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Abstract

We prove that in each degree divisible by 2 or 3, there are infinitely many totally real
number fields that require universal quadratic forms to have arbitrarily large rank.
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1. Introduction

In 1770 Lagrange proved that every positive integer is the sum of four squares, opening
up the study of universal quadratic forms. These were then first investigated over the integers
Z, leading to the celebrated 15- and 290-Theorems [Bh, BH], and also over number fields,
starting with Maaß [Ma] and Siegel [Si] in the 1940s. To be precise, let OF be the ring
of integers in a totally real number field F. A totally positive quadratic form Q with OF-
coefficients is universal over F if it represents all the totally positive elements of OF.

Universal forms exist over every F thanks to the asymptotic local-global principle [HKK].
Of particular interest is thus the smallest possible rank m′(F) of a universal form over F. For
example, we have m′(Q) = 4 by the Four-Square Theorem. Among real quadratic fields,
m′(Q(

√
D)) = 3 for D = 2, 3, 5, and these are the only real quadratic fields that admit a
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226 VÍTĚZSLAV KALA

ternary universal form that is moreover classical (i.e., has all its cross-terms divisible by 2)
[CKR]. This provides interesting evidence towards Kitaoka’s Conjecture that there are only
finitely many number fields F with m′(F) = 3.

Further, the ranks m′(Q(
√

D)) can be arbitrarily large [BK1], [Ka], ditto for multi-
quadratic fields of a given degree [KS]. Despite a number of other exciting results obtained
in the last 25 years [BK2, CL+, EK, KT, KY, Ki, KKP, KTZ, Ya], ranks of universal
forms over number fields, especially of higher degree, remain mysterious.

The aim of this short paper is to extend the previous special results on unbounded ranks
m′(F) to number fields of most degrees:

THEOREM 1. Let d and m be positive integers such that d is divisible by 2 or 3. Then
there are infinitely many totally real number fields F of degree [F : Q] = d over which every
universal quadratic form has rank at least m.

If d = 2, this was proved by the author [Ka, Theorem 1·1]. The key idea was to use contin-
ued fractions to construct quadratic fields that have many indecomposable elements, which
are hard to represent by a quadratic form. Constructing such elements in higher degrees is
more difficult, nevertheless, the author and Svoboda [KS, Theorem 1] extended the result
to all degrees d = 2h. In the cubic case d = 3, this theorem was proved by Yatsyna [Ya,
Theorem 5] using interlacing polynomials and elements of trace one.

Our argument will use Schur’s trace bound [Sch] to show a general Theorem 4: in certain
cases, suitable elements from a cyclic number field L force a quadratic form that repre-
sents them to have many variables, even in an overfield. We will then prove Theorem 1 by
choosing L to be a real quadratic, or simplest cubic [Sh] number field.

Theorem 1 also holds for quadratic lattices that are not necessarily free; in fact, we will
formulate the rest of the paper in lattice-theoretic language. Also note that we do not assume
the quadratic forms to be classical, although this is a very common assumption and there are
only very few results available without it (e.g., [De]).

2. Preliminaries

Let F be a totally real number field of degree [F : Q] = N over Q, i.e., there are N real
embeddings σ1, . . . , σN : F →R. We denote OF the ring of algebraic integers. An element
α ∈ F is totally positive (denoted α � 0) if σi(α) > 0 for all 1 ≤ i ≤ N. Further, α 	 β if
α − β � 0 or α = β. The set of all totally positive algebraic integers is O+

F .
For α ∈ F we have its trace TrF/Q(α) =∑

1≤i≤N σi(α) and discriminant �F/Q(α), which
is the square of the determinant of the matrix (σi(αj−1))1≤i,j≤N . The discriminant of F, i.e.,
the discriminant of an integral basis for OF, will be denoted discF. We have discF | �F/Q(α)
for each α ∈OF.

A totally positive quadratic OF-lattice of rank r (an OF-lattice for short) is a pair (�, Q),
where � is a finitely generated OF-submodule of Fr such that �F = Fr, Q : Fr → F is a
quadratic form, and Q(v) ∈O+

F for all v ∈ �, v 
= 0. We also have the attached symmet-
ric bilinear form B(v, w) = (Q(v + w) − Q(v) − Q(w))/2. An OF-lattice (�, Q) is universal
(over F) if for each α ∈O+

F there is v ∈ � with Q(v) = α.
Let m(F) denote the minimal rank of a universal OF-lattice. Note that to each quadratic

form Q (as considered in the Introduction) corresponds the OF-lattice (Or
F, Q), and so

m(F) ≤ m′(F) (it is interesting to note that no example of strict inequality is known
here).
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Take non-zero vectors v1, . . . , vn ∈ �. The corresponding Gram matrix is the n × n matrix
A = (B(vi, vj))1≤i,j≤n. Note that we have B(vi, vi) = Q(vi) = ai and B(vi, vj) = bij/2 for all
i 
= j and suitable ai, bij ∈OF. As the lattice � is totally positive, ai � 0 and we have a
version of the Cauchy–Schwarz inequality 4aiaj 	 b2

ij for all i 
= j, equivalently, Q(vi)Q(vj) 	
B(vi, vj)2 (this quickly follows from the positive-definiteness of the quadratic form σh(Q) on
Rr for h = 1, . . . , N).

Also note that the rank of A (as a matrix over the field F) is at most the rank r of the lattice
� (for the rank of A equals the rank of the OF-sublattice of � spanned by v1, . . . , vn). For
more background on quadratic lattices, see [OM].

Further, we will crucially use the following lower bound due to Schur.

PROPOSITION 2. ([Sch, Section 2·II.]). Let F be a totally real number field of degree
[F : Q] = N.

If β ∈OF, then

TrF/Qβ2 ≥ cN�F/Q(β)2/(N2−N) with cN = N2 − N(
22 · 33 · 44 · · · (N − 1)N−1 · NN

)2/(N2−N)
.

Proof. Schur’s bound [Sch, Section 2·II.] states that if x1, . . . , xN are real numbers such

that x2
1 + · · · + x2

N ≤ 1, then the discriminant
∏

1≤i<j≤N (xi − xj)2 ≤ c−(N2−N)/2
N . Setting xi =

σi(β)/(TrF/Qβ2)1/2 gives the inequality we need.

For an integer k ≥ 2, we will denote Sk and Ak the symmetric and alternating groups on
the set {1, 2, . . . , k}. The cyclic group of order k is denoted Ck (considered multiplicatively).

We will work with extensions of a given number field by an Sk-number field, whose
existence is given by the following proposition.

PROPOSITION 3. Let D, X, k ≥ 2. There are infinitely many totally real number fields K
of degree [K : Q] = k whose discriminant discK > X is coprime with D and whose Galois
closure K̃ has Galois group Gal(K̃/Q) � Sk.

Proof. This is well known. The most straightforward proof is probably using Hilbert’s
irreducibility theorem (see, e.g., [Kal, Theorem 4·2·3]).

Much more strongly, Kedlaya [Ke, Theorem 1·1] proved that one can even impose the
additional condition that the discK is squarefree. Further, Bhargava, Shankar and Wang
[BSW] proved that the polynomials f (x) = xk + a1xk−1 + · · · + ak−1x + ak, whose rupture
fields K have the required properties (including squarefree discK), have positive density
when ordered by max{|ai|1/i | 1 ≤ i ≤ k}.

3. The proof

To prove Theorem 1, we will use the following general theorem that we will then apply
to suitable fields L (of degrees � = 2, 3).

THEOREM 4. Let k, �, m, n be positive integers such that k = 3 or k ≥ 5.
Assume that there is a totally real Galois number field L of degree [L : Q] = � whose

Galois group is Gal(L/Q) � C� and that contains elements a1, . . . , an ∈O+
L such that if an

OL-lattice represents a1, . . . , an, then it has rank ≥ m.
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There is B > 0 (depending on k, �, L, ai) with the following property: for every totally real
number field K of degree [K : Q] = k whose discriminant discK > B is coprime with discL

and whose Galois closure K̃ has Galois group Gal(K̃/Q) � Sk, we have [KL : Q] = k� and

m(KL) ≥ m.

Proof. Let L, K, K̃ be as in the statement (with B to be specified later).

As discK and discL are coprime, we have K ∩ L =Q (for discK∩L is a common divisor
of discK and discL by the formula for the discriminant of a tower of number fields [Neu,
Corollary III·2·10]). Thus [KL : Q] = k�. Let us use Galois theory to describe all subfields
Q⊂ M ⊂ KL (without giving references for all the theorems that we use – see any good
textbook on Abstract Algebra).

First, consider H = K̃ ∩ L. Since H is a subfield of L, we have Gal(H/Q) � Ct for some
t | �, and Gal(K̃/H) is a normal subgroup of Gal(K̃/Q) � Sk. The only such subgroups are
Sk and Ak (as k 
= 4), and so correspondingly, H =Q or H =Q(

√
discK). But the latter case

is impossible, as discK and discL are coprime, and so
√

discK 
∈ L.
Thus K̃ ∩ L =Q, and so K̃L is Galois with

Gal(K̃L/Q) � Sk × C�.

Further,

Gal(K̃L/KL) � Sk−1 × {1}
(on the right-hand side, we will view Sk−1 as the subgroup of Sk that consists of permutations
fixing the element k).

Thus by Galois correspondence, the fields Q⊂ M ⊂ KL correspond to subgroups

Sk × C� ⊃ G ⊃ Sk−1 × {1}.
We claim that for each such subgroup, we have G ⊂ Sk−1 × C� or G ⊃ Sk × {1}.
For if G 
⊂ Sk−1 × C�, then there is an element (σ , u) ∈ G with σ 
∈ Sk−1. Considering

the decomposition of σ ∈ Sk into disjoint cycles, we can write σ = τ (i1 · · · ijk) where τ ∈
Sk−1, j ≥ 1, and (i1 · · · ijk) denotes the cycle of length j + 1 that permutes i1, · · · , ij, k in the
given order. Multiplying (σ , u) ∈ G from the left by ((i1 · · · ij)−1τ−1, 1) ∈ Sk−1 × {1} ⊂ G,
we obtain ((ijk), u) ∈ G. If we finally conjugate this element by ((1ij), 1) ∈ Sk−1 × {1} ⊂ G,
we get ((1k), u) ∈ G.

If the order o of u in C� is odd, then ((1k), 1) = ((1k), u)o ∈ G. If o is even, then also

G � ((12), 1)[((1k), u)((12), 1)((1k), u)((1k), u)o−2]((12), 1)

= ((12), 1)((2k), 1)((12), 1) = ((1k), 1).

Thus G ⊃ Sk × {1} (as ((1k), 1) ∈ G and G ⊃ Sk−1 × {1}), as we wanted to show.
Correspondingly, each intermediate field Q⊂ M ⊂ KL satisfies

M ⊃ K or M ⊂ L.

Let us finally specify that

discK > B for B = maxM

((
keT

�cke

)(k2e−k)/2
)

,
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where the maximum is taken over all fields M such that K ⊂ M ⊂ KL, e = [M : K],
T = 4 max{TrL/Q(aiaj) | 1 ≤ i < j ≤ n} and cke are the constants from Proposition 2.

Let (�, Q) be a universal OKL-lattice. As L ⊂ KL, the lattice � represents all the elements
a1, . . . , an ∈O+

L ; fix vectors vi ∈ � such that Q(vi) = ai. We will show that � has rank ≥ m
by showing that the Gram matrix (B(vi, vj))1≤i,j≤n corresponding to the vectors vi has rank
≥ m.

We have B(vi, vi) = Q(vi) = ai and let B(vi, vj) = bij/2 for all i 
= j and suitable bij ∈OKL.
We will now show that bij ∈ L for all i 
= j.

Assume that this is not the case for some i 
= j and let M =Q(bij). By the description
of possible fields Q⊂ M ⊂ KL obtained above, we have that M ⊃ K. Let [M : K] = e; then
discM ≥ disce

K (again by the formula for the discriminant of a tower).
As the OKL-lattice � is totally positive, we have the Cauchy–Schwartz inequality 4aiaj 	

b2
ij (see Section 2).
Taking traces and applying Proposition 2 for the field M of degree [M : Q] = ke, we get

kT ≥ TrKL/Q(4aiaj) ≥ TrKL/Q(b2
ij) = �

e
TrM/Q(b2

ij) ≥ �

e
cke�M/Q(bij)

2/((ke)2−ke).

As bij does not lie in a proper subfield of M, we have �M/Q(bij) 
= 0, and so �M/Q(bij) ≥
discM ≥ disce

K > Be. Thus

kT >
�

e
ckeB2/(k2e−k),

contradicting the choice of B.
We proved that bij ∈ L for all i 
= j.

Therefore all the entries of the Gram matrix (B(vi, vj))1≤i,j≤n lie in L, and so this matrix
corresponds to an OL-lattice �′ that represents all the elements a1, . . . , an over L. By the
assumption of the theorem, every such lattice has rank ≥ m.

Accordingly, the Gram matrix (B(vi, vj))1≤i,j≤n has rank ≥ m, which finally implies that
the rank of � is also ≥ m.

We can now finally use the preceding result to prove our main theorem.

THEOREM (Theorem 1, lattice-theoretic formulation). Let d and m be positive integers
such that d is divisible by 2 or 3. Then there are infinitely many totally real number fields
F of degree [F : Q] = d over which every totally positive universal quadratic OF-lattice has
rank at least m, i.e., m(F) ≥ m.

Proof. For d = 2, 4, 8, this was proved by Kala–Svoboda [KS, Theorem 1], and for d = 3
by Yatsyna [Ya, Theorem 5].

If d = 6 or d ≥ 10 is even, choose � = 2 and k = d/2; we have k = 3 or k ≥ 5.
By [Ka, Section 4], there are (infinitely many) real quadratic fields L =Q(

√
D) that

contain n = m elements (α1, α3, . . . , α2M+1 in the notation of [Ka] for M = m − 1) such
that their corresponding Gram matrix is diagonal by [Ka, Proposition 4·1], and so every
OK-lattice that represents these elements has rank ≥ m.
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By Proposition 3, there are infinitely many fields K of degree k = d/2 with the properties
required by Theorem 4, and so for each of them we have [KL : Q] = d and m(KL) ≥ m, as
needed.

If d = 9 or d ≥ 15 is divisible by 3, choose � = 3 and k = d/3; again k = 3 or k ≥ 5.
Let n = max (9m2, 240) and let us consider Shanks’ simplest cubic fields [Sh] L =Q(ρ)

(where ρ is a root of the polynomial x3 − ax2 − (a + 3)x − 1 for some a ∈Z≥−1). Each
simplest cubic field L is Galois with Gal(L/Q) � C3.

Kala–Tinková [KT, Subsection 7·2] proved that there are (infinitely many) such fields L
that contain n elements a1, a2, . . . , an ∈O+

L and an element δ � 0 in the codifferent {α ∈
L | TrL/Q(αβ) ∈Z for all β ∈OL} with TrL/Q(δai) = 1 for all i. By [KT, Subsection 7·2 and
Proof of Proposition 7·4], if an OL-lattice represents all the elements a1, . . . , an, then it has
rank ≥ √

n/3 = m.
It again just remains to use Proposition 3 and Theorem 4.
This covers all the positive integers d that are divisible by 2 or 3, finishing the proof.
In Theorem 4, one can directly claim that m(KL) ≥ m(L) instead of assuming the existence

of suitable elements a1, . . . , an, for such elements with m = m(L) always exist:

THEOREM 5 ([CO, Corollary 5·8]). Let F be a totally real number field. There is a finite
set S ⊂O+

F such that if an OF-lattice represents all the elements of S, then it is universal.

Over the rationals OF =Z this is just a weak version of the famous 290-theorem
[BH]. More generally, Kim–Kim–Oh [KKO] proved a similar result for representations of
quadratic forms by quadratic forms (over Z), and remarked that their theorem should also
hold over number fields. This was indeed recently established by Chan–Oh [CO] (a similar
result was also announced by L. Sun [Su]).

Note that Theorem 4 also holds with different Galois groups than C� and Sk [Do] (for
example, already [KS] dealt with multiquadratic fields F, i.e., Gal(F/Q) � Ch

2). However,
the present formulation is sufficient for the proof of our main Theorem 1, and a more general
statement probably would not bring more clarity.

Finally, let us comment that the most direct way of extending Theorem 1 to all degrees
d > 1 does not work: We would need to know the existence of (infinitely many) totally real
cyclic fields L of any prime degree � ≥ 5 that contain suitable elements a1, . . . , an. To ensure
the existence of these elements, it is very helpful for L to have a power integral basis and
units of all signatures (e.g., for then Yatsyna’s “Condition (A)” [Ya] is satisfied). However,
Gras [Gr] showed that the only totally real cyclic fields L of prime degree � ≥ 5 with a
power integral basis are the maximal real subfields of a cyclotomic field, i.e., there is only
one such field in a given degree. Thus one would need to work with fields without power
integral basis, or with different Galois structure.
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