‖|𝑦 |𝑝 ‖

1
𝑝 for all 𝑦 ∈ 𝐿 𝑝 (𝑀, 𝜑). Then ‖ · ‖𝑝 is a complete norm

on 𝐿𝑝 (𝑀, 𝜑).
The Banach spaces 𝐿 𝑝 (𝑀, 𝜑), 1 ≤ 𝑝 ≤ ∞, satisfy the following version of Hölder’s inequality (see,

e.g., [10, Proposition 9.17]).

Lemma 2.1. Let 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞ such that 𝑝−1 + 𝑞−1 = 𝑟−1. Then for all 𝑥 ∈ 𝐿 𝑝 (𝑀, 𝜑) and all
𝑦 ∈ 𝐿𝑞 (𝑀, 𝜑), the product 𝑥𝑦 belongs to 𝐿𝑟 (𝑀, 𝜑) and ‖𝑥𝑦‖𝑟 ≤ ‖𝑥‖𝑝 ‖𝑦‖𝑞 .
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Let D be the Radon–Nikodym derivative of 𝜑 with respect to 𝜏0, and recall that 𝐷 ∈ 𝐿1 (𝑀, 𝜑)+.
This operator is called the density of 𝜑. Recall that we regard M as a sub-von Neumann algebra of R.
Then 𝐷𝑖𝑡 = 𝜆(𝑡) is a unitary of R for all 𝑡 ∈ R and

𝜎
𝜑
𝑡 (𝑥) = 𝐷𝑖𝑡𝑥𝐷−𝑖𝑡 , 𝑡 ∈ R, 𝑥 ∈ 𝑀. (2.2)

Let Tr : 𝐿1 (𝑀, 𝜑) → C be defined by Tr(ℎ𝜓) = 𝜓(1) for all 𝜓 ∈ 𝑀∗. This functional has two
remarkable properties. First, for all 𝑥 ∈ 𝑀 and all 𝜓 ∈ 𝑀∗, we have

Tr(ℎ𝜓𝑥) = 𝜓(𝑥). (2.3)

Second if 1 ≤ 𝑝, 𝑞 ≤ ∞ are such that 𝑝−1 + 𝑞−1 = 1, then for all 𝑥 ∈ 𝐿𝑝 (𝑀, 𝜑) and all 𝑦 ∈ 𝐿𝑞 (𝑀, 𝜑),
we have

Tr(𝑥𝑦) = Tr(𝑦𝑥).

This tracial property will be used without any further comment in the paper.
It follows from the definition of ‖ · ‖1 and equation (2.3) that the duality pairing 〈𝑥, 𝑦〉 = Tr(𝑥𝑦) for

𝑥 ∈ 𝑀 and 𝑦 ∈ 𝐿1 (𝑀, 𝜑) yields an isometric isomorphism

𝐿1 (𝑀, 𝜑)∗ � 𝑀. (2.4)

As a special case of equation (2.3), we have

𝜑(𝑥) = Tr(𝐷𝑥), 𝑥 ∈ 𝑀. (2.5)

We note that 𝐿2 (𝑀, 𝜑) is a space for the inner product (𝑥 |𝑦) = Tr(𝑦∗𝑥). Moreover, by equation (2.5),
we have

𝜑(𝑥∗𝑥) = ‖𝑥𝐷
1
2 ‖2

2 and 𝜑(𝑥𝑥∗) = ‖𝐷
1
2 𝑥‖2

2 , 𝑥 ∈ 𝑀. (2.6)

We finally mention a useful tool. Let 𝑀𝑎 ⊂ 𝑀 be the subset of all 𝑥 ∈ 𝑀 such that 𝑡 ↦→ 𝜎
𝜑
𝑡 (𝑥)

extends to an entire function 𝑧 ∈ C ↦→ 𝜎
𝜑
𝑧 (𝑥) ∈ 𝑀 . (Such elements are called analytic). It is well known

that 𝑀𝑎 is a 𝑤∗-dense ∗-subalgebra of M [20, Section VIII.2]. Furthermore,

𝜎𝑖 𝜃 (𝑥) = 𝐷−𝜃𝑥𝐷 𝜃 , (2.7)

for all 𝑥 ∈ 𝑀𝑎 and all 𝜃 ∈ [0, 1], and 𝑀𝑎𝐷
1
𝑝 = 𝐷

1
𝑝 𝑀𝑎 is dense in 𝐿 𝑝 (𝑀, 𝜑), for all 1 ≤ 𝑝 < ∞. See

[15, Lemma 1.1] and its proof for these properties.

2.2. Extension of maps 𝑀 → 𝑀

Given any linear map 𝑇 : 𝑀 → 𝑀 , we say that T is positive if 𝑇 (𝑀+) ⊂ 𝑀+. This implies that T is
bounded. For any 𝑛 ≥ 1, we say that T is n-positive if the tensor extension map 𝐼𝑀𝑛 ⊗ 𝑇 : 𝑀𝑛⊗𝑀 →

𝑀𝑛⊗𝑀 is positive. (Here, 𝑀𝑛 is the algebra of 𝑛×𝑛matrices.) Next, we say that T is completely positive
if T is n-positive for all 𝑛 ≥ 1. See, for example, [18] for basics on these notions.

Consider any 𝜃 ∈ [0, 1] and 1 ≤ 𝑝 < ∞. It follows from Lemma 2.1 that 𝐷
1−𝜃
𝑝 𝑥𝐷

𝜃
𝑝 belongs to

𝐿 𝑝 (𝑀, 𝜑) for all 𝑥 ∈ 𝑀 . We set

A𝑝,𝜃 = 𝐷
(1−𝜃 )

𝑝 𝑀𝐷
𝜃
𝑝 ⊂ 𝐿 𝑝 (𝑀, 𝜑). (2.8)

It turns out that this is a dense subspace; see [15, Lemma 1.1].
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Let 𝑇 : 𝑀 → 𝑀 be any bounded linear map. For any (𝑝, 𝜃) as above, define a linear map
𝑇𝑝,𝜃 : A𝑝,𝜃 → A𝑝,𝜃 by equation (1.2). The question we consider in this paper is whether 𝑇𝑝,𝜃 ex-
tends to a bounded map 𝐿𝑝 (𝑀, 𝜑) → 𝐿 𝑝 (𝑀, 𝜑) in the case when T is 2-positive and 𝜑 ◦𝑇 ≤ 𝜑 on 𝑀+.
More precisely, we consider the following:

Question 2.2. Determine the pairs (𝑝, 𝜃) ∈ [1,∞) × [0, 1] such that

𝑇𝑝,𝜃 : 𝐿 𝑝 (𝑀, 𝜑) −→ 𝐿 𝑝 (𝑀, 𝜑)

is bounded for all (𝑀, 𝜑) as above and all 2-positive maps 𝑇 : 𝑀 → 𝑀 satisfying 𝜑 ◦ 𝑇 ≤ 𝜑 on 𝑀+.

As in the introduction, we could consider maps such that 𝜑 ◦ 𝑇 ≤ 𝐶1𝜑 for some 𝐶1 ≥ 0. However,
by an obvious scaling, there is no loss in considering 𝐶1 = 1 only.

Remark 2.3. Question 2.2 originates from the Haagerup–Junge–Xu paper [9]. In Section 5 of the latter
paper, the authors consider two von Neumann algebras 𝑀, 𝑁 , and normal faithful states 𝜑 ∈ 𝑀∗ and
𝜓 ∈ 𝑁∗ with respective densities 𝐷𝜑 ∈ 𝐿1 (𝑀, 𝜑) and 𝐷𝜓 ∈ 𝐿1 (𝑁, 𝜓). Then they consider a positive
map 𝑇 : 𝑀 → 𝑁 such that 𝜓 ◦𝑇 ≤ 𝐶1𝜑 for some𝐶1 > 0. Given any (𝑝, 𝜃) ∈ [1,∞) × [0, 1], they define

𝑇𝑝,𝜃 : 𝐷
1−𝜃
𝑝

𝜑 𝑀𝐷
𝜃
𝑝
𝜑 → 𝐿 𝑝 (𝑁, 𝜓) by

𝑇𝑝,𝜃

(
𝐷

1−𝜃
𝑝

𝜑 𝑥𝐷
𝜃
𝑝
𝜑

)
= 𝐷

1−𝜃
𝑝

𝜓 𝑇 (𝑥)𝐷
𝜃
𝑝

𝜓 , 𝑥 ∈ 𝑀.

In [9, Theorem 5.1], they show that 𝑇𝑝, 1
2

is bounded and that setting 𝐶∞ = ‖𝑇 ‖, we have

‖𝑇𝑝, 1
2

: 𝐿 𝑝 (𝑀, 𝜑) → 𝐿 𝑝 (𝑁, 𝜓)‖ ≤ 𝐶
1− 1

𝑝
∞ 𝐶

1
𝑝

1 . Then after the statement of [9, Proposition 5.4], they
mention that the boundedness of 𝑇𝑝,𝜃 for 𝜃 ≠ 1

2 is an open question.

Remark 2.4. We wish to point out a special case which will be used in Section 5. Let B be a von
Neumman algebra equipped with a normal faithful state 𝜓. Let 𝐴 ⊂ 𝐵 be a sub-von Neumann algebra
which is stable under the modular automorphism group of 𝜓 (i.e., 𝜎𝜓

𝑡 (𝐴) ⊂ 𝐴 for all 𝑡 ∈ R). Let
𝜑 = 𝜓 |𝐴 be the restriction of 𝜓 to A. Let 𝐷 ∈ 𝐿1 (𝐴, 𝜑) and Δ ∈ 𝐿1 (𝐵, 𝜓) be the densities of 𝜑 and 𝜓,
respectively. On the one hand, it follows from [9, Theorem 5.1] (see Remark 2.3) that there exists, for
every 1 ≤ 𝑝 < ∞, a contraction

Λ(𝑝) : 𝐿 𝑝 (𝐴, 𝜑) −→ 𝐿 𝑝 (𝐵, 𝜓)

such that [Λ(𝑝)] (𝐷
1

2𝑝 𝑥𝐷
1

2𝑝 ) = Δ
1

2𝑝 𝑥Δ
1

2𝑝 for all 𝑥 ∈ 𝐴.
On the other hand, there exists a unique normal conditional expectation 𝐸 : 𝐵 → 𝐴 such that𝜓 = 𝜑◦𝐸

on B by [20, Theorem IX.4.2]. Moreover, it is easy to check that under the natural identifications
𝐿1 (𝐴, 𝜑)∗ � 𝐴 and 𝐿1 (𝐵, 𝜓)∗ � 𝐵 (see equation (2.4) and the discussion preceding it), we have

Λ(1)∗ = 𝐸.

Now, using [9, Theorem 5.1] again, there exists, for every 1 ≤ 𝑝 < ∞, a contraction
𝐸 (𝑝) : 𝐿𝑝 (𝐵, 𝜓) → 𝐿 𝑝 (𝐴, 𝜑) such that [𝐸 (𝑝)] (Δ

1
2𝑝 𝑦Δ

1
2𝑝 ) = 𝐷

1
2𝑝 𝐸 (𝑦)𝐷

1
2𝑝 for all 𝑦 ∈ 𝐵. It is clear

that 𝐸 (𝑝) ◦ Λ(𝑝) = 𝐼𝐿𝑝 (𝐴,𝜑) . Consequently, Λ(𝑝) is an isometry.
We refer to [15, Section 2] for more on this.

Remark 2.5. Let 𝑇 : 𝑀 → 𝑀 be a positive map, and let 𝜑, 𝐷 as in Subsection 2.1. Assume that 𝜑 is
tracial and for any 1 ≤ 𝑝 < ∞, let L𝑝 (𝑀, 𝜑) be the (classical) noncommutative 𝐿 𝑝-space with respect
to the trace 𝜑 [10, Section 4.3]. That is, L𝑝 (𝑀, 𝜑) is the completion of M for the norm

‖𝑥‖L𝑝 (𝑀,𝜑) =
(
𝜑(|𝑥 |𝑝)

) 1
𝑝 , 𝑥 ∈ 𝑀.
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In this case, D commutes with M and

‖𝐷
1
𝑝 𝑥‖𝐿𝑝 (𝑀,𝜑) = ‖𝑥‖L𝑝 (𝑀,𝜑) , 𝑥 ∈ 𝑀;

see, for example, [10, Example 9.11]. Hence, 𝑇𝑝,𝜃 = 𝑇𝑝,0 for all 1 ≤ 𝑝 < ∞ and all 𝜃 ∈ [0, 1] and
moreover, 𝑇𝑝,0 is bounded if and only if T extends to a bounded map L𝑝 (𝑀, 𝜑) → L𝑝 (𝑀, 𝜑). Thus,
in the tracial case, the fact that 𝑇𝑝,0 is bounded under the assumption 𝜑 ◦ 𝑇 ≤ 𝐶1𝜑 is equivalent to the
result mentionned in the first paragraph of Section 1; see (equation 1.1).

3. Computing ‖𝑇𝑝,𝜃 ‖ on semifinite von Neumann algebras

As in the previous section, we let M be a von Neumann algebra equipped with a normal faithful state
𝜑 and we let 𝐷 ∈ 𝐿1 (𝑀, 𝜑)+ be the density of 𝜑. We assume further that M is semifinite, and we let
𝜏 be a distinguished normal semifinite faithful trace on M. For any 1 ≤ 𝑝 ≤ ∞, we let L𝑝 (𝑀, 𝜏) be
the noncommutative 𝐿𝑝-space with respect to 𝜏. Although L𝑝 (𝑀, 𝜏) is isometrically isomorphic to the
Haagerup 𝐿𝑝-space 𝐿 𝑝 (𝑀, 𝜏), it is necessary for our purpose to consider L𝑝 (𝑀, 𝜏) as such.

Let us give a brief account, for which we refer, for example, to [10, Section 4.3]. Let L0 (𝑀, 𝜏) be
the ∗-algebra of all 𝜏-measurable operators on M. For any 𝑝 < ∞, L𝑝 (𝑀, 𝜏) is the Banach space of all
𝑥 ∈ L0 (𝑀, 𝜏) such that 𝜏(|𝑥 |𝑝) < ∞, equipped with the norm

‖𝑥‖L𝑝 (𝑀,𝜏) =
(
𝜏(|𝑥 |𝑝)

) 1
𝑝 , 𝑥 ∈ L𝑝 (𝑀, 𝜏).

Moreover,L∞(𝑀, 𝜏) = 𝑀 . The following analogue of Lemma 2.1 holds true: Whenever 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞

are such that 𝑝−1 + 𝑞−1 = 𝑟−1, then for all 𝑥 ∈ L𝑝 (𝑀, 𝜏) and 𝑦 ∈ L𝑞 (𝑀, 𝜏), 𝑥𝑦 belongs to L𝑟 (𝑀, 𝜏),
with ‖𝑥𝑦‖𝑟 ≤ ‖𝑥‖𝑝 ‖𝑥‖𝑞 (Hölder’s inequality). Furthermore, we have an isometric identification

L1 (𝑀, 𝜏)∗ � 𝑀 (3.1)

for the duality pairing given by 〈𝑥, 𝑦〉 = 𝜏(𝑦𝑥) for all 𝑥 ∈ 𝑀 and 𝑦 ∈ L1 (𝑀, 𝜏).
Let 𝛾 ∈ L1 (𝑀, 𝜏) be associated with 𝜑 in the identification (3.1), that is,

𝜑(𝑥) = 𝜏(𝛾𝑥), 𝑥 ∈ 𝑀. (3.2)

Then 𝛾 is positive and it is clear from Hölder’s inequality that for any 1 ≤ 𝑝 < ∞, 𝜃 ∈ [0, 1] and 𝑥 ∈ 𝑀 ,
the product 𝛾

1−𝜃
𝑝 𝑥𝛾

𝜃
𝑝 belongs to L𝑝 (𝑀, 𝜏).

It is well known that L𝑝 (𝑀, 𝜏) and 𝐿 𝑝 (𝑀, 𝜑) are isometrically isomorphic (apply Remark 9.10 and
Example 9.11 in [10]). The following lemma provides concrete isometric isomorphisms between these
two spaces.

Lemma 3.1. Let 1 ≤ 𝑝 < ∞ and 𝜃 ∈ [0, 1]. Then for all 𝑥 ∈ 𝑀 , we have��𝛾 1−𝜃
𝑝 𝑥𝛾

𝜃
𝑝
��
L𝑝 (𝑀,𝜏)

=
��𝐷 1−𝜃

𝑝 𝑥𝐷
𝜃
𝑝
��
𝐿𝑝 (𝑀,𝜑)

.

Before giving the proof of this lemma, we recall a classical tool. For any 𝜃 ∈ [0, 1], define an
embedding 𝐽𝜃 : 𝑀 → 𝐿1 (𝑀, 𝜑) by letting

𝐽𝜃 (𝑥) = 𝐷1−𝜃𝑥𝐷 𝜃 , 𝑥 ∈ 𝑀.

Consider (𝐽𝜃 (𝑀), 𝐿1 (𝑀, 𝜑)) as an interpolation couple, the norm on 𝐽𝜃 (𝑀) being given by the norm
on M, that is, ��𝐷1−𝜃𝑥𝐷 𝜃

��
𝐽𝜃 (𝑀 )

= ‖𝑥‖𝑀 , 𝑥 ∈ 𝑀. (3.3)
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For any 1 ≤ 𝑝 ≤ ∞, let

𝐶 (𝑝, 𝜃) =
[
𝐽𝜃 (𝑀), 𝐿1 (𝑀, 𝜑)

]
1
𝑝

(3.4)

be the resulting interpolation space provided by the complex interpolation method [3, Chapter 4]. Regard
𝐶 (𝑝, 𝜃) as a subspace of 𝐿1 (𝑀, 𝜑) in the natural way. Then Kosaki’s theorem [17, Theorem 9.1] (see
also [10, Theorem 9.36]) asserts that 𝐶 (𝑝, 𝜃) is equal to 𝐷

1−𝜃
𝑝′ 𝐿 𝑝 (𝑀, 𝜑)𝐷

𝜃
𝑝′ and that��𝐷 1−𝜃

𝑝′ 𝑦𝐷
𝜃
𝑝′

��
𝐶 (𝑝,𝜃)

= ‖𝑦‖𝐿𝑝 (𝑀,𝜑) , 𝑦 ∈ 𝐿 𝑝 (𝑀, 𝜑). (3.5)

Here, 𝑝′ is the conjugate index of p so that 𝐷
1−𝜃
𝑝′ 𝑦𝐷

𝜃
𝑝′ belongs to 𝐿1 (𝑀, 𝜑) provided that y belongs to

𝐿 𝑝 (𝑀, 𝜑).
Likewise, let 𝑗𝜃 : 𝑀 → L1 (𝑀, 𝜏) be defined by 𝑗𝜃 (𝑥) = 𝛾1−𝜃𝑥𝛾 𝜃 for all 𝑥 ∈ 𝑀 . Consider

( 𝑗𝜃 (𝑀),L1 (𝑀, 𝜏)) as an interpolation couple, the norm on 𝑗𝜃 (𝑀) being given by the norm on M,
and set

𝑐(𝑝, 𝜃) = [ 𝑗𝜃 (𝑀),L1 (𝑀, 𝜏)] 1
𝑝
, (3.6)

regarded as a subspace of L1 (𝑀, 𝜏). Then arguing as in the proof of [17, Theorem 9.1], one obtains that
𝑐(𝑝, 𝜃) is equal to 𝛾

1−𝜃
𝑝′ L𝑝 (𝑀, 𝜏)𝛾

𝜃
𝑝′ and that��𝛾 1−𝜃

𝑝′ 𝑦𝛾
𝜃
𝑝′

��
𝑐 (𝑝,𝜃)

= ‖𝑦‖L𝑝 (𝑀,𝜏) , 𝑦 ∈ L𝑝 (𝑀, 𝜏). (3.7)

Proof of Lemma 3.1. We fix some 𝜃 ∈ [0, 1]. We start with the case 𝑝 = 1. Let 𝑥 ∈ 𝑀 . For any 𝑥′ ∈ 𝑀 ,
we have 𝜏(𝛾𝑥𝑥 ′) = Tr(𝐷𝑥𝑥 ′) and hence |𝜏(𝛾𝑥𝑥 ′) | = |Tr(𝐷𝑥𝑥 ′) |, by equations (2.5) and (3.2). Taking
the supremum over all 𝑥′ ∈ 𝑀 with ‖𝑥 ′‖𝑀 ≤ 1, it therefore follows from equations (2.4) and (3.1) that��𝛾𝑥��L1 (𝑀,𝜏)

=
��𝐷𝑥��

𝐿1 (𝑀,𝜑)
, 𝑥 ∈ 𝑀. (3.8)

Now, assume that 𝑥 ∈ 𝑀𝑎 (the space of analytic elements of M). According to equation (2.7), we have
𝐷𝜎

𝜑
𝑖𝜃 (𝑥) = 𝐷1−𝜃𝑥𝐷 𝜃 . Likewise, 𝜎𝜑

𝑡 (𝑥) = 𝛾𝑖𝑡𝑥𝛾−𝑖𝑡 for all 𝑡 ∈ R, by [20, Theorem VIII.2.11], hence
𝜎

𝜑
𝑖𝜃 (𝑥) = 𝛾−𝜃𝑥𝛾 𝜃 . Hence, we have 𝛾𝜎𝜑

𝑖𝜃 (𝑥) = 𝛾1−𝜃𝑥𝛾 𝜃 . Applying equation (3.8) with 𝜎𝜑
𝑖𝜃 (𝑥) in place

of x, we deduce that ��𝛾 (1−𝜃)𝑥𝛾 𝜃
��
L1 (𝑀,𝜏)

=
��𝐷 (1−𝜃)𝑥𝐷 𝜃

��
𝐿1 (𝑀,𝜑)

. (3.9)

Consider the standard representation 𝑀 ↩→ 𝐵(𝐿2 (𝑀, 𝜑)), and consider an arbitrary 𝑥 ∈ 𝑀 . Assume
that 𝜃 ≥ 1

2 . There exists a net (𝑥𝑖)𝑖 in 𝑀𝑎 such that 𝑥𝑖 → 𝑥 strongly. Then 𝑥𝑖𝐷
1
2 → 𝑥𝐷

1
2 in 𝐿2 (𝑀, 𝜑).

Applying Lemma 2.1 (Hölder’s inequality), we deduce that 𝐷1−𝜃𝑥𝑖𝐷
𝜃 = 𝐷1−𝜃 (𝑥𝑖𝐷

1
2 )𝐷 𝜃− 1

2 converges
to 𝐷1−𝜃𝑥𝐷 𝜃 in 𝐿1 (𝑀, 𝜑). (This result can also be formally deduced from [12, Lemma 2.3].) Likewise,
𝛾1−𝜃𝑥𝑖𝛾

𝜃 converges to 𝛾1−𝜃𝑥𝛾 𝜃 in L1 (𝑀, 𝜏). Consequently, equation (3.9) holds true for x. Changing
x into 𝑥∗, we obtain this result as well if 𝜃 < 1

2 . This proves the result when 𝑝 = 1.
We further note that the proof that A1, 𝜃 = 𝐷 (1−𝜃)𝑀𝐷 𝜃 is dense in 𝐿1 (𝑀, 𝜑) shows as well that the

space 𝛾1−𝜃𝑀𝛾 𝜃 is dense in L1 (𝑀, 𝜏). Thus, equation (3.9) provides an isometric isomorphism

Φ : 𝐿1 (𝑀, 𝜑) −→ L1 (𝑀, 𝜏)

such that

Φ
(
𝐷1−𝜃𝑥𝐷 𝜃 ) = 𝛾1−𝜃𝑥𝛾 𝜃 , 𝑥 ∈ 𝑀.
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Now, let 𝑝 > 1 and consider the interpolation spaces 𝐶 (𝑝, 𝜃) and 𝑐(𝑝, 𝜃) defined by equations (3.4)
and (3.6). Since 𝑗𝜃 = Φ ◦ 𝐽𝜃 , the mapping Φ restricts to an isometric isomorphism from 𝐶 (𝑝, 𝜃) onto
𝑐(𝑝, 𝜃). Let 𝑥 ∈ 𝑀 . Applying equations (3.7) and (3.5), we deduce that��𝛾 1−𝜃

𝑝 𝑥𝛾
𝜃
𝑝
��
L𝑝 (𝑀,𝜏)

=
��𝛾1−𝜃𝑥𝛾 𝜃

��
𝑐 (𝑝,𝜃)

=
��𝐷1−𝜃𝑥𝐷 𝜃

��
𝐶 (𝑝,𝜃)

=
��𝐷 1−𝜃

𝑝 𝑥𝐷
𝜃
𝑝
��
𝐿𝑝 (𝑀,𝜑)

,

which proves the result. �

The following is a straightforward consequence of Lemma 3.1. Given any 𝑇 : 𝑀 → 𝑀 , it provides a
concrete way to compute the norm of the operator 𝑇𝑝,𝜃 associated with 𝜑. Note that in this statement,
this norm may be infinite.
Corollary 3.2. Let 1 ≤ 𝑝 < ∞, let 𝜃 ∈ [0, 1], and let 𝑇 : 𝑀 → 𝑀 be any bounded map. Then

‖𝑇𝑝,𝜃 ‖ = sup
{��𝛾 1−𝜃

𝑝 𝑇 (𝑥)𝛾
𝜃
𝑝
��
𝑝

: 𝑥 ∈ 𝑀,
��𝛾 1−𝜃

𝑝 𝑥𝛾
𝜃
𝑝
��
𝑝
≤ 1

}
.

Let 𝑛 ≥ 1 be an integer, and consider the special case when 𝑀 = 𝑀𝑛, equipped with its usual trace
tr. For any 𝜑 and 𝑇 : 𝑀𝑛 → 𝑀𝑛 as above, 𝑇𝑝,𝜃 is trivially bounded for all 1 ≤ 𝑝 < ∞ and 𝜃 since
𝐿 𝑝 (𝑀𝑛, 𝜑) is finite-dimensional. However, we will see in Sections 5 and 6 that finding (lower) estimates
of the norm of𝑇𝑝,𝜃 in this setting will be instrumental to devise counterexamples on infinite dimensional
von Neumann algebras. This is why we give a version of the preceding corollary in this specific case.

For any 1 ≤ 𝑝 < ∞, let 𝑆𝑝
𝑛 = L𝑝 (𝑀𝑛, tr) denote the p-Schatten class over 𝑀𝑛.

Proposition 3.3. Let Γ ∈ 𝑀𝑛 be a positive definite matrix such that tr(Γ) = 1 and let 𝜑 be the faithful
state on 𝑀𝑛 associated with Γ, that is, 𝜑(𝑋) = tr(Γ𝑋) for all 𝑋 ∈ 𝑀𝑛. Let 𝑇 : 𝑀𝑛 → 𝑀𝑛 be any linear
map. For any 𝑝 ∈ [1,∞) and 𝜃 ∈ [0, 1], let 𝑈𝑝,𝜃 : 𝑆𝑝

𝑛 → 𝑆𝑝
𝑛 be defined by

𝑈𝑝,𝜃 (𝑌 ) = Γ
1−𝜃
𝑝 𝑇

(
Γ− 1−𝜃

𝑝 𝑌Γ− 𝜃
𝑝
)
Γ

𝜃
𝑝 , 𝑌 ∈ 𝑆𝑝

𝑛 . (3.10)

Then ��𝑇𝑝,𝜃 : 𝐿 𝑝 (𝑀𝑛, 𝜑) −→ 𝐿 𝑝 (𝑀𝑛, 𝜑)
�� = ��𝑈𝑝,𝜃 : 𝑆𝑝

𝑛 −→ 𝑆𝑝
𝑛

��.
4. Extension results

This section is devoted to two cases for which Question 2.2 has a positive answer. Let M be a von
Neumann algebra equipped with a faithful normal state 𝜑, and let 𝐷 ∈ 𝐿1 (𝑀, 𝜑)+ denote its density.
Theorem 4.1. Let 𝑇 : 𝑀 → 𝑀 be a 2-positive map such that 𝜑 ◦ 𝑇 ≤ 𝜑. For any 𝑝 ≥ 2 and for any
𝜃 ∈ [0, 1], the mapping 𝑇𝑝,𝜃 : A𝑝,𝜃 → A𝑝,𝜃 defined by equation (1.2) extends to a bounded map
𝐿 𝑝 (𝑀, 𝜑) → 𝐿 𝑝 (𝑀, 𝜑).
Proof. Consider a 2-positive map 𝑇 : 𝑀 → 𝑀 such that 𝜑 ◦ 𝑇 ≤ 𝜑. We start with the case 𝑝 = 2. For
any 𝑥 ∈ 𝑀 , we have

𝑇 (𝑥)∗𝑇 (𝑥) ≤ ‖𝑇 ‖𝑇 (𝑥∗𝑥),

by the Kadison–Schwarz inequality [5]. By equation (2.6), we have

‖𝑇 (𝑥)𝐷
1
2 ‖2

2 = 𝜑
(
𝑇 (𝑥)∗𝑇 (𝑥)

)
≤ ‖𝑇 ‖𝜑

(
𝑇 (𝑥∗𝑥)

)
≤ ‖𝑇 ‖𝜑(𝑥∗𝑥) = ‖𝑇 ‖‖𝑥𝐷

1
2 ‖2

2 .

This shows that 𝑇2,1 is bounded. The proof that 𝑇2,0 is bounded is similar.
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Now, let 𝜃 ∈ (0, 1) and let us show that 𝑇2, 𝜃 is bounded. Consider the open strip

S =
{
𝑧 ∈ C : 0 < Re(𝑧) < 1

}
.

Let 𝑥, 𝑎 ∈ 𝑀𝑎, and define 𝐹 : S → C by

𝐹 (𝑧) = Tr
(
𝑇
(
𝜎

𝜑
𝑖
2 (1−𝑧)

(𝑥)
)
𝐷

1
2𝜎

𝜑

− 𝑖𝑧
2
(𝑎)𝐷

1
2

)
.

This is a well-defined function which is actually the restriction to S of an entire function. For all 𝑡 ∈ R,
we have

𝐹 (𝑖𝑡) = Tr
(
𝐷

1
2 𝑇

(
𝜎

𝜑
𝑖
2

(
𝜎

𝜑
𝑡
2
(𝑥)

) )
𝐷

1
2𝜎

𝜑
𝑡
2
(𝑎)

)
= Tr

(
𝐷

1
2 𝑇

(
𝐷− 1

2𝜎
𝜑
𝑡
2
(𝑥)𝐷

1
2

)
𝐷

1
2𝜎

𝜑
𝑡
2
(𝑎)

)
= Tr

(
𝑇2,0

(
𝜎

𝜑
𝑡
2
(𝑥)𝐷

1
2

)
𝐷

1
2𝜎

𝜑
𝑡
2
(𝑎)

)
,

by equation (2.7). Hence, by equation (2.2),

|𝐹 (𝑖𝑡) | ≤
���𝑇2,0

(
𝜎

𝜑
𝑡
2
(𝑥)𝐷

1
2

)���
2

���𝐷 1
2𝜎

𝜑
𝑡
2
(𝑎)

���
2

≤
��𝑇2,0

����𝐷 𝑖𝑡
2 (𝑥𝐷

1
2 )𝐷− 𝑖𝑡

2
��

2

��𝐷 𝑖𝑡
2 (𝐷

1
2 𝑎)𝐷− 𝑖𝑡

2
��

2

=
��𝑇2,0

����𝑥𝐷 1
2
��

2

��𝐷 1
2 𝑎

��
2.

Likewise,

𝐹 (1 + 𝑖𝑡) = Tr
(
𝑇2,1

(
𝜎

𝜑
𝑡
2
(𝑥)𝐷

1
2

)
𝐷

1
2𝜎

𝜑
𝑡
2
(𝑎)

)
,

hence

|𝐹 (1 + 𝑖𝑡) | ≤
��𝑇2,1

����𝑥𝐷 1
2
��

2

��𝐷 1
2 𝑎

��
2.

By the three lines lemma, we deduce that

|𝐹 (𝜃) | ≤
��𝑇2,0

��1−𝜃��𝑇2,1
��𝜃��𝑥𝐷 1

2
��

2

��𝐷 1
2 𝑎

��
2.

To calculate 𝐹 (𝜃), we apply equation (2.7) again and we obtain

𝐹 (𝜃) = Tr
(
𝑇
(
𝐷− 1−𝜃

2 𝑥𝐷
1−𝜃

2
)
𝐷

1
2 𝐷

𝜃
2 𝑎𝐷− 𝜃

2 𝐷
1
2

)
= Tr

(
𝐷

1−𝜃
2 𝑇

(
𝐷− 1−𝜃

2 𝑥𝐷
1
2 𝐷− 𝜃

2
)
𝐷

𝜃
2 𝐷

1
2 𝑎

)
= Tr

(
𝑇2, 𝜃

(
𝑥𝐷

1
2
)
𝐷

1
2 𝑎

)
.

Thus, ���Tr
(
𝑇2, 𝜃

(
𝑥𝐷

1
2
)
𝐷

1
2 𝑎

)��� ≤ ��𝑇2,0
��1−𝜃��𝑇2,1

��𝜃��𝑥𝐷 1
2
��

2

��𝐷 1
2 𝑎

��
2.

Since 𝑀𝑎𝐷
1
2 and 𝐷

1
2 𝑀𝑎 are both dense in 𝐿2 (𝑀, 𝜑), this estimate shows that 𝑇2, 𝜃 is bounded, with

‖𝑇2, 𝜃 ‖ ≤
��𝑇2,0

��1−𝜃��𝑇2,1
��𝜃 .
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We now let 𝑝 ∈ (2,∞). The proof in this case is a variant of the proof of [9, Theorem 5.1]. We use
Kosaki’s theorem which is presented after Lemma 3.1; see equations (3.4) and (3.5). Let 𝜃 ∈ [0, 1]. Let
𝔍𝜃 : 𝑀 → 𝐿2 (𝑀, 𝜑) be defined by 𝔍𝜃 (𝑥) = 𝐷

1−𝜃
2 𝑥𝐷

𝜃
2 for all 𝑥 ∈ 𝑀 . Equip 𝔍𝜃 (𝑀) with��𝐷 1−𝜃

2 𝑥𝐷
𝜃
2
��
𝔍𝜃 (𝑀 )

= ‖𝑥‖𝑀 , 𝑥 ∈ 𝑀. (4.1)

Consider (𝔍𝜃 (𝑀), 𝐿2 (𝑀, 𝜑)) as an interpolation couple. In analogy with equation (3.4), we set

𝐸 (𝑝, 𝜃) =
[
𝔍𝜃 (𝑀), 𝐿2 (𝑀, 𝜑)

]
2
𝑝
,

subspace of 𝐿2 (𝑀, 𝜑) given by the complex interpolation method. Let 𝑞 ∈ (2,∞) such that

1
𝑝

+
1
𝑞

=
1
2
.

We introduce one more mapping 𝑈𝜃 : 𝐿2 (𝑀, 𝜑) → 𝐿1 (𝑀, 𝜑) defined by

𝑈𝜃 (𝜁) = 𝐷
1−𝜃

2 𝜁𝐷
𝜃
2 , 𝜁 ∈ 𝐿2 (𝑀, 𝜑).

By equation (3.5),𝑈𝜃 is an isometric isomorphism from 𝐿2 (𝑀, 𝜑) onto𝐶 (2, 𝜃). Since𝑈𝜃 restricts to an
isometric isomorphism from 𝔍𝜃 (𝑀) onto 𝐽𝜃 (𝑀), by equations (3.3) and (4.1), it induces an isometric
isomorphism from 𝐸 (𝑝, 𝜃) onto

[
𝐽𝜃 (𝑀), 𝐶 (2, 𝜃)

]
2
𝑝

. By equation (3.4) and the reiteration theorem for
complex interpolation (see [3, Theorem 4.6.1]), the latter is equal to𝐶 (𝑝, 𝜃). Hence,𝑈𝜃 actually induces
an isometric isomorphism

𝐸 (𝑝, 𝜃)
𝑈𝜃
� 𝐶 (𝑝, 𝜃). (4.2)

Since 1
𝑝′ = 1

2 + 1
𝑞 , we have

𝑈𝜃
(
𝐷

1−𝜃
𝑞 𝑦𝐷

𝜃
𝑞
)
= 𝐷

1−𝜃
𝑝′ 𝑦𝐷

𝜃
𝑝′

for all 𝑦 ∈ 𝐿 𝑝 (𝑀, 𝜑). Applying equations (3.5) and (4.2), we deduce that

𝐸 (𝑝, 𝜃) = 𝐷
1−𝜃
𝑞 𝐿 𝑝 (𝑀, 𝜑)𝐷

𝜃
𝑞 ,

with ��𝐷 1−𝜃
𝑞 𝑦𝐷

𝜃
𝑞
��
𝐸 (𝑝,𝜃)

= ‖𝑦‖𝐿𝑝 (𝑀,𝜑) , 𝑦 ∈ 𝐿 𝑝 (𝑀, 𝜑). (4.3)

Now, let

𝑆 = 𝑇2, 𝜃 : 𝐿2 (𝑀, 𝜑) −→ 𝐿2 (𝑀, 𝜑)

be given by the first part of the proof (boundedness of 𝑇2, 𝜃 ). By equation (4.1), S is bounded on 𝔍𝜃 (𝑀).
Hence, by the interpolation theorem, S is bounded on 𝐸 (𝑝, 𝜃).

Using equation (4.3), we deduce that for all 𝑥 ∈ 𝑀 ,��𝐷 1−𝜃
𝑝 𝑇 (𝑥)𝐷

𝜃
𝑝
��
𝐿𝑝 (𝑀,𝜑)

=
��𝐷 1−𝜃

2 𝑇 (𝑥)𝐷
𝜃
2
��
𝐸 (𝑝,𝜃)

≤
��𝑆 : 𝐸 (𝑝, 𝜃) → 𝐸 (𝑝, 𝜃)

����𝐷 1−𝜃
2 𝑥𝐷

𝜃
2
��
𝐸 (𝑝,𝜃)

=
��𝑆 : 𝐸 (𝑝, 𝜃) → 𝐸 (𝑝, 𝜃)

����𝐷 1−𝜃
𝑝 𝑥𝐷

𝜃
𝑝
��
𝐿𝑝 (𝑀,𝜑)

.

This proves that 𝑇𝑝,𝜃 is bounded and completes the proof. �
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Remark 4.2. Let 𝑇 : 𝑀 → 𝑀 be a 2-positive map such that 𝜑 ◦ 𝑇 ≤ 𝐶1𝑇 for some 𝐶1 ≥ 0, and let
𝐶∞ = ‖𝑇 ‖. It follows from the above proof and an obvious scaling that for any 𝑝 ≥ 2 and any 𝜃 ∈ [0, 1],
we have ��𝑇𝑝,𝜃 : 𝐿 𝑝 (𝑀, 𝜑) −→ 𝐿 𝑝 (𝑀, 𝜑)

�� ≤ 𝐶
1− 1

𝑝
∞ 𝐶

1
𝑝

1 .

Theorem 4.3. Let 𝑇 : 𝑀 → 𝑀 be a 2-positive map such that 𝜑 ◦ 𝑇 ≤ 𝜑, and let 1 ≤ 𝑝 ≤ 2. If

1 −
𝑝

2
≤ 𝜃 ≤

𝑝

2
, (4.4)

then 𝑇𝑝,𝜃 : A𝑝,𝜃 → A𝑝,𝜃 extends to a bounded map 𝐿𝑝 (𝑀, 𝜑) → 𝐿 𝑝 (𝑀, 𝜑).

Proof. We will use Theorem 4.1 on 𝐿2 (𝑀, 𝜑), as well as the fact that 𝑇1, 1
2

is bounded; see [9, Lemma
5.3] or Remark 2.3. Let 𝑝 ∈ (1, 2), let 𝜃 satisfying equation (4.4), and let

𝜂 =
𝜃 −

(
1 −

𝑝
2
)

𝑝 − 1
.

Then 𝜂 ∈ [0, 1]. This interpolation number is chosen in such a way that

𝜂

𝑝′
+

1 − 𝜃

𝑝
=
𝜃

𝑝
+

1 − 𝜂

𝑝′
=

1
2
, (4.5)

where 𝑝′ is the conjugate number of p.
We set

𝑆 = 𝑇1, 1
2

: 𝐿1 (𝑀, 𝜑) −→ 𝐿1 (𝑀, 𝜑).

Let 𝑉 : 𝐿2 (𝑀, 𝜑) → 𝐿1 (𝑀, 𝜑) defined by 𝑉 (𝑦) = 𝐷
𝜂
2 𝑦𝐷

1−𝜂
2 for all 𝑦 ∈ 𝐿2 (𝑀, 𝜑). According to

equation (3.5), V is an isometric isomorphism from 𝐿2 (𝑀, 𝜑) onto 𝐶 (2, 1 − 𝜂). Hence, for all 𝑥 ∈ 𝑀 ,
we have ��𝑆(𝐷 1

2 𝑥𝐷
1
2 )

��
𝐶 (2,1−𝜂) =

��𝐷 𝜂
2 𝐷

1−𝜂
2 𝑇 (𝑥)𝐷

𝜂
2 𝐷

1−𝜂
2

��
𝐶 (2,1−𝜂)

=
��𝐷 1−𝜂

2 𝑇 (𝑥)𝐷
𝜂
2
��
𝐿2 (𝑀,𝜑)

≤
��𝑇2,𝜂

����𝐷 1−𝜂
2 𝑥𝐷

𝜂
2
��
𝐿2 (𝑀,𝜑)

=
��𝑇2,𝜂

����𝐷 1
2 𝑥𝐷

1
2
��
𝐶 (2,1−𝜂) .

Here, the boundedness of 𝑇2,𝜂 is provided by Theorem 4.1. This proves that S is bounded on𝐶 (2, 1−𝜂).
By equation (3.4) and the reiteration theorem, we have

𝐶 (𝑝, 1 − 𝜂) =
[
𝐶 (2, 1 − 𝜂), 𝐿1 (𝑀, 𝜑)

]
2
𝑝−1.

Therefore, S is bounded on𝐶 (𝑝, 1−𝜂). Using equation (3.5) again, as well as equation (4.5), we deduce
that for any 𝑥 ∈ 𝑀 ,
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��𝐷 1−𝜃
𝑝 𝑇 (𝑥)𝐷

𝜃
𝑝
��
𝐿𝑝 (𝑀,𝜑)

=
��𝐷 𝜂

𝑝′ 𝐷
1−𝜃
𝑝 𝑇 (𝑥)𝐷

𝜃
𝑝 𝐷

1−𝜂
𝑝′

��
𝐶 (𝑝,1−𝜂)

=
��𝐷 1

2𝑇 (𝑥)𝐷
1
2
��
𝐶 (𝑝,1−𝜂)

≤
��𝑆 : 𝐶 (𝑝, 1 − 𝜂) → 𝐶 (𝑝, 1 − 𝜂)

����𝐷 1
2 𝑥𝐷

1
2
��
𝐶 (𝑝,1−𝜂)

=
��𝑆 : 𝐶 (𝑝, 1 − 𝜂) → 𝐶 (𝑝, 1 − 𝜂)

����𝐷 1−𝜃
𝑝 𝑥𝐷

𝜃
𝑝
��
𝐿𝑝 (𝑀,𝜑)

.

This shows that 𝑇𝑝,𝜃 is bounded. �

5. The use of infinite tensor products

In this section, we show how to reduce the problem of constructing a unital completely positive map
𝑇 : (𝑀, 𝜑) → (𝑀, 𝜑) such that 𝜑 ◦ 𝑇 = 𝜑 and 𝑇𝑝,𝜃 is unbounded, for a certain pair (𝑝, 𝜃), to a finite-
dimensional question. In the sequel, by a matrix algebra A, we mean an algebra 𝐴 = 𝑀𝑛 for some 𝑛 ≥ 1.

Lemma 5.1. Let 𝐴1, 𝐴2 be two matrix algebras, and for 𝑖 = 1, 2, consider a faithful state 𝜑𝑖 on 𝐴𝑖 . Let
𝐵 = 𝐴1 ⊗min 𝐴2 and consider the faithful state 𝜓 = 𝜑1 ⊗ 𝜑2 on B. Let 𝑇𝑖 : 𝐴𝑖 → 𝐴𝑖 be a linear map, for
𝑖 = 1, 2, and consider 𝑇 = 𝑇1 ⊗ 𝑇2 : 𝐵 → 𝐵. Then for any 1 ≤ 𝑝 < ∞ and any 𝜃 ∈ [0, 1], we have��𝑇𝑝,𝜃 : 𝐿 𝑝 (𝐵, 𝜓) → 𝐿 𝑝 (𝐵, 𝜓)

�� ≥��{𝑇1}𝑝,𝜃 : 𝐿 𝑝 (𝐴1, 𝜑1) → 𝐿 𝑝 (𝐴1, 𝜑1)
����{𝑇2}𝑝,𝜃 : 𝐿 𝑝 (𝐴2, 𝜑2) → 𝐿 𝑝 (𝐴2, 𝜑2)

��.
Proof. Let 𝑛1, 𝑛2 ≥ 1 such that 𝐴1 = 𝑀𝑛1 and 𝐴2 = 𝑀𝑛2 and let 𝑛 = 𝑛1𝑛2. For 𝑖 = 1, 2, let Γ𝑖 ∈ 𝑀𝑛𝑖 such
that 𝜑𝑖 (𝑋𝑖) = tr(Γ𝑖𝑋𝑖) for all 𝑋𝑖 ∈ 𝑀𝑛𝑖 . As in Proposition 3.3, consider the mapping {𝑈𝑖}𝑝,𝜃 : 𝑆𝑝

𝑛𝑖 → 𝑆𝑝
𝑛𝑖

defined by {𝑈𝑖}𝑝,𝜃 (𝑌𝑖) = Γ
1−𝜃
𝑝

𝑖 𝑇𝑖
(
Γ
− 1−𝜃

𝑝

𝑖 𝑌𝑖Γ
− 𝜃

𝑝

𝑖

)
Γ

𝜃
𝑝

𝑖 for all 𝑌𝑖 ∈ 𝑆𝑝
𝑛𝑖 . Using the standard identification

𝐵 = 𝑀𝑛1 ⊗min 𝑀𝑛2 � 𝑀𝑛, (5.1)

we observe that 𝜓(𝑋) = tr
(
(Γ1 ⊗ Γ2)𝑋)

)
for all 𝑋 ∈ 𝑀𝑛. Hence, using the identification 𝑆𝑝

𝑛 = 𝑆𝑝
𝑛1 ⊗ 𝑆

𝑝
𝑛2

inherited from equation (5.1), we obtain the the mapping 𝑈𝑝,𝜃 defined by equation (3.10) is actually
given by

𝑈𝑝,𝜃 = {𝑈1}𝑝,𝜃 ⊗ {𝑈2}𝑝,𝜃 .

For any 𝑌1 ∈ 𝑆𝑝
𝑛1 and 𝑌2 ∈ 𝑆𝑝

𝑛2 , we have ‖𝑌1 ⊗ 𝑌2‖𝑝 = ‖𝑌1‖𝑝 ‖𝑌2‖𝑝 . Hence, we deduce

‖{𝑈1}𝑝,𝜃 (𝑌1)‖‖{𝑈2}𝑝,𝜃 (𝑌2)‖ = ‖{𝑈1}𝑝,𝜃 (𝑌1) ⊗ {𝑈2}𝑝,𝜃 (𝑌2)‖

= ‖𝑈𝑝,𝜃 (𝑌1 ⊗ 𝑌2)‖

≤ ‖𝑈𝑝,𝜃 ‖‖𝑌1‖𝑝 ‖𝑌2‖𝑝 .

This implies that ‖{𝑈1}𝑝,𝜃 ‖‖{𝑈2}𝑝,𝜃 ‖ ≤ ‖𝑈𝑝,𝜃 ‖ Applying Proposition 3.3, we obtain the requested
inequality. �

Throughout the rest of this section, we let (𝐴𝑘 )𝑘≥1 be a sequence of matrix algebras. For any 𝑘 ≥ 1,
let 𝜑𝑘 be a faithful state on 𝐴𝑘 . Let

(𝑀, 𝜑) = ⊗𝑘≥1(𝐴𝑘 , 𝜑𝑘 )

be the infinite tensor product associated with the (𝐴𝑘 , 𝜑𝑘 ). We refer to [21, Section XIV.1] for the
construction and the properties of this tensor product. We merely recall that if we regard (𝐴1⊗· · ·⊗𝐴𝑛)𝑛≥1
as an increasing sequence of (finite-dimensional) algebras in the natural way, then
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B :=
⋃
𝑛≥1

𝐴1 ⊗ · · · ⊗ 𝐴𝑛 (5.2)

is 𝑤∗-dense in M. Further, 𝜑 is a normal faithful state on M such that

𝜑1 ⊗ · · · ⊗ 𝜑𝑛 = 𝜑 |𝐴1⊗···⊗𝐴𝑛 ,

for all 𝑛 ≥ 1.

Proposition 5.2. Let 1 ≤ 𝑝 < ∞ and 𝜃 ∈ [0, 1]. For any 𝑘 ≥ 1, let 𝑇𝑘 : 𝐴𝑘 → 𝐴𝑘 be a unital completely
positive map such that 𝜑𝑘 ◦ 𝑇𝑘 = 𝜑𝑘 . Assume that

𝑛∏
𝑘=1

��{𝑇𝑘 }𝑝,𝜃 : 𝐿 𝑝 (𝐴𝑘 , 𝜑𝑘 ) → 𝐿 𝑝 (𝐴𝑘 , 𝜑𝑘 )
�� −→ ∞ when 𝑛 → ∞.

Then there exists a unital completely positive map𝑇 : 𝑀 → 𝑀 such that 𝜑◦𝑇 = 𝜑 and𝑇𝑝,𝜃 is unbounded.

Proof. For any 𝑛 ≥ 1, we introduce 𝐵𝑛 = 𝐴1 ⊗min · · · ⊗min 𝐴𝑛 and the faithful state

𝜓𝑛 = 𝜑1 ⊗ · · · ⊗ 𝜑𝑛

on 𝐵𝑛. According to [21, Proposition XIV.1.11], the modular automorphism group of 𝜑 preserves 𝐵𝑛.
Consequently (see Remark 2.4), there exists a unique normal conditional expectation 𝐸𝑛 : 𝑀 → 𝐵𝑛

such that 𝜑 = 𝜓𝑛 ◦ 𝐸𝑛, and the preadjoint of 𝐸𝑛 yields an isometric embedding

𝐿1 (𝐵𝑛, 𝜓𝑛) ↩→ 𝐿1 (𝑀, 𝜑).

Likewise, let 𝐹𝑛 : 𝐵𝑛+1 → 𝐵𝑛 be the conditional expectation defined by

𝐹𝑛 (𝑎1 ⊗ · · · ⊗ 𝑎𝑛 ⊗ 𝑎𝑛+1) = 𝜑𝑛+1(𝑎𝑛+1) 𝑎1 ⊗ · · · ⊗ 𝑎𝑛, (5.3)

for all 𝑎1 ∈ 𝐴1, . . . , 𝑎𝑛 ∈ 𝐴𝑛, 𝑎𝑛+1 ∈ 𝐴𝑛+1. Then the preadjoint of 𝐹𝑛 yields an isometric embedding

𝐽𝑛 : 𝐿1 (𝐵𝑛, 𝜓𝑛) ↩→ 𝐿1 (𝐵𝑛+1, 𝜓𝑛+1).

We can therefore consider
(
𝐿1 (𝐵𝑛, 𝜓𝑛)

)
𝑛≥1 as an increasing sequence of subspaces of 𝐿1 (𝑀, 𝜑). We

introduce

L :=
⋃
𝑛≥1

𝐿1 (𝐵𝑛, 𝜓𝑛) ⊂ 𝐿1 (𝑀, 𝜑).

Let 𝐷 ∈ 𝐿1 (𝑀, 𝜑) be the density of 𝜑. It follows from Remark 2.4 that

L = 𝐷
1
2 B𝐷 1

2 ,

where B is defined by equation (5.2). Since B is 𝑤∗-dense, it is dense in M for the strong operator
topology given by the standard representation 𝑀 ↩→ 𝐵(𝐿2 (𝑀, 𝜑)). Hence, by [12, Lemma 2.2], B𝐷 1

2

is dense in 𝐿2 (𝑀, 𝜑). This implies that L is dense in 𝐿1 (𝑀, 𝜑).
For any 𝑛 ≥ 1, let

𝑉 (𝑛) := 𝑇1 ⊗ · · · ⊗ 𝑇𝑛 : 𝐵𝑛 −→ 𝐵𝑛.

This is a unital completely positive map. Hence, its norm is equal to 1. Let

𝑆𝑛 = 𝑉 (𝑛)∗ : 𝐿1 (𝐵𝑛, 𝜓𝑛) −→ 𝐿1 (𝐵𝑛, 𝜓𝑛)
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be the preadjoint of 𝑉 (𝑛). Then ‖𝑆𝑛‖ = 1. We observe that

𝐽𝑛 ◦ 𝑆𝑛 = 𝑆𝑛+1 ◦ 𝐽𝑛. (5.4)

Indeed by duality, this amounts to show that 𝑉 (𝑛) ◦ 𝐹𝑛 = 𝐹𝑛 ◦𝑉 (𝑛 + 1), where 𝐹𝑛 is given by equation
(5.3). The latter is true because 𝜑𝑛+1 ◦ 𝑇𝑛+1 = 𝜑𝑛+1.

Thanks to equation (5.4), one may define

S : L −→ L

by letting S (𝜂) = 𝑆𝑛 (𝜂) if 𝜂 ∈ 𝐿1 (𝐵𝑛, 𝜓𝑛). Then S is bounded, with ‖S ‖ = 1. Owing to the density of
L, there exists a unique bounded 𝑆 : 𝐿1 (𝑀, 𝜑) → 𝐿1 (𝑀, 𝜑) extending S . Using the duality (2.4), we set

𝑇 = 𝑆∗ : 𝑀 −→ 𝑀.

By construction, T is a contraction. Furthermore, for each 𝑛 ≥ 1, 𝑆∗𝑛 = 𝑉 (𝑛) is a unital completely
positive map and 𝜓𝑛 ◦ 𝑆

∗
𝑛 = 𝜓𝑛. We deduce that T is unital and completely positive and that

𝜑 ◦ 𝑇 = 𝜑.

Let 1 ≤ 𝑝 < ∞, and let 𝜃 ∈ [0, 1]. Let us use the isometric embedding

𝐿𝑝 (𝐵𝑛, 𝜓𝑛) ↩→ 𝐿 𝑝 (𝑀, 𝜑) (5.5)

as explained in Remark 2.4. If 𝐷𝑛 denotes the density of 𝜓𝑛, then it follows from [9, Proposition

5.5] that the embedding (5.5) maps 𝐷
1−𝜃
𝑝

𝑛 𝑥𝐷
𝜃
𝑝
𝑛 to 𝐷

1−𝜃
𝑝 𝑥𝐷

𝜃
𝑝 for all 𝑥 ∈ 𝐵𝑛. Then the restriction of

𝑇𝑝,𝜃 : A𝑝,𝜃 → 𝐿 𝑝 (𝑀, 𝜑) coincides with

𝑉 (𝑛)𝑝,𝜃 : 𝐿 𝑝 (𝐵𝑛, 𝜓𝑛) −→ 𝐿 𝑝 (𝐵𝑛, 𝜓𝑛).

Finally we observe that by a simple iteration of Lemma 5.1, we have

‖𝑉 (𝑛)𝑝,𝜃 ‖ ≥

𝑛∏
𝑘=1

��{𝑇𝑘 }𝑝,𝜃 : 𝐿 𝑝 (𝐴𝑘 , 𝜑𝑘 ) → 𝐿 𝑝 (𝐴𝑘 , 𝜑𝑘 )
��.

The assumption that this product of norms tends to ∞ therefore implies that the operator 𝑇𝑝,𝜃 is
unbounded. �

6. Nonextension results

The aim of this section is to show the following.

Theorem 6.1. Let 1 ≤ 𝑝 < 2. If either

0 ≤ 𝜃 <
1
2
(
1 −

√
𝑝 − 1

)
or

1
2
(
1 +

√
𝑝 − 1

)
< 𝜃 ≤ 1, (6.1)

then there exist a von Neumann algebra M equipped with a normal faithful state 𝜑, as well as a unital
completely positive map 𝑇 : 𝑀 → 𝑀 such that 𝜑 ◦𝑇 = 𝜑 and the mapping 𝑇𝑝,𝜃 : A𝑝,𝜃 → A𝑝,𝜃 defined
by equation (1.2) is unbounded.

This result will be proved at the end of this section, as a simple combination of Proposition 5.2 and
the following key result. Recall that 𝑀2 denotes the space of 2 × 2 matrices.
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Proposition 6.2. Let 1 ≤ 𝑝 < 2, and let 𝜃 ∈ [0, 1] be satisfying equation (6.1). Then there exist a unital
completely positive map 𝑇 : 𝑀2 → 𝑀2 and a faithful state 𝜑 on 𝑀2 such that 𝜑 ◦𝑇 = 𝜑 and ‖𝑇𝑝,𝜃 ‖ > 1.

Proof. Let 𝑐 ∈ (0, 1), and consider

Γ =

(
1 − 𝑐 0

0 𝑐

)
.

This is a positive invertible matrix with trace equal to 1. We let 𝜑 denote its associated faithful state on

𝑀2, that is, 𝜑(𝑋) = tr(Γ𝑋) = (1 − 𝑐)𝑥11 + 𝑐𝑥22, for all 𝑋 =

(
𝑥11 𝑥12
𝑥21 𝑥22

)
in 𝑀2.

Let 𝐸𝑖, 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2, denote the standard matrix units of 𝑀2. Let 𝑇 : 𝑀2 → 𝑀2 be the linear map
defined by

𝑇 (𝐸11) = (1 − 𝑐)𝐼2, 𝑇 (𝐸22) = 𝑐𝐼2, and 𝑇 (𝐸21) = 𝑇 (𝐸12) =
(
𝑐(1 − 𝑐)

) 1
2
(
𝐸12 + 𝐸21

)
.

Let 𝐴 =
[
𝑇 (𝐸𝑖 𝑗 )

]
1≤𝑖, 𝑗≤2 ∈ 𝑀2 (𝑀2). If we regard A as an element of 𝑀4, we have

𝐴 =

������
1 − 𝑐 0 0 (𝑐(1 − 𝑐))

1
2

0 1 − 𝑐 (𝑐(1 − 𝑐))
1
2 0

0 (𝑐(1 − 𝑐))
1
2 𝑐 0

(𝑐(1 − 𝑐))
1
2 0 0 𝑐

������
.

Clearly, A is unitarily equivalent to 𝐵 ⊗ 𝐼2, with

𝐵 =

(
1 − 𝑐 (𝑐(1 − 𝑐))

1
2

(𝑐(1 − 𝑐))
1
2 𝑐

)
.

It is plain that B is positive. Consequently, A is positive. Hence, T is completely positive, by Choi’s
theorem (see, for example, [18, Theorem 3.14]). Furthermore, T is unital. We note that 𝜑(𝑇 (𝐸11)) =
𝜑(𝐸11) = 1−𝑐, 𝜑(𝑇 (𝐸22)) = 𝜑(𝐸22) = 𝑐, 𝜑(𝑇 (𝐸12)) = 𝜑(𝐸12) = 0 and 𝜑(𝑇 (𝐸21)) = 𝜑(𝐸21) = 0. Thus,

𝜑 ◦ 𝑇 = 𝜑.

Our aim is now to estimate ‖𝑇𝑝,𝜃 ‖, using Proposition 3.3. We let 𝑈𝑝,𝜃 : 𝑆𝑝
2 → 𝑆𝑝

2 be defined by
equation (3.10). We shall focus on the action of 𝑈𝑝,𝜃 on the antidiagonal part of 𝑆𝑝

2 . First, we have

Γ− 1−𝜃
𝑝 𝐸12Γ

− 𝜃
𝑝 = (1 − 𝑐)−

1−𝜃
𝑝 𝑐−

𝜃
𝑝 𝐸12.

Hence

𝑇
(
Γ− 1−𝜃

𝑝 𝐸12Γ
− 𝜃

𝑝
)
= (1 − 𝑐)−

1−𝜃
𝑝 𝑐−

𝜃
𝑝𝑇 (𝐸12)

= (1 − 𝑐)−
1−𝜃
𝑝 𝑐−

𝜃
𝑝 (𝑐(1 − 𝑐))

1
2
(
𝐸12 + 𝐸21

)
.

Hence,

𝑈𝑝,𝜃 (𝐸12) = (1 − 𝑐)−
1−𝜃
𝑝 𝑐−

𝜃
𝑝 (𝑐(1 − 𝑐))

1
2

(
Γ

1−𝜃
𝑝 𝐸12Γ

𝜃
𝑝 + Γ

1−𝜃
𝑝 𝐸21Γ

𝜃
𝑝

)
= (1 − 𝑐)−

1−𝜃
𝑝 𝑐−

𝜃
𝑝 (𝑐(1 − 𝑐))

1
2

(
(1 − 𝑐)

1−𝜃
𝑝 𝑐

𝜃
𝑝 𝐸12 + 𝑐

1−𝜃
𝑝 (1 − 𝑐)

𝜃
𝑝 𝐸21

)
= (𝑐(1 − 𝑐))

1
2

(
𝐸12 +

(1 − 𝑐

𝑐

) 2𝜃−1
𝑝
𝐸21

)
.
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Likewise, we have

𝑈𝑝,𝜃 (𝐸21) = (𝑐(1 − 𝑐))
1
2

(( 𝑐

1 − 𝑐

) 2𝜃−1
𝑝
𝐸12 + 𝐸21

)
.

Set

𝛿 =
(1 − 𝑐

𝑐

) 2𝜃−1
𝑝
. (6.2)

Consider

𝑌 =

(
0 𝑎
𝑏 0

)
with |𝑎 |𝑝 + |𝑏 |𝑝 = 1

so that ‖𝑌 ‖𝑝 = 1. Then

𝑈𝑝,𝜃 (𝑌 ) = (𝑐(1 − 𝑐))
1
2
(
𝑎𝐸12 + 𝑎𝛿𝐸21 + 𝑏𝛿

−1𝐸12 + 𝑏𝐸21
)

= (𝑐(1 − 𝑐))
1
2
(
(𝑎 + 𝑏𝛿−1)𝐸12 + (𝑎𝛿 + 𝑏)𝐸21

)
.

Hence,

‖𝑈𝑝,𝜃 (𝑌 )‖
𝑝
𝑝 = (𝑐(1 − 𝑐))

𝑝
2
(
(𝑎 + 𝑏𝛿−1) 𝑝 + (𝑎𝛿 + 𝑏) 𝑝

)
. (6.3)

To prove Proposition 6.2, it therefore suffices to show that for any 1 ≤ 𝑝 < 2 and 𝜃 ∈ [0, 1] satisfying
equation (6.1), there exist 𝑎, 𝑏 > 0 and 𝑐 ∈ (0, 1) such that

𝑎𝑝 + 𝑏𝑝 = 1 and (𝑐(1 − 𝑐))
𝑝
2
(
(𝑎 + 𝑏𝛿−1) 𝑝 + (𝑎𝛿 + 𝑏) 𝑝

)
> 1,

where 𝛿 is given by equation (6.2).
We first assume that p > 1. We let 𝑞 = 𝑝

𝑝−1 denote its conjugate exponent. Given 𝑐 ∈ (0, 1) and 𝛿 as
above, we define

𝑎 =

(
𝛿𝑞

1 + 𝛿𝑞

) 1
𝑝

and 𝑏 =

(
1

1 + 𝛿𝑞

) 1
𝑝

. (6.4)

They satisfy 𝑎𝑝 + 𝑏𝑝 = 1 as required. Note that these values of (𝑎, 𝑏) are chosen in order to maximize
the quantity (𝑐(1 − 𝑐))

𝑝
2
(
(𝑎 + 𝑏𝛿−1) 𝑝 + (𝑎𝛿 + 𝑏) 𝑝

)
, according to the Lagrange multiplier method.

We set

𝑐𝑡 =
1
2
+ 𝑡, −

1
2
< 𝑡 <

1
2
.

Then we denote by 𝛿𝑡 , 𝑎𝑡 , 𝑏𝑡 the real numbers 𝛿, 𝑎, 𝑏 defined by equations (6.2) and (6.4) when 𝑐 = 𝑐𝑡 .
Also, we set

𝛾𝑡 = (𝑐𝑡 (1 − 𝑐𝑡 ))
𝑝
2 and 𝔪𝑡 = 𝛾𝑡

(
(𝑎𝑡 + 𝑏𝑡𝛿

−1
𝑡 ) 𝑝 + (𝑎𝑡𝛿𝑡 + 𝑏𝑡 )

𝑝 ) .
It follows from above that it suffices to show that 𝔪𝑡 > 1 for some 𝑡 ∈

(
0, 1

2
)
. We will prove this property

by writing the second-order Taylor expansion of 𝔪𝑡 .
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We have

(𝑎𝑡 + 𝑏𝑡𝛿
−1
𝑡 ) 𝑝 + (𝑎𝑡𝛿𝑡 + 𝑏𝑡 )

𝑝 = (1 + 𝛿−𝑝𝑡 ) (𝑎𝑡𝛿𝑡 + 𝑏𝑡 )
𝑝 .

Moreover,

𝑎𝑡𝛿𝑡 =
𝛿

𝑞
𝑝 +1
𝑡

(1 + 𝛿𝑞𝑡 )
1
𝑝

=
𝛿𝑞𝑡

(1 + 𝛿𝑞𝑡 )
1
𝑝

.

Hence,

(𝑎𝑡 + 𝑏𝑡𝛿
−1
𝑡 ) 𝑝 + (𝑎𝑡𝛿𝑡 + 𝑏𝑡 )

𝑝 = (1 + 𝛿−𝑝𝑡 ) (1 + 𝛿𝑞𝑡
) 𝑝−1

.

Consequently,

𝔪𝑡 = 𝛾𝑡 (1 + 𝛿−𝑝𝑡 ) (𝛿𝑞𝑡 + 1
) 𝑝−1

.

In the sequel, we write

𝑓𝑡 ≡ 𝑔𝑡

when 𝑓𝑡 = 𝑔𝑡 + 𝑜(𝑡2) when 𝑡 → 0.
We note that 𝑐𝑡 (1 − 𝑐𝑡 ) =

( 1
2 + 𝑡

) ( 1
2 − 𝑡

)
= 1

4
(
1 − 4𝑡2

)
. We deduce that

𝛾𝑡 ≡
1

2𝑝
(1 − 2𝑝𝑡2). (6.5)

We set 𝜆 = 2𝜃 − 1 for convenience. Then we have

𝛿𝑡 =
(1 − 2𝑡

1 + 2𝑡

) 𝜆
𝑝

≡
(
(1 − 2𝑡) (1 − 2𝑡 + 4𝑡2)

) 𝜆
𝑝

≡ (1 − 4𝑡 + 8𝑡2)
𝜆
𝑝

≡ 1 −
4𝜆
𝑝
𝑡 +

8𝜆
𝑝
𝑡2 +

1
2
𝜆

𝑝

( 𝜆
𝑝
− 1

)
(4𝑡)2

≡ 1 −
4𝜆
𝑝
𝑡 +

8𝜆2

𝑝2 𝑡
2.

This implies that

𝛿𝑞𝑡 ≡ 1 −
4𝜆𝑞
𝑝
𝑡 +

8𝜆2𝑞

𝑝2 𝑡2 +
1
2
𝑞(𝑞 − 1)

(4𝜆
𝑝

)2
𝑡2

≡ 1 −
4𝜆𝑞
𝑝
𝑡 +

8𝜆2𝑞2

𝑝2 𝑡2.

Likewise,

𝛿−𝑝𝑡 ≡ 1 + 4𝜆𝑡 + 8𝜆2𝑡2. (6.6)
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Since 𝑝 − 1 = 𝑝
𝑞 , we have

(1 + 𝛿𝑞𝑡 )
𝑝−1 ≡ 2

𝑝
𝑞

(
1 −

2𝜆𝑞
𝑝
𝑡 +

4𝜆2𝑞2

𝑝2 𝑡2
) 𝑝

𝑞

≡ 2
𝑝
𝑞

(
1 − 2𝜆𝑡 +

4𝜆2𝑞

𝑝
𝑡2 +

1
2
𝑝

𝑞

( 𝑝
𝑞
− 1

) (2𝜆𝑞
𝑝

)2
𝑡2

)
≡ 2

𝑝
𝑞
(
1 − 2𝜆𝑡 + 2𝜆2𝑞𝑡2

)
.

Combining this expansion with equations (6.5) and (6.6), we deduce that

𝔪𝑡 ≡
1

2𝑝
(1 − 2𝑝𝑡2) · 2(1 + 2𝜆𝑡 + 4𝜆2𝑡2) · 2

𝑝
𝑞 (1 − 2𝜆𝑡 + 2𝜆2𝑞𝑡2)

≡ (1 − 2𝑝𝑡2) (1 + 2𝜆2𝑞𝑡2).

Consequently,

𝔪𝑡 ≡ 1 + 𝛼𝑡2 with 𝛼 = 2(𝜆2𝑞 − 𝑝). (6.7)

The second-order coefficient 𝛼 can be written as

𝛼 = 2𝑞
(
(2𝜃 − 1)2 −

𝑝

𝑞

)
= 8𝑞

(
𝜃2 − 𝜃 +

𝑞 − 𝑝

4𝑞

)
= 8𝑞(𝜃 − 𝜃0) (𝜃 − 𝜃1),

with

𝜃0 =
1
2
(
1 −

√
𝑝 − 1

)
and 𝜃1 =

1
2
(
1 +

√
𝑝 − 1

)
.

Now, assume equation (6.1). Then 𝛼 > 0. Hence, equation (6.7) ensures the existence of 𝑡 > 0 such
that 𝔪𝑡 > 1, which concludes the proof (in the case 𝑝 > 1).

We now consider the case p = 1. We apply the same method as before, with

𝑎 = 1 and 𝑏 = 0.

According to equation (6.3), it will suffice to show that whenever 𝜃 ≠ 1
2 , there exists 𝑐 ∈ (0, 1) such that

(𝑐(1 − 𝑐))
1
2 (1 + 𝛿) > 1.

Again, we set 𝑐𝑡 = 1
2 + 𝑡, for − 1

2 < 𝑡 < 1
2 , we define 𝛿𝑡 accordingly, and we set

𝔪𝑡 = (𝑐𝑡 (1 − 𝑐𝑡 ))
1
2 (1 + 𝛿𝑡 ).

It follows from the previous calculations that

(𝑐𝑡 (1 − 𝑐𝑡 ))
1
2 =

1
2
+ 𝑜(𝑡) and 𝛿𝑡 = 1 − 4(2𝜃 − 1)𝑡 + 𝑜(𝑡).

Consequently,

𝔪𝑡 = 1 − 2(2𝜃 − 1)𝑡 + 𝑜(𝑡).

This order one expansion ensures that if 𝜃 ≠ 1
2 , then there exists 𝑡 ∈

(
− 1

2 ,
1
2
)

such that 𝔪(𝑡) > 1, which
concludes the proof (in the case 𝑝 = 1). �
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Proof of Theorem 6.1. Let (𝑝, 𝜃) satisfying equation (6.1). Thanks to Proposition 6.2, let𝑇0 : 𝑀2 → 𝑀2
and let 𝜑0 be a faithful state on 𝑀2 such that 𝜑0 ◦𝑇0 = 𝜑0 and ‖{𝑇0}𝑝,𝜃 ‖ > 1. We apply Proposition 5.2
with (𝐴𝑘 , 𝜑𝑘 , 𝑇𝑘 ) = (𝑀2, 𝜑0, 𝑇0) for all 𝑘 ≥ 1. In this case,

𝑛∏
𝑘=1

��{𝑇𝑘 }𝑝,𝜃�� = ‖{𝑇0}𝑝,𝜃 ‖
𝑛,

and the latter goes to ∞ when 𝑛 → ∞. Hence, 𝑇𝑝,𝜃 is unbounded. �

Remark 6.3. With Theorem 4.1, Theorem 4.3 and Theorem 6.1, we have solved Question 2.2 in the
following cases: (i) 𝑝 ≥ 2 and 𝜃 ∈ [0, 1]; (ii) 1 ≤ 𝑝 < 2 and 𝜃 ∈

[
1 − 𝑝/2, 𝑝/2

]
; (iii) 1 ≤ 𝑝 < 2 and

𝜃 ∈
[
0, 2−1(1 −

√
𝑝 − 1)

)
; (iv) 1 ≤ 𝑝 < 2 and 𝜃 ∈

(
2−1 (1 +

√
𝑝 − 1), 1

]
.

However, we do not know the answer to Question 2.2 when 1 ≤ 𝑝 < 2 and

𝜃 ∈
[
2−1(1 −

√
𝑝 − 1), 1 − 𝑝/2

)
or 𝜃 ∈

(
𝑝/2, 2−1 (1 +

√
𝑝 − 1)

]
.

Writing a (+) when Question 2.2 has a positive answer, a (−) when it has a negative answer and a (?)
when we do not know the answer, we obtain the following diagram:
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