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ABSTRACT. A simple approach to glacier dynamics is explored in which there is postu-
lated to be a relationship between area and volume with three parameters: the time for area
to respond to changes in volume, a thickness scale, and an area characterizing the condition
of the initial state.This approachgives a good fit to the measurements of cumulativebalance
and area on South Cascade Glacier from1970^97; the area time-scale is roughly 8 years, the
thickness scale about 123 m, and the 1970 area roughly 4% larger than required for adjust-
ment with volume. Combining this relationship with a version of mass continuity expressed
in terms of area and volume produces a theory of glacier area and volume response to
climate in which another time constant, the volume time-scale, appears. Area and volume
both respond like a damped spring and mass system. The damping of the South Cascade
response is approximately critical, and the volume time-scale is roughly 48 years, six times
the area time-scale. The critically damped spring and mass analogy reproduces the time
dependence predicted by the more complicated traditional theory of Nye.

1. INTRODUCTION

The problem of predicting the response of a glacier to a given
climate scenario has received a great deal of attention over
the years. The conventional approach is to use a numerical
model capable of estimating the full longitudinal profiles of
surface elevation and velocity, the terminus position and
their evolution with time. An analytical approximation,
which we call the `̀ traditional’’ approach, is also useful
because it shows the general nature of the results to be
expected (e.g. Nye,1960,1963). These models contain some of
the physics of flow dynamics, but are semi-empirical because
they also contain major assumptions, approximations, or
adjustable parameters to account for the incompletely known
geometry of the glacier and processes of ice deformation,
basal motion, longitudinal-force transmission and terminus
dynamics. Even though these models are semi-empirical, they
are complex enough that simple controls on the amplitude
and time-dependence of the response, what their orders of
magnitude are, and how accurately they can be determined,
tend to be buried in detail.These issues canbe addressed with
another, much simpler, semi-empirical approach which
started with papers by Jöhannesson and others (1989a,b).

The idea behind the alternative approach is that a simple
approximate-response theory can be obtained by ignoring
the spatial distributions of map area, thickness and mass-
balance rate. One considers only the total map area, volume
and glacier-wide balance rate. It wouldbe more conventional
to use length instead of area, but because the termini of some
glaciers are complicated, area is more fundamental, espe-
cially in the case of small glaciers (Ye and others, 2003). Area
and length are closely related because most area changes
occur near the terminus. The resulting theory is contained
in two equations for the two unknowns, area and volume.
One equation expresses the dynamics of flow in terms of a

relationship between area and volume and the other
expresses mass continuity in terms of the same variables.

This type of `̀macroscopic’’ approach has a long history
in physics. It is sometimes advantageous to ignore the fine
details of physical processes in favor of simple equations of
state or constitutive laws which may have some physical
motivation, but whose calibration and validation depend
primarily upon observation. The motivation in this case
comes first from the fact that our existing version of macro-
scopic theory (Harrison and others, 2001) would be exact for
a perfectly plastic glacier, which actual ice masses approach
to some extent. Second, it has been shown with a conven-
tional numerical model that the shape of a glacier is mainly
controlled by the glacier-wide balance rate, while the details
of balance-rate distribution have a relatively minor effect
(Boudreau and Raymond, 1997), as is assumed in macro-
scopic theory. Here we generalize our existing version of
macroscopic theory to account for departure from perfect
plasticity. It is noteworthy that our approach is a first-order
one limited to small changes.

2. A RELATIONSHIP BETWEEN AREA ANDVOLUME

2.1. Formulation

Our first task is to formulate an appropriate relationship
between glacier area A and volume V . We shall motivate a
simple relationship, and parameterize it in a way that allows
its range of usefulness to be tested with observations.We adopt
the point of view that in this relationship area is the dependent
variable; it `̀ responds’’ to volume.Volume is taken as the inde-
pendent variable because mass continuity (considered in the
next section) puts a constraint on the rate of volume change.

With area the dependent variable, departure from per-
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fect plasticity is interpreted as introducing a delay between
volume change and area response to it.The limiting case, in
which volume changes so slowly that area effectively stays in
adjustment with it, is of special interest. The states corres-
ponding to this situation lie on a curve in the A^V plane
which we sketch in Figure1and label …Aa; Va†.We call these
the `̀area-adjusted states’’, realizing that although area and
volume are in adjustment with each other, they may not be
in adjustment with climate.When they are, the term`̀ steady
state’’ will be used.

For the real situation in which the volume changes at a
finite rate, we take the rate of adjustment of area dA=dt to be
proportional to the amount by which area is out of adjust-
ment with volume.We express this as the difference between
the instantaneous area A and the area in a particular area-
adjusted state, the one Aa…V † which would correspond to
the instantaneous volume V .Thus we write

dA

dt
ˆ ¡ 1

½A
A ¡ Aa…V †… † ; …1†

in which 1=½A is a proportionality factor and the negative
sign makes the response stable for positive ½A. We call ½A

the `̀area time-scale’’. It may depend upon climate, but if
the glacier is not far from steady state (a requirement of
first-order theory), one can show that climate dependence
enters via second-order terms. ½A will therefore be taken to
be constant.

Equation (1) is our tentative relationship between area
and volume, but it is not in the most useful form. The most
obvious problem is that our approach is a first-order one,
and therefore its scope is limited to the calculation of small
changes in area and volume from some reference state,
rather than area and volumes themselves. (This is mitigated
by the fact that the change in volume is often a measured
quantity or of more interest than the volume itself, espe-
cially in hydrologic or sea-level applications.) The other
problem with Equation (1) is that the curve representing
the area-adjusted states Aa…V † is usually unknown. Both

problems can be addressed by changing variables from area
and volume to their changes, ¢A and ¢V , as measured
with respect to the initial state at time t ˆ 0. Primes denote
quantities associated with the initial state. …A0; V 0† is usually
not an area-adjusted state. Formally,

¢A ˆ A ¡ A0 …2†

¢V ˆ V ¡ V 0 : …3†
¢V is measured by geodetic methods or by accumulating
annual balance measurements in ice-equivalent units, at
least if the near-surface density structure of the glacier is
approximately constant in time (see, e.g., Bader, 1954). ¢V
would then be the cumulative balance in ice-equivalent
units, which we use exclusively. ¢A can be measured by a
variety of mapping methods. Elimination of A in Equation
(1) and minor rearrangement give

½A
d¢A

dt
‡ ¢A ˆ Aa…V † ¡ A0 ; …4†

in which we have used the fact that dA=dt ˆ d¢A=dt, valid
because A0 is a constant.

Equation (4) still contains the unknown function Aa…V †
with its dependence upon the usually unknownvolume V . A
power-series expansion of Aa…V † about the point V 0

expresses it in terms of ¢V and parameters that can be
determined from observations:

Aa…V † ˆ Aa…V 0† ‡ 1

H
¢V ‡ . . . …5†

where

1

H
² dAa

dV
…6†

evaluated at V 0. H is defined to be the `̀ thickness scale’’. We
neglect the higher-order terms in accordance with our first-
order approach.This means that we approximate the curve
of area-adjusted states by its tangent at point V 0 (Fig. 1),
which is valid for small changes from the initial state. Com-
bination of Equations (4) and (5) gives

½A
d¢A

dt
‡ ¢A ˆ 1

H
¢V ¡ ¢A0 …7†

where

¢A0 ² A0 ¡ Aa…V 0† : …8†
¢A0 specifies the condition of the initial state, or more pre-
cisely, the amount by which area exceeds that needed for
adjustment with volume initially (Fig. 1). It is determined
by the history of the glacier prior to t ˆ 0. In the case of no
delay in area response (½A ˆ 0), Equation (7) gives

¢Aa ˆ ¢Va

H
¡ ¢A0 ; …9†

which is the tangent line approximating the curve of area-
adjusted states in the …¢A; ¢V † plane.

Equation (7), or equivalently its general solution for
¢A ˆ 0 at t ˆ 0,

¢A ˆ 1

½AH

Z t

0

e
¡…t¡±†

½A ¢V …±†d± ¡ ¢A0

³
1 ¡ e

¡ t
½A

´
…10†

is our tentative relationship between area and volume, in
which ± is an integration variable. Equation (10) contains
three parameters: the area time-scale ½A and the thickness
scale H, which characterize the dynamics of the glacier,
and the area ¢A0, which characterizes the condition of the
initial state. It is a generalization of the simplest example of

Fig. 1. Relationships in the plane defined by area and volume.
The area-adjusted states lie along the curve Aa…V †, whose
tangent at V 0 is shown by the broken line. …A0; V 0† are the
initial area and volume. ¢A0 is the difference between the
initial area and that required for adjustment with the initial
volume.
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a relationship between area and volume (Jöhannesson and
others, 1989a,b; Harrison and others, 2001) in which the
glacier is plastic. Then ½A ˆ 0 and ¢A0 ˆ 0 because area
responds instantly to volume, all states are area-adjusted
and there is only the single parameter H.

Assuming for the moment that Equation (7) is valid, the
determination of its three parameters ½A; H and ¢A0

requires at least three sets of measurements of ¢A; dA=dt
and ¢V . The time required to collect the data will depend
upon the measurement accuracy and how rapidly the
glacier is changing, but a time resolution significantly 5½A

is needed. Once the parameters are known, future measure-
ments of ¢A and dA=dt, which can be made relatively sim-
ply, can be used in Equation (7) to determine the cumulative
balance ¢V . This idea, that balance may be estimated from
observations near the terminus, is an old one (Nye,1965). Our
approach is simpler and focuses on the cumulative balance,
which is more directly determined than the annual one.

Finally, it is worth pointing out that there is an alterna-
tive to our Equation (7) or (10) for describing the relation-
ship between area and volume. It uses scaling relationships
(Raper and others,1996; Bahr and others,1997), but its accu-
racy is insufficient for our purposes.

2.2. Application to South Cascade Glacier

We now test our area^volume relationship with data from
South Cascade Glacier, a 2 km2 valley glacier in the North
Cascade Mountains, Washington, U.S.A. It has a long
record of annual balance measurements made by conven-
tional glaciological methods, a continuous and reasonably
accurate record of area, and an extensive set of measure-
ments of volume change made by geodetic methods, espe-
cially since 1970 (Krimmel, 1999). By then the glacier had
retreated out of a lake into which it had calved earlier, a pro-
cess which could have complicated the relationship between
area and volume. For these reasons we use a cumulative
balance series that starts in 1970.The accuracy of the uncor-
rected version depends upon how the estimated error in the
annual balances (0.2 m a^1 for the area average) is parti-
tioned between random and systematic components, and
thus how it accumulates when the annual balances are
summed.This is unknown, but the unusually abundant geo-
detic data at South Cascade Glacier permit corrections to
be made to the cumulative balance series (Elsberg and
others, 2001). ¢A is shown as a function of the resulting
¢V in Figure 2.

Thebest values for the parameters ½A, H and ¢A0 canbe
determined easily by fitting Equation (7) or (10) to the data
in Figure 2 by the method of least squares.We used Equation
(10) with the integral approximated by the trapezoidal rule,
and commercial software employing the Levenberg^
Marquardt algorithm. The data were weighted equally. The
fit is shown in Figure 2, together with the tangent to the curve
of area-adjusted states (Equation (9)). A complete evaluation
of the success of the fit requires knowledgeof the errors in ¢A
and the cumulative balance ¢V ; the latter are probably the
more important. Considering the small ambiguities whichwe
encountered in making the geodetic corrections to the ¢V
series, we can only judge that the deviations between the fit
and the data in Figure 2 are comparable to the uncertainties.
Thus our three parameter area^volume relationship seems to
fit the data reasonably well, including its complex fine struc-
ture. This provides support for its usefulness.

The parameter values and their errors as estimated from
the quality of the fit are summarized inTable 1. These errors
are significant despite the reasonable quality of the fit and do
notnecessarily includeall the effects of systematic errors in the
data. This illustrates the importance of measurement accu-
racy. The area time-scale ½A is roughly 8 years.The thickness
scale H (¹123 m) is less than the value obtained under the
assumption ½A ˆ 0, as discussed by Harrison and others
(2001). It is seen fromthe value of ¢A0 inTable1that the initial
area, in autumn 1970, was roughly 4% too large to be in ad-
justment with the initial volume.The fit is significantly poorer
if the initial state is assumed to be area-adjusted.

3.THE RESPONSE TO CLIMATE

3.1. Mass continuity

The macroscopic theory is completed by a statement of
mass continuity:

d¢V

dt
¡ _ge¢V ¡ _be¢A ˆ _B0 : …11†

_be is the `̀effective’’ specific balance rate at the terminus (a
negative number), _ge is the `̀effective’’gradient of the balance

Fig. 2. Measured ice-equivalent cumulative balance ¢V as a
function of change in area ¢A for South Cascade Glacier
(filled circles). The best fit with Equation (10) is shown by
the solid curve.The tangent to the curve of area-adjusted states
(Equation (9)) is shown by the broken line.The scale on the
right side is for the fractional area change ¢A=A0, where A0 is
the area in autumn 1970.The scale on the top is for the average
thickness change.

Table 1. Parameters and 1-¼ errors in the area^volume rela-
tionship for South Cascade Glacier

½A (area time-scale) 8.0 §2.9 years
H (thickness scale) 123 §16 m
¢A0 (condition of initial state) (0.094§ 0.021)6106 m2

A0 (initial area) 2.326106 m2

¢A0=A0 3.9%
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rate with elevation, and _B0 is the glacier-wide `̀ reference-
surface’’ balance rate, the balance rate as it would be on the
surface of the glacier if it remained in its initial t ˆ 0 `̀ refer-
ence’’ state. Details are given by Harrison and others (2001;
equation (2)) and Elsberg and others (2001; equations (9) and
(10)).We have replaced their _Ge with _ge, thereby consistently
using lower-case symbols for specific or `̀ local’’ balance
quantities (m a^1) and their gradients (a^1), and upper-case
symbols for glacier-wide balance quantities (m3 a^1). All
balance quantities are expressed in ice-equivalent units. _B0

is a continuous function of time but is usually adequately
approximated by the reference-surface annual balance
expressed as a rate. _be and _ge can be determined from suit-
able field observations as done by Elsberg and others (2001)
for South Cascade Glacier. The terms ¡ _be¢A and ¡ _ge¢V
account for the effects on the glacier-wide balance rate of
changing map area and surface elevation, respectively.
Equation (11), like Equation (7), is valid for small changes
from the initial state.

Equation (11) is useful because the two variables, ¢V
and ¢A, are the same as those in our area^volumerelation-
ship (Equation (7)), and because the reference-surface
balance rate _B0, unlike the conventional one, is unaffected
by changes in the surface of the glacier as it responds. It is
thus the appropriate purely climatic forcing term formacro-
scopic theory; the response to particular climatic variables
can be found by expressing _B0 in terms of them. Notice that
although _B0 is not affected by changes in the surface, it does
depend upon the initial configuration of the surface.

3.2. Separate equations for area and volume

Equations (7) and (11) are two simultaneous first-order dif-
ferential equations for the two variables …¢A; ¢V †, with
initial conditions (0, 0). They constitute the complete macro-
scopic theory for the response of area and volume to climate
as specified by the glacier-wide reference-surface balance
rate _B0. Since numerical solution is easy, the discussion could
be ended here but our purpose is to exploit the simplicity of
the macroscopic theory with an analytical approach which,
like the traditional one, indicates some general properties of
the response.

Although it is not essential, we have found it instructive to
decouple ¢A and ¢V in Equations (7) and (11) by producing
two new differential equations in which they occur separately.
SolvingEquation (7) for ¢V and substituting in Equation (11)
gives

½A
d2¢A

dt2
‡ …1 ¡ _ge½A† d¢A

dt
‡ 1

½V
¢A ˆ

_B0

H
‡ _ge¢A0 ;

…12†
while solving Equation (11) for ¢A and substituting in
Equation (7) gives

½A
d2¢V

dt2
‡ …1 ¡ _ge½A† d¢V

dt
‡ 1

½V
¢V

ˆ _B0 ‡ ½A
d _B0

dt
¡ _be¢A0 ;

…13†

where ½V is defined by

½V ² 1
¡ _be

H
¡ _ge

: …14†

Equation (12) requires H and ½A to be constant, while
Equation (13) requires the same of _be and _ge; we ignore

their interannual variations. ½V is the `̀ volume time-scale’’ of
Jöhannesson and others (1989a) as modified by Harrison and
others (2001) to account explicitly for the effect of changing
surface elevation on balance rate. A small mathematical
detail is that since we now have second-order differential
equations, we need two more initial conditions. These are
obtained with no new assumptions by setting …¢A; ¢V † ˆ
(0, 0) at t ˆ 0 in Equations (7) and (11), giving …d¢A=dt;
d¢V =dt† ˆ …¡¢A0=½A; _B0† at t ˆ 0.

3.3. Solutions

Equations (12) and (13) can be solved for ¢A and ¢V once
the time dependence of _B0 is specified. This is done in the
Appendix for three cases: _B0 a constant; _B0 an impulse;
and _B0 any function of time. Several properties of the solu-
tions merit consideration.

3.3.1. Decomposition of the response
The solutions for all _B0…t† cases have the common property
that both ¢A and ¢V can be separated into two terms. The
first is the response as if the initial state were an area-
adjusted one (¢A0 ˆ 0), and the second as if ¢A0 6ˆ 0 but
the climate were neutral ( _B0 ˆ 0) for t 4 0. We shall some-
times refer to these as the `̀direct’’and the `̀ transient’’ terms.
The direct term is determined by the time dependence of
the climate after t ˆ 0, and the transient term by the climate
history prior to t ˆ 0. Thus the transient term is independ-
ent of _B0, which we specify only for t 4 0. Significantly, the
transient term approaches a constant different from zero at
large time. We shall use the notation ¢AT and ¢VT for the
transient part of the response. If _B0 is constant for t 4 0, the
direct term is the response of a glacier initially in a steady
state to a step-change in climate.

3.3.2. Damped spring and mass analogy
The lefthand sides of Equations (12) and (13) contain the
terms which can be thought of as characterizing the glacier:
the righthand sides, the climate forcing and the condition of

Fig. 3. Damped springandmass system withgoverning equation.
g is the gravitational acceleration.
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the initial state. With this in mind, there is a useful, well-
studied analogy. Each of these equations is similar to that
describing the response of a damped spring and mass system
to an external force (Fig. 3). ¢A in Equation (12) and ¢V in
Equation (13) are analogousto the displacement of the mass
from the initial position. Examples of analogousparameters
on the lefthand sides of these equations are ½A ! mass and
1=½V ! spring constant. A list of analogs is given inTable 2. As
an example of the use of these analogs, Harrison and others
(2001) pointed out that at least in the special case ½A ˆ 0,
¢A and ¢V are unstable when ½V is negative. This is also
true in the more general case considered here because 1=½V

is analogous to the spring constant, which if negative would
mean that the spring would push when it would normally
pull, making the mechanical system unstable.

3.3.3. Damping
Both the damped spring and mass system and the glacier
have quite different responses depending on the strength of
the `̀damping’’. The damping of the glacier is characterized
by the non-dimensional parameter p:

p ˆ 1

2

�����
½V

½A

r
…1 ¡ _ge½A† : …15†

The origin of p is motivated by a simplification of Equations
(12) and (13) given in the Appendix. For p 51 the glacier is
`̀ under-damped’’, which means that if _B0 becomes constant,
¢A and ¢V overshoot their final values and undergo
decaying oscillations, or `̀ ringing’’, about them. If p 41,
the glacier is `̀over-damped’’, and the approach of ¢A and
¢V to their final values is monotonic. This behavior may
be more complicated when the transient terms are signifi-
cant. For p ˆ 1 the glacier is `̀critically damped’’. In the
example considered below, p º1 so the damping is close to
critical. It is shown in the Appendix that the time depend-

ence of the response is most naturally expressed in terms of
the time

����������
½A½V

p
, the geometric mean of ½A and ½V.

3.3.4. Steady climate
If the climate is steady ( _B0 constant for t 4 0), area and
volume will eventually approach the steady-state values
…¢A1; ¢V1†, at least if ½V 4 0.These can be found by set-
ting the derivatives in Equations (12) and (13) equal to zero
while holding _B0 constant:

¢A1 ˆ ½V

_B0

H
‡ _ge¢A0

³ ´
…16†

¢V1 ˆ ½V
_B0 ¡ _be¢A0

¡ ¢
: …17†

These equations are important because they are a statement
about the ultimate evolutionof a glacier under steady-climate
conditions. The first equation, when divided by the initial
area A0, is a generalization of the approximationof Harrison
and others (2001; equation (10)), which included the effect of
surface elevationonbalance rate throughthe definition of ½V,
but not the effect of the condition of the initial state as char-
acterized by ¢A0.That approximation, in turn, was a gener-
alization of the original and simplest one given by Nye (1960;
equation (40)).

It is of interest to consider what determines the relative
importance of the direct ( _B0) and transient (¢A0) terms.
For the area response (Equation (16)), it depends upon the
relative magnitudes of _B0 and H _ge¢A0. For the volume
response (Equation (17)) it depends upon the relative mag-
nitudes of _B0 and ¡ _be¢A0. In the damped spring and mass
analogy, the issue would be the relative magnitudes of the
external force and the weight (Table 2). The transient term
must be more important in the volume than in the area
response, because ¡ _be=H > _ge for ½V 4 0 by Equation (14),
which is the condition for stable response.

In Equations (16) and (17) ¢A1 and ¢V1 are propor-
tional to the volume time-scale ½V. In other words, ½V scales
the ultimate response, or `̀ sensitivity’’, of glacier area and
volume to the combined effects of long-term climate and
the condition of the initial state. This is an example of how
½V specifies an amplitude as well as a time-scale.

4. AN EXAMPLE OF CLIMATE RESPONSE: SOUTH
CASCADE GLACIER

4.1. Interpretation with the macroscopic approach

We now consider the response characteristics of South
Cascade Glacier. The input values are as follows. For ½A, H
and ¢A0 we use the values already determined (Table 1):
8 years, 123 m and 0.0946106 m2 respectively. We use the
measured spatial pattern of mass-balance rate to estimate
_be ˆ ^5.5 m a^1 and _ge ˆ 0.024 a^1. The former value is
slightly different from that used by Elsberg and others
(2001) and Harrison and others (2001) and was found by a
slightly more accurate method.

These five input parameters produce the following results
(Table 3). Avalue of (48 §17) years for the volume time-scale
½V follows from Equation (14), which is 66½A.The geometric
mean time

����������
½A½V

p
, which most naturally characterizes the

time-dependence of the response, is 20 years. By Equation
(15) the damping parameter p ˆ 1.0 § 0.3, which indicates
that our best value for it is the critical one. The errors in _be

and H are the main contributors to the error in ½V, while the

Table 2. Corresponding quantities in damped spring and mass
analogy. ¢A in Equation (12) and ¢V in Equation (13) are
analogous to the displacement of the mass from its initial position

¢A (Equation (12)) ¢V (Equation (13))

½A Mass ½A

…1 ¡ _ge½A† Dissipation constant …1 ¡ _ge½A†
1=½V Spring constant 1=½V

¡ _ge¢A0 Weight _be¢A0
_B0=H External force _B0 ‡ ½Ad _B0=dt

¡½V _ge¢A0 Equilibrium displacement,
no force

½V
_be¢A0

½A d¢A=dt Momentum ½Ad¢V =dt
¡¢A0 Initial momentum ½A

_B0…0†

Table 3. Parameters and1-¼ errors characterizing the response
of South Cascade Glacier to climate

_be (effective balance rate at terminus) ^5.5 §0.6 m a^1

_ge (effective balance-rate gradient) 0.024 § 0.002a^1

_g¡1
e 42 years

½V (volume time-scale) 48 §17 years
p (damping parameter) 1.0 § 0.3����������

½A½V
p

(geometric mean time) 20 years
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error in ½A is the main contributor to the error in p.The errors
are not well-known, but they are substantial.

We next consider how the area and volume of this glacier
should respond to some climate scenarios. The simplest
example is steady climate, _B0 ˆ constant for t 4 0, where
t ˆ 0 is autumn 1970, when the reference surface is defined
and when A0 is the area (Table 1). We take a value of _B0 such
that _B0=A0 ˆ ^1.0 m a^1, which is its mean value for 1970^97
(Elsberg and others, 2001). This simple scenario will approxi-
mately reproduce the behavior of the glacier starting in 1970.

The response of ¢A follows from Equations (A5), (A6)
and (A7) and is shown in Figure 4. As discussed above, it is
the sum of the direct term (due to non-zero _B0 for t 4 0,
labeled ¢AS†, and the transient term (due to the initial mis-
adjustment of area and volume, labeled ¢AT). ¢AS starts
off with zero slope and finally settles down to a value of
¢AS=A0 of about ^39%. ¢AT initially decreases and con-
tinues to do so for several years. In the damped spring and
mass analogy, this would be because of the initial non-zero
momentum, which is analogousto ^¢A0 (Table 2). ¢AT=A0

finally changes sign and settles down to avalue of about 5%.
In this scenario the glacier stabilizes after losing about one-
third of its area relative to 1970, a process that is about two-
thirds complete after the time ½V, 48 years. ¢A for the spe-
cial case ½A ˆ 0 (Equation (A11)) is shown by the broken
curve in Figure 4. In this case ¢AT ˆ 0 because ¢A0 ˆ 0
for ½A ˆ 0, as discussed above.

The response of ¢V follows from Equations (A8), (A9)
and (A10) and is shown in Figure 5. ¢V for the special case
½A ˆ 0 (Equation (A12)) is shown by the broken curve.The
most notable difference from the ¢A case is the magnitude
of the transient term, which decreases the magnitude of the
final response by 22%, a value which would have been even
larger had j _B0j not been so large. This effect arises from an
initial state in which area is out of adjustment with volume
by only 4%, illustrating the importance of the condition of
the initial state, particularly in the response of volume.The
volume stabilizes after a loss of 38 m in average thickness,
about a third of the thickness scale H.

Finally, we consider the responses of area and volume to
an impulse in climate, which means that _B0 is proportional to
a ¯ function in time. The direct responses, ¢AI for area and
¢VI for volume, are calculated from Equations (A14) and
(A17) and shown in Figures 6 and 7. The complete responses
will also include the same transient terms, ¢AT and ¢VT, as
the steady-climate case, but only ¢AI and ¢VI are shown.

4.2. Comparison with the traditional approach

The response characteristics of South Cascade Glacier were
also analyzed by Nye (1963, 1965), who used the `̀ traditional’’
approach. In the latter paper he represented them with a
function that describes the evolution of the terminus in
response to a uniform unit thickness instantaneously added
to an initially steady state, onewhich approximatedthe actual
surface in 1959 (his fig. 4a and table 1). This can be compared
with our response function ¢AI (Equation (A14) with unit
B0). Agreement would mean that the theories give similar
results, because the response to any climate scenario can be
expressed in terms of this response function (Equation
(A18)). One problem is that his function was expressed in
terms of the thickness change at the initial position of the ter-
minus, rather than the area change ¢A. The relation
between the two depends upon the details of the geometry of
the glacier near the terminus, and to convert one to the other
quantitatively would require a detailed geometric analysis,
which we have not attempted. Instead, we merely multiply
Nye’s thickness-change function with a factor which best nor-
malizes it to our ¢AI function, as determined by the method
of least squares.

The result is shown in Figure 6. Because of our normal-
ization procedure, there is nothing to be learned by compar-
ing the amplitudes of the functions, but it is seen that the
time-dependencies are almost identical, the macroscopic
result being slightly but not significantly faster. This means,
by Equations (A1) and (A14), that the geometric mean of ½A

and ½V,
����������
½A½V

p
, is the same as its undefined equivalent in

Nye’s theory, close to 20 years. The similarity of the two

Fig. 4. Response of area ¢A to a constant glacier-wide aver-
age reference-surface balance rate _B0 of ^1m a 1̂(ice). ¢A is
the sum of the direct and transient components ¢AS and
¢AT.The response for the special case ½A ˆ 0 is shown by
the broken curve.

Fig. 5. Response of volume ¢V to a constant glacier-wide
average reference-surface balance rate _B0 of ^1m a 1̂ (ice).
¢V is the sum of the direct and transient components ¢VS

and ¢VT.The response for the special case ½A ˆ 0 is shown
by the broken curve.
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functions indicates that at least the time-dependence of
Nye’s approach can be duplicated very simply by treating
the glacier as a critically damped spring and mass even
though his approach is much more complicated, because it
involves the distribution of several quantities along the
length of the glacier. The agreement may lie in part with
his assumption that the change in reference-surface speci-
fic-balance rate (our terminology) is the same over the full
length of the glacier.This input does not create any complex
spatial detail that cannot be tracked by the macroscopic
approach, which considers only the integrated, or glacier-
wide, balance rate.

The agreement in time-dependence is remarkable when
one considers the different methods for parameter deter-
mination. Nye characterized the dynamics in terms of kine-
matic wave speed and diffusion coefficient along the glacier,
giving the sensitivity of ice flux to changes in thickness and
slope. These were derived from the observed glacier geom-
etry and distribution of speed, using conventional flow
theory, some of the limitations of which were discussed in
our introduction. Our approach, which did not use meas-
ured speed at all, seems more direct and therefore is prob-
ably more accurate, but it does have the disadvantage that it
requires measurement of area and volume changes over a
period of years.

Nevertheless, the agreement in the time-dependence
must be partly fortuitous. First, the large uncertainty in the
numerical values deduced by both the macroscopic and tra-
ditional theories wouldby itself make the near-agreement in
the time dependence surprising. Second, the glacier was
larger and terminated in a lake during the period of the tra-
ditional study. Third, the traditional analysis does not take
into account the effect of surface elevation on balance rate,
which is potentially the most important difference between
the approaches. This should affect both the amplitude and
time-dependence of the response. For example, if we were
to simulate the effect by setting our _ge ˆ 0, ½V would be
decreased by roughly a factor of two, and the ultimate
amplitude of the response to steady climate by the same
factor.

5. DISCUSSION

It is worth reviewing the origins of the five parameters
which occur in this version of macroscopic theory. ¢A0

is the amount by which the initial area is out of adjust-
ment with the initial volume, ½A and H characterize the
dynamics of flow, and _be and _ge are mass-balance rate
quantities. ½V and

����������
½A½V

p
are defined in terms of these five

and thus are not independent parameters. If the damping is
knownto be critical, there is a constraint among ½A, ½V and _ge

(Equation (15) with p ˆ 1), which would leave a total of four
parameters.

The parameters ¢A0 and ½A account for the break-
down of perfect plasticity, at least approximately. This
is the essential difference between this theory and its
predecessor (Harrison and others, 2001). The breakdown
of perfect plasticity affects the response in two ways. First,
½A changes the time dependence of the `̀direct’’ part of the
response, which would be represented by the ¢AS and
¢VS terms in the example of steady climate. It has been
pointed out to us (personal communication from T. Jöhan-
nesson, 2002) that in this case the non-zero ½A tends to
decrease the time to complete the response, basically
because the resulting lag of area with respect to volume in-
creases the negative feedback represented by the area term
in Equation (11).

The second effect of the breakdown of perfect plasticity
is the appearance of the `̀ transient’’ terms ¢AT and ¢VT in
the response. These are proportional to ¢A0, and approach
constants different from zero at large time. It is significant
that this second effect, although perhaps less obvious than
the first, may cause the larger departure from the predic-
tions of the perfect-plasticity theory. This will occur when
the climate remains close to neutral ( _B0 ˆ 0) for t 4 0, but
area is out of adjustment with volume at t ˆ 0 so that
¢A0 6ˆ 0. A partial discussion of the importance of the tran-
sient terms for the case of steady climate was given in con-
nectionwith Equations (16) and (17). In this case ¢A0 affects
the ultimate response but ½A does not.

The ultimate response to steady climate is scaled by ½V.

Fig. 7. Response of volume ¢VI of an initially area-adjusted
state to an impulse in glacier-wide average reference-surface
balance rate _B0 sufficient to add an average thickness of 1m
(ice) to the glacier.

Fig. 6. Response of area ¢AI of an initially area-adjusted
state to an impulse in glacier-wide average reference-surface
balance rate _B0 sufficient to add an average thickness of 1m
(ice) to the glacier. The normalization of the `̀traditional’’
curve is arbitrary.
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Thus ½V is more than a time-scale; it controls the amplitude of
the response as well. Our definition of ½V is essentially the
same as that of Harrison and others (2001). It accounts expli-
citly for the effect of changing surface elevation on balance
rate, which increases its value by roughly a factor of two for
South Cascade Glacier, and probably much more for low-
slope glaciers.This effect hasbeen noted in numerical models
by several authors (e.g. Oerlemans, 1997). Harrison and
others (2001) point out that there are basic problems in find-
ing an accurate value for ½V, even when the effects of surface
elevation are included, and that this implies a fundamental
difficulty in making an accurate prediction of response with
any model, even a detailed numerical one. Our best value for
½V, which resulted from one of the best datasets in the world,
has an uncertainty of at least 35%.

The balance between the achievements and limitations
of our approach remains to be summarized. On the positive
side the approach is essentially simple, and thus leads to new
insights. To the points just discussed, we may add the ability
to reproduce the time-dependence of the response of South
Cascade Glacier with a simple critically damped spring
and mass analogy, and the potential to determine the cumu-
lative mass-balance history from the more easily measured
history of area.

On the negative side there are several limitations. First,
the approach suffers from a limited range of validation by
observation, which ideally would be carried out for larger
glaciers and for a period of more complicated trends in
climate. If the recent, relatively steady climate at South
Cascade Glacier persists, a second limitation may appear
because the predicted ultimate changes in both area and
volume are large, roughly a third of their initial (1970)
values.These are about twice as large as the changes during
the period in which we determined parameter values. Our
theory may fail under such extreme conditions, because in
common with the traditional one it is a first-order theory
and its range of validity is unknown.

A third limitation is that our approach is essentially
empirical. Our reasoning has been that testing our theory
with data gives a more direct indication of its usefulness
than would comparison with conventional theory, which
has its own limitations. The main disadvantage with an
empirical approach is that it does not provide the physics
which determines the value of ½A. Thus we cannot estimate
½A when sufficient data for a direct determination are
unavailable, nor address questions such as why the damping
of South Cascade Glacier (which depends upon ½A) is
approximatelycritical. A comparison with the conventional
theory at a basic level may provide the missing physics, and
is an obvious next step.
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APPENDIX

SOLUTIONS

A.1. Non-dimensionalization

Equations (12) and (13) can be simplified by writing them in
terms of the non-dimensional time t¤ defined by

t¤ ˆ t
����������
½A½V

p : …A1†

This choice is the most useful because it reduces to one the
number of parameters onthe left hand sides of these equations.
The result is

d2¢A

d…t¤†2
‡ 2p

d¢A

dt¤ ‡ ¢A ˆ ½V

_B0

H
‡ _ge¢A0

³ ´
…A2†

d2¢V

d…t¤†2
‡ 2p

d¢V

dt¤ ‡ ¢V ˆ ½V
_B0 ‡

�����
½A

½V

r
d _B0

dt¤ ¡ _be¢A0

³ ´
;

…A3†
where p is a non-dimensional parameter defined by

p ˆ 1

2

�����
½V

½A

r
…1 ¡ _ge½A† ; …A4†

p characterizes the strength of the damping and determines
the mathematical form of the solution.We focus on the special
case of critical damping, p ˆ1, but also give anexample of the
situation p ! 1. The general case is slightly more compli-
cated.
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A.2. Solution for steady climate

The simplest case is _B0 a constant for t 4 0. The critically
damped solution for ¢A is

¢A ˆ ¢AS ‡ ¢AT ; …A5†
where

¢AS ˆ ½V
_B0

H
‰1 ¡ e¡t¤…1 ‡ t¤†Š …A6†

and

¢AT ˆ ½V _ge¢A0 1 ¡ e¡t¤
1 ‡ 1 ‡ 1

����������
½A½V

p
_ge

³ ´
t¤

» ¼µ ¶
:

…A7†
The corresponding solution for ¢V is

¢V ˆ ¢VS ‡ ¢VT ; …A8†
where

¢VS ˆ ½V
_B0 1 ¡ e¡t¤

1 ‡ 1 ¡
�����
½A

½V

r³ ´
t¤

» ¼µ ¶
…A9†

and

¢VT ˆ ¡½V
_be¢A0‰1 ¡ e¡t¤ …1 ‡ t¤†Š : …A10†

Because these results apply for critical damping only, ½V and
½A are not independent but related by Equation (A4) with
p ˆ 1.

The special case ½A ! 0 (p ! 1) can be shown to give

¢A ˆ ½V
_B0

H

³
1 ¡ e

¡ t
½V

´
…A11†

¢V ˆ ½V
_B0

³
1 ¡ e

¡ t
½V

´
…A12†

(e.g. Harrison and others, 2001).

A.3. Solution for an impulse

Another simple case is an impulse in climate, which means
that _B0 is very large at t ˆ 0 for a short interval. The
strength of the impulse, which we designate by B0, is _B0

integrated over this interval. The solution for ¢A can be
found by superposing the solutions due to two step-changes

of opposite sign, slightly offset in time. Using the same
decomposition of the solution into two terms as before,

¢A ˆ ¢AI ‡ ¢AT ; …A13†
one finds

¢AI ˆ B0

H

�����
½V

½A

r
t¤e¡t¤

: …A14†

¢AT is givenby Equation (A7).To obtain the solution for ¢V
one first needs the appropriate initial conditions, which are

¢V …0‡† ˆ B0 …A15†
and

d¢V …0‡†
dt

ˆ B0 _ge : …A16†

The first arises because the impulse gives an immediate dis-
continuity in ¢V of B0. The second follows from Equation
(11). The resulting ¢VI is

¢VI ˆ B0e¡t¤ ‰1 ‡ …1 ‡ ����������
½A½V

p
_ge†t¤Š : …A17†

¢AT and ¢VT are given by Equations (A7) and (A10). As
before, ½V and ½A are related by Equation (A4) with p ˆ 1.

A.4. General solution

The general solution for a climate scenario specified by any
_B0…t† can be written in terms of the impulse solution:

¢A…t¤† ˆ
����������
½A½V

p Zt¤

0

_B0…±†¢aI…t¤ ¡ ±†d± ‡ ¢AT…t¤†

…A18†

¢V …t¤† ˆ ����������
½A½V

p Zt¤

0

_B0…±†¢vI…t¤ ¡ ±†d± ‡ ¢VT…t¤† ;

…A19†
where …¢aI; ¢vI† ² …¢AI=B0; ¢VI=B0†, the unit-impulse
responses obtained from Equations (A14) and (A15). As
before, ½V and ½A are related. The response for harmonic
variation of _B0, for example, follows.
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