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Abstract
Objective: To examine overall micronutrient intake periconceptionally and
throughout pregnancy in a population-based cohort of Australian women.
Design: In a prospective cohort study, micronutrient dosages were extracted from
self-reported maternal supplement use, recorded pre-conception, and for each
trimester of pregnancy. A food frequency scale (DQESv2) captured usual maternal
diet for gestational weeks 14–26. The influence of sociodemographic and lifestyle
factors associated with supplement use was examined using logistic regression,
and changes in micronutrient intakes prior to and throughout pregnancy were
assessed using repeated-measures ANOVA analyses.
Setting: Metropolitan hospital sites in Melbourne, Australia.
Subjects: Women with a viable singleton pregnancy were recruited at less than
19 weeks’ gestation (n 2146).
Results: Compared with non-users, women using supplements during pregnancy
were more likely to have planned their pregnancy, be >25 years old, primiparous,
Caucasian, non-smokers, have a tertiary education and be consuming a folate-rich
diet. Intakes of folate, Fe and Zn were significantly lower in the periconceptional
period, compared with other periods (P< 0·001). Intakes below Recommended
Daily Intake levels were common both periconceptionally and throughout
pregnancy, with 19–46% of women not meeting the Recommended Daily Intake
for folate, 68–82% for Fe and 17–36% for Zn. Conversely, 15–19% of women
consumed beyond the recommended Upper Limit for folate and 11–24% for Fe.
Conclusions: The study highlights the need for improved public health education
on nutritional needs during pregnancy, especially among women with lower
educational achievements and income.
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Maternal nutritional status during pregnancy is a key factor
in the health and development of the offspring, especially
in fetal brain development(1). Of particular importance
during pregnancy are methyl-donor nutrients such as
folate and vitamin B12, which are considered to be posi-
tively associated with brain growth and cognitive devel-
opment in the offspring(2,3). Folate reduces the risk of
neural tube defects in the fetus when consumed in the
periconceptional period(4), a finding which has led to the
fortification of grain with folic acid in many countries(5).
Zn and Fe have also been implicated in fetal
brain development, with in utero deficiencies associated
with higher likelihood of preterm birth and poorer
attention, learning and memory(6–8). Research also
suggests that vitamin D is crucial for fetal development.

Gestational vitamin D deficiency has been linked to the
development of neurological disorders such as autism(9)

and, more recently, with language impairment in child-
hood(10). An association also exists between vitamin D
deficiency during the latter stages of pregnancy and
impaired immune functioning and rickets in the
offspring(11,12).

Given the heightened nutritional requirements during
pregnancy(1,13), some women are at risk for suboptimal
intake when relying on diet alone(14,15). To address the
perceived gap between diet and recommended nutrient
status, consumption of dietary supplements during
pregnancy has become increasingly popular, with their
prevalence of use ranging from 81 to 97% in developed
nations(14,16–18). Some studies have characterised the types
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of supplements that women take during their
pregnancy(14,16,19) and others have examined the nutritional
intake of pregnant women through diet(15). Little is known,
however, about the total amount of key micronutrients
consumed during pregnancy when considering the
combined contribution of supplementation and diet. There
is also little information on the total nutritional intake of
women periconceptionally and in very early pregnancy.

Understanding micronutrient consumption patterns
throughout pregnancy and during critical periods of fetal
development has important implications for public health
policies around maternal nutrition in pregnancy. As such,
the objective of the present study was to describe
total micronutrient consumption through both diet and
supplement use in a population-based prospective cohort
of pregnant women.

Specifically, we aimed to: (i) describe supplement use in
the three months prior to and throughout pregnancy;
(ii) describe the socio-economic, demographic and
lifestyle factors associated with supplement consumption;
and (iii) using dietary and supplemental intake values,
compare with the Australian national pregnancy guide-
lines(20) the total quantity of key micronutrients consumed
both prior to and during pregnancy.

Method

Study population
The present study is nested within the AQUA (Asking
QUestions about Alcohol) study(21). Women were recruited
during early pregnancy at one of seven maternity hospitals
in Melbourne, Australia, between July 2011 and July 2012.
These sites were chosen based on birth numbers, model
of booking in for pregnancy and because of strong
management support, thus maximising the feasibility of
the project. To be included, women were required to have
a viable singleton pregnancy, be less than 19 weeks’
gestation at the time of recruitment, at least 16 years of
age, fluent in English and able to provide informed
consent (n 2146). The study protocol provides a detailed
description of the population of pregnant women involved
in AQUA(21).

Data collection
Prenatal data collection was administered via three self-
completed questionnaires covering five time points: Ques-
tionnaire 1, completed at recruitment (<19 weeks’ gesta-
tion), collected information for three months prior to
conception (3MP), after conception but before pregnancy
awareness (PPA) and after pregnancy awareness
until 13 weeks’ gestation (T1; n 2146); Questionnaire 2,
completed at 26–28 weeks’ gestation, covered the
second trimester (T2; n 1715, 79·9%); and Questionnaire 3,
at 36 weeks’ gestation, covered the third trimester
(T3; n 1571, 73·2%).

Women recorded their use of dietary supplements for
each time point. A check list of nine common vitamins and
minerals was provided. These included multivitamins,
vitamin A, vitamin D, vitamin E, zinc, iron, folic acid,
antacids and fish oil, with the option to provide an ‘other’
response. Women also recorded their use of up to three
specific supplements, including the brand and type of
supplement, quantity consumed and frequency of use.
The nutrient values of these supplements were gathered
from product descriptions provided by the manufacturer
or supplier, either on the homepage on the Internet or via
personal communication.

To calculate the nutrient composition of the dietary
supplements, a database was created containing a collated
list of reported supplements, with approximately 400
unique entries. Median values were used when detailed
nutritional information on a particular supplement was not
available (3% of participants) and when a supplement
type was recorded without a corresponding brand (2–14%
of participants).

Information on maternal diet was collected in Ques-
tionnaire 2 through a modified FFQ (Dietary Questionnaire
for Epidemiological Studies, Version 2 (DQESv2); Cancer
Council Victoria, 1996). The DQESv2 is a measure of usual
dietary intake and has been validated for use in large-scale
epidemiological studies(22). The questionnaire incorporates
cereal foods, sweets, snacks, dairy products, meats, fish, fruit
and vegetables. Participants were asked to rate seventy-four
specific food types on a 10-point frequency scale ranging
from ‘never’ to multiple times per month, week or day.
Global questions regarding quantity and type of hot meals,
fruit, vegetables and dairy products typically consumed
were also asked, and were used to scale responses. The
dietary information collected in Questionnaire 2 has been
used as a proxy for participants’ usual diet prior to and
throughout pregnancy.

Analysis of the FFQ was undertaken by the Cancer Council
Victoria. This analysis excluded information on vitamin B12

and vitamin D intake from food(23). Further, while the
Australian Government introduced mandatory fortification of
bread flour with folic acid in 2009, it was not possible to
modify the calculation of folate intake accordingly(23).

Demographic and lifestyle information
Detailed data on obstetric history, maternal social environ-
ment and broader lifestyle factors were also collected at each
time point(21). Factors included in the current analysis
were maternal age in years (<25; 25–29; 30–34; 35–40; >40),
ethnicity (Caucasian; Asian; Other), pre-pregnancy BMI,
parity (0 previous children; 1 previous child; >1 previous
children), pregnancy planning (planned; unplanned),
educational attainment (secondary schooling; trade/diploma;
tertiary education), annual household income in $AU
(<30000; 30000–69000; 70000–100000; >100000), and
maternal use of tobacco and alcohol (yes; no).
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Statistical approach
Statistical analyses were conducted using the statistical
software package STATA 13.0. Multiple logistic regression
was used to assess the independent sociodemographic and
lifestyle factors associated with overall supplement use and
use of general multivitamins, pregnancy multivitamins,
folate-specific supplements and vitamin D supplements.
Odds ratios and 95% confidence intervals were calculated.

To assess differences in micronutrient intake over the five
time points (from 3MP to T3), one-way repeated-measures
ANOVA were conducted. A Greenhouse–Geisser correction
was employed where ε<0·75 and a Huynh–Feldt correction
where ε>0·75. P<0·05 was considered significant in all
statistical tests.

Australian Nutrient Reference Values (national dietary
guidelines) for pregnancy(20) were used to evaluate nutrient
intake among our participants. The current Recommended
Daily Intake (RDI) value for folate during pregnancy is
600 µg/d (from combined food and supplemental sources).
Typically, women are advised to take a 400µg folic acid
supplement daily in the periconceptional and early
pregnancy periods, in addition to consuming folate-rich
foods. This recommendation is endorsed by both the US
Institute of Medicine(24) and Food Standards Australia
New Zealand(25). The RDI for Fe and Zn intake during
pregnancy is 27mg/d and 11mg/d, respectively(20).

Results

Supplement use prior to and during pregnancy
Table 1 shows the distribution of the number and type of
supplements consumed at each time point. Sixty-four per
cent of women were taking a supplement in the peri-
conceptional and pregnancy pre-awareness (3MP and PPA)
periods, rising to 88–91% in T1 to T3. Among supplement
users, multivitamins (either general or pregnancy-specific)
were the most commonly consumed supplements at all
stages of pregnancy. Approximately 40% of women from
the total sample consumed a folic acid preparation (preg-
nancy multivitamin, folate-specific supplement and/or
folate/iodine supplement) periconceptionally, with this
figure rising to 62% after pregnancy awareness. There was a
steady increase in vitamin D supplementation during preg-
nancy, and the proportion of women using Fe supplements
almost tripled from early pregnancy (T1) to T3.

Demographic, socio-economic and lifestyle factors
associated with supplement use

Overall supplement use
Fig. 1(a) and 1(b) show OR and 95% CI for variables
associated with supplement users, compared with
non-users, in a multivariate model. Results are separated
according to gestational timing. See the online supplemen-
tary material, Table S1 for full univariate and multivariate

analysis information. When adjusted for all other variables,
those positively associated with supplement use were
pregnancy planning (associated with use pre-conception
and T1), consumption of a folate-rich diet in pregnancy
(pre-conception, and trimester one prior to pregnancy
awareness) and lower pre-pregnancy BMI (T2 and T3).

Significant negative predictors of supplement use, after
adjusting for covariates, included Asian ethnicity (negatively
associated with use pre-conception and in T1), ‘other’
ethnicity (trimester one prior to pregnancy awareness),
maternal age <25 years (pre-conception, and T1 and T3) or
25–29 years (pre-conception), and having one previous
child (pre-conception and T2) or multiple previous
children (pre-conception, trimester one, prior to pregnancy
awareness, and T2). Additional negative predictors of
supplement use included alcohol consumption in preg-
nancy (negatively associated with use in trimester one, prior
to pregnancy awareness) and smoking (pre-conception
and trimester one, prior to pregnancy awareness).
Finally, annual household income below $AU 100 000
(pre-conception and trimester one, prior to pregnancy
awareness) and maternal education to secondary school
(pre-conception and T1) or trade/diploma level (pre-con-
ception, and T1 and T3) were also negatively associated
with supplement use.

Use of specific supplement types
Variables associated with use of pregnancy-specific
multivitamins, general multivitamins, folic acid-specific
supplements and vitamin D supplements were also
examined in a multivariate model. Tables S2–S5 in the
online supplementary material show OR, 95% CI and
significance levels for each supplement type across the
five time periods.

For pregnancy-specific multivitamins, pregnancy plan-
ning was a significant positive predictor of use (associated
with use pre-conception and trimester one, prior to
pregnancy awareness), as was alcohol consumption
(T2 and T3). Significant negative predictors of use
included annual household income <$AU 30 000 (T1, T2
and T3), annual household income of $AU 30 000–69 000
(trimester one, post pregnancy awareness), education
to secondary school level (pre-conception), Asian (pre-
conception and T1, T2 and T3) and ‘other’ ethnicity
(trimester one, post pregnancy awareness), and increasing
parity (T3).

For general multivitamins, pregnancy planning was
negatively associated with use pre-conception and in tri-
mester one, prior to pregnancy awareness. Significant
positive predictors of general multivitamin use included
education to secondary school level (associated with use
pre-conception), Asian ethnicity (T1, T2 and T3), and
annual household income of <$AU 30 000 (trimester one,
post pregnancy awareness, and T2) and $AU 30 0000–
69 000 (trimester one, post pregnancy awareness).
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Pregnancy planning was a positive predictor for
periconceptional use of folic acid supplements (pre-
conception and trimester one, prior to pregnancy
awareness). Annual household income of $AU 70 000–
100 000 was a negative predictor of folic acid supplement
use pre-conception, compared with households earning
>$AU 100 000 per annum.

For vitamin D-specific supplements, Asian (T1 and T3)
and ‘other’ ethnicity (pre-conception and trimester one,
prior to pregnancy awareness) were significant positive
predictors of use, as was increasing BMI (T2 and T3) and
maternal age 25–29 years (T2 and T3). Significant negative
predictors included alcohol consumption (negatively
associated with vitamin D use pre-conception and in T1,
T2 and T3) and maternal education to secondary school
level (pre-conception and trimester one, post pregnancy
awareness).

Total intake of folate (dietary and supplemental)
prior to and during pregnancy
A one-way repeated-measures ANOVA showed that
women’s total combined dietary and supplemental intake of
folate differed significantly across time points (F (2·96,
5065·73)=50·27, P<0·001; data not tabulated). In the
periconceptional period almost half of women were
consuming below the RDI for folate (Fig. 2). During this time
the average total folate intake (3MP: 660 (SD 625) µg/d;
PPA: 650 (SD 588) µg/d; data not tabulated) was significantly

lower compared with intake following pregnancy aware-
ness (T1: 840 (SD 672) µg/d, P<0·001; data not
tabulated) and in T2 (760 (SD 604) µg/d, P< 0·001; data not
tabulated). Women were most likely to overconsume folate
in T1, following pregnancy recognition, and average total
folate intake was also significantly higher directly after
recognition compared with intake in T2 (P<0·001; data not
tabulated) and T3 (690 (SD 583) µg/d, P<0·001; data not
tabulated).

The proportion of total folate intake from supplement
use differed substantially across intake categories, with
about 80% of total folate for overconsumers coming from
supplements, in contrast to 14–36% for those with total
folate consumption below the RDI (Fig. 2).

Total intake of iron (dietary and supplemental)
prior to and during pregnancy
Total average Fe intake also differed significantly at dif-
ferent stages of the periconceptional and pregnancy per-
iods (F (2·89, 4932·60)= 89·01, P< 0·001; data not
tabulated). In the 3MP (24·11 (SD 26·93) mg/d; data not
tabulated) and PPA periods (23·22 (SD 25·06) mg/d; data
not tabulated), average total Fe intake was significantly
lower than in the remainder of pregnancy (TI, post
awareness: 30·47 (SD 29·66) mg/d, P< 0·001; T2: 33·33 (SD
34·42) mg/d, P< 0·001; T3: 37·36 (SD 41·33) mg/d,
P< 0·001; data not tabulated). Relatively few women were
meeting the RDI for Fe, with most participants either

Table 1 Distribution of number and type of supplements consumed across five time points in a population-based prospective cohort of
women with a viable singleton pregnancy (n 2146), Melbourne, Australia, July 2011–July 2012

3MP (n 2146) PPA (n 2146) T1 (n 2146) T2 (n 1715) T3 (n 1571)

% n % n % n % n % n

Taking a supplement 64 1379 64 1382 91 1952 88 1505 91 1434
Nil 36 767 36 764 9 194 12 210 9 136
One 37 787 37 791 45 962 33 567 32 497
Two 18 385 20 428 32 695 35 608 34 539
Three or more 10 207 8 163 14 295 19 330 25 398

Supplement types* SU TS n SU TS n SU TS n SU TS n SU TS n

General multivitamin 35 22 477 34 22 466 34 31 657 31 27 461 39 35 557
Pregnancy/conception multivitamin 39 25 533 40 26 556 52 47 1014 58 51 873 50 46 717
B vitamin multivitamin 1·5 1 22 1 1 19 1 1 17 <1 1 10 <1 <1 7
Folate and Iodine 2·5 2 36 3 2 39 2 2 39 1·5 1 23 1 1 14
Folate 24 15 329 21 14 291 17 15 326 8 7 124 5 4 68
Zinc 1 1 18 1 1 15 <1 < 1 9 <1 1 10 <1 1 9
Iron 5 3 72 5 3 71 5 4 92 7 6 105 14 13 206
Vitamin B12 <1 <1 5 <1 <1 7 <1 < 1 8 <1 < 1 7 1 1 14
Vitamin D 18·5 12 254 21 14 295 35 32 688 52 45 777 53 48 761
Fish/cod liver oils 13 9 186 12 8 171 7 6 135 8 7 119 7 7 107
Calcium 1 1 11 1 1 13 1·5 1 28 2 1 25 2 2 26
Vitamin D and calcium 1 1 18 1 1 18 2 2 33 3 3 45 4 3 54
Herbal 5 3 65 3 2 44 1·5 1 28 1·5 1 22 4 3 53
Other 8 5 108 7 5 102 6 5 118 8 7 122 8 7 117
Any folic acid preparation† 62 40 853 62 40 858 68 62 1320 66 58 991 54 50 780

3MP, three months prior to conception; PPA, after conception but prior to pregnancy awareness; T1, from awareness to gestational week 13; T2, second
trimester; T3, third trimester; SU, proportion of supplement users (%), TS, proportion of total sample (%).
*Categories are not mutually exclusive, as some women are consuming two or more supplement types.
†Includes single or combined use of a pregnancy multivitamin, folic acid-specific supplement and folic acid/iodine supplement.
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under- or overconsuming this micronutrient (Fig. 3).
There was a significant increase in total average Fe intake
for each trimester (P< 0·01; data not tabulated), such that
almost a quarter of women were consuming beyond the
Upper Limit in T2 and T3. Dietary intake of Fe was greatest
for those meeting the RDI, with women in this category
consuming relatively equal amounts of Fe through diet
and supplementation.

Total intake of zinc (dietary and supplemental)
prior to and during pregnancy
Total average Zn consumption differed significantly at
each time point (F (3·01, 5138·99)= 96·84, P< 0·001; data
not tabulated). In the periconceptional period over a third
of women did not meet the RDI for Zn (Fig. 4) and total
average Zn intake (3MP: 15·20 (SD 9·13) mg/d; PPA: 15·47
(SD 9·23) mg/d; data not tabulated) was significantly
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Fig. 1 (Continued from previous page) Multivariate model of variables associated with overall supplement use in (a) early pregnancy
(3MP, three months prior to conception; PPA, after conception but prior to pregnancy awareness; T1, from awareness to gestational week
13) and (b) mid to late pregnancy (T2, second trimester; T3, third trimester) among a population-based prospective cohort of women with
a viable singleton pregnancy (n 2146), Melbourne, Australia, July 2011–July 2012. Data are presented as individual odds ratios with 95%
confidence intervals represented by vertical bars. Reference groups: age =30–34 years; ethnicity = Caucasian; parity =0 previous
children; educational attainment = tertiary education; annual household income = >$AU 100000. Note that all variables are mutually
adjusted for each other. Non-significant univariate predictors (3MP: maternal pre-pregnancy BMI, maternal alcohol consumption (yes/no)
pre-conception; PPA: maternal pre-pregnancy BMI; T1, post aware: maternal alcohol consumption (yes/no) in T1, maternal smoker
status (yes/no) in T1, dietary folate intake, maternal pre-pregnancy BMI; T2: pregnancy planning (yes/no), maternal ethnicity, maternal
alcohol consumption (yes/no) in T2, dietary folate intake; T3: pregnancy planning (yes/no), maternal ethnicity, parity, household income,
maternal alcohol consumption (yes/no) in T3, dietary folate intake) were excluded from the model
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lower than later in T1, following pregnancy awareness
(17·89 (SD 7·66) mg/d, P< 0·001; data not tabulated) and
in T2 (17·65 (SD 8·18) mg/d, P< 0·001) and T3 (17·13 (SD
8·37) mg/d, P< 0·001; data not tabulated). Total Zn intake
was also significantly higher in T1 post awareness and
in T2, compared with T3 (P< 0·001; P< 0·01; data not
tabulated).

For women meeting or surpassing the RDI, both diet
and supplementation contributed to overall intake levels,
while for women consuming below the RDI, total intake

was predominantly dietary. Overconsumption of Zn was
rare at any time point.

Supplemental intake of vitamin B12 and vitamin D
prior to and during pregnancy
Consumption of vitamin B12 and vitamin D through dietary
supplements increased sharply following pregnancy
awareness (Table 2). Post awareness, over two-thirds of
women were meeting the RDI for vitamin B12, and over
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Fig. 3 Total intake of iron from diet and supplementation, according to daily intake category and time period, among a population-based
prospective cohort of women with a viable singleton pregnancy (n 2146), Melbourne, Australia, July 2011–July 2012 (3MP, three months
prior to conception; PPA, after conception but prior to pregnancy awareness; T1, from awareness to gestational week 13; T2, second
trimester; T3, third trimester; RDI, Recommended Daily Intake; UL, Upper Limit). Intake levels: RDI=27mg/d; UL=45mg/d

300 M Livock et al.

https://doi.org/10.1017/S1368980016002019 Published online by Cambridge University Press

https://doi.org/10.1017/S1368980016002019


80% of women were meeting Adequate Intake levels for
vitamin D, through supplementation alone.

Discussion

In the current large, prospective pregnancy cohort study,
intakes of several key micronutrients important for fetal
development were examined across five time points.
Following pregnancy awareness, supplement use rose to
about 90% and the number of supplements women
consumed increased with each trimester. This reflects pri-
marily vitamin D and Fe intake, consistent with the increased
need for these micronutrients later in pregnancy(20,26,27).

Low intake of dietary supplements during pregnancy is
typically seen in those most at risk for nutritional deficiencies
(based on sociodemographic characteristics)(18,19), and this
was found in the present study with low household income
being a negative predictor. Positive predictors of supplement
use were pregnancy planning, maternal age >25 years,
having a first child, Caucasian ethnicity and a tertiary
education. In addition, engagement in other positive health

behaviours was evident in those using supplements, such
as non-smoking, consumption of a folate-rich diet and
periconceptional alcohol abstinence.

Women from the lower sociodemographic groups who did
consume supplements were more likely to be taking general
multivitamins, rather than pregnancy-specific multivitamins,
the former being cheaper and having lesser quantities of
micronutrients. Further, women meeting the RDI for folate,
Fe and Zn were typically consuming a higher quantity of
these micronutrients through diet, as well as through
supplementation, compared with those not meeting the RDI.
This indicates that those not meeting dietary requirements
have a comparatively nutrient-poor diet which they are less
likely to be augmenting with dietary supplements. Public
health messages around the importance of nutrition in
pregnancy may not be reaching those most at risk and it is
plausible that those with a lower income experience barriers
to the use of specific-pregnancy preparations.

Women with previous children were also less likely to
consume supplements, particularly in the periconceptional
period. This lower consumption is unlikely to be due to a lack
of awareness around pregnancy nutrition, as multiparous

36 %

62 %

2 %

35 %

63 %

2 %

17 %

81 %

2 %

19 %

79 %

2 %

24 %

74 %

2 %

Below RDI
(n 616)

Meeting
RDI

(n 1061)

Surpassing
UL (n 34)

Below RDI
(n 595)

Meeting
RDI

(n 1081)

Surpassing
UL (n 35)

Below RDI
(n 294)

Meeting
RDI

(n 1384)

Surpassing
UL (n 33)

Below RDI
(n 324)

Meeting
RDI

(n 1355)

Surpassing
UL (n 32)

Below RDI
(n 404)

Meeting
RDI

(n 1271)

Surpassing
UL (n 36)

% Dietary Zn

Dietary Zn
(mg/d), mean (SD)

% Supplemental Zn

Supplemental Zn
(mg/d), mean (SD)

Total Zn
(mg/d), mean (SD)

99 %

8.0
(1.8)

1 %

0.1
(0.7)

8.1
(1.8)

63 %

11.5
(3.9)

37 %

6.6
(5.5)

18.1
(5.1)

41 %

21.2
(24.4)

59 %

304
(27.2)

51.7
(28.8)

99 %

8.0
(1.8)

1 %

0.1
(0.8)

8.2
(1.8)

62 %

11.4
(4.0)

38 %

6.9
(5.3)

18.3
(5.0)

39 %

20.4
(24.1)

61 %

31.1
(28.9)

51.7
(29.6)

98 %

7.9
(1.9)

2 %

0.2
(0.9)

8.1
(1.9)

55 %

10.6
(3.7)

45 %

8.7
(4.2)

19.3
(4.8)

54 %

24.0
(24.4)

46 %

20.5
(11.7)

44.5
(20.4)

97 %

7.9
(1.9)

3 %

0.2
(1.0)

8.1
(1.9)

56 %

10.8
(3.9)

44 %

8.4
(4.5)

19.2
(5.0)

42 %

20.6
(25.2)

58 %

28.3
(16.5)

49.0
(22.3)

98 %

8.0
(1.9)

2 %

0.1
(0.7)

8.1
(1.9)

56 %

10.9
(3.8)

44 %

8.5
(4.2)

19.1
(4.8)

44 %

21.3
(23.8)

56 %

27.1
(16.6)

48.4
(21.5)

3MP PPA T1 T2 T3

%
 o

f w
om

en

3MP PPA T1 T2 T3

70
60
50
40
30
20
10
0

80
90

Fig. 4 Total intake of zinc from diet and supplementation, according to daily intake category and time period, among a population-based
prospective cohort of women with a viable singleton pregnancy (n 2146), Melbourne, Australia, July 2011–July 2012 (3MP, three months
prior to conception; PPA, after conception but prior to pregnancy awareness; T1, from awareness to gestational week 13; T2, second
trimester; T3, third trimester; RDI, Recommended Daily Intake; UL, Upper Limit). Intake levels: RDI=11mg/d; UL=35mg/d

Table 2 Supplemental intake of vitamin B12 and vitamin D, based on supplement users, according to time period, among a population-based
prospective cohort of women with a viable singleton pregnancy (n 2146), Melbourne, Australia, July 2011–July 2012

3MP PPA T1 T2 T3

% n % n % n % n % n

Meeting the RDI for vitamin B12 41 890 43 921 68 1453 65 1121 68 1068
Meeting the AI for vitamin D 47 1014 50 1064 81 1736 81 1394 85 1335

3MP, three months prior to conception; PPA, after conception but prior to pregnancy awareness; T1, from awareness to gestational week 13; T2, second
trimester; T3, third trimester; RDI, Recommended Daily Intake; AI, Adequate Intake (used when RDI cannot be determined).
Intake levels: vitamin B12 RDI = 2.6 µg/d; vitamin D AI = 5 µg/d.
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women have been shown to have greater knowledge than
primiparous women(28). Instead, it may reflect a reduction
in pregnancy planning and health proactiveness for sub-
sequent pregnancies. The higher variability in supplement
use throughout pregnancy for multiparous women would
seem to support this inference.

Ethnicity impacted supplement choice. Caucasian
women were more likely to use pregnancy multivitamins
at any time prior to or during pregnancy, while women of
non-Caucasian ethnicity were more likely to consume
general multivitamins and vitamin D-specific supplements.
It is possible that health professionals regularly advise
women of darker skin and those in ethnic populations
requiring the covering of skin with clothing about their
increased need for vitamin D(29).

Somewhat surprisingly, those women continuing to use
pregnancy-specific multivitamins into T2 and T3 (more
likely to be Caucasian, have higher annual household
income and education, be primiparous, non-smoking and
>25 years old) were also more likely to have consumed
alcohol in these trimesters. This relationship is consistent
with a belief held by some women that low-level
consumption of alcohol is associated with low risk,
particularly in the context of an otherwise healthy
lifestyle(30). While there is some research evidence to
support the idea that good maternal nutrition can ameliorate
some of the effects of fetal exposure to alcohol(31–33), current
medical advice recommends abstinence during pregnancy
as the safest policy.

Many women failed to meet the RDI for folate, Fe and Zn,
particularly in the critical periconceptional period. Compared
with previous studies, we report a slight increase in the
proportion of women taking folic acid periconceptionally,
from approximately 19–35%(14,17,28) to 40%. Nevertheless,
this indicates that 60% of women are not consuming a folic
acid preparation in this critical time period, despite only 23%
in our sample having an unplanned pregnancy.

Conversely, overconsumption of folate through diet and
supplemental sources (beyond 1000 µg/d) was relatively
common, particularly late in T1. There is little consensus
on whether nutrient intake beyond a level of sufficiency
conveys additional advantage during pregnancy, and
recent research has found a link between high doses of
folic acid during pregnancy (over 5mg/d) and impaired
psychomotor development at 12–23 months of age(34).
High intake of folic acid may also lead to adverse neuro-
logical outcomes in the fetus by masking a severe vitamin
B12 deficiency

(20,35,36). Fortunately, when folic acid intake
peaked following pregnancy awareness, over two-thirds
of women in our sample were meeting the RDI for vitamin
B12 through supplementation.

This pattern of folic acid consumption (lowest
periconceptionally and increasing late in T1) does not
align with knowledge and policy related to primary
prevention of neural tube defects. Therefore, while
women may be aware that folic acid plays a role in

fetal development, and thus begin consumption of this
compound following pregnancy recognition, they may be
unaware of the importance of timing.

Total combined consumption of dietary and supple-
mental Fe was polarised, with the majority of women either
over- or underconsuming. There were 20–24% of women
consuming above the RDI, which may have been due to
specific prescriptions for an identified Fe deficiency that was
not captured in the present study. However, increased Fe
stores in women not experiencing Fe deficiency have been
associated with gestational diabetes and increased oxidative
stress during pregnancy(37,38).

Of additional concern was the 70% of women still not
reaching the RDI for Fe by T3, despite a progressive rise in
average Fe intake from the periconceptional period.
As Fe needs are thought to increase in later pregnancy(26),
and animal research has found that Fe deficiency from
pre-conception until early in T2 can lead to impairments
in fetal neurodevelopment(39), better monitoring and
education around Fe status in women of childbearing age
is indicated.

Study strengths
A major strength of the current study was knowledge of
women’s total nutrient intake, including both diet and
supplements. Additionally, by surveying participants at
five time points, we were able to measure supplement
intake across critical periods of fetal development. To our
knowledge, the present study is the first to examine
pregnancy micronutrient intake in such detail. A further
strength of the research was the large cohort involved and
its relatively high retention rate (73%).

Study limitations
Measurement error inherent in FFQ must be acknowl-
edged. Despite this, recall-based FFQ have been found to
be moderately correlated with biomarker methods(23),
particularly for folate, Zn and Fe(40). The FFQ was
administered in T2, given the prevalence of morning
sickness and specific food proclivities in early pregnancy.
These data were then used as a proxy for women’s
usual diet across all time points, potentially reducing the
accuracy of dietary intake assigned to other periods.
However, evidence suggests that dietary patterns tend to
remain stable throughout pregnancy(41,42).

The FFQ we used (DQESv2) does not take into
account folic acid fortification of bread flour (introduced in
Australia in 2009). However, 27–39% of Australian
households purchase organic bread and breakfast
cereals, which are excluded from mandatory fortification
requirements(43). Despite this, it should be noted that a
77% reduction in low serum folate and an 85% reduction
in low red-blood-cell folate in women of childbearing
age have been found one year post the introduction of
mandatory fortification(44). Further, the mean increase in
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daily dietary folate following mandatory fortification is
estimated to be 159 µg for women of childbearing age(45).
Therefore, it is likely that dietary folate is underestimated
in the present study.

Finally, while use of self-report dietary supplement
information is highly correlated with biomarker meth-
ods(46), use of median nutrient values where detailed
nutritional information was not available may impact on
the overall accuracy of supplement information. As this
occurred for only a small minority of cases, it is unlikely to
markedly affect results.

Conclusion

The present study indicates that over two-thirds of women
were consuming supplements periconceptionally and this
increased significantly following pregnancy awareness to
approximately 90%. When considering the combined
contribution of diet and supplementation, the majority
of women met the RDI for folate and Zn throughout
pregnancy, but failed to do so periconceptionally.
In contrast, a significant minority of women consuming
high-dose folic acid supplements exceeded the Upper
Level for folate, particularly late in T1 and T2. Intake of
Fe remained below the RDI for most women both prior to
and throughout pregnancy, with those consuming a
low dose or no supplemental Fe least likely to meet
the recommended target compared with those taking an
Fe-specific supplement.

Supplementation plays a large role in overall micronutrient
intake during pregnancy and is necessary for many women
to reach RDI levels. The present study highlights the need
for improvement in public health education on nutritional
needs during pregnancy, particularly among women
with lower educational attainment and lower household
income.
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