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ABSTRACT: Background: Predicting the ability of drugs to enter the brain is alongstanding problem
in neuropharmacology. The first step in creating a much-needed computational algorithm for predicting
whether a drug will enter brain is to devise a rigorous mathematical model. Methods: Employing two
experimental measures of blood-brain barrier (BBB) penetrability (brain/plasma ratio and the brain-
uptake index) and 14 theoretically derived biophysical predictors, a mathematical model was devel oped
to quantitatively correlate molecular structure with ability to traverse the BBB. Results: This
mathematical model employs Stein’s hydrogen bonding number and Randic’ s topological descriptorsto
correlate structure with ability to cross the BBB. The final model accurately predicts the ability of test
molecules to cross the BBB. Conclusions. A mathematical method to predict blood-brain barrier
penetrability of drug molecules has been successfully devised. As a result of biocinformatics,
chemoinformatics and other informatics-based technologies, the number of small molecules being
developed as potential therapeutics is increasing exponentialy. A biophysically rigorous method to
predict BBB penetrability will be a much-needed tool for the evaluation of these molecules.

RESUME: Un modé&e mathématique pour prédire la diffusion de molécules & travers la barriére hémato-
encéphalique. Introduction : En neuropharmacologie, il est difficile de prédire quels médicaments pourront
pénétrer dansle cerveau. La premieére étape dans|acréation d' un algorithme pour prédire s un médicament pénétrera
dans le cerveau est d élaborer un modéle mathématique rigoureux. Méthodes : Un modele mathématique a été
développé en utilisant deux mesures expérimentales de la perméabilité de la barriére hémato-encéphalique (BHE)
[leratio cerveau/plasma (RCP) et I'indice de captation du cerveau (ICC)] et 14 prédicteurs biophysiques théoriques,
afin de corréler quantitativement la structure moléculaire d’ une substance et sa capacité a pénétrer la BHE. Ce
modele mathématique utilise le nombre de liaisons hydrogéne de Stein et les indices topologiques de Randic pour
corréer lastructure de la molécule a sa capacité a pénétrer la BHE. Conclusions : Une méthode mathématique pour
prédire la capacité d' une substance a pénétrer la BHE a été élaborée avec succes. Conséquemment, le nombre de
petites molécules en développement a augmenté de fagon exponentielle grace a la bio-informatique, la chimie-
informatique et les autres technologies informatiques. Une méthode rigoureuse au point de vue biophysique pour
prédire la perméabilité de la BHE seratrés utile pour I’ évaluation de ces molécules.
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A robust numerical algorithm to computationally predict the
ability of drug molecules to cross the blood-brain barrier (BBB)
is of relevance to basic neuroscience and to the pharmacology of
drug design.’* A molecule can cross the BBB by either active
transport or passive diffusion;* passive diffusion remains the
most important method for the greatest structural diversity of
drug molecules. The two most widely recognized principal
physical properties that influence passive diffusion across the
BBB (with subseguent entry into the brain) are molecular size
and lipophilicity.#7 Although equations that quantitatively relate
trans-BBB diffusion to these two properties have been
proposed,®1° these models use only one predictor to encode each
of the factors of size and lipophilicity.

This study endeavours to develop a rigorous theoretical
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prediction algorithm to assess ability to cross the BBB through
an analysis of a comprehensive set of molecular predictors
reflecting a wider range of physical properties for molecules
known either to cross or not to cross the BBB. Such an algorithm
will have utility in the development of a computer program for
predicting the ability of any clinically employed drug (whether
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for neurological indications or not) to penetrate the centra
nervous system and to elicit a biological response, toxic or
therapeutic.

METHODS

The general strategy employed in developing the prediction
algorithm was as follows. First a group of numerical values
(“predictors’) was assembled which would comprehensively
reflect the physical properties of the molecules being studied.
Next, to develop a prediction algorithm (for ability to cross the
BBB), the predictors were calculated for a group of compounds
with known biological activity (designated as the “training set”).
The predictors were then statistically correlated with the
biological properties for the molecules of the training set,
thereby permitting the development of the prediction model. The
validity of this model was then verified by application to a
second group of independent compounds (designated as the “test
set”) also with known bioactivity.

Predictor Selection

Twelve predictors were initialy selected to describe the
physiochemical, topological, electronic and geometric/bulk
properties of molecules diffusing across the BBB (later in the
study, two additional composite predictors were added). These
predictors were chosen to represent the diverse structura
properties of molecules in an unbiased, yet comprehensive
manner. These twelve predictors have been used extensively in
the drug design literature over the past 20 years and have a
demonstrated ability to “capture” molecular information that is
central to an understanding of biological activity. Initialy, al
predictors are weighted equally; athough there are co-
dependencies between various predictors, this does not emerge
as a problem in the overall application of the predictors.
Physiochemical properties, reflecting differential drug solubility
in lipid and agueous phases, were represented by logP and
(logP)?, where P is the octanol-water partition coefficient; these
values were calculated using the ClogP computer program.*? It
has been appreciated in drug design for many years that drugs
with logP values of 1.5-3.0 seem to have optimal abilities to
diffuse through biological membranes and other biological lipid
barriers. Topological properties, representing molecular
branching and complexity, were determined using the Zagreb
(M1, M2), Platt, and Randic ¢; - ¢, (R1-R4) indices;*? these
valueswere calculated using empirical graph theory calculations.
Topological predictors such as the Randic indices (R1-R4) are
useful in differentiating between isomeric drug molecule
substituents, such as n-butyl [-CH,CH,CH,CHg] and t-butyl [-
C(CHg)4], which have the same molecular weights and volume,
but very different “branching” properties. Electronic properties,
representing regional electron distribution and dipoles within the
drug molecule were represented by the hydrogen bonding
number (HBN); thiswas calcul ated by the method of Stein.*® The
HBN is a simple numerical representation of the number of
hydrogen bonding donors and acceptors within the drug
molecule. Bulk properties, related to molecular size, were
represented by molecular weight (MW) and molecular volume
(Vol) determinations; Vol was cal culated by the method of Motoc
and Marshall.**
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Training and Test Set Selection

Compilation of training and test sets required a database of
compounds with meaningful measures of BBB permeability. The
brain/plasma ratio (BPR) and the brain-uptake index (BUI)
method of Oldendorf'® were the measures of BBB permeability
used in this study. These are time-honoured indices that have an
extensive history of use in the study of BBB permeability. An
extensive literature search identified compounds with BPR
and/or BUI values measured reproducibly in mammals using
comparable experimental methods. A total of 34 compounds with
reported BPRs were used as the training set (BS1) to derive an
equation relating BPR to the predictors;, 44 compounds with
reported BUIs were used as the training set (BS2) to derive the
equation for BUI. These compounds are listed in Table 1. (The
values of BPR for the drugs listed in BS1 were converted to the
percentage of molecule in the brain: BPP=amount in brain/
(amount in brain+plasma), to give a proportion).

The test sets were composed of molecules not present in the
training set. TS1, the test set for the equations derived for BPP
from BS1, thus consisted of those moleculesin BS2 not common
to BS1. TS2, the test set for BS2, consisted of those moleculesin
BS1 not common to BS2. In addition, a further 17 molecules, 10
of which were qualitatively known to cross the BBB and seven
of which were known not to cross the BBB, with neither BPPnor
BUI reported, were added to both test sets (these molecules are
listed in Table 2).

Empirically determined prediction cut-off values were
caculated for both BPP and BUI to convert the estimated
response from the equation to a qualitative “does’ or “ does not”
cross. A predicted value 3 P, meant a prediction of “crossing”; a
value £ Py meant “not-crossing”. A value between P, and Py
indicated that equation could not accurately resolve if the
molecule crossed. P, and Py were determined from an
examination of the range of values (BPP/BUI) of the molecules
that crossed and of those that did not in BS1 and BS2.

Statistical M ethods

Regression analyses were used to find the best equations
expressing BPPor BUI as a function of structural predictors. The
BPP data in BS1 was fit with a general linearized model,
utilizing a logit transformation®® on the response (BPP) and
quasi-likelihood function;'” where logit(BPP)=In(BPP)/(1-BPP).
(Note: logit(BPP) is henceforth referred to as the “BSl1
response”). The BUI data in BS2 was analyzed using multiple
linear regression. For the BS2 data, Variance Inflation Factors
(VIF) (Montgomery & Peck 1992) and r?yegiciion Were
calculated for each of the fits.’® The Box-Cox transformation?®
was performed on the BUI values to confirm the correct
transformation. (Note: the transformed BUI is now referred to as
the “BS2 response”’.) The regression analysis was done on an
IBM RS/6000 320 RISC Workstation. Splus was used to
compute gim for BS1; Minitab was used for BS2. The
methodology of analysisincluded the following six step strategy:

Step |: The model was fit to the initial factors logP, HBN,
MW, Val, M1, M2, Platt Index and R1-R4 indices, and the
significance was analyzed via t-values and r?. Residuals versus
fitted values were plotted and outliers noted. Plots were made of
response versus factor, as were al the partial residual plots.
These were analyzed (first and second order regressions were
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Table 1: Test set molecules based on brain/plasma concentration ratios

ComPOUNDS IN DATA SET BS1 COMPOUNDS IN DATA SET BS2
Compoundsthat crossthe Compoundsthat do not cross Compoundsthat crossthe Compoundsthat do not cross
BBB the BBB BBB the BBB
Antipyrine? Acebutolol® Antipyrine® Aldosterone®
Bromperidol4% Atenolol%32 Beta-Phenethylamine? Ascorbic Acid®
Bupropion® Atropine?® Caffeine® Chloramphenicol 1
Carbamazepine?’ 3,4-Dimethyl oxynorepinephrine® Carbisocaine'®® Cortisol*
Chlorpromazing?*2>28 Dopamine®® Codeine® Cytosine Arabinoside®
Diazepam?®® Epinephrine® Corticosterone* Dopamine®
3,4-DiMethoxyl-N- Mesoridazone?* Diazepam?© Epinephrine?
M ethyl Epinephrine® Norepinephrine?337 Ethanol 38 Glutamine?
3,4-DiMethyloxyepinephrine® Paragphrine® Felbamate? Histamine??
Fluphenazine** Reserpine?® Heroin3® 5-Hydroxytryptamine?
Hal operidol?428 Sotalol% Heptacaing'®4! 5-lodo-2-Deoxyuriding®®
Imipramine?>3t Triamterene® Imipramine®® Mannitol4
Metoprolol3? I sopropanol 38 Mescaline?
N-M ethyl metagprine® Levomethadone® Methotrexate®®
Phenobarbital 3 Nicotine® Morphine®
Phenytoin3 Paral dehyde?° Norepinephring?!2?
Promazine?*2> Phenobarbital 2038 Putrescine®
Propranol 0]28:32.3435 Phenytoin'® Spermidine*
Rolipram3® Procaine® Spermine®
Sulforidazine?* Testosterone® Sucrose®
Thioridazine?* Tryptamine? Tyramine?
Thyrotropin Releasing Tryptophol ©
Hormone® Zonisamide!®?

(Literature references for each drug given in suprascript)

Table 2; Additional Molecules Added to TS1 and TS2 Data Sets

Drugsthat crossthe BBB
Bicuculline®®
Clonidine?47
Desipramine®
Hydoxyzine*

M etoclopramide®
M etrizamide®
Pentylenetetrazole*
Perphenazine®
Promethrazine®
Tamitinol®

Drugsthat do not crossthe
BBB

Baclofen!

Carebastine®

Cetirizing?52

Loperamide®

Ranitidine®

Roxatidine>

Trimelamol >

(Literature references for each drug given in suprascript)
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performed) to determine if higher-order terms were needed,
which were then implemented.

Step 11: Multiple techniques were employed to reduce the
number of variables required. Factors whose t-values indicated a
lack of significance were removed gradually, the regression was
re-run, and the r? (and VIF, rzpred for BS2) were compared.
Stepwise and best-subsets regression were employed when
necessary.

Step 111: Any outliers identified in Part | were removed from
the data set, and Part || was repeated.

Step |'V: Those equations that appeared significant were then
tested with their appropriate test set; P, P, values defined above
were used.

Step V: After noting the apparent lack of predictability by
logP, (logP)? was introduced as a factor, and Parts I-IV were
repeated.

Step VI: As two previous studies®’® have suggested the
relationship log(BUI)* sgrt(MW) = k*logP+ b, this simple linear
regression was aso executed on BS2, as was
log(BUI)*sgrt(MW) regressed on HBN. Furthermore, in accord
with these previous studies, logP* MW-% and HBN* MW-% were
introduced as additiona factors for BS2 and Parts I-IV were
repeated.
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REsULTS

The prediction cutoffs were determined to be: P, BPP= 0.35;
Pg, BPP = 0.15; P, BUI = 0.30; Py, BUI = 0.15. The Box-Cox
transformation plot for BUI data in BS2 had a considerable
minimum at | = 0, which means that there is a minimum sum of
squares error when BUI is transformed to In(BUI). The partial
residua plots and the plots of response vs. factor indicated no
need for any transformation or addition of terms.

M esoradazine was an outlier for the BS1 data. Sucrose was an
outlier for the BS2 data for the original regression (and after
(logP)? was added as afactor). However, no outliers were present
once the factors of logP*MW5 and HBN*MW5 were
introduced into the model.

The significant regression results are summarized in Tables 3-5.

DiscussioN

This study employs 14 different descriptors (See Table 6). As
a descriptor of molecular bulk, MW is the most common
predictor of size in examinations of BBB diffusibility;>6°10 Vol
isalso alogical estimator. As a physiochemical descriptor, logP
isacommonly used predictor of lipophilicity. (LogP)? was added
as an additional lipophilicity predictor because initia results
indicated that logPwas not significant. Although this unexpected
observation is in apparent contradiction with the literature,
Hansch et al'® have indicated that (logP)? is an acceptable
physiochemical measure of lipophilicity. Electronic descriptors
reflect desolvation properties. Since a molecule must break
hydrogen bonds within its surrounding water hydration shell
prior to crossing the BBB, 2 hydrogen bonding ability should be
a good predictor of ability to cross. Accordingly, HBN was
provided as another predictor. Finally, descriptors of the
molecul €' s topological complexity should be considered since a
highly branched molecule and a linear one with the same
molecular weight may diffuse across the BBB differently. A
molecule with a linear alkyl chain may insert among the alkyl
tails of membrane phospholipids, whereas an analogous, but
more branched molecule, will behave differently.

In the drug design literature, BPR and BUI have been used for
more than twenty years; they are established and “time-
honoured” accepted indices. Although some of the data date back
more than 15 years, BPR and BUI were chosen because they
have an extensive history of use as indices of cerebral access for
drug molecules. In recent years, the permeability coefficient-
surface area product (PA) has emerged as arigorous, quantitative
and analytically sound measure of blood-brain transfer.
Currently, a large body of experimental data of calculated PA’'s
across mammalian cerebral microvasculature is also appearing in
the literature. In future refinements of our mathematical
algorithm for crossing the BBB, the PA will be a logica
replacement for the BPR and BUI asindices of brain penetration.

Many molecules have had their BPRs reported, thus
rendering BPR a useful measure of diffusibility. Statistically, as
BPR is a ratio, conversion to a percentage between 0 and 1
alows regression via a general linearized model with the logit
transformation. This alowed utilization of both non-simple
linear regression and simple linear regression, optimizing the
advantages of both regression techniques. Using both techniques
prevented the results from being prejudiced by an initia
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assumption that a certain model would provide the best fit.
However, there are problems with using BPR. The most
significant problem is that different authors calculate BPR at
different times post injection: e.g. if amolecule has a BPR at 40
minutes post injection, there is no certainty that its BPR at three
hours post injection will be the same. To address this difficulty,
where possible, the average BPR was used. Ancther problem
was that a diverse range of mammals was used to calculate BPR;
different species may have different BPR values for the same
molecule. It is for these reasons that the BPR results are treated
with caution; an equation is considered only if ahigh correlation
was achieved.

The BUI is another widely used experimental method for
measuring BBB permeability. The technique is relatively
standardized, and thus literature results are consistent and
comparable. As OEBUI£infinity and regression analysis requires
a response between (-)infinity and (+)infinity, a transformation
was required. Ln(BUI) fulfills this requirement; the Box-Cox
method assured that this was correct.

Aswith BPR, however, there are problems with using BUI.
The BUI was chosen because it is standard technique; virtualy all
the data comes from experimentation on rats, and measurements
are done precisely 15 seconds post injection. The only
discrepancy is that a slightly modified version of Oldendorf’s
original method is also in use®° However, it has been noted that
these methods are essentially the same for molecules that cross:
e.g., the BBB permesability for the drug zonisamide has been
determined by both methods and the two results agree.®'%2° There
may be a problem for molecules that do not cross; indeed,
norepinephrine has aBUI of 1.20 by one method?* and 4.5 by
another.?> However, this was not a problem because
norepinephrine was the only molecule that did not cross which
had BUI calculated by Oldendorf’s second method. Since both
methods are the same for molecules that cross, then, essentially
all of the data used herein were calculated by one method.

The molecules chosen to form the data set were selected to
optimize the likelihood that the method of BBB traversal was by
passive diffusion. Traditionally in drug design, a number of
“classic trans-BBB transport systems” are recognized: D-glucose
transporter, large neutral amino acid transporter, carboxylic acid
transporter. Accordingly, any molecule structurally resembling
D-glucose, L-phenylalanine or other actively transported
molecules were rejected. This restriction was applied because no
equation can be derived confidently to determine if a molecule
will be actively transported; either it has a specific transporter, or
it does not. Inclusion of transported molecules would skew the
equation because they have a different BUI than similar non-
transported molecules. However, it is extremely difficult to
correctly identify actively transported molecules. Although the
“classic trans-BBB transporters’ are recognized, P-glycoprotein
and other drug efflux transporters aso seem to play amajor role
in determining blood-brain barrier distribution; unfortunately,
these transport systems are too promiscuous to alow their
substrates to be categorically identified prospectively. Therefore,
it is possible that certain molecules included in our data set may
in fact cross the BBB by active transport rather than by passive
diffusion. While this is a potential limitation of our study, it is
offset by the fact that the number of such actively transported
moleculesis small in number.
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Table 3: Regression Resultsfor BS1

Stage Equation R?
1a-S1 y=0.4884-0.287* HBN-0.117* M2+0.245* P| 0.318
la-S2 y=7.143+0.520* |ogP-0.0570* Vol +1.717* HBN+0.153* PI +1.313* R3-2.335* R4+0.00755* Vol * HBN 0.600
Ib-S1 y=-0.427-0.328* HBN+0.876* R3-0.721* R4 0.480
1b-S2  y=5.6707+0.671*logP-0.021* MW-1.492* HBN+0.093* M 2+0.9296* R3-3.089* R4+0.2097* HBN* R3 0.687
2a-S1 same as 1a-S1
2532 y=5.902-0.568* HBN+0.434* | ogP-0.0199* (IogP)?-0.852* R3+0.117* HBN* (logP)? 0.722
2b-S1 same as 1b-S1
2b-S2*  y=4.2634+0.8979* 0gP-0.3524* HBN-0.4218* R1 +0.8153* R2-0.4885* R3-0.0694* |ogP* HBN-0.0454* | ogP* R1 0.751
NOTE: vy refersto the response (logit(BPP)); S1 refers to stepwise of order 1; S2 refers to stepwise of order 2.
Stage 1. Before the addition of (logP)? as a factor: a): before removal of outlier; b): after removal of outlier.
Stage 2:  After the addition of (logP)? as a factor: a): before removal of outlier; b): after removal of outlier.
*Further elimination was done to remove predictors with low t-values which did not contribute greatly to the overal fit.
Table 4: Stepwise Regression Resultsfor BS2
Stage Equation R? R?%p #
laSl y=4.188-0.341*HBN 535 453 0
1a-S2 y=4.26+0.90*0gP-0.352* HBN-0.422* R1 +0.815* R?-0.489* R3-0.0694* logP* HBN-0.0454*logP*R1  .751 .662 5
1b-S1  y=4.01-0.436*HBN+0.379* R?-0.378*R3 .668 614 0
1b-S2  y=3.45+1.80*logP-0.322* HBN-0.664* M 1+0.629* M 2-0.895* Pl +5.09* R?-0.343* R3+ 0.02* Vol

-0.106*logP*HBN-0.577*logP* R2 +0.0371*logP* M 1 .824 543 9
2a-S1 y=3.97+0.042* (logP)?-0.35* HBN+0.0443* PI-0.374* R3 .618 482 2
2a-32 y=3.74+1.36* logP+0.233* (logP)?-0.374* HBN-0.768* M 1+0.344* M 2+1.19* R1+3.32* R? -0.391*R3

-0.131* logP* R1-0.012* (logP)?* R1 79 535 9
2b-S1  y=4.25+0.0259* (logP)?-0.412* HBN +0.0486* PI-0.41* R3 .662 .593 2
2b-S2  y=3.76+1.36*10gP+0.23* (logP)?-0.368* HBN-0.765* M 1+0.342* M 2+1.18*R1+3.31* R? -0.389* R3

-0.131*logP* R1-0.012* (logP)?* R1 793 .613 9
NOTE: y refers to the response (In(BUI))
R2p refersto Rzpredi ction
# refers to the number of predictors with Variance Inflation Factor larger than 10.
S1 refers to stepwise of order 1; S2 refers to stepwise of order 2.
Stage 1: Before the addition of (logP)? as a factor: a): before removal of outlier; b): after removal of outlier.
Stage2:  After the addition of (logP)2 as afactor: a): before removal of outlier; b): after removal of outlier.
Table 5: Summary of Regression Results with Introduction of HBN*MW-% and logP*MW-% as Predictor Variables
Method Equation R? R%p #
1 log(BUI)* MW0O5 = 36,3 + 7.71*logP 526 481 -
2 log(BUI)* MW?05 = 60.3 - 4.75*HBN 417 327 -
Be3 y=4.88-0.119* R3+0.0375* (logP)?-5.84* HBN* MW-05 .624 .536 0
Bed y=4.11-1.05*0gP-0.367* HBN+0.0547* (logP)? +16.7*logP* MW-05 .643 547 2
Be5 y=5.01-0.0153* MW+0.641* R?-0.331* R3+0.0501* (logP)?-5.38* HBN* M\W-05 .678 571 2
Be6 y=3.92-1.35%|0gP-0.412* HBN+0.363* R2-0.377* R3+0.0622* (logP)2+20.2* | ogP* MW-05 691 574 4

As above, y refers to the response (In(BUI))
Method 1, 2 : Comparison with equations previously suggested.
Be - Best Subsets Model of given order.
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Table 6: List of Biophysical Descriptors Employed in Study

A. Physiochemical Descriptors (measure of solubility and ability to
cross the blood-brain barrier)

1.  logP- octanol/water partition coefficient

2. (logP)? — square of logP

B. Electronic Descriptor (measure of electron distribution
properties)

3. Hydrogen Bonding Number (HBN) — number of hydrogen
bonding donors/acceptors

C. Topological Descriptors— Graph Theory Indices (measure of
molecular “branching”)

4. Zagreb Topological Index M1

5. Zagreb Topological Index M2

6. Platt Topological Index

7. Randic Topological Index R1

8. Randic Topological Index R2

9. Randic Topological Index R3

10. Randic Topologica Index R4

D. Topological Descriptors — Molecular Bulk Indices (measure of
molecular volume/size)

11. Molecular Weight

12. Molecular Volume

E. Composite“Hybrid” Descriptors (capturing combined
properties from Groups A-D)

13. logP*MW-05

14. HBN*MW?05

Another restriction applied when assembling the data set was
that large numbers of structurally similar molecules were not
included. Inclusion of a large number of similar molecules
within a given analogue series would cause the regression
equation to be weighted to those values contained in the similar
set. However, these values may not be an accurate measure for a
random molecule. Restricting the number of similar molecules
makes the data sets more homologous to a pseudo-random
sample.

All BS1 molecules known to cross the BBB had BPP 0.35.
While some BPP values of molecules that do not cross the BBB
exceeded the Py, BPPof 0.15, 0.15 was set as the maximal upper
limit. A value of 0.20, for example, meant that 20% of the drug
was present in the brain; this is a considerable amount, and
suggests that the drug has an ability to cross. From BS2, there
was a distinction between molecules with BUI in single digits,
and those over 20%. Rationally, substances with an uptake less
tahn 15% of water do not cross. However, once the uptake
reaches 30% of that of water, crossing is indicated; these values
were therefore selected as the cut-offs.

As inclusion of nonsignificant factors decreases model
predictability, stepwise and best-subsets regression were utilized
to find the minimum set of descriptors that significantly
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explained the response. Furthermore, any models with factors
that were highly correlated (indicated by VIF greater than 10)
were viewed with great caution, as high correlation suggests that
the regression coefficients are poorly estimated. 16

The best BPP model is derived from stepwise regression.
However, even though the second order models have somewhat
better 12 and satisfy the test sets better, they are not representative
models because there is no biological basis to include the
presence of mixed second order terms. Hence, the choice is
between the two first order models with the best BPP model
being:

BPP=  exp (-0.427 - .328HBN + .876R3 - .721R4)
1+ exp (-0.427 - .328HBN + .876R3 - .721R4)

However, al BPP models were poor predictors of the ability
of test set molecules to cross the BBB. It appears that the BPP
models predict erroneously high BPP values.

From best subsets regressions, the most significant model
(based on 12, rzpred and VIF) isthe model of order three (after the
outlier was removed). When compared with the results from the
stepwise regression, the stepwise second order results cannot be
considered significant due to alack of biological basisto include
mixed terms. As well, all of these models have serious
multicollinearity problems. While some of the stepwise first
order models have a better 12, asthey all have lower 2, and/or
a considerable multicollinearity problem, the best subsets model
sill appears optimal. With regard to the models after
introduction of HBN*MW-%5 and logP*MW-%5, these too also
have lower r2, ., and/or correlation among the variables.

Nevertheless, the best subsets model is not the best predictor
model. While it does predict those molecules that cross with the
most accuracy, it has the least accuracy for those molecules that
do not cross. In particular, the model 2b-S1 is a better overall
predictor. It has a similar 1% a dlightly lower r2 . however,
there is the presence of some multicollinearity. As well, Be5
(after removal of outlier) also is a better overall predictor, with a
higher r2 and 2., but multicollinearity problems. It is these
multicollinearity problems that cause the choice of the initia
best subsets regression as the best overall model:

In(BUI) = 4.01-0.436* HBN+0.379* R?-0.378* R3.

The final BUI equation is the best model to predict trans-BBB
diffusibility. Not only doesit have a better r? than the BPPmodel
and predicts the test set much better, but also the problems
involved with using the BPP data are avoided. This model is
intuitive: the greater the hydrogen-bonding ability, the lower
ability to cross. Aswell, atopological indication of branching is
a better predictor of molecular bulk than MW.

The model has good accuracy, with an r2 = 67% indicating
significant correlation. Although it is a good predictor of ability
to cross for molecules that do so (accurate 77% of the time and
only returns an inaccurate answer 8% of thetime), itisonly afair
predictor of inability to cross (accurate 44%, but inaccurate 33%
of the time). A probable reason that prediction (and thus by
implication the fit) is worse for molecules that do not cross can
be seen from an examination of BS2. There are 21 moleculesthat
do not cross; all have BUIE10%. Since there are many molecules
with different values of the predictors scattered over arelatively
small response range (as opposed to 24 molecules with
0.2£BUI£130 for those that cross), it will be difficult to ascertain
an accurate fit. It is possible that there is no equation, based on
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the factors of lipophilicity and size alone, which predicts
diffusibility with great accuracy.

The accuracy of our results is similar to those suggested by
earlier authors:
logP, = -4.605+0.4115log P((MW)%9], r?=0.83 (Levin®) (P, is
permeability coefficient.)
log(BUI)*sgrt(MW) = 6.02logP+ 14.5, r? = 0.74 (Cornford et al°)
log(BUI)* sgrt(MW) = -3.77HBN + 30.78, > = 0.34 (Cornford et d®)
log(BUI)*sgrt(MW) = 7.3logP + 17.7, r?> = 0.74 (Bezek°)

Although cross publication comparisons of models based on
r2 derived from different data sets are not necessarily reliable,
they are nevertheless a good indication that our model is as good
(or better) than previously published models.

It is significant to note that the equation derived in this study
does not have logPas a predictor, which appears to disagree with
literature precedent. Arguably, there may be a physical basis for
this observation. LogPmay be too specific and “pure” a measure
of lipophilicity for BBB penetrability. It does not adequately
encompass the full spectrum of molecular events as a drug
molecule is desolvated prior to diffusion into the BBB. From a
thermodynamic perspective, the energy associate with water-
drug hydrogen bond breaking (as the drug leaves the agueous
serum prior to entering the lipid membrane) may constitute a
more significant factor than vaguer hydrophobic interactions and
lack thereof between the membrane and molecule as represented
by logP. Thus, molecules with different logPbut same HBN may
have (by this argument) similar BBB penetrability.

In addition, the discrepancy may aso have a dtatistical
explanation. The fact that logP was insignificant in the equation
derived herein does not mean that it is not an effective predictor
of ability to cross (i.e. log(BUI)*sgrt(MW) on logP has high r?),
but that it has low last-in p-valueg/t-ratio. Last-in t-values are a
measure of the significance of aregressor variable after al of the
effects of al of the other regressor variables are taken in to
account. Hence, it could be that the predictability of logP is
simply accounted for by a combination of the other regressor
variables of size and lipophilicity.

A method to predict the BBB diffusibility of a molecule is
given by the equation: BUI = exp(4.01-0.436HBN+0.379R?-
0.378R3). A response of BUI £ 15% indicates that the molecule
does not cross; a response of BUI 3 30% indicates that the
molecule crosses. A vaue 15% £ BUI £ 30% indicates that the
equation cannot accurately determine if the molecule will cross.
The data used to derive this equation indicated good correlation,
with r? = 66.8%, and r?, o4 = 61.4%. This equation indicates that
the HBN and Randic topological indices areimportant predictors
of ahility to traverse the BBB. The HBN reflects a variety of
properties including sites of hydration on the molecule which
must be desolvated prior to crossing the BBB. The Randic
indices, as described by Balaban et al,*? are complex descriptors
which reflect the size and branching complexity of the drug
molecule.

The development of thisa gorithm isan important first stepin
the creation of a computer program with which to predict the
ability of any drug molecule to cross the BBB, thereby
influencing neurological function. As a result of bioinformatics,
chemoinformatics and other informatics-based technologies, the
number of small molecules being developed as potentia
therapeutics is increasing exponentially. A computer-based
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method to predict BBB penetrability will be a much-needed tool
for the evaluation of these molecules.
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