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Abstract
We establish a McKay correspondence for finite and linearly reductive subgroup schemes of SL2 in positive
characteristic. As an application, we obtain a McKay correspondence for all rational double point singularities in
characteristic 𝑝 ≥ 7. We discuss linearly reductive quotient singularities and canonical lifts over the ring of Witt
vectors. In dimension 2, we establish simultaneous resolutions of singularities of these canonical lifts via G-Hilbert
schemes. In the appendix, we discuss several approaches towards the notion of conjugacy classes for finite group
schemes: This is an ingredient in McKay correspondences, but also of independent interest.
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1. Introduction

1.1. Klein’s classification and McKay’s correspondence

Felix Klein [Kl84] classified finite subgroups G of SL2(C): up to conjugation, there are two infinite
series and three isolated cases.
1. The associated quotient singularity C2/𝐺 is called a Klein singularity and the singularities arising

this way are precisely the rational double point singularities. Its minimal resolution of singularities
is a union of P1’s, whose dual intersection graph Γ is a simply-laced Dynkin diagram of finite type,
that is, of type 𝐴𝑛, 𝐷𝑛, 𝐸6, 𝐸7 or 𝐸8.

2. John McKay [Mc80] associated a finite graph Γ̂ to 𝐺 ⊂ SL2 (C), whose vertices correspond to the
isomorphism classes of the simple representations of G. This graph is a Dynkin diagram of affine
type 𝐴𝑛, 𝐷𝑛, 𝐸6, 𝐸7 or 𝐸8.

3. After these preparations, the classical McKay correspondence consists of the following observations:
(a) The graph Γ is obtained from Γ̂ by removing the vertex corresponding to the trivial representation.
(b) There exists a bijection between conjugacy classes of G, vertices of Γ̂ and isomorphism classes

of simple representations of G.
(c) There exists a bijection between finite subgroups of SL2 (C) up to conjugacy, the above Dynkin

diagrams of affine type, Klein singularities and the above Dynkin diagrams of finite type.
By now, there are various approaches to and a vast literature on this subject, such as [Kn85, Ko85,

Mc80, Mc81, St85] and many more. Also, there are now generalisations into very different directions:

https://doi.org/10.1017/fms.2024.98 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.98


Forum of Mathematics, Sigma 3

higher dimensional algebraic geometry [Re02], K-theory [GV83], derived categories of coherent sheaves
[BKR01, KV00], representations of quivers [Ki16], non-commutative geometry and Hopf algebras
[CKWZ16] and string theory [Aetal09] - just to mention a few.

1.2. Positive characteristic

Now, let k be an algebraically closed field of characteristic 𝑝 > 0.

1.2.1. Wild McKay correspondence
The classical McKay correspondence as sketched above is still partially available over k if G is assumed
to be a finite subgroup of SL2(𝑘) of order prime to p - this is the tame case. If p divides the order of
G - this is the modular or wild case - then this correspondence breaks down. We refer to Yasuda’s surveys
[Ya22, Ya23] about conjectures and partial results concerning such wild McKay correspondences.

1.2.2. Linearly reductive McKay correspondence
In this article, we show that if G is a finite and linearly reductive subgroup scheme of SL2,𝑘 , then
there is a reasonable version of the classical McKay correspondence. For example, we obtain a McKay
correspondence for all rational double point singularities if 𝑝 ≥ 7. Instead of considering groups,
we allow non-reduced group schemes over k, but we require their categories of k-linear and finite-
dimensional representations to be semi-simple. We refer to [TY20] about conjectures and partial results
concerning a McKay correspondence for the group scheme 𝜶𝑝 , which is not linearly reductive.

Thus, let G be a finite and linearly reductive subgroup scheme of SL2,𝑘 with 𝑝 ≥ 7. (In this
introduction, we will exclude small characteristics whenever this is makes our discussion easier.) Let
𝑥 ∈ 𝑋 := 𝑈/𝐺 with 𝑈 = A2

𝑘 or 𝑈 = Â
2
𝑘 be the associated Klein singularity, which is a rational double

point. One goal of this article is to define a notion of conjugacy class for G, to construct graphs Γ and
Γ̂ and to establish bijections as above.

Let us make three comments:

1. It is interesting in its own that a McKay correspondence can be extended from finite group schemes
of length prime to p, that is, the tame case, to linearly reductive group schemes.

2. What makes this linearly reductive McKay correspondence really interesting is that the bijection in
Theorem 1.1 is not true when considering finite groups of order prime to p only, see Example 1.2.

3. Probably, many more aspects of the classical McKay correspondence can be carried over to the
linearly reductive setting, but rather than writing a whole monograph, we decided to establish only
some basic bijections.

1.3. Linearly reductive group schemes

Let G be a finite and linearly reductive group scheme over an algebraically closed field k of charac-
teristic 𝑝 ≥ 0. By definition, this means that the category Rep𝑘 (𝐺) of k-linear and finite-dimensional
representations of G is semi-simple.

If 𝑝 = 0, then every finite group scheme over k is étale and linearly reductive. and in fact, it is the
constant group scheme associated to a finite group. In fact, the functor 𝐺 ↦→ 𝐺abs := 𝐺 (𝑘) induces an
equivalence of categories between finite group schemes over k and finite groups.

If 𝑝 > 0, then every linearly reductive group scheme admits a canonical semi-direct product decom-
position

𝐺 � 𝐺◦ � 𝐺 ét,

where 𝐺 ét is a group scheme of length prime to p (and thus, the constant group scheme associated to
a finite group of order prime to p) and where 𝐺◦ is infinitesimal and diagonalisable. The latter implies
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that 𝐺◦ is a product of group schemes of the form 𝝁𝑝𝑛 . Conversely, every such semi-direct product of
a diagonalisable group scheme with the constant group scheme associated to a finite group of order
prime to p is linearly reductive. This structure result is usually attributed to Nagata [Na61], but see also
[AOV08], [Ch92] and [Ha15]. Linearly reductive group schemes over k strictly contains the class of
constant group schemes associated to finite groups of order prime to p.

1.3.1. Abstract groups
Associated to G, there is an abstract finite group 𝐺abs and we refer for the slightly technical definition
to Section 2.2. The order of 𝐺abs is equal to the length of G. For example, if G is étale over k, then we
have 𝐺abs � 𝐺 (𝑘). The assignment 𝐺 ↦→ 𝐺abs establishes an equivalence of categories{

finite linearly reductive
group schemes over 𝑘

}
↔

{
finite groups with a
unique 𝑝-Sylow subgroup

}
, (1.1)

see [LMM21] and Lemma 2.2.

1.3.2. Canonical lifts
In [LMM21], we showed that if G is a finite and linearly reductive group scheme, then there exists a lift
of G over the ring of Witt vectors 𝑊 (𝑘). We note that 𝐺◦ and 𝐺 ét even lift uniquely to 𝑊 (𝑘) and we
define the canonical lift 𝐺can → Spec 𝐾 of G to be the unique lift that is a semi-direct product of the
lifts of 𝐺◦ and 𝐺 ét. Any lift of G to some extension field of K becomes isomorphic to 𝐺can after possibly
passing to some further field extension. Moreover, the finite group 𝐺can(𝐾) is isomorphic to 𝐺abs.

1.3.3. Representation theory
By [LMM21] and Proposition 2.6, there exist canonical equivalences of representation categories

Rep𝑘 (𝐺) → Rep𝐾 (𝐺can,𝐾 ) → RepC (𝐺abs) (1.2)

that are compatible with degrees, direct sums, tensor products, duals and simplicity. These equivalences
induce isomorphisms of rings

𝐾𝑘 (𝐺) → 𝐾𝐾 (𝐺can,𝐾 ) → 𝐾C(𝐺abs),

see Corollary 2.8. Here, 𝐾𝐹 (𝐺) denotes the K-group associated to F-linear and finite-dimensional G-
representations.

1.3.4. Hopf algebras
If G is a finite group scheme over k, then the multiplication map turns 𝐻0(𝐺,O𝐺) into a finite-
dimensional Hopf algebra over k. We discuss finite group schemes and among them the linearly reductive
ones from the point of Hopf algebras in Appendix A.

1.4. Linearly reductive subgroup schemes of SL2,𝑘

Let k be an algebraically closed field of characteristic 𝑝 ≥ 0. Hashimoto [Ha15] extended Klein’s
classification [Kl84] of finite subgroups of SL2(C) up to conjugation to the setting of finite and linearly
reductive subgroup schemes of SL2,𝑘 . If 𝑝 ≥ 7, then one obtains a list analogous to Klein’s classical
list. If 𝑝 ∈ {2, 3, 5}, then some classical cases are missing, but there are no new cases.

1.5. McKay graph and McKay correspondence

Let G be a finite and linearly reductive subgroup scheme of SL2,𝑘 . As in McKay’s original construction
[Mc80], we associate an affine Dynkin diagram Γ̂ to G, its embedding into SL2,𝑘 and the set of
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isomorphism classes of simple representations of G. This is the McKay graph associated to this data.
In fact, we will see that it is compatible with the equivalences induced by (1.1) and (1.2) and we refer
to Section 3.1 for details. We establish the following version of McKay’s theorem [Mc80] in positive
characteristic.

Theorem 1.1 (Theorem 3.6). Let k be an algebraically closed field of characteristic 𝑝 ≥ 0. There
exists a bijection between non-trivial, finite and linearly reductive subgroup schemes of SL2,𝑘 up to
conjugation and affine Dynkin graphs of type

𝐴𝑛, 𝐷𝑛, 𝐸6, 𝐸7, 𝐸8 if 𝑝 = 0 or 𝑝 ≥ 7,
𝐴𝑛, 𝐷𝑛, 𝐸6, 𝐸7 if 𝑝 = 5,
𝐴𝑛, 𝐷𝑛 if 𝑝 = 3,
𝐴𝑛 if 𝑝 = 2.

By construction, this bijection is compatible with the classical McKay correspondence via the lifting
results and the equivalences (1.1), (1.2).

Example 1.2. The linearly reductive group scheme corresponding to 𝐴𝑛 is 𝝁𝑛+1. This group scheme
is reduced, that is, étale, if and only if p does not divide 𝑛 + 1. In particular, it is crucial to allow
non-reduced group schemes in order to obtain a bijection as in characteristic zero.

1.6. Linearly reductive quotient singularities

Consider GL2,𝑘 with its usual linear action on 𝑈 = A2
𝑘 or 𝑈 = Â

2
𝑘 . If G is a finite, linearly reductive

and very small (see Definition 4.1) subgroup scheme of GL2,𝑘 , then the associated quotient singularity
𝑥 ∈ 𝑋 := 𝑈/𝐺 is a two-dimensional linearly reductive quotient singularity in the sense of [LMM21].
By loc.cit., such a singularity determines G together with its embedding 𝐺 → GL2,𝑘 up to isomorphism
and conjugation, respectively.

In Section 4.3, we will see that a minimal resolution of singularities of a two-dimensional linearly
reductive quotient singularity 𝑥 ∈ 𝑋 = 𝑈/𝐺 is provided by the G-Hilbert scheme

𝜋 : 𝐺-Hilb(𝑈) → 𝑈/𝐺, (1.3)

which generalises work of Ishii, Ito and Nakamura [IN19, IN99].

Remark 1.3. In dimension two, a linearly reductive quotient singularity is the same as an F-regular
singularity [LMM21]. Thus, every two-dimensional F-regular singularity can be resolved by a suitable
G-Hilbert scheme, see also Remark 4.6.

If moreover G is a subgroup scheme of SL2,𝑘 , then 𝑥 ∈ 𝑋 = 𝑈/𝐺 is called a Klein singularity. Klein
singularities are rational double point singularities. If 𝑝 = 0 or 𝑝 ≥ 7, then conversely every rational
double point is a Klein singularity by Hashimoto [Ha15] and, independently, by [LS14]. If 𝑝 ∈ {2, 3, 5},
then not every rational double point is a Klein singularity.

1.7. Canonical lifts and simultaneous resolutions

Let G be a very small, finite and linearly reductive subgroup scheme of GL2,𝑘 and let 𝑥 ∈ 𝑋 = 𝑈/𝐺 be
the associated linearly reductive quotient singularity. Assume 𝑝 > 0 and let 𝑊 (𝑘) be the ring of Witt
vectors of k. In Section 4.4, we will establish the existence of a canonical lift

Xcan → Spec 𝑊 (𝑘)
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of 𝑥 ∈ 𝑋 = 𝑈/𝐺. Using G-Hilbert schemes in families, we will see in Section 4.5 that it admits a
simultaneous and minimal resolution of singularities

�̃� : Y → Xcan → Spec 𝑊 (𝑘).

We will prove this resolution to be unique, see Theorem 4.10.

1.8. McKay correspondence for Klein singularities

Let G be a finite and linearly reductive subgroup scheme of SL2,𝑘 and let 𝑥 ∈ 𝑋 = 𝑈/𝐺 be the associated
Klein singularity.

As discussed in Section 1.5, we have the McKay graph Γ̂ associated to G, its embedding into SL2,𝑘
and the set of isomorphism classes of simple representations of G.

Let 𝜋 : 𝑌 → 𝑋 be a minimal resolution of singularities. Since 𝑥 ∈ 𝑋 is a rational double point,
the exceptional divisor Exc(𝜋) of 𝜋 is a configuration of P1’s, whose dual intersection graph Γ is a
simply-laced Dynkin diagram.

Theorem 1.4 (Theorem 5.3). Let k be an algebraically closed field of characteristic 𝑝 ≥ 0. Let G be a
finite and linearly reductive subgroup scheme of SL2,𝑘 and let 𝑥 ∈ 𝑋 = 𝑈/𝐺 be the associated Klein
singularity. Then, there exists a natural bijection of the graph Γ with the graph obtained from Γ̂ by
removing the vertex corresponding to the trivial representation.

Since every rational double point in characteristic 𝑝 ≥ 7 is a Klein singularity, we obtain the following.

Corollary 1.5. There exists a linearly reductive McKay correspondence for rational double point
singularities in every characteristic 𝑝 ≥ 7.

To establish this theorem, we use the Ishii-Ito-Nakamura resolution of singularities (1.3), as well as
Hecke correspondences as in the work of Ito and Nakamura [IN99] and Nakajima [Na96, Na01].

1.9. Generalisations and variants

Let G be a very small, finite and linearly reductive subgroup scheme of GL2,𝑘 and let 𝑥 ∈ 𝑋 = 𝑈/𝐺 be
the associated two-dimensional linearly reductive quotient singularity. Let 𝜋 : 𝑌 → 𝑋 be the minimal
resolution of singularities and let Exc(𝜋) be the exceptional divisor of 𝜋.

1. In Theorem 5.4, we associate a representation of G to each point of Exc(𝜋). This generalises results
of Ishii and Nakamura [Is02, IN19].

2. In Theorem 5.6, we establish a bijection between the components of Exc(𝜋) and reflexive
O𝑋 -modules. Probably, this result should be viewed as a theorem on two-dimensional F-regular
singularities, see Remark 5.7. It generalises work of Artin and Verdier [AV85], Wunram [Wu88] and
Ishii and Nakamura [IN19].

3. In Theorem 7.1, we establish an equivalence of derived categories of coherent sheaves D(𝑌 ) and
D𝐺 (𝑈) (G-equivariant sheaves on U). This generalises work of Kapranov and Vasserot [KV00],
Bridgeland, King and Reid [BKR01] and Ishii, Nakamura and Ueda [Is02, IN19, IU15]. Of course,
these articles themselves generalise work of Gonzalez-Sprinberg and Verdier [GV83] from K-theory
to derived categories of coherent sheaves.

1.10. Ito-Reid correspondence

If G is a finite subgroup of SL2(C), then Ito and Reid [IR96] found a natural bijection, the Ito-Reid
correspondence, between the conjugacy classes of G and the vertices of the McKay graph Γ̂.

Theorem 1.6. Let k be an algebraically closed field of characteristic 𝑝 ≥ 0. There exists an Ito-Reid
correspondence for finite and linearly reductive subgroup schemes of SL2,𝑘 .
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This can be proven using lifting results and the Ito-Reid correspondence over C, see Section 6.3 for
details.

The main difficulty is to define a notion of conjugacy class for finite and linearly reductive group
schemes that makes such a correspondence work: Let us recall the ring 𝐾𝑘 (𝐺) from Section 1.3.3. If G is
a finite and linearly reductive group scheme over k, then we define the set of conjugacy classes of G to be

Spec (C ⊗ 𝐾𝑘 (𝐺)).

At first sight, this might look rather artificial. One should think of it as defining conjugacy classes to
be “dual” to simple representations. Moreover, our definition is compatible with lifting over 𝑊 (𝑘) and
it induces a bijection of the conjugacy classes of G with the conjugacy classes of 𝐺abs. We refer to
Section 6.1 and Appendix B.2 for details.

1.11. Conjugacy classes

In Theorem 1.6, we had to find a definition of conjugacy classes that makes this theorem true. This begs
for the question whether there are other definitions or approaches, which is a question that is interesting
in its own.

Let G be a finite group scheme (not necessarily linearly reductive) over an algebraically closed field
k. In Appendix B, we study the following approaches to the notion of the set of conjugacy classes of G:

1. The set of conjugacy classes 𝐺 (𝑘)/∼ of the group of k-rational points of G.
2. The spectrum of 𝐹 ⊗ 𝐾𝑘 (𝐺), where F is a field of characteristic zero that contains “sufficiently

many” roots of unity.
3. The scheme that represents the functor of conjugacy classes from schemes over k to sets defined by

𝑆 ↦→ 𝐺 (𝑆)/∼,
4. the isotypical component of the trivial representation of the adjoint representation of G.
5. The simple subrepresentations of the extended adjoint representations Ad𝐴 and Ad(𝐴∗), which are

defined using the quantum doubles of the Hopf algebra 𝐴 := 𝐻0(𝐺,O𝐺) and its dual 𝐴∗.

All approaches lead essentially to the “same answer” in characteristic zero. However, they usually lead
to very different notions in positive characteristic. On the other hand, all approaches have their merits
and drawbacks. For linearly reductive group schemes, the approach (2) leads to a definition that is
compatible with lifting and that leads to an Ito-Reid correspondence.

1.12. Organisation of this article

- In Section 2, we recall basic facts about finite and linearly reductive group schemes over algebraically
closed fields.

- In Section 3, we construct the McKay graph Γ̂. The main result is Theorem 3.6, a McKay correspon-
dence.

- In Section 4, we recall basic facts about linearly reductive quotient singularities. We establish an Ishii-
Ito-Nakamura-type resolution of singularities, the canonical lift of such a singularity and a unique
simultaneous resolution of singularities of the canonical lift.

- In Section 5, we revisit the Ishii-Ito-Nakamura-type resolution 𝜋 of singularities of 𝑥 ∈ 𝑋 = 𝑈/𝐺 and
we introduce Hecke correspondences, which leads to Theorem 5.3, a bijection between simple and
non-trivial representations of G and components of 𝜋. We also study generalisations of this result to
two-dimensional linearly reductive quotient singularities.

- In Section 6, we establish an Ito-Reid correspondence between conjugacy classes of G and exceptional
divisors in the minimal resolution of singularities of 𝑥 ∈ 𝑋 = 𝑈/𝐺.

- In Section 7, we study derived categories of G-equivariant sheaves on U and on the minimal resolution
𝜋 : 𝑌 → 𝑋 = 𝑈/𝐺.
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- In Appendix A, we recall results on finite group schemes from the point of view of Hopf algebras.
We recall the adjoint representation, quantum doubles and the extended adjoint representation.

- In Appendix B, we study several approaches toward the notion of a conjugacy class for finite group
schemes.

2. Linearly reductive group schemes

In this section, we recall a couple of general facts about finite and linearly reductive group schemes
over algebraically closed fields. We discuss the close relationship between such a group scheme G
and a certain abstracted group 𝐺abs associated to it. For the relationship to Hopf algebras, we refer to
Appendix A.

2.1. Group schemes

Let G be a finite group scheme over an algebraically closed field k of characteristic 𝑝 ≥ 0. Since k is
perfect, there is a short exact sequence of finite group schemes over k

1 → 𝐺◦ → 𝐺 → 𝐺 ét → 1, (2.1)

where 𝐺◦ is the connected component of the identity and where 𝐺 ét is an étale group scheme over k.
The reduction 𝐺red → 𝐺 provides a canonical splitting of (2.1) and we obtain a canonical semi-direct
product decomposition 𝐺 � 𝐺◦ �𝐺 ét. Since k is algebraically closed, 𝐺 ét is the constant group scheme
associated to the finite group 𝐺 (𝑘) = 𝐺 ét (𝑘) of k-rational points. Moreover, 𝐺◦ is an infinitesimal group
scheme of length equal to some power of p. In particular, if 𝑝 = 0 or if the length of G is prime to p,
then 𝐺◦ is trivial and then, G is étale.

If M is a finitely generated abelian group, then the group algebra 𝑘 [𝑀] carries a Hopf algebra
structure and the associated commutative group scheme is denoted 𝐷 (𝑀) := Spec 𝑘 [𝑀]. By definition,
such group schemes are called diagonalisable. For example, we have 𝐷 (C𝑛) � 𝝁𝑛, where C𝑛 denotes
the cyclic group of order n. We have that 𝝁𝑛 is étale over k if and only if 𝑝 � 𝑛.

A finite group scheme G over k is said to be linearly reductive if every k-linear and finite-dimensional
representation of G is semi-simple. If 𝑝 = 0, then all finite group schemes over k are étale and linearly
reductive. If 𝑝 > 0, then, by a theorem that is often attributed to Nagata [Na61, Theorem 2] (but see
also [AOV08, Proposition 2.10], [Ch92] and [Ha15, Section 2]), a finite group scheme over k is linearly
reductive if and only if it is an extension of a finite and étale group scheme, whose length is prime to p,
by a diagonalisable group scheme.

2.2. Abstract groups and canonical lifts

Let G be a finite and linearly reductive group scheme over an algebraically closed field k of characteristic
𝑝 > 0. Following [LMM21, Section 2], we study the finite group

𝐺abs :=
(
((𝐺◦)𝐷 (𝑘))

C

)𝐷
(C) � 𝐺 ét (𝑘).

Here, −𝐷 denotes Hom(−,G𝑚), the Cartier dual, of a commutative and finite group scheme. If G is
étale, then 𝐺abs = 𝐺 (𝑘) and if 𝐺 = 𝝁𝑝𝑛 , then 𝐺abs = C𝑝𝑛 . In any case, the order of 𝐺abs is equal to the
length of G.

Definition 2.1. The finite group 𝐺abs is called the abstract finite group associated to G.

Lemma 2.2. The functor

𝐺 ↦→ 𝐺abs
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establishes an equivalence of categories between the category of finite and linearly reductive group
schemes over k and the category of finite groups with a normal and abelian p-Sylow subgroup.

Proof. [LMM21, Lemma 2.1]. �

Remark 2.3. A finite group G with a normal and abelian p-Sylow subgroup P is the same as a finite
group with a unique and abelian p-Sylow subgroup. In this case, the Schur-Zassenhaus theorem implies
that G is isomorphic to a semi-direct product 𝑃 � 𝐺/𝑃.

Next, we study lifts to characteristic zero: let 𝑊 (𝑘) be the ring of Witt vectors of k, let K be its field
of fractions and let 𝐾 be an algebraic closure of K. By [LMM21, Proposition 2.4], there exist lifts of G
as finite and flat group scheme over 𝑊 (𝑘). More precisely, 𝐺◦ and 𝐺 ét even lift uniquely to 𝑊 (𝑘), but
their extension class usually does not, see also [LMM21, Example 2.6]. However, there is a unique lift
Gcan of G to 𝑊 (𝑘) that is characterised by being a semi-direct product of the unique lift of 𝐺◦ with the
unique lift of 𝐺 ét.

Definition 2.4. The liftGcan → Spec𝑊 (𝑘) is called the canonical lift of G. We set𝐺can := G𝐾 → Spec𝐾
and also call it canonical lift.

Every other lift of G to some extension of 𝑅 ⊇ 𝑊 (𝑘) differs from Gcan,𝑅 by a twist and thus, there is
only one geometric lift of G to 𝐾 up to isomorphism, namely 𝐺can,𝐾 , see [LMM21, Section 2.2].

Since 𝐾 is algebraically closed and of characteristic zero, 𝐺can,𝐾 is the constant group scheme
associated to the finite group 𝐺can(𝐾). In fact, we have 𝐺◦ �

∏
𝑖 𝝁𝑝𝑛𝑖 for some 𝑛𝑖’s and if we set

𝑁 := max{𝑛𝑖}𝑖 , fix a primitive 𝑝𝑁 .th root of unity 𝜁𝑝𝑁 and set 𝐾𝑁 := 𝐾 (𝜁𝑝𝑁 ), then 𝐺can,𝐾𝑁 is the
constant group scheme associated to the finite group 𝐺can(𝐾𝑁 ) and we have 𝐺can(𝐾𝑁 ) = 𝐺can(𝐾).

Lemma 2.5. There exist isomorphisms of finite groups

𝐺abs � 𝐺can(𝐾𝑁 ) = 𝐺can(𝐾).

In particular, there exist isomorphisms

𝐺can,𝐾𝑁 �
(
𝐺abs

)
𝐾𝑁

and 𝐺can,𝐾 �
(
𝐺abs

)
𝐾

of finite group schemes over 𝐾𝑁 and 𝐾 , respectively.

2.3. Representation theory

Let k be an algebraically closed field of characteristic 𝑝 > 0, and let 𝑊 (𝑘), K and 𝐾 be as in the
previous section. The equivalence of Lemma 2.2 can be extended to representations and K-theory. If G
is a finite group or a finite group scheme over k, we denote by Rep𝑘 (𝐺) the category of its k-linear and
finite-dimensional representations. Let us first recall [LMM21, Corollary 2.11].

Proposition 2.6. Let G be a finite and linearly reductive group scheme over k. Then, there exist canonical
equivalences of categories

Rep𝑘 (𝐺) → Rep𝐾𝑁
(𝐺can,𝐾𝑁 ) → Rep𝐾 (𝐺can,𝐾 ) → RepC(𝐺abs),

which are compatible with degrees, direct sums, tensor products, duals and simplicity.

Remark 2.7. In particular, this allows us to define characters or even a character table of G via
Proposition 2.6 and 𝐺abs.

Let 𝐾𝑘 (𝐺) be the K-group associated to Rep𝑘 (𝐺). In fact, 𝐾𝑘 (𝐺) has a natural structure of a
commutative ring with one, where the sum (resp. product) structure comes from direct sums (resp.
tensor products) of representations. A straightforward application of Proposition 2.6 is the following.
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Corollary 2.8. There exist isomorphisms of rings

𝐾𝑘 (𝐺) → 𝐾𝐾𝑁 (𝐺can,𝐾𝑁 ) → 𝐾𝐾 (𝐺can,𝐾 ) → 𝐾C(𝐺abs).

3. McKay graph and McKay correspondence

In this section, we introduce the McKay graph associated to a finite and linearly reductive subgroup
scheme G over an algebraically closed field k of characteristic 𝑝 ≥ 0 and a representation 𝜌 : 𝐺 →
GL𝑛,𝑘 . This induces a bijection between certain affine Dynkin diagrams and finite and linearly reductive
subgroup schemes of SL2,𝑘 . As an application, we establish a linearly reductive McKay correspondence.

3.1. McKay graph

Let G be a finite and linearly reductive group scheme over an algebraically closed field k of characteristic
𝑝 ≥ 0. Let {𝜌𝑖}𝑖 be the finite set of isomorphism classes of k-linear and simple representations of G.
Following tradition, we assume that 𝜌0 is the trivial representation. We fix a representation 𝜌 : 𝐺 →
GL(𝑉). If G is a subgroup scheme of SL𝑛,𝑘 or GL𝑛,𝑘 , then 𝜌 is usually the linear representation
corresponding to the embedding of G into this linear algebraic group. By assumption, Rep𝑘 (𝐺) is semi-
simple. Therefore, there exist unique integers 𝑎𝑖 𝑗 ∈ Z≥0 for each i, such that we have isomorphisms of
k-linear representations

𝜌 ⊗ 𝜌𝑖 �
⊕
𝑗

𝜌
⊕𝑎𝑖 𝑗
𝑗 .

Associated to this data, we define the McKay graph, denoted Γ(𝐺, {𝜌𝑖}, 𝜌):

- The vertices are the {𝜌𝑖}𝑖 . (Some sources exclude the the trivial representation 𝜌0.)
- There are 𝑎𝑖 𝑗 edges from the vertex corresponding to 𝜌𝑖 to the vertex corresponding to 𝜌 𝑗 .

We now establish a couple of elementary properties of this graph, which are well-known in the classical
case and which immediately carry over to the linearly reductive situation. We leave the proof of the first
lemma to the reader.

Lemma 3.1. We have

𝑎𝑖 𝑗 = dim𝑘 Hom(𝜌𝑖 , 𝜌 𝑗 ⊗ 𝜌).

In particular, if 𝜌 is self-dual, that is, 𝜌 � 𝜌∨, then 𝑎𝑖 𝑗 = 𝑎 𝑗𝑖 for all 𝑖, 𝑗 . In this case, we can consider
Γ(𝐺, {𝜌𝑖}, 𝜌) as an undirected graph.

Lemma 3.2. Let 𝜌 : 𝐺 → SL2,𝑘 be a homomorphism of group schemes over k, considered as a 2-
dimensional representation. Then, 𝜌 is self-dual.

Proof. Being a 2-dimensional representation, 𝜌∨ is isomorphic to 𝜌⊗det(𝜌) and the lemma follows. �

Lemma 3.3. Let 𝜌 : 𝐺 → GL𝑛,𝑘 be a faithful representation. Then, every irreducible representation
of G occurs as subrepresentation of 𝜌⊗𝑚 for some suitable m.

Proof. This is well-known for finite groups. Using Proposition 2.6, it carries over to finite and linearly
reductive group schemes. �

Corollary 3.4. If 𝜌 is a faithful representation, then the graph Γ(𝐺, {𝜌𝑖}, 𝜌) is connected.

Proof. It suffices to note that the number of paths in Γ of length m that connect the vertices corresponding
to 𝜌𝑖 and 𝜌 𝑗 is equal to the multiplicity of 𝜌𝑖 in 𝜌 𝑗 ⊗ 𝜌

⊗𝑚, see, for example, the proof of [Ki16, Theorem
8.13]. �
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Let k be an algebraically closed field of characteristic 𝑝 > 0, and let 𝑊 (𝑘), K and 𝐾 be as in
Section 2.2. There, we also discussed the canonical lift 𝐺can of G over K and we saw that there exists
an isomorphism of finite groups 𝐺abs � 𝐺can(𝐾). Proposition 2.6 implies the following result.

Proposition 3.5. Let G be a finite and linearly reductive group scheme over k. Let {𝜌𝑖}𝑖 be the set of
isomorphism classes of simple representations of G. Let 𝜌 be a finite-dimensional representation of G.

1. Proposition 2.6 yields sets of representations {𝜌can,𝑖}𝑖 and {𝜌abs,𝑖}𝑖 of 𝐺can and 𝐺abs, respectively,
which are the sets of isomorphism classes of simple representations of 𝐺can and 𝐺abs, respectively.

2. Proposition 2.6 yields representations 𝜌can and 𝜌abs of 𝐺can and 𝐺abs, respectively.

This data leads to a bijection of the three McKay graphs

Γ(𝐺, {𝜌𝑖}𝑖 , 𝜌), Γ(𝐺can, {𝜌can,𝑖}𝑖 , 𝜌can), Γ(𝐺abs, {𝜌abs,𝑖}𝑖 , 𝜌abs).

3.2. McKay correspondence

We now run through the classical McKay correspondence [Mc80] in our setting, where we follow [Ki16,
Section 8.3]. Let k be an algebraically closed field of characteristic 𝑝 ≥ 0 and let G be a finite and
linearly reductive subgroup scheme of SL2,𝑘 .

1. The K-group 𝐾𝑘 (𝐺) carries a symmetric bilinear form

([𝑉], [𝑊])0 := dim𝑘 Hom𝐺 (𝑉,𝑊).

2. We consider the closed embedding 𝐺 → SL2,𝑘 as a 2-dimensional representation 𝜌 : 𝐺 → SL2,𝑘 →
GL2,𝑘 and define an operator

𝐴 : 𝐾𝑘 (𝐺) → 𝐾𝑘 (𝐺), [𝑉] ↦→ [𝑉] ⊗ 𝜌 .

Since 𝜌 is self-dual by Lemma 3.2, it follows that A is symmetric with respect to (−,−)0, see
[Ki16, Lemma 8.12].

3. Using 𝜌, we define a symmetric bilinear form on 𝐾𝑘 (𝐺) ⊗Z R by

([𝑉], [𝑊]) := ([𝑉], (2 − 𝐴) [𝑊])0,

which is positive semi-definite. The class 𝛿 ∈ 𝐾𝑘 (𝐺) of the regular representation of G generates
the radical of (−,−).

4. Let {𝜌𝑖} be the set of isomorphism classes of simple representations of G.
(a) The McKay graph Γ̂ = Γ(𝐺, {𝜌𝑖}𝑖 , 𝜌) is an affine Dynkin diagram of type 𝐴𝑛, 𝐷𝑛 with 𝑛 ≥ 4,

𝐸6, 𝐸7 or 𝐸8.
(b) After removing the vertex corresponding to the trivial representation 𝜌0 from Γ̂, we obtain a

finite Dynkin diagram of type 𝐴𝑛, 𝐷𝑛 with 𝑛 ≥ 4, 𝐸6, 𝐸7 or 𝐸8, respectively.

If G is a finite subgroup of SL2 (C), then these statements are part of the classical McKay correspondence,
see [Mc80] or [Ki16, Section 8.3]. In our setting of finite and linearly reductive subgroup schemes of
SL2,𝑘 , the above claims immediately follow from the classical McKay correspondence together with
the lifting results Proposition 2.6 and Proposition 3.5. We then obtain the following analog of McKay’s
theorem [Mc80].
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Theorem 3.6. Let k be an algebraically closed field of characteristic 𝑝 ≥ 0. There exists a bijection
between finite, non-trivial and linearly reductive subgroup schemes of SL2,𝑘 up to conjugation and
affine Dynkin diagrams of type

𝐴𝑛, 𝐷𝑛, 𝐸6, 𝐸7, 𝐸8 if 𝑝 = 0 or 𝑝 ≥ 7,
𝐴𝑛, 𝐷𝑛, 𝐸6, 𝐸7 if 𝑝 = 5,
𝐴𝑛, 𝐷𝑛 if 𝑝 = 3 and
𝐴𝑛 if 𝑝 = 2.

Proof. If 𝑝 = 0, then this is part of the classical McKay correspondence. If 𝑝 > 0, then this follows from
the linearly reductive McKay correspondence just discussed together with Hashimoto’s classification
[Ha15, Theorem 3.8] of finite and linearly reductive subgroup schemes of SL2,𝑘 . �

Remark 3.7. The linearly reductive group schemes corresponding to 𝐸6, 𝐸7 and 𝐸8 are étale and
correspond to finite groups of order prime to p. The linearly reductive group scheme corresponding to
𝐴𝑛 (resp. 𝐷𝑛) is étale if and only if 𝑝 � (𝑛 + 1) (resp. 𝑝 � (𝑛 − 2)). We refer to [LS14, Proposition 4.2]
for details. Thus, even if p is sufficiently large, then one does not obtain a bijection in Theorem 3.6 with
finite groups of order to prime to p only.

Remark 3.8. Steinberg [St85] established many properties of the McKay graph and the McKay corre-
spondence for finite subgroups of SU2(C) without using classification lists. It seems plausible to obtain
a proof of Theorem 3.6 along these lines without using lifting results or classification lists.

4. Linearly reductive quotient singularities

In this section, we recall linearly reductive quotient singularities in the sense of [LMM21] and some
general results, including the canonical lift of such a singularity over the ring of Witt vectors. In
dimension two, we establish a minimal resolution of singularities using G-Hilbert schemes as in the
work of Ishii, Ito and Nakamura [Is02, IN19, IN99]. We also show that the canonical lift admits a unique
minimal and simultaneous resolution of singularities. Finally, we discuss Klein singularities and their
relation to rational double point singularities.

4.1. Quotient singularities

Let k be an algebraically closed field of characteristic 𝑝 ≥ 0. If G is a finite and linearly reductive
group scheme over k, if V is a finite-dimensional k-vector space and if 𝜌 : 𝐺 → GL(𝑉) is a linear
representation, then we define the 𝜆-invariant of 𝜌 as in [LMM21, Definition 2.7] to be

𝜆(𝜌) := max
{id}≠𝝁𝑛⊆𝐺

dim𝑉 𝝁𝑛 ,

where 𝑉 𝝁𝑛 denotes the subspace of 𝝁𝑛-invariants. As explained in [LMM21, Remark 2.8], the repre-
sentation 𝜌 is faithful if and only if 𝜆(𝜌) ≠ dim𝑉 . Moreover, 𝜌 contains no pseudo-reflections if and
only if 𝜆(𝜌) ≤ dim𝑉 − 2 and in this case, the representation 𝜌 is said to be small.

Definition 4.1. The representation 𝜌 is called very small if 𝜆(𝜌) = 0.

Note that in dimension two the notions of small and very small coincide. We refer to [LMM21,
Section 3] for the classification of finite and linearly reductive group schemes that admit a very small
representation. By [LMM21, Proposition 6.5], 𝜆(𝜌) is equal to the dimension of the non-free locus of
the induced G-action on the spectrum of the formal power series ring 𝑘 [[𝑉∨]] = (𝑘 [𝑉∨])∧. Following
[LMM21, Definition 6.4] and using the linearisation result [LMM21, Proposition 6.3], we define:
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Definition 4.2. A linearly reductive quotient singularity over k is an isolated singularity that is analyti-
cally isomorphic to Spec 𝑘 [[𝑉∨]]𝐺 , where G is a finite and linearly reductive group scheme over k and
where 𝜌 : 𝐺 → GL(𝑉) is a very small representation.

Remark 4.3. We set 𝑈 := Spec 𝑘 [𝑉∨] or 𝑈 := Spec 𝑘 [[𝑉∨]] and simply write 𝑥 ∈ 𝑋 = 𝑈/𝐺 with the
assumptions of Definition 4.2 implicitly understood.

Properties of these singularities have been studied in [LMM21]: for their local étale fundamental
groups, class groups and F-signatures, we refer to [LMM21, Section 7].

By [LMM21, Theorem 8.1], a linearly reductive quotient singularity determines the finite and linearly
reductive group scheme G together with the very small representation 𝜌 : 𝐺 → GL(𝑉) uniquely up to
isomorphism and conjugacy, respectively. It thus makes sense to refer to 𝜌(𝐺) ⊂ GL(𝑉) as the finite and
linearly reductive subgroup scheme of GL(𝑉) associated to the linearly reductive quotient singularity
𝑥 ∈ 𝑋 = 𝑈/𝐺. In particular, the classification of linearly reductive quotient singularities in dimension
d is “the same” as the classification of very small, finite and linearly reductive subgroup schemes of
GL𝑑,𝑘 up to conjugacy. We refer to [LMM21, Section 3] for details and this classification.

4.2. Minimal resolution of singularities

If 𝑥 ∈ 𝑋 is a normal surface singularity, then it admits a unique minimal resolution of singularities

𝜋 : 𝑌 → 𝑋.

If 𝑥 ∈ 𝑋 is moreover a rational singularity, then the exceptional locus of 𝜋 is a union of P1’s, whose dual
intersection graph Γ contains no cycles. The graph Γ is called the type of 𝑥 ∈ 𝑋 . If the type determines
the singularity up to analytic isomorphism, then the singularity is said to be taut.

Over C, taut singularities have been classified by Laufer [La73]. For example, two-dimensional finite
quotient singularities over C are taut. Since two-dimensional linearly reductive quotient singularities
over algebraically closed fields of positive characteristic are F-regular (see [LMM21, Proposition 7.1]),
they are taut by Tanaka’s theorem [Ta15].

Remark 4.4. Very small, finite and linearly reductive subgroup schemes of GL2,𝑘 have been classified
in [LMM21, Theorem 3.4], extending Brieskorn’s classification [Br67, Satz 2.9] of small subgroups of
GL2(C). The types of the associated quotient singularities in terms of this classification are given by
[Br67, Satz 2.11].

Finite and linearly reductive subgroup schemes of SL2,𝑘 are automatically very small and they have
been classified by Hashimoto [Ha15, Theorem 3.8], extending Klein’s classification [Kl84] of finite
subgroups of SL2(C) and we refer to [Ha15, LS14] for the types of the associated quotient singularities
(see also Theorem 4.12 below).

4.3. The Ishii-Ito-Nakamura resolution

In [IN99], Ito and Nakamura showed that if G is a finite subgroup of SL2 (C), then a minimal resolution
of singularities of C2/𝐺 is provided by the G-Hilbert scheme 𝐺-Hilb(C2). Ishii [Is02] extended this to
quotient singularities C2/𝐺 for G a finite and very small subgroup of GL2(C) and Ishii and Nakamura
[IN19] extended this to quotient singularities 𝑈/𝐺 for G a finite and very small subgroup of GL2 (𝑘) of
order prime to p.

Let k be an algebraically closed field of characteristic 𝑝 ≥ 0. Let G be a very small, finite and linearly
reductive subgroup scheme of GL2,𝑘 . Set 𝑈 := A2

𝑘 or Â
2
𝑘 and let 𝑥 ∈ 𝑋 := 𝑈/𝐺 be the associated

linearly reductive quotient singularity. By [Bl11], there exists a G-Hilbert scheme 𝐺-Hilb(𝑈) over k
that parametrises zero-dimensional G-invariant subschemes 𝑍 ⊂ 𝑈 (so-called clusters), such that the
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G-representation on 𝐻0(𝑍,O𝑍 ) is the regular representation. Taking a cluster Z to its G-orbit (see, for
example, [Bl11, Remark 3.3]) induces a morphism

𝜋 : 𝑌 := 𝐺-Hilb(𝑈) → 𝑈/𝐺 = 𝑋

over k.

Theorem 4.5. The morphism 𝜋 is a minimal resolution of singularities.

Proof. If 𝑝 = 0, then this is shown in [IN19], extending [IN99]. If 𝑝 > 0 and G is of length prime to p,
then this is shown in [IN19]. However, this proof also works if G is linearly reductive and p divides the
length of G. �

Remark 4.6. By [LMM21, Theorem 11.5], every two-dimensional F-regular singularity 𝑥 ∈ 𝑋 is a
linearly reductive quotient singularity, say 𝑥 ∈ 𝑋 = 𝑈/𝐺 for some finite and linearly reductive subgroup
scheme G of GL2,𝑘 . By [LMM21, Theorem 8.1], G and its embedding into GL2,𝑘 are unique up to
isomorphism and conjugacy, respectively. By Theorem 4.5, 𝐺-Hilb(𝑈) → 𝑈/𝐺 = 𝑋 � 𝑥 is the minimal
resolution of singularities. In particular, every two-dimensional F-regular singularity can be resolved by
a suitable G-Hilbert scheme.

4.4. Canonical lifts

Let k be an algebraically closed field of characteristic 𝑝 > 0, let 𝑊 (𝑘) be the ring of Witt vectors, let K
be its field of fractions and let 𝐾 be an algebraic closure. Let 𝑥 ∈ 𝑋 = 𝑈/𝐺 be a d-dimensional linearly
reductive singularity, where 𝑈 = A𝑑

𝑘 or 𝑈 = Â
𝑑

𝑘 . Next, we set U := A𝑑
𝑊 (𝑘) or Â

𝑑

𝑊 (𝑘) , respectively. In
Section 2.2, we recalled the canonical lift Gcan of G over 𝑊 (𝑘). By [LMM21, Proposition 2.9], there
exists a unique lift of the G-action from U to U . From this, we obtain a flat family

Xcan := U/Gcan → Spec 𝑊 (𝑘) . (4.1)

of linearly reductive quotient singularities over 𝑊 (𝑘), whose special fibre over k is 𝑥 ∈ 𝑋 = 𝑈/𝐺.

Definition 4.7. The family (4.1) is called the canonical lift of the linearly reductive quotient singularity
𝑥 ∈ 𝑋 = 𝑈/𝐺.

By the Lefschetz principle, the geometric generic fibre of Xcan can be identified with a finite quotient
singularity of the form C𝑑/𝐺abs, where 𝐺abs is the abstract group associated to G and the embedding
of 𝐺abs → GL𝑑 (C) corresponds to the embedding 𝐺 → GL𝑑,𝑘 provided by Proposition 2.6. The
canonical lift is unique in the following sense:

Proposition 4.8. We keep the notations and assumptions. Let𝑊 (𝑘) ⊆ 𝑅 be a finite extension of complete
DVRs and let X → Spec 𝑅 be a lift of 𝑥 ∈ 𝑋 that is of the form V/G → Spec 𝑅 for some flat lift G of G
to R and V � U ×𝑅 𝑆. Then, there exists a finite extension 𝑅 ⊆ 𝑆 of complete DVRs, such that

1. There exists an isomorphism

Gcan ×𝑊 (𝑘) 𝑆 � G ×𝑅 𝑆

of group schemes over S.
2. The very small representation 𝜌 : 𝐺 → GL𝑑,𝑘 corresponding to the G-action on U lifts uniquely to

Gcan and G, respectively, and they become conjugate over S.
3. There is an isomorphism

Xcan ×𝑊 (𝑘) 𝑆 � X ×𝑅 𝑆

of deformations of 𝑥 ∈ 𝑋 over S.
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Proof. Since G and Gcan,𝑅 are lifts of G to R, they become isomorphic after passing to a finite extension
𝑅 ⊆ 𝑆, see also the discussion in Section 2.2. There, we also saw that the linear representation
𝜌 : 𝐺 → GL𝑑,𝑘 lifts uniquely to G and Gcan, respectively, and that they become conjugate over S. From
this, we deduce an isomorphism Xcan ×𝑊 (𝑘) 𝑆 � X ×𝑅 𝑆. �

Remark 4.9. If 𝑑 ≥ 3, then [LMM21, Corollary 10.10] shows that a d-dimensional linearly reductive
quotient singularity 𝑥 ∈ 𝑋 admits precisely one lift over 𝑊 (𝑘), namely the canonical lift. If 𝑑 = 2,
then linearly reductive quotient singularities usually have positive dimensional deformation spaces and
admit many non-isomorphic lifts to 𝑊 (𝑘), see [LMM21, Section 12].

4.5. Simultaneous resolution of singularities

If X → 𝑆 is a deformation of a rational double point singularity 𝑥 ∈ 𝑋 , then it admits a simultaneous
resolution of singularities, but usually only after some finite base-change 𝑆′ → 𝑆, see [Ar74]. In the
case where X → 𝑆 is a family of rational surface singularities, then such a finite 𝑆′ → 𝑆 exists if S
maps to the so-called Artin component inside the versal deformation space of 𝑥 ∈ 𝑋 . Moreover, due to
the existence of flops, these simultaneous resolutions (if they exist) are not unique in general.

In the special case where 𝑥 ∈ 𝑋 is a two-dimensional linearly reductive quotient singularity over
some algebraically closed field k of characteristic 𝑝 > 0 and where Xcan → Spec𝑊 (𝑘) is the canonical
lift of 𝑥 ∈ 𝑋 , we will now show that there exists a simultaneous and minimal resolution of singularities
over 𝑊 (𝑘) and that it is unique. This simultaneous resolution can be most elegantly constructed using
the Ishii-Ito-Nakamura resolution from Section 4.3 in families.

Let k be an algebraically closed field of characteristic 𝑝 > 0. Let G be a finite and linearly reductive
group scheme over k and let 𝜌 : 𝐺 → GL2,𝑘 be a very small representation. Let Gcan → Spec 𝑊 (𝑘) be
the canonical lift of G and let �̃� : Gcan → GL2,𝑊 (𝑘) be the lift of 𝜌 to 𝑊 (𝑘). Let U := A2

𝑊 (𝑘) and let

Xcan := U/Gcan → Spec 𝑊 (𝑘)

be the canonical lift of 𝑥 ∈ 𝑋 . By [Bl11], there exists a Gcan-Hilbert scheme

Gcan-Hilb(U ) → Spec 𝑊 (𝑘)

that parametrises Gcan-invariant subschemes 𝑍 ⊂ U that are finite and flat over 𝑊 (𝑘) (so-called
Gcan−clusters) and such that the Gcan-representation on 𝐻0(𝑍,O𝑍 ) is the regular representation. Taking
such a cluster Z to its Gcan-orbit (see, for example, [Bl11, Remark 3.3]) induces a morphism

�̃� : Y := Gcan-Hilb(U ) → U/Gcan = Xcan (4.2)

over 𝑊 (𝑘).

Theorem 4.10. Keeping the assumptions and notations

�̃� : Y → X → Spec 𝑊 (𝑘)

is a simultaneous minimal resolution of singularities of the canonical liftX → Spec𝑊 (𝑘) of the linearly
reductive quotient singularity 𝑥 ∈ 𝑋 = 𝑈/𝐺.

1. The simultaneous resolution �̃� is unique up to isomorphism.
2. The exceptional locus of �̃� is a union of P1

𝑊 (𝑘) ’s meeting transversally and we denote by Γ its dual
intersection graph.

3. The special fibre and the generic fibre are linearly reductive quotient singularities of type Γ and �̃�
identifies the components of the exceptional loci of �̃�𝑘 and �̃�𝐾 .
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Proof. We recall that we defined 𝐺can := Gcan,𝐾 , which will simplify the notation in the following. The
generic and special fibre of (4.2) over K and k are isomorphic to

𝐺can-Hilb(U𝐾 ) → U𝐾 /𝐺can → Spec 𝐾
and 𝐺-Hilb(𝑈) → 𝑈/𝐺 → Spec 𝑘,

respectively, by [Bl11, Remark 3.1]. Now,𝐺can,𝐾 -Hilb(U𝐾 ) → U𝐾 /𝐺can,𝐾 and𝐺-Hilb(𝑈) → 𝑈/𝐺, are
minimal resolutions of singularities by Theorem 4.5. Thus, 𝐺can-Hilb(U𝐾 ) → U𝐾 /𝐺can is a resolution
of singularities, which is minimal since it is minimal over 𝐾 . Thus, Y → X → Spec 𝑊 (𝑘) is a
simultaneous minimal resolution of singularities.

The exceptional fibres �̃�𝐾 and �̃�𝑘 of �̃� over K and k are unions of P1’s that intersect transversally.
The types, that is dual resolution graphs, associated to �̃�𝐾 and �̃�𝑘 are the same (see also Remark 4.4)
and we denote this graph by Γ. In particular, the exceptional fibres of �̃�𝐾 and �̃�𝑘 have the same numbers
of irreducible components. In particular, the specialisation maps of Néron-Severi lattices

NS(Y𝐾 ) ← NS(Y) → NS(Y𝑘 )

are isometries of lattices. These identify the components of the exceptional loci of �̃�𝐾 and �̃�𝑘 . Moreover,
given such a component of the exceptional locus of �̃�𝑘 , it is isomorphic to P1

𝑘 and it extends uniquely
to a P1

𝑊 (𝑘) in the exceptional locus of �̃�. This establishes claims (2) and (3).
It remains to prove claim (1): LetY ′ → X → Spec𝑊 (𝑘) be a simultaneous resolution of singularities

that coincides with the minimal resolution on special and generic fibres, respectively. Let 𝛼 : Y ′𝐾 → Y𝐾

be an isomorphism over X𝐾 and choose a relatively (to X ) ample invertible sheaf L on Y𝐾 . Then, 𝛼∗L
is relatively ample on Y𝐾 . Since the types of the singularities of X𝐾 and X𝑘 are the same, the fibres
of Y ′𝐾 → X𝐾 and Y ′𝑘 → Y𝑘 contain the same number of exceptional divisors. Thus, the specialisation
map of Néron-Severi lattices NS(Y ′𝐾 ) → NS(Y ′𝑘 ) is an injective map between two lattices of the
same rank and the same discriminant, whence an isometry. Similarly, the specialisation map of Néron-
Severi lattices NS(Y𝐾 ) → NS(Y𝑘 ) is an isometry. In particular, we can identify the components of the
exceptional loci of Y𝐾 and Y𝑘 . (If the types of X𝑘 and X𝐾 differ, then this specialisation map is usually
only injective, there are usually more (−2)-curves in the special fibre and this is also the place where
the difficulties with flops begin.) In particular, L and 𝛼∗L extend to relative ample invertible sheaves
on Y and Y ′, respectively. By [Ko09, Theorem 5.14], the isomorphism 𝛼 extends to an isomorphism
Y ′ → Y over X and the claimed uniqueness follows. �

4.6. Rational double point singularities and Klein singularities

We specialise Definition 4.2 to the following case.
Definition 4.11. A Klein singularity is a linearly reductive quotient singularity as in Definition 4.2 with
dim𝑉 = 2 and det 𝜌 = 1, that is, 𝜌 is a homomorphism of G to SL2,𝑘 .

In particular, a Klein singularity is a two-dimensional and linearly reductive quotient singularity, it
is a rational surface singularity, and since det(𝜌) = 1, it is Gorenstein. Quite generally, rational and
Gorenstein surface singularities are precisely the rational double point singularities [Ar66]. We refer to
[Du79] or [SSS] for more background on surface singularities and rational double point singularities.

If 𝑥 ∈ 𝑋 is a rational double point, then its type Γ is a simply-laced finite Dynkin graph. In
characteristic zero, every rational double point singularity is taut. In positive characteristic, a Klein
singularity is F-regular and thus, taut. In the case of rational double points, this also follows from Artin’s
explicit classification [Ar77]. On the other hand, rational double point singularities that are not F-regular
need not be taut. We have the following relation between rational double point singularities and Klein
singularities in positive characteristic, see [LMM21, Theorem 11.2].
Theorem 4.12. Let k be an algebraically closed field of characteristic 𝑝 ≥ 0. Let 𝑥 ∈ 𝑋 be a normal
surface singularity over k.
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1. If 𝑝 = 0 or 𝑝 ≥ 7, then 𝑥 ∈ 𝑋 is a Klein singularity if and only if 𝑥 ∈ 𝑋 is a rational double point
singularity.

2. If 𝑝 > 0, then 𝑥 ∈ 𝑋 is a Klein singularity if and only if 𝑥 ∈ 𝑋 is a rational double point singularity
and F-regular. The finite Dynkin graphs of these singularities are of type

𝐴𝑛, 𝐷𝑛, 𝐸6, 𝐸7, 𝐸8 if 𝑝 ≥ 7,
𝐴𝑛, 𝐷𝑛, 𝐸6, 𝐸7 if 𝑝 = 5,
𝐴𝑛, 𝐷𝑛 if 𝑝 = 3,
𝐴𝑛 if 𝑝 = 2.

A Klein singularity 𝑥 ∈ 𝑋 = 𝑈/𝐺 is a linearly reductive quotient singularity and thus, determines G
and 𝜌 : 𝐺 → SL2,𝑘 up to isomorphism and conjugacy, respectively. Thus, the classification of Klein
singularities boils down to the classification of finite and linearly reductive subgroup schemes of SL2,𝑘
and we refer to Remark 4.4 for this classification.

Remark 4.13. Theorem 3.6 and Theorem 4.12 rely on the classification of finite and linearly reductive
subgroup schemes of SL2,𝑘 . It is therefore no surprise that the classification lists coincide.

5. Hecke correspondences

Let 𝑥 ∈ 𝑋 = 𝑈/𝐺 be a Klein singularity over an algebraically closed field k of characteristic 𝑝 > 0.
In Section 2.2, we discussed the canonical lift X → Spec 𝑊 (𝑘) of 𝑥 ∈ 𝑋 and in Section 4.5 we
established a simultaneous minimal resolution of singularities of the canonical lift. More precisely, this
simultaneous resolution was constructed using G-Hilbert schemes extending previous work of Ishii, Ito
and Nakamura [Is02, IN19, IN99].

In this section, we refine this resolution of singularities as in the work of Ito and Nakamura [IN99]
and Nakajima [Na96, Na01]: we eventually obtain a bijection between the components of the minimal
resolution of singularities of the Klein singularity 𝑥 ∈ 𝑋 = 𝑈/𝐺 and the simple and non-trivial
representations of G using special Hecke correspondences.

5.1. The Ito-Nakamura resolution revisited

We first slightly extend the setup of Section 4.3. Let k be an algebraically closed field of characteristic
𝑝 > 0 and let 𝑥 ∈ 𝑋 = 𝑈/𝐺 be a Klein singularity as in Definition 4.11, that is, we have 𝑈 = A2

𝑘 and G
a very small, finite and linearly reductive subgroup scheme of SL2,𝑘 .

Let {𝜌𝑖}𝑖∈𝐼 be the set of isomorphism classes of simple representations of G. Given a finite-
dimensional representation 𝜌 of G, there exist non-negative integers 𝜈𝑖 ∈ Z+, such that 𝜌 is isomorphic
to

⊕
𝑖 𝜌
⊕𝜈𝑖
𝑖 and we combine these into a multi-index 𝜈 = ({𝜈𝑖}) ∈ Z𝐼

≥0. We set dim(𝜈) :=
∑
𝑖 𝜈𝑖 dim 𝜌𝑖 ,

which is the dimension of the representation associated to 𝜈.
For any integer 𝑛 ≥ 1, the G-action on U induces a G-action on the Hilbert scheme Hilb𝑛 (𝑈), which

parametrises zero-dimensional subschemes of length n of U. We consider the fixed point scheme

Hilb𝑛,𝐺 (𝑈) := (Hilb𝑛 (𝑈))𝐺 ,

that is, the largest subscheme of Hilb𝑛 (𝑈) on which G acts trivially. It parametrises G-invariant and
zero-dimensional subschemes of length n of U. Given 𝜈 = ({𝜈𝑖})𝑖 ∈ Z𝐼

≥0 with dim(𝜈) = 𝑛, we define

𝐻𝜈 =
{
𝑍 ∈ Hilb𝑛,𝐺 (𝑈) | 𝐻0 (𝑍,O𝑍 ) �

⊕
𝜌⊕𝜈𝑖𝑖 as 𝐺-representation

}
,

which defines a subscheme of Hilb𝑛,𝐺 (𝑈). Adapting [Ki16, Lemma 12.4], which follows [IN99, Section
9], to our situation, we have the following.

https://doi.org/10.1017/fms.2024.98 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.98


18 C. Liedtke

Lemma 5.1. We keep the assumptions and notations and let 𝑛 ≥ 1 be an integer.

1. The scheme Hilb𝑛,𝐺 (𝑈) is smooth over k.
2. We have a decomposition

Hilb𝑛,𝐺 (𝑈) =
⊔
𝜈

𝐻𝜈 ,

where the disjoint union runs over all multi-indices 𝜈 ∈ Z𝐼
≥0 of dimension n. Each 𝐻𝜈 is a smooth

subscheme of Hilb𝑛,𝐺 (𝑈).

Proof. Since U is two-dimensional, Hilb𝑛 (𝑈) is smooth over k by [Fo68, Theorem 2.4]. To show Claim
(1), it remains to show that the fixed point scheme for the G-action is also smooth, which follows from
Lemma 5.2 below. Then, Claim (2) is obvious. �

Lemma 5.2. Let k be an algebraically closed field, let X be a scheme that is smooth over k, let G be
a finite and linearly reductive group scheme over k and assume that G acts on X. Then, the fixed point
scheme 𝑋𝐺 ⊆ 𝑋 is smooth over k.

Proof. Let 𝑥 ∈ 𝑋𝐺 . Passing to the completion of the local ring O𝑋,𝑥 , using that X is smooth over k
and passing to coordinates such that the G-action is linear (this is always possible by [Sa12, proof of
Corollary 1.8]), we may assume that

Ô𝑋,𝑥 � 𝑘 [[𝑢1, ..., 𝑢𝑑]]

and that the G-action is linear. In this description it is easy to see that the G-invariant subscheme of
Spec Ô𝑋,𝑥 is smooth (see also the proof of [IN99, Lemma 9.1]), which implies that 𝑋𝐺 is smooth near
x. �

An important special case is the regular representation of G, where we have 𝜈𝑖 = dim 𝜌𝑖 for all i and
in this case, we will write 𝛿 for the corresponding multi-index. The dimension of 𝛿 is equal to the length
of G. In this case, we have

𝜋 : 𝐻 𝛿 = 𝐺-Hilb(𝑈) → 𝑈/𝐺 = 𝑋,

which we already studied in Section 4.3. There, we saw that 𝜋 is a minimal resolution of singularities
of the Klein singularity 𝑥 ∈ 𝑋 = 𝑈/𝐺.

5.2. Hecke correspondences

We keep the assumptions and notations of the previous section. We let n be the length of G and let 𝛿
be the multi-index corresponding to the regular representation. For 𝑖 ∈ 𝐼, we set 𝛼𝑖 := (0, ..., 0, 1, 0...)
with the non-zero entry in the i.th position. We define

𝐵𝑖 :=
{
𝐽1 ∈ 𝐻 𝛿−𝛼𝑖 , 𝐽2 ∈ 𝐻 𝛿 | 𝐽2 ⊆ 𝐽1

}
⊆ 𝐻 𝛿−𝛼𝑖 × 𝐻 𝛿 ,

which is a Hecke correspondence, see [Na96], [Na01, Section 6.1] or [Ki16, Section 12.4]. We let

𝐸𝑖 := pr2(𝐵𝑖) ⊆ 𝐻 𝛿 = 𝐺-Hilb(𝑈)

be the image under the projection pr2 onto the second factor.
In characteristic zero, the following result is due to Nakajima [Na96] and independently to Ito and

Nakamura [IN99], see also [Ki16, Section 12.4].
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Theorem 5.3. Let k be an algebraically closed field of characteristic 𝑝 ≥ 0. Let G be a finite and
linearly reductive subgroup scheme of SL2,𝑘 , let 𝑥 ∈ 𝑋 := 𝑈/𝐺 be the associated Klein singularity, and
let 𝜋 : 𝐻 𝛿 → 𝑋 be the Ito-Nakamura resolution.

1. The assignment 𝑖 ↦→ 𝐸𝑖 defines a bijection between the set {𝜌𝑖}𝑖 of isomorphism classes of non-
trivial simple representations of G and the set of irreducible components of the exceptional divisor
Exc(𝜋) of 𝜋.

2. If 𝑖 ≠ 𝑗 , then

𝐵𝑖 · 𝐵 𝑗 = 𝐴𝑖 𝑗

where the numbering of the {𝜌𝑖}𝑖 is as in [IN99, Section 10].

We thus obtain a bijection between the dual resolution graph of 𝜋 and the graph obtained by removing
the vertex 𝜌0 from the McKay graph of G with respect to the embedding 𝐺 → SL2,𝑘 → GL2,𝑘 .

Proof. The case-by-case analysis of [IN99, Section 12] carries directly over from finite subgroups of
SL2 (C) to finite and linearly reductive subgroup schemes of SL2,𝑘 . �

Here is a second proof of this theorem that uses our lifting results:

Proof. If 𝑝 = 0, then the Lefschetz principle allows to reduce to 𝑘 = C, where the theorem is due to Ito,
Nakajima and Nakamura [IN99, Na96].

We now assume 𝑝 > 0. Let Xcan = U/Gcan → Spec 𝑊 (𝑘) be the canonical lift of 𝑥 ∈ 𝑋 = 𝑈/𝐺 (see
Section 4.4) and let �̃� : Y → Xcan → Spec 𝑊 (𝑘) be the simultaneous resolution of singularities (see
Section 4.5). Moreover, we have the abstract group 𝐺abs and the canonical lift 𝐺can associated to G (see
Section 2.2) and we have a bijection of simple representations of 𝐺abs, 𝐺can and G by Proposition 2.6.

The generic fibre X𝐾 is isomorphic to U𝐾 /𝐺can and using the Lefschetz principle, the geometric
generic fibre can be identified with C2/𝐺abs. Over C, we have Theorem 5.3 for 𝐺abs C

2/𝐺abs and its
minimal resolution of singularities by [IN99, Na96].

By the Lefschetz principle, we have it for 𝐺can, X𝐾 = U𝐾 /𝐺can and �̃�𝐾 . Using the comparison results
Proposition 2.6 and Theorem 4.10, we obtain it for X𝑘 = U𝑘/Gcan,𝑘 and �̃�𝑘 , that is, for 𝑋 = 𝑈/𝐺, G
and 𝜋. �

5.3. Local McKay correspondence

We now extend work of Ishii and Nakamura [Is02, IN19] to our linearly reductive setting. Let G be a very
small, finite and linearly reductive subgroup scheme of GL2,𝑘 and let 𝑥 ∈ 𝑋 = 𝑈/𝐺 be the associated
two-dimensional linearly reductive quotient singularity. Until the end of this section, we do not require
it to be a Klein singularity. Note that in dimension two, linearly reductive quotient singularities are the
same as F-regular singularities, see Remark 4.6.

Let {𝜌𝑖}𝑖 be the set of simple representations of G. Let 𝜌0 be the trivial representation and we
choose our numbering of the 𝜌𝑖’s to be the one of [IN19, Theorem 3.6]. Let 𝜋 : 𝑌 → 𝑋 be its minimal
resolution of singularities and let {𝐸𝑖} be the irreducible components of the exceptional divisor Exc(𝜋)
of 𝜋. Then, there is exists a connection between the {𝜌𝑖} and the exceptional divisors of 𝜋 as follows -
this is yet another version of the McKay correspondence.

Theorem 5.4. Keeping assumptions and notations, let 𝔪 ⊂ O𝑈 be the maximal ideal corresponding to
the origin, let 𝑦 ∈ 𝑌 be a closed point, let 𝑍𝑦 be the G-invariant cluster of U corresponding to y and let
I𝑍𝑦 ⊂ O𝑈 be its ideal sheaf. Then, the G-representation on I𝑍𝑦/𝔪I𝑍𝑦 is given by

{
𝜌𝑖 ⊕ 𝜌0 if 𝑦 ∈ 𝐸𝑖 \

⋃
𝑗≠𝑖 𝐸 𝑗

𝜌𝑖 ⊕ 𝜌 𝑗 ⊕ 𝜌0 if 𝑦 ∈ 𝐸𝑖 ∩ 𝐸 𝑗 with 𝑖 ≠ 𝑗 .
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Proof. For 𝑘 = C, this is [Is02, Theorem 7.1]. For k algebraically closed of arbitrary characteristic
and G a very small and finite subgroup of GL2(𝑘) of order prime to p, this is [IN19, Theorem 3.6].
However, these proofs also work if G is a very small and finite and linearly reductive subgroup scheme
of GL2,𝑘 . �

Remark 5.5. In [IN19], the G-quiver structure of 𝐺-Hilb(𝑈) was studied in the case where G is a very
small and finite subgroup of GL2(𝑘). We leave the extension of these results to the linearly reductive
case to the reader.

5.4. Reflexive sheaves on the minimal resolution

We end this section by shortly digressing on work of Wunram [Wu88], Ishii and Nakamura [IN19],
which generalises work of Artin and Verdier [AV85]. We keep the assumptions and notations from
Section 5.3. Let 𝐹 ⊂ 𝑌 be the fundamental divisor of 𝜋, see [Ar66].

Theorem 5.6. Keeping assumptions and notations, there exists a bijection between

1. the set of irreducible components {𝐸𝑖} of Exc(𝜋) and
2. the set of non-trivial indecomposable full O𝑌 -modules {M𝑖}, special in the sense that

𝐻1 (𝑌,M∨
𝑖 ) = 0

This correspondence M𝑖 ↦→ 𝐸𝑖 is defined by

𝑐1 (M𝑖) · 𝐸 𝑗 = 𝛿𝑖, 𝑗 .

The rank of M𝑖 is equal to 𝑐1 (M𝑖) · 𝐹, the multiplicity of 𝐸𝑖 in F.

Proof. For 𝑘 = C, this is [Wu88]. For k algebraically closed of arbitrary characteristic and G a very
small and finite subgroup of GL2,𝑘 of order prime to p, this is [IN19, Theorem 2.8]. However, these
proofs also work if G is a very small, finite and linearly reductive subgroup scheme of GL2,𝑘 . �

Here, a full O𝑌 -module is as defined in [IN19, Definition 2.4]. By [IN19, Corollary 2.5], the
assignment M ↦→ 𝜋∗M sets up a bijection between the set of (indecomposable) full O𝑌 -modules with
the set of (indecomposable) reflexive O𝑋 -modules. In particular, the above theorem yields a bijection
between the set of irreducible components of Exc(𝜋) and the set of non-trivial, indecomposable and
reflexive O𝑋 -modules.

Remark 5.7. The group scheme G plays no rôle in this theorem and the discussion thereafter. Probably,
these results should be viewed as results on two-dimensional F-regular singularities (see Remark 4.6).

6. Conjugacy classes and Ito-Reid correspondence

For a finite group, the number of isomorphism classes of complex simple representations is equal to the
number of conjugacy classes. Thus, one can choose a bijection between these two sets. In particular, for
a finite subgroup of SL2 (C) one can choose a bijection between the vertices of its McKay graph and the
conjugacy classes of G. In [IR96], Ito and Reid gave a canonical bijection between these two sets. In
this section, we extend this Ito-Reid correspondence to finite and linearly reductive subgroup schemes
of SL2,𝑘 . The main difficulty is to define a suitable notion of conjugacy classes for finite and linearly
reductive group schemes.

6.1. Conjugacy classes

Given a finite group 𝐺abs, a representation 𝜌 : 𝐺abs → GL𝑛 (C) and an element 𝑔 ∈ 𝐺abs, we have
the trace tr(𝜌(𝑔)) ∈ C. This pairing (𝜌, 𝑔) ↦→ tr(𝜌(𝑔)) induces a non-degenerate pairing between
isomorphism classes of simple representations of 𝐺abs and conjugacy classes. Thus, conjugacy classes
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can be thought of as being “dual” to semi-simple representations, which can be used to give an unusual
definition of conjugacy classes. This definition generalises to finite and linearly reductive group schemes.
More precisely, we make the following definition, which is inspired by a result of Serre [Se77, Section
11.4] and which we discuss in detail in Appendix B.2.

Definition 6.1. Let G be a finite and linearly reductive group scheme over an algebraically closed field
k of characteristic 𝑝 ≥ 0. Then, the set of conjugacy classes is defined to be Spec C ⊗ 𝐾𝑘 (𝐺).

We discuss several approaches to conjugacy classes for finite group schemes in Appendix B - there,
we hope to convince the reader that Definition 6.1 is the best for the purposes of this article. For
example, by Proposition B.2 it is compatible with canonical lifts and there is a natural bijection with the
set of conjugacy classes of the abstract group 𝐺abs associated to G. Concerning the choice of field C in
Definition 6.1, we refer to Remarks B.3.

6.2. An explicit bijection

For a finite and linearly reductive subgroup scheme G of SL2,𝑘 , we have an associated embedding
of the finite group 𝐺abs into SL2(C). Let {𝜌𝑖}𝑖 be the set of isomorphism classes of semi-simple
representations of G and let {𝜌abs,𝑖}𝑖 be the corresponding set for 𝐺abs obtained by Proposition 2.6. The
associated McKay graphs Γ(𝐺, 𝜌, {𝜌𝑖}𝑖) and Γ(𝐺abs, 𝜌abs, {𝜌abs,𝑖}𝑖) coincide by Proposition 3.5 and
we denote both by Γ̂. Next, the group 𝐺abs admits a presentation of the form

𝐺abs =
〈
𝐴, 𝐵, 𝐶 | 𝐴𝑟 = 𝐵𝑠 = 𝐶𝑡 = 𝐴𝐵𝐶

〉
for suitable non-negative integers 𝑟, 𝑠, 𝑡. The non-trivial conjugacy classes of 𝐺abs can be uniquely
represented by the following elements

𝐴𝐵𝐶, 𝐴𝑖 with 1 ≤ 𝑖 ≤ 𝑟 − 1, 𝐵𝑖 with 1 ≤ 𝑖 ≤ 𝑠 − 1, 𝐶𝑖 with 1 ≤ 𝑖 ≤ 𝑡 − 1.

This allows to give an explicit bijection between the conjugacy classes of 𝐺abs and the vertices of Γ̂. We
refer to [Ki16, Section 2] for details. Using Proposition B.2, we obtain an explicit bijection between the
conjugacy classes of G and the vertices of Γ̂.

6.3. The Ito-Reid correspondence

If G is a finite subgroup of SL2 (C), then Ito and Reid [IR96] (see also [Re02]) constructed a canonical
bijection. Let us run through [Re02, Section 2] and show that this can be carried over to our linearly
reductive setting: let k be an algebraically closed field of characteristic 𝑝 > 0 and let G be a finite and
linearly reductive subgroup scheme of SL2,𝑘 .

1. Associated to G, we have the abstract group 𝐺abs. By Proposition 2.6, an embedding 𝐺 → SL𝑛,𝑘

yields an embedding 𝐺abs → SL𝑛 (C). By Proposition B.2, we can identify conjugacy classes of G
(in the sense of Definition 6.1) and conjugacy classes of 𝐺abs, which allows us to define the age of
a conjugacy class of G via the corresponding notion for 𝐺abs as, for example, in [Re02, Section 2].
A conjugacy class of age 1 is called junior and if 𝑛 = 2, then all conjugacy classes are junior.

Remark 6.2. Using the “toric mechanism” mentioned in [Re02, Section 2], one can define the age
directly and without referring to lifts, but we will not pursue this here.

2. Let 𝑥 ∈ 𝑋 := 𝑈/𝐺 be the associated Klein singularity. We have the canonical lift Xcan → Spec𝑊 (𝑘)
and the simultaneous resolution of singularities �̃� : Y → Xcan → Spec𝑊 (𝑘) by Theorem 4.10. Pass-
ing to geometric generic fibres and using the Lefschetz principle, we obtain the minimal resolution
of singularities of C2/𝐺abs. The special fibre of �̃�, the geometric generic fibre of �̃� and the minimal
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resolution of C2/𝐺abs are crepant in the sense of [Re87] and we can identify the exceptional divi-
sors of these three resolutions with each other, see Theorem 4.10. This way, we obtain an Ito-Reid
correspondence between junior conjugacy classes of G and crepant divisors of the resolution [Re02,
Theorem 2.1].

Remark 6.3. It seems reasonable that one can extend this correspondence to finite and linearly reductive
subgroup schemes of SL𝑛,𝑘 with 𝑛 ≥ 3, but we will not pursue this here.

7. Derived categories

Let G be a very small, finite and linearly reductive subgroup scheme of GL2,𝑘 , let 𝑥 ∈ 𝑋 := 𝑈/𝐺 be
the associated linearly reductive quotient singularity and let 𝜋 : 𝑌 → 𝑋 be its minimal resolution of
singularities. Gonzalez-Sprinberg and Verdier [GV83] gave an interpretation of the McKay correspon-
dence as an isomorphism between the K-groups 𝐾𝐺 (𝑈) and 𝐾 (𝑌 ). Kapranov and Vasserot [KV00] and
Bridgeland, King and Reid [BKR01] generalised this to an equivalence of derived categories D𝐺 (𝑈)
and D(𝑌 ). In this section, we extend this to our setting, following Ishii, Ito, Nakamura and Ueda [Is02,
IN19, IU15].

We have a commutative diagram

𝑈 ×𝑘 𝑌
𝜋𝑈 ��

𝜋𝑌

��

𝑈

𝜛

��
𝑌

𝜋 �� 𝑋.

By Theorem 4.5, the minimal resolution 𝜋 can be constructed by the Ishii-Ito-Nakamura resolution

𝐺-Hilb(𝑈) → 𝑈/𝐺

We let Z be the universal cluster over 𝐺-Hilb(𝑈), we identify 𝐺-Hilb(𝑈) with Y and then, we have a
commutative diagram

Z 𝑞 ��

𝑝

��

𝑈

𝜛

��
𝑌

𝜋 �� 𝑋.

Let D(𝑌 ) be the derived category of coherent sheaves on Y. Let D𝐺 (𝑈) be the derived category of
G-equivariant coherent sheaves on U. Following [Is02] and [IN19], we define two functors

Ψ : D𝐺 (𝑈) → D(𝑌 )
Φ : D(𝑌 ) → D𝐺 (𝑈)

by

Ψ(−) := [𝑝∗ L𝑞∗ (−)]𝐺

and

Φ(−) := R𝜋𝑈,∗

(
O∨Z ⊗L 𝜋∗𝑌 (− ⊗ 𝜌0) ⊗

L 𝜋∗𝑈𝐾𝑈

)
[2],

where O∨Z := R𝐻𝑜𝑚(OZ ,O𝑌×𝑈 ) denotes the dual of OZ , where − ⊗ 𝜌0 : D(𝑌 ) → D𝐺 (𝑌 ) denotes
the functor that attaches the trivial G-action and where 𝐾𝑈 denotes the canonical sheaf of U. We refer
to [IN19, Section 3.1] for details, conventions and notations.
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Theorem 7.1. Keeping assumptions and notations, Φ is fully faithful and Ψ is a left adjoint of Φ.

Proof. For G is a very small subgroup of GL2 (C), this is [Is02, Section 6] and [IU15, Proposition 1.1
and Lemma 2.9]. For k algebraically closed of arbitrary characteristic and G a very small and finite
subgroup of GL2(𝑘) of order prime to p, this is [IN19, Theorem 3.2]. However, these proofs also work
if G is a very small, finite and linearly reductive subgroup scheme of GL2,𝑘 . �

A. Hopf algebras

In the first section of the appendix, we study finite group schemes from the point of view of finite-
dimensional Hopf algebras. We also recall the quantum double of a Hopf algebra, as well as the adjoint
and the extended adjoint representation. Many results of this section should be well-known to the experts,
but are somewhat scattered over the literature - especially, since many sources (sometimes implicitly)
assume characteristic zero or work even over the complex numbers.

A.1. Generalities

If G is a finite group scheme over a field k, then the k-algebra 𝐴 := 𝐻0 (𝐺,O𝐺) is commutative and
finite-dimensional as k-vector space. The multiplication 𝑚 : 𝐺 × 𝐺 → 𝐺 the inverse 𝑖 : 𝐺 → 𝐺 and
the neutral element 𝑒 : Spec 𝑘 → 𝐺 induce k-algebra homomorphisms 𝑚∗ : 𝐴→ 𝐴 ⊗𝑘 𝐴, 𝑖∗ : 𝐴→ 𝐴
and 𝑒∗ : 𝐴 → 𝑘 , which turn A into a co-algebra over k with co-multiplication 𝑚∗ and antipode 𝑆 := 𝑖∗,
and thus, into a Hopf algebra over k. Since i is the inverse of G, the antipode S satisfies 𝑆2 = id𝐴, that
is, A is an involutive Hopf algebra.

Conversely, if A is a finite-dimensional and commutative Hopf algebra over k, then it is involutive
and Spec 𝐴 is a finite group scheme over k. Moreover, A is a co-commutative Hopf algebra if and only
if G is a commutative group scheme.

Example A.1. Let𝐺abs be a finite group. The group algebra 𝑘 [𝐺abs] becomes a Hopf algebra by defining
the co-multiplication to be Δ (𝑔) = 𝑔 ⊗ 𝑔 and the antipode to be 𝑆(𝑔) = 𝑔−1.

1. Clearly, 𝑘 [𝐺abs] is an involutive and co-commutative Hopf algebra. Moreover, 𝑘 [𝐺abs] is commuta-
tive if and only if 𝐺abs is commutative.

2. There exist examples of non-isomorphic finite groups 𝐻abs and 𝐺abs, whose group rings 𝑘 [𝐻abs] and
𝑘 [𝐺abs] are isomorphic as k-algebras.

However, they are not isomorphic as Hopf algebras: Recall that an element 𝑥 ∈ 𝐵 in a Hopf
algebra B is called group-like if Δ (𝑥) = 𝑥 ⊗ 𝑥. The set of group-like elements of B form a group. If
𝐵 = 𝑘 [𝐺abs], then the group of group-like elements of B is isomorphic to 𝐺abs and thus, recovers
the group.

3. There exists an isomorphism of finite group schemes over k

𝐺 � Spec 𝑘 [𝐺abs]
∗,

where 𝑘 [𝐺abs]
∗ denotes the dual Hopf algebra and where G denotes the constant group scheme over

k associated to 𝐺abs.

A.2. Simplicity

A Hopf algebra A is co-semi-simple if its dual Hopf algebra 𝐴∗ is semi-simple and A is bi-semi-simple
if both A and 𝐴∗ are semi-simple.

Let G be a finite group scheme over k and let 𝐴 := 𝐻0 (𝐺,O𝐺) be the associated Hopf algebra. To
give a finite-dimensional and k-linear representation 𝜌 : 𝐺 → GL(𝑉) is the same as to give an A-co-
module 𝑉 → 𝑉 ⊗𝑘 𝐴, see [Wa79, Section 3.2] for details. Using this equivalence, we see that G is
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linearly reductive if and only if A is co-semi-simple. For the classification of linearly reductive group
schemes (see Section 2) in the language of Hopf algebras we refer to [Ch92].

The following equivalences are probably well-known to the experts.

Proposition A.2. Let G be a finite group scheme over an algebraically closed field k of characteristic
𝑝 ≥ 0. Let 𝐴 := 𝐻0(𝐺,O𝐺) be the Hopf algebra associated to G.

1. A is semi-simple if and only if G is étale.
2. A is co-semi-simple if and only if G is linearly reductive.
3. A is bi-semi-simple if and only if G is of length prime to p.

Proof. We already established Claim (2) above.
If G is étale, then 𝐴 � 𝑘 [𝐺abs]

∗, where 𝐺abs := 𝐺 (𝑘) is the abstract group associated to G. Since
group rings are co-semi-simple, A is semi-simple. Conversely, if A is semi-simple, then 〈𝜀,

∫ 𝑟

𝐻
〉 ≠ 0 by

Maschke’s theorem for Hopf algebras (see, for example, [Lo18, Section 12.3.1] for notation, statement
and proof), which implies that A is a separable k-algebra, which implies that G is étale over k. This
establishes Claim (1).

Of course, (3) follows immediately from (1) and (2), but we can also give an independent proof:
Being an involutive Hopf algebra, A is bi-semi-simple if and only if p does not divide dim𝑘 𝐴, see
[EG98, Corollary 3.2] or [LR88, Corollary 2.6]. The latter is equivalent to G being of length prime to
p. This establishes Claim (3). �

A.3. Adjoint representation

Let 𝐺abs be a finite group and let k be an algebraically closed field of characteristic 𝑝 ≥ 0 (p may or
may not divide the order of 𝐺abs). Then, the action of 𝐺abs on itself by conjugation is a permutation
representation and we denote by

𝜌ad : 𝐺abs → GL(𝑉ad)

the associated k-linear representation.

Remark A.3. To be more precise: Depending on whether one considers 𝑥 ↦→ 𝑔𝑥𝑔−1 or 𝑥 ↦→ 𝑔−1𝑥𝑔,
one should speak about left or right adjoint actions and representations. For our discussion, this is not
important, as long as one chooses one of them and stays with it.

Remark A.4. Let us recall a couple of general results about 𝜌ad, which are well-known (I thank Frank
Himstedt for explaining them to me):

1. Let C be the set of conjugacy classes of 𝐺abs and let {𝑔𝑐}𝑐∈𝐶 be a system of representatives. Then,
we have an isomorphism of k-linear representations

𝜌ad �
⊕
𝑐∈𝐶

Ind𝐺abs
𝐶 (𝑔𝑐)

1,

where 𝐶 (𝑔𝑐) denotes the centraliser of 𝑔𝑐 ∈ 𝐺abs, where 1 denotes the one-dimensional trivial
representation and where Ind denotes induction from a subgroup. See, for example, [NT89, page 171
and Exercise 1.5].

2. Let 𝑔 ∈ 𝐺abs and let

𝑉 := Ind𝐺abs
𝐶 (𝑔)

1 �
⊕
𝑖

𝑉𝑖

be a decomposition into indecomposable representations, which is unique up to isomorphism and
numbering.
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There is precisely one summand, say 𝑉𝑖1 , that has a subrepresentation that is isomorphic to 1.
Moreover, this subrepresentation is unique. Also, there is precisely one summand, say 𝑉𝑖2 , that has
a quotient representation that is isomorphic to 1. Moreover, this quotient representation is unique.
Then, we have 𝑖1 = 𝑖2 and set

𝑆(𝑉) := 𝑉𝑖1 = 𝑉𝑖2 ,

which is called the Scott representation of V. See, for example, [NT89, page 296 and Theorem 8.4].

In particular, the dimension of the largest trivial subrepresentation (resp. quotient representation) of
𝜌ad is equal to the number of conjugacy classes of 𝐺abs.

If A is a finite dimensional Hopf algebra over k, then there is an adjoint action of A on itself (in fact, a
left adjoint action and a right adjoint action), see, for example, [Mo93, Definition 3.4.1]. We will write

ad : 𝐴 → End(𝐴)

or simply ad𝐴 for this representation.

Remarks A.5.

1. If 𝐺abs is a finite group, then the adjoint representation of 𝐻 := 𝑘 [𝐺abs] can be identified with the
k-linear extension from 𝐺abs to H of the conjugation action of 𝐺abs on itself.

2. Let G be a finite group scheme over k and let 𝐴 := 𝐻0 (𝐺,O𝐺) be the 𝐴 := 𝐻0(𝐺,O𝐺). There is an
adjoint representation

𝜌ad : 𝐺 → GL(𝑉ad),

which corresponds to the adjoint representation of the dual Hopf algebra 𝐴∗.
(a) If 𝐺abs is a finite group and G is the constant group scheme associated to it, then A is isomorphic

to the dual of 𝑘 [𝐺abs] equipped with its usual Hopf algebra structure. This shows that 𝜌ad should
be defined via the adjoint representation of 𝐴∗ rather than A.

(b) The representation 𝜌ad should not be confused with the adjoint representation of G on its Lie
algebra, see for example, [Wa79, page 100, Exercise 13]. The latter can be identified with a
subquotient of 𝜌ad.

A.4. Quantum doubles

If A is a finite-dimensional Hopf algebra over a field k, then Drinfeld [Dr87] defined a Hopf algebra
𝐷 (𝐴) := (𝐴op)∗ ⊲⊳ 𝐴, called the quantum double or Drinfeld double, where the bicrossed product
structure is defined using the co-adjoint representation of A on 𝐴∗ and the co-adjoint representation of
𝐴∗ on A, see also [Mo93, Definition 10.3.1].

Remarks A.6. Let A be a finite-dimensional Hopf algebra over k and let 𝐷 (𝐴) := (𝐴op)∗ ⊲⊳ 𝐴 be its
quantum double.

1. As k-vector space, 𝐷 (𝐴) is of dimension (dim𝑘 𝐴)
2.

2. A is a Hopf subalgebra of 𝐷 (𝐴) via 𝜀 ⊲⊳ 𝐴 and (𝐴op)∗ is a Hopf subalgebra of 𝐷 (𝐴) via (𝐴op)∗ ⊲⊳ 1.
3. If A is commutative and co-commutative, then we have 𝐴op = 𝐴 and using the definition of the

quantum double, we obtain isomorphisms

𝐷 (𝐴) � 𝐴∗ ⊗𝑘 𝐴 � 𝐷 (𝐴∗)

of Hopf algebras over k, where the tensor product is the trivial tensor product of Hopf algebras. If
we set 𝐺 := Spec 𝐴, then we have 𝐺𝐷 � Spec 𝐴∗, where −𝐷 denotes the Cartier dual group scheme,
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and we have an isomorphism

Spec 𝐷 (𝐴) � 𝐺 ×Spec 𝑘 𝐺
𝐷

of finite and commutative group schemes over k.
4. In particular, 𝐷 (𝐴) is commutative if and only if A is commutative and co-commutative.

The assertions on simplicity in the next proposition extend results of Witherspoon [Wi96, Proposition
1.2] from groups to group schemes. They are also related to general semi-simplicity results of quasi-
triangular Hopf algebras in positive characteristic due to Etingof and Gelaki [EG98] and in this form,
they might be known to the experts.

Proposition A.7. Let G be a finite group scheme over an algebraically closed field k of characteristic
𝑝 ≥ 0 and let 𝐴 := 𝐻0(𝐺,O𝐺) be the associated Hopf algebra. Then, the following are equivalent

(1) 𝐷 (𝐴) is semi-simple (1′) 𝐷 (𝐴∗) is semi-simple
(2) 𝐷 (𝐴) is co-semi-simple (2′) 𝐷 (𝐴∗) is co-semi-simple
(3) 𝐴 is bi-semi-simple (3′) 𝐴∗ is bi-semi-simple
(4) 𝐺 is of length prime to 𝑝

Proof. The equivalences (1) ⇔ (2) ⇔ (3) and (1’) ⇔ (2’) ⇔ (3’) are shown in [Mo93, Corollary
10.3.13]. The equivalence (3) ⇔ (3’) is trivial and finally, the equivalence (3) ⇔ (4) was shown in
Proposition A.2. �

A.5. Extended adjoint representation

Given a Hopf algebra A, we defined the adjoint representation ad𝐴 in Section A.3 above. There is a way
to extend this to a representation

Ad : 𝐷 (𝐴) → End(𝐴)

the extended adjoint representation of A, which is denoted by Ad𝐴. For its definition, we refer to Zhu’s
article [Zhu97], as well as [CW11] for subsequent work on this representation. We note that it can be
described as an induced representation

Ad 𝐴 � Ind𝐷 (𝐴)𝐴 1, (A.1)

where 1 denotes the trivial one-dimensional representation and where we consider A as a subalgebra of
𝐷 (𝐴) via 𝜀 ⊲⊳ 𝐴, see [Bu06] or [Ja17, Section 4.3.4].

Example A.8. Let 𝐺abs be a finite group and let 𝐻 := 𝑘 [𝐺abs] be the group algebra equipped with its
usual Hopf algebra structure. The elements 𝑔 ∈ 𝐺abs form a basis of H as k-vector space and we denote
by 𝜌𝑔 ∈ 𝐻

∗ the dual basis elements.

1. The multiplication of 𝐷 (𝐻) is given by

(𝜌ℎ ⊲⊳ 𝑔) · (𝜌𝑘 ⊲⊳ ℓ) = 𝛿ℎ,𝑔𝑘𝑔−1 · 𝜌ℎ ⊲⊳ 𝑔ℓ,

see, for example, [Ja17, Example 2.4.2].
(a) The extended adjoint representation Ad𝐻 is given by

(𝜌ℎ ⊲⊳ 𝑘) ↦→ (𝑔 ↦→ 𝛿ℎ−1 ,𝑘𝑔𝑘−1 · 𝑘𝑔𝑘−1)

see, for example, [Ja17, Example 2.5.3].
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(b) The unit of 𝐻∗ is 𝜀 :=
∑
𝑔∈𝐺abs 𝜌𝑔 and the restriction of Ad𝐻 to 𝜀 ⊲⊳ 𝐻 is ad𝐻. Thus, the extended

adjoint representation extends the adjoint representation from an A-representation to a 𝐷 (𝐴)-
representation, whence the name.

(c) The extended adjoint representation Ad𝐻 is semi-simple. More precisely, the k-subvector space of
H generated by the elements of a conjugacy class of 𝐺abs is a simple 𝐷 (𝐻)-subrepresentation
of Ad𝐻. This gives a bijection between conjugacy classes of 𝐺abs and simple subrepresentations
of Ad𝐻. By [Ja17, Lemma 4.3.2], this is also true if p divides the order of 𝐺abs.

We refer to [Bu06, DPR91, Go93, Wi96] for more results about the representation theory of 𝐷 (𝐻)
and Ad𝐻.

2. If we identify 𝐻∗∗ with H, then the multiplication of 𝐷 (𝐻∗) is given by

(𝑔 ⊲⊳ 𝜌ℎ) · (ℓ ⊲⊳ 𝜌𝑘 ) = 𝛿ℎ,𝑘 · (𝑔 · ℓ) ⊲⊳ 𝜌ℎ

and the extended adjoint representation Ad (𝐻∗) is given by

(ℎ ⊲⊳ 𝜌𝑘 ) ↦→ (𝜌𝑔 ↦→ 𝜌𝑔ℎ−1 ),

which can be identified with the dual of the regular representation of 𝐺abs. The restriction of Ad (𝐻∗)
to 1 ⊲⊳ 𝐻∗ is trivial, which is equal to the adjoint representation ad(𝐻∗), which is also trivial.

Example A.9. Let A be a finite-dimensional Hopf algebra over k that is commutative and co-
commutative.

1. The adjoint representations ad𝐴 and ad(𝐴∗) are trivial.

By Remark A.6, we have isomorphisms

𝐷 (𝐴) � 𝐴∗ ⊗𝑘 𝐴 � 𝐷 (𝐴∗)

of Hopf algebras over k, where the tensor product is the trivial tensor product of Hopf algebras. Thus, to
give a representation 𝜌 : 𝐷 (𝐴) → End(𝑉) is equivalent to giving two representations 𝜌1 : 𝐴→ End(𝑉)
and 𝜌2 : 𝐴∗ → End(𝑉), whose actions on V commute.

2. Using the description (A.1) of Ad𝐴 as induced representation, we obtain Ad𝐴 from the the trivial
A-action on A (this is 𝜌1) and the dual of the regular representation of 𝐴∗ (this is 𝜌2).

3. Similarly, we obtain Ad(𝐴∗) from the trivial 𝐴∗-action on 𝐴∗ and the dual of the regular representation
of A.

B. Conjugacy classes for finite group schemes

Let G be a finite group scheme over an algebraically closed field k of characteristic 𝑝 ≥ 0. In the second
section of the appendix, we discuss several approaches towards the notion of a conjugacy class for G. If
𝑝 = 0, then all of them lead to the same notion, namely, the familiar one. All approaches look reasonable
at first sight if 𝑝 > 0 and they lead to essentially “the same” answer if G is of length prime to p. In general
however, they lead to different notions, all of which have their merits and drawbacks. This appendix
serves as a motivation for Definition 6.1, but the discussion and results may be interesting in themselves.

B.1. First approach: via rational points

Let 𝐺 (𝑘) be the group of k-rational points. We obtain an equivalence relation ∼ on this set by defining
𝑔1 ∼ 𝑔2 if and only if there exists ℎ ∈ 𝐺 (𝑘) such that 𝑔1 = ℎ𝑔2ℎ

−1. The quotient 𝐺 (𝑘)/∼ is the first
candidate for the set of conjugacy classes.

Example B.1. If G is étale over k, then it is the constant group scheme associated to the finite group
𝐺abs := 𝐺 (𝑘). In this case, 𝐺 (𝑘)/∼ coincides with the set of conjugacy classes of 𝐺abs.
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If G is étale, which is automatic if 𝑝 = 0, then this approach is satisfactory. However, if 𝑝 > 0, then
the connected-étale sequence (2.1) induces a bijection

𝐺 (𝑘) � 𝐺 ét (𝑘),

which is an isomorphism of finite groups. In particular, 𝐺 (𝑘)/∼ depends on the maximal étale quotient
𝐺 ét of G only. For example, in the extremal case where G is connected, we have 𝐺 (𝑘) = {1} and then,
𝐺 (𝑘)/∼ consists of one element, and we do not gain much information about G.

Concerning functoriality: if 𝜑 : 𝐺 → 𝐻 is a homomorphism of finite group schemes over k, then we
have induced morphisms 𝐺 (𝑘) → 𝐻 (𝑘), 𝐺 ét → 𝐻 ét and 𝐺 (𝑘)/∼→ 𝐻 (𝑘)/∼.

B.2. Second approach: via representations and K-theory

If 𝐺abs is a finite group of order prime to p, then the category Rep𝑘 (𝐺) of k-linear and finite-dimensional
𝐺abs-representations is semi-simple. In this case, the number of isomorphism classes of simple rep-
resentations is equal to the number of conjugacy classes. More precisely, if 𝜌 is a k-linear and finite-
dimensional representation of 𝐺abs and 𝑔 ∈ 𝐺abs is an element, then

(𝜌, 𝑔) ↦→ Tr(𝜌(𝑔)) ∈ 𝑘

induces a pairing between representations and conjugacy classes. Since the character table of a finite
group is a quadratic and invertible matrix (see, for example, [Se77, Proposition I.7]), this pairing is
non-degenerate and one can think of conjugacy classes as being “dual” to simple representations.

This idea can be made precise as follows: Let F be a field, let Cl(𝐺abs) be the set of conjugacy classes
of 𝐺abs and let 𝐹Cl(𝐺abs) be the ring of class functions on 𝐺abs with values in F. Let g be the order of
𝐺abs, let 𝜁𝑔 ∈ C be a primitive g.th primitive root of unity and assume that F contains Q(𝜁𝑔). Since the
characters of 𝐺abs take values in F (here, we use Q(𝜁𝑔) ⊆ 𝐹), we have injective ring homomorphisms

𝐹 → 𝐹 ⊗Z 𝐾𝑘 (𝐺abs)
𝛾
−→ 𝐹Cl(𝐺abs)

and 𝛾 is an isomorphism, see [Se77, Section 11.4] and the first paragraph of [Se77, Section 9.1]. In
particular,

Spec 𝐹 ⊗Z 𝐾𝑘 (𝐺abs)

is a finite set consisting of maximal ideals only and the topology is discrete. Since 𝛾 is an isomorphism,
the cardinality of this set is equal to that of Cl(𝐺abs). This carries over to finite and linearly reductive
schemes as follows.

Proposition B.2. Let G be a finite and linearly reductive group scheme over k and let 𝐺abs be the
associated abstract group. Let g be the length of G, fix a g.th root of unity 𝜁𝑔 ∈ C and let F be a field
that contains Q(𝜁𝑔). Then, there exista canonical bijection of sets{

conjugacy classes of 𝐺abs
}
→ Spec 𝐹 ⊗Z 𝐾𝑘 (𝐺abs)

and homeomorphisms

Spec 𝐹 ⊗Z 𝐾𝑘 (𝐺abs) ← Spec 𝐹 ⊗Z 𝐾𝐾 (𝐺abs) ← Spec 𝐹 ⊗Z 𝐾𝑘 (𝐺).

Proof. If c is a conjugacy class of 𝐺abs, then 𝑃0,𝑐 (notation as in [Se77, Section 11.4, Proposition
30]) is an element of Spec 𝐹 ⊗ 𝐾𝑘 (𝐺abs) and by loc. cit. this defines a bijection. The isomorphisms of
Corollary 2.8 induce homeomorphisms and thus, bijections of spectra as stated. �
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Remarks B.3.

1. The maximal abelian extension Q ⊂ Qab is generated by all roots of unity by the Kronecker-Weber
theorem. Thus, if we have Qab ⊆ 𝐹, then we have a field that works independent of the length of G.
In Definition 6.1, we have chosen 𝐹 = C as this field may be more familiar than Qab.

2. In [Se77, Section 11.4], Serre described Spec𝐴⊗Z𝐾𝑘 (𝐺abs), where 𝐴 = Z[𝜁𝑔]. Using Corollary 2.8,
we obtain a homeomorphism

Spec 𝐴 ⊗Z 𝐾𝑘 (𝐺) → Spec 𝐴 ⊗Z 𝐾𝑘 (𝐺abs).

In particular, Serre’s results from loc.cit. carry over to 𝐴 ⊗Z 𝐾𝑘 (𝐺). For the purposes of this
article, we are only interested in the fibre over 0 ∈ Spec 𝐹 with 𝐹 = Frac(𝐴) = Q(𝜁𝑔), that is, the
Zariski open subset Spec 𝐹 ⊗ 𝐾𝑘 (𝐺) ⊂ Spec 𝐴 ⊗ 𝐾𝑘 (𝐺).

Example B.4. Let G be the group scheme 𝜶𝑝 or C𝑝 over the algebraically closed field k of characteristic
𝑝 > 0. Then, Rep𝑘 (𝐺) is not semi-simple: the only simple k-linear representation of G is the trivial
one-dimensional representation 1. Thus, 1 ↦→ 1 induces an isomorphism of rings 𝐾𝑘 (𝐺) � Z and
Spec 𝐹 ⊗Z 𝐾𝑘 (𝐺) consists of one point only. The approach to conjugacy classes in this subsection may
therefore lead to somewhat unexpected results if G is not linearly reductive.

Proposition B.5. Let 𝜑 : 𝐺 → 𝐻 be a morphism of finite and linearly reductive group schemes over k.
Let 𝜑abs : 𝐺abs → 𝐻abs be the induced homomorphism of their associated abstract groups. Let F be a
field that contains Q(𝜁𝑔, 𝜁ℎ), where g (resp. h) denotes the length of G (resp. H).

1. There maps 𝜑 and 𝜑abs induce ring homomorphisms 𝐾𝑘 (𝐻) → 𝐾𝑘 (𝐺) and 𝐾𝐾 (𝐻abs) → 𝐾𝐾 (𝐺abs),
respectively. We obtain a commutative diagram of continuous maps

Spec 𝐹 ⊗Z 𝐾𝑘 (𝐺) ��

��

Spec 𝐹 ⊗Z 𝐾𝑘 (𝐻)

��
Spec 𝐹 ⊗Z 𝐾𝐾 (𝐺abs) �� Spec 𝐹 ⊗Z 𝐾𝐾 (𝐻abs),

whose vertical arrows are the homeomorphisms from Proposition B.2.
2. Let 𝐺abs/∼→ 𝐻abs/∼ be the map on conjugacy classes induced by 𝜑abs. We obtain a commutative

diagram of maps of sets

𝐺abs/∼ ��

��

𝐻abs/∼

��
Spec 𝐹 ⊗Z 𝐾𝐾 (𝐺abs) �� Spec 𝐹 ⊗Z 𝐾𝐾 (𝐻abs),

whose vertical maps are the bijections from Proposition B.2.

Proof. Clearly, 𝜑 induces a morphism 𝐾𝑘 (𝐻) → 𝐾𝑘 (𝐺) of rings since every H-representation be-
comes a G-representation via 𝜑. Similarly, 𝜑abs induces a ring homomorphism 𝜑𝐾,abs : 𝐾𝐾 (𝐻abs) →
𝐾𝐾 (𝐺abs). We leave it to the reader to check the compatibility of these maps with the homeomorphisms
of Proposition B.2.
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To check commutativity of the second diagram, let 𝑔 ∈ 𝐺abs. With the notations and definitions of
[Se77, Section 11.4], it is easy to see that we have

𝑃0,𝜑abs (𝑔) = 𝜑−1
𝐾,abs(𝑃0,𝑔) = 𝜑♯

𝐾 ,abs(𝑃0,𝑔),

where

𝜑♯
𝐾 ,abs : Spec 𝐹 ⊗ 𝐾𝐾 (𝐺abs) → Spec 𝐹 ⊗ 𝐾𝐾 (𝐻abs)

is the induced map on spectra. Since the image of the conjugacy class [𝑔] of 𝐺abs is the conjugacy class
[𝜑abs(𝑔)] of 𝐻abs, the assertion follows. �

B.3. Third approach: the scheme of conjugacy classes

Just as group schemes generalise the notion of a group, one could try to replace the set of conjugacy
classes by a suitable notion of scheme of conjugacy classes. More precisely, let G be a finite group
scheme over k and let Aut(𝐺) be the automorphism group scheme of G. For every scheme 𝑇 → Spec 𝑘 ,
we have the set 𝐺 (𝑇) of T-valued points of G and a conjugation action of 𝐺 (𝑇) on 𝐺 (𝑇). This induces
a morphism of schemes 𝐺 → Aut(𝐺). We will say that two elements of 𝐺 (𝑇) are equivalent if they
differ by such an automorphism and we denote the resulting equivalence relation by ∼.

We obtain a functor from the category of schemes over k to sets

Conj
𝐺

: (Schemes/𝑘) → (Sets)
𝑇 ↦→ 𝐺 (𝑇)/∼ .

This functor should somehow represent the conjugacy classes of G in the sense of schemes.

Proposition B.6. Let G be a finite group scheme over k. Then, the functor Conj
𝐺

is representable by a
scheme Conj𝐺 , which is finite over Spec 𝑘 .

Proof. Set 𝑉 := 𝐻0 (𝐺,O𝐺) and let 𝜌ad : 𝐺 → GL(𝑉) be the adjoint representation of G (see
Appendix A.3). Then, the functor Conj

𝐺
can be rephrased as the functor that associates to each

𝑇 → Spec 𝑘 the quotient of 𝑉 × O𝑇 modulo 𝐺 (𝑇). This amounts to representing the quotient 𝑉/𝐺
by a scheme. Since V is a vector space and thus, can be identified with an affine scheme, and since G
is a finite group scheme, this quotient is representable by a scheme. In fact, it is representable by the
spectrum of the invariant ring Spec 𝑉𝐺 . �

Definition B.7. Conj𝐺 is called the scheme of conjugacy classes of G.

Remark B.8. If 𝜌ad : 𝐺 → GL(𝐻0(𝐺,O𝐺)) is the adjoint representation, then the previous proof shows
that the length of Conj𝐺 over Spec 𝑘 is equal to the dimension of the maximal trivial subrepresentation
of 𝜌ad. If 𝐺abs is a finite group or if G is a finite and étale group scheme over Spec 𝑘 , then we gave an
explicit description of this maximal trivial subrepresentation of 𝜌ad in Remark A.4.

Examples B.9.
1. If G is étale over k, then G is isomorphic to the constant group scheme associated to 𝐺abs := 𝐺 (𝑘).

In this case, Conj𝐺 is a disjoint union of copies of Spec 𝑘 , one copy for each conjugacy class of the
abstract group 𝐺abs.

2. If G is commutative, then the adjoint representation is trivial and thus, Conj𝐺 is isomorphic to the
scheme underlying G. For example, if 𝐺 = 𝜶𝑝 or 𝐺 = 𝝁𝑝 , then Conj𝐺 is a non-reduced scheme of
length p with reduction (Conj𝐺)red � Spec 𝑘 .

In characteristic zero, all finite group schemes are étale and Case (1) applies. However, in characteristic
𝑝 > 0, the second example shows that for non-reduced group schemes Conj𝐺 may also be non-reduced.
The reduction (Conj𝐺)red is related to our first approach to conjugacy classes:
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Proposition B.10.

1. A morphism 𝐺 → 𝐻 of finite group schemes over k induces a morphism Conj𝐺 → Conj𝐻 of schemes
over k.

2. Assume 𝑝 > 0 and let 𝐺 → 𝐺 ét be the maximal étale quotient of the finite group scheme G over
k. Then, reduction identifies 𝐺red with 𝐺 ét and the induced natural inclusion 𝐺 ét → 𝐺 induces an
isomorphism

Conj𝐺ét →
(
Conj𝐺

)
red

of schemes over k. In particular, (Conj𝐺)red is a disjoint union of copies of Spec 𝑘 with one copy for
each conjugacy class of the abstract group 𝐺abs := 𝐺 (𝑘) = 𝐺 ét (𝑘).

Proof. We first prove Claim (1). If 𝐺abs → 𝐻abs is a homomorphism of groups, then we get a well-
defined induced map of conjugacy classes. Thus, if 𝐺 → 𝐻 is as in (1) and if T is a scheme over
k, then we get a well-defined map (𝐺 (𝑇)/∼) → (𝐻 (𝑇)/∼). This induces a morphism of functors
Conj

𝐺
→ Conj

𝐻
and thus, a morphism of schemes Conj𝐺 → Conj𝐻 .

Let G be as in Claim (2). Let 𝐺red → 𝐺 be the reduction, which is a morphism of group schemes.
We thus obtain canonical homomorphisms 𝐺 ét → 𝐺 → 𝐺 ét of group schemes over k, which (by Claim
(1)) induce morphisms of their associated schemes of conjugacy classes

Conj𝐺ét → Conj𝐺 → Conj𝐺ét .

The composition is the identity. Since Conj𝐺ét is reduced, we obtain a factorisation

Conj𝐺ét →
(
Conj𝐺

)
red → Conj𝐺ét . (B.1)

All these schemes are reduced and finite over the algebraically closed field k. Thus, all of them are finite
disoint unions of copies of Spec 𝑘 . To prove that the morphisms in (B.1) are isomorphisms, it suffices
to check that the induced maps on k-rational points are bijections. This follows easily from the fact that
the maps 𝐺red (𝑘) → 𝐺 (𝑘) → 𝐺 ét (𝑘) are bijections. �

If G is moreover linearly reductive, then the length of Conj𝐺 is related to the approach to conjugacy
classes from Section B.2.

Proposition B.11. Let G be a finite and linearly reductive group scheme over k, let 𝐺abs be the abstract
group associated to G and let F be a field as in Proposition B.2. Then,

length𝑘 Conj𝐺 = |Spec 𝐹 ⊗Z 𝐾𝑘 (𝐺) |

and this length agrees with the number of conjugacy classes of 𝐺abs.

Proof. By Remark B.8, the length of Conj𝑘 (𝐺) is equal to the dimension of the largest trivial subrepre-
sentation of 𝜌ad. Since Rep𝑘 (𝐺) is semi-simple, this is the same as the multiplicity of 1 in 𝜌ad. Using the
isomorphism from Prop 2.6, this multiplicity is the same as the multiplicity of1 in the adjoint representa-
tion of𝐺abs. This latter multiplicity is equal to the number of conjugacy classes of𝐺abs, see, for example,
Remark A.4. By Proposition B.2, this number is equal to the cardinality of Spec 𝐹 ⊗Z 𝐾𝑘 (𝐺). �

B.4. Fourth approach: via lifting to characteristic zero

Another idea might be to use lifting to characteristic zero: Let k be an algebraically closed field of
characteristic 𝑝 > 0, let 𝑊 (𝑘) be the ring of Witt vectors of k and let K be field of fractions of 𝑊 (𝑘).

Example B.12 (Mumford–Oort). Let 𝜑 : 𝝁𝑝 → Aut(𝜶𝑝) � G𝑚 be a non-trivial homomorphism and let
𝐺 := 𝜶𝑝 �𝜑 𝝁𝑝 be the corresponding semi-direct product group scheme. Then, G is a non-commutative

https://doi.org/10.1017/fms.2024.98 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.98


32 C. Liedtke

group scheme of length 𝑝2 over k. Oort and Mumford [MO68, Introduction, Example (-B)] (but see also
[Oo71, page 266]) showed that there does not exist a lift of G to any extension of 𝑊 (𝑘).

In particular, one cannot define conjugacy classes by first lifting G over some possibly ramified
extension of 𝑊 (𝑘), then passing to the geometric generic fibre of the lift, which would be the constant
group associated to an abstract finite group 𝐺abs, and finally use the conjugacy classes of 𝐺abs as a
replacement for the conjugacy classes of G. The reason is simply that lifts may not exist to start with.

In the following two cases, lifts do exist and we leave the straightforward proofs of our assertions to
the reader:

Remark B.13. Assume that G is étale over k. Then, there exists a unique flat lift of G over 𝑊 (𝑘), which
is the constant group scheme associated to 𝐺abs := 𝐺 (𝑘) over 𝑊 (𝑘). The constant scheme associated
to the set of conjugacy classes of 𝐺abs is the unique a flat lift of the scheme Conj𝐺 over 𝑊 (𝑘), which is
étale over 𝑊 (𝑘). More precisely, it is the constant scheme associated to the set of conjugacy classes of
𝐺abs over 𝑊 (𝑘).

Remark B.14. Assume that G is linearly reductive. Let 𝐺abs abstract group associated to G and
recall that their representation categories are equivalent by Proposition 2.6. Proposition B.2 shows that
Definition 6.1 is compatible with 𝐺abs.

If G → Spec 𝑊 (𝑘) is a flat lift of G over 𝑊 (𝑘), for example, the canonical lift Gcan, then

Spec 𝐻0(G,OG)
G → Spec 𝑊 (𝑘),

where the invariants are taken with respect to the adjoint representation, is a flat lift of Conj𝐺 over
𝑊 (𝑘), whose geometric generic fibre is the constant scheme associated to the set of conjugacy classes
of 𝐺abs. (Flatness follows from the fact that the special and the geometric generic fibre have the same
length by Remark B.8.)

The length of Conj𝐺 is equal to the number of conjugacy classes of 𝐺abs. The length of Conj𝐺 is at
least the number of k-rational points Conj𝐺 (𝑘) and in general not equal, since Conj𝐺 may not be étale
over k.

If G is of length prime to p, then it is étale and linearly reductive and in this case, all previous
approaches yield essentially the same notion of conjugacy class. On the other hand, the examples of the
above subsections show that if G is étale of length divisible by p or if G is linearly reductive but not
étale, then the various approaches of the above subsections usually lead to different notions of conjugacy
classes.

B.5. Fifth approach: via adjoint representation

Let 𝐺abs be a finite group and let 𝜌ad : 𝐺abs → GL(𝑉ad) be its adjoint representation over k. By
Remark A.4, the dimension of the largest trivial subrepresentation of 𝜌ad is equal to the dimension of
largest trivial quotient representation of 𝜌ad (even if p divides the order of 𝐺abs) and these dimensions
are equal to the number of conjugacy classes of 𝐺abs. Unfortunately, these trivial sub- or quotient
representations do not admit canonical decompositions into one-dimensional subspaces. Thus, there is
no canonical bijection between the conjugacy classes of𝐺abs with trivial sub- or quotient representations
of 𝜌ad.

Remark B.15. Let 𝐻 := 𝑘 [𝐺abs] be the group algebra with its usual Hopf algebra structure. The set of
group-like elements of H recovers the group 𝐺abs, see Example A.1. This suggests to use the adjoint
representation ad𝐻 together with the Hopf algebra structure of H - in particular, its co-algebra structure
- to define a useful notion of conjugacy class.

As we have seen (somewhat implicitly) in Section B.3 above, this works: Let 𝐺 := Spec 𝐻∗ be the
constant group scheme associated to 𝐺abs. Then, the topological space underlying Conj𝐺 is the set of
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group-like elements of the Hopf algebra H modulo the adjoint representation. This set can be identified
with the set of conjugacy classes of 𝐺abs.

Unfortunately, the previous remark does not carry over to finite group schemes that are not étale, as
the following example shows.

Example B.16. Let 𝐺 = 𝝁𝑝 or 𝐺 = 𝜶𝑝 over the algebraically closed field k of characteristic 𝑝 > 0.

1. The adjoint representation 𝜌ad of G is trivial of dimension p, but there is no canonical way to
decompose it into one-dimensional subspaces. This would suggest to have p conjugacy classes, but
without being able to distinguish them.

2. Moreover, there is only one group-like element in the Hopf algebra 𝐻0(𝐺,O𝐺)
∗ and the adjoint

representation on this element is trivial as well. This would suggest to have one conjugacy class only,
see also Example B.9.(2).

B.6. Sixth approach: via extended adjoint representation

Given a finite-dimensional Hopf algebra A over a field k, we have the adjoint representation ad𝐴, see
Appendix A.3. In Appendix A.4, we recalled the quantum double 𝐷 (𝐴) = (𝐴op)∗ ⊲⊳ 𝐴. In Appendix A.5,
we recalled that ad𝐴 can be extended to a representation of 𝐷 (𝐴) on A, the extended adjoint representation
Ad𝐴.

Generalising work of Witherspoon [Wi99], Cohen and Westreich [CW11] defined the set of con-
jugacy classes of A for a finite-dimensional semi-simple Hopf algebra over C to be the set of simple
subrepresentations of Ad𝐴. In this context, we also refer to the work of Jacoby [Ja17] and Zhu [Zhu97].

If G is a finite group scheme over k with Hopf algebra 𝐴 := 𝐻0 (𝐺,O𝐺), then 𝐷 (𝐴) is semi-simple
if and only if 𝐷 (𝐴∗) is semi-simple if and only if G is of length prime to p, see Proposition A.7. In
particular, the (extended) adjoint representations of A or 𝐴∗ may not be semi-simple. We will now study
these representations and their relation to conjugacy classes.

Example B.17. Let G be étale over k. Then it is the constant group scheme associated to𝐺abs := 𝐺 (𝑘). If
𝐴 := 𝐻0 (𝐺,O𝐺) is the associated Hopf algebra, then we have 𝐴∗ � 𝑘 [𝐺abs]. As seen in Example A.8,
the extended adjoint representation Ad(𝐴∗) is semi-simple and there is a natural bijection between
conjugacy classes of 𝐺abs and simple subrepresentations of Ad(𝐴∗). We stress that this is also true if p
divides the order of 𝐺abs.

Example B.18. Let G be a finite and linearly reductive group scheme over k, let 𝐺abs be the associated
abstract finite group and let 𝐴 := 𝐻0 (𝐺,O𝐺) be the associated Hopf algebra. Since A is commutative,
ad𝐴 is trivial. Using the description (A.1) of Ad𝐴 as an induced representation, we can identify it with
the dual of the regular representation

𝜌∨reg : 𝐴∗ → End(𝐴)

together with the trivial representation of A. By Proposition 2.6, representations of 𝐴∗ can be identified
with representations of C[𝐺abs] and thus, representations of 𝐺abs. Thus, we can decompose Ad𝐴 like the
dual of the regular representation of 𝐺abs: the number of isotypical components of this representation is
equal to the number of conjugacy classes of 𝐺abs. Thus, one can think of the conjugacy classes of 𝐺abs
as being “dual” to these isotypical components similarly to Appendix B.2.

The upshot of this discussion is the following: Let G be a finite group scheme over k and let
𝐴 := 𝐻0 (𝐺,O𝐺) be the associated Hopf algebra.

1. If G is étale over k, then simple subrepresentations of Ad (𝐴∗) are in bijection with conjugacy classes
of 𝐺abs := 𝐺 (𝑘).

2. If G is linearly reductive, then the isotypical components of Ad𝐴 give a reasonably good definition
for the “dual” of a conjugacy class.
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The following example shows that in general, neither Ad𝐴 nor Ad(𝐴∗) leads to a good approach toward
the notion of a conjugacy class - at least none that is better than the ones already discussed.

Example B.19. Let G be a finite and commutative group scheme over k and let 𝐴 := 𝐻0(𝐺,O𝐺) be the
associated Hopf algebra. As a consequence of Example A.9, we have the following.

1. If 𝐺 = 𝝁𝑝 , then we have 𝐴 = 𝑘 [C𝑝]. Thus, Ad𝐴 splits into the direct sum of p pairwise non-
isomorphic one-dimensional representations, which correspond to the characters of G. On the other
hand, Ad(𝐴∗) is a non-trivial successive p-fold and non-split extension of the trivial representation
1, whose semi-simplification is trivial of dimension p.

2. If 𝐺 = C𝑝 , then we obtain the same as before with the rôles of A and 𝐴∗ interchanged.
3. If 𝐺 = 𝜶𝑝 , then 𝐴 � 𝐴∗ and Ad𝐴 � Ad (𝐴∗) is a successive p-fold and non-split extension of the

trivial representation 1.

Acknowledgements. I thank Frank Himstedt, Martin Lorenz, Yuya Matsumoto, Frans Oort, Matt Satriano, Takehiko Yasuda and
the referees for discussions and comments.
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