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Stably stratified square cavity subjected to
horizontal oscillations: responses to small
amplitude forcing
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A stably stratified fluid-filled two-dimensional square cavity is subjected to harmonic
horizontal oscillations with frequencies less than the buoyancy frequency. The static
linearly stratified state, which is an equilibrium of the unforced system, is not an
equilibrium for any non-zero forcing amplitude. As viscous effects are reduced, the
horizontally forced flows computed from the Navier—Stokes—Boussinesq equations tend
to have piecewise constant or piecewise linear vorticity within the pattern of characteristic
lines originating from the corners of the cavity. These flows are well described in the
inviscid limit by a perturbation analysis of the unforced equilibrium using the forcing
amplitude as the small perturbation parameter. At first order, this perturbation analysis
leads to a forced linear inviscid hyperbolic system subject to boundary conditions and
spatio-temporal symmetries associated with the horizontal forcing. A Fredholm alternative
determines the type of solutions of this system: either the response is uniquely determined
by the forcing, or it is resonant and corresponds to an intrinsic mode of the cavity.
Both types of responses are investigated in terms of a waveform function satisfying a
set of functional equations and are related to the behaviour of the characteristics of the
hyperbolic system. In particular, non-retracing (ergodic) characteristics may lead to fractal
responses. Models of viscous dissipation are also formulated to adjust the linear inviscid
model for viscous effects obtained in the viscous nonlinear simulations.
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1. Introduction

How a stratified body of fluid responds to external forcing depends on the geometry of the
container, the boundary conditions and the nature of the forcing. While much insight has
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been gleaned from considering plane waves in unbounded stratified domains (Staquet &
Sommeria 2002; Dauxois et al. 2018), physical observations necessarily involve flows in
finite containers. Even small amplitude forcings can lead to large responses in confined
systems with strong restoring forces such as Coriolis and buoyancy. The importance
of parametric forcing and resonance in geophysical and astrophysical settings is well
recognized (Le Bars, Cebron & Le Gal 2015); the point is that small amplitude mechanical
forcings do not directly drive the large-scale flows but rather convert part of the available
rotational and/or potential energies into intense fluid motions by resonating inertial and/or
internal modes.

A classical example of parametric resonance is the Faraday wave problem (Faraday
1831), where standing waves on the surface of a liquid layer in a vertically oscillating
container are formed. In the Faraday wave setting the parametric forcing is the oscillatory
vertical acceleration of the container resulting in a vertically modulated gravity; typically
a two-layer system is studied. The response to the parametric forcing manifests as surface
or interfacial waves between the two layers of different density fluids, which may be
immiscible or miscible. The experiments of Benielli & Sommeria (1998) explored vertical
parametric forcing in a rectangular container, both with a two-layer system whose response
was well described in terms of a system of Mathieu equations, and a continuously stratified
fluid. The Mathieu equation describing a linear oscillator subject to parametric forcing is
central to understanding Faraday waves (Benjamin & Ursell 1954; Miles & Henderson
1990; Kumar & Tuckerman 1994). In the continuously stratified case there was some
correspondence with the two-layer responses, but not all. In the two-layer system they
were able to experimentally identify the resonance tongues, whereas in the continuously
stratified system they were not. Using numerical Floquet analysis of a temperature
stratified analog of the Benielli & Sommeria (1998) continuously stratified experiment,
the resonance tongues were clearly identified (Yalim, Lopez & Welfert 2018), and these
results were used to calibrate viscous effects in a Mathieu model (Yalim, Welfert & Lopez
2019a). Nonlinear simulations showed complicated nonlinear dynamics near the edges
of the resonance tongues, including subcritical behaviour to the low forcing frequency
sides of the tongues (Yalim, Welfert & Lopez 2019b). Those numerical studies were in
two dimensions, but Yalim, Lopez & Welfert (2020) showed that the complex nonlinear
behaviour persists in three dimensions using a container with the same spanwise aspect
ratio as used experimentally in Benielli & Sommeria (1998), until the forcing amplitude
exceeded a level at which wave breaking ensues.

In Benielli & Sommeria (1998) the forced responses to vertical oscillations of the
linearly stratified rectangular container correspond to resonantly excited modes of the
container. When paddles or plungers are used to force such a rectangular container (e.g.
Thorpe 1968; McEwan 1971), the response flow is a mix of modes with high regularity
and beams with less regularity. More recent explorations have used increasingly more
sophisticated semi-localized wave-makers to drive localized wavebeams (e.g. Mercier
et al. 2010; Boury, Peacock & Odier 2019). These types of forcings inherently also include
a component that is orthogonal to the direction of gravity. If the orthogonal component
is small compared with the vertical accelerations then the response is largely that due
to the vertical forcing, and remains well described by Mathieu equation models. On the
other hand, there have been a number of studies where the parametric forcing is solely
orthogonal to gravity, for the most part involving containers with a two-layer system
oscillating horizontally (Wolf 1969, 1970; Wunenburger et al. 1999; Talib, Jalikop & Juel
2007; Jalikop & Juel 2009; Gaponenko et al. 2015; Shevtsova et al. 2016; Gréa & Briard
2019; Richter & Bestehorn 2019). In these horizontally oscillating systems a peculiar
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feature of the responses for some forcing frequencies is the saw-tooth shape of the surface,
which remains invariant in the frame of the container, and is referred to as a frozen wave.

The vertically forced rectangular container with linear stable stratification has an
equilibrium solution consisting of static fluid relative to the oscillating container. It is
an equilibrium solution of the full nonlinear viscous problem for any forcing amplitude
and frequency. The linearization of the governing equations about this state leads to a
homogeneous Mathieu system describing deviations from this state, in which gravity
modulation appears parametrically (i.e. multiplicatively). The trivial solution of the
Mathieu system, consisting of zero perturbation velocity and zero temperature deviation
away from linear stratification, is a solution for any forcing amplitude and frequency. The
existence of non-trivial solutions in the Mathieu model determine a stability boundary
in amplitude/frequency space (the edges of resonance tongues) where the trivial state
becomes unstable. The instabilities correspond to resonantly excited eigenmodes of
the unforced stratified cavity (Thorpe 1968). These resonant responses may be either
synchronous or subharmonic with respect to the forcing.

In contrast, for the horizontally forced system, the static linearly stratified state is not
a solution for any non-zero forcing amplitude, and so a Floquet analysis about that state
is inappropriate. Instead, in the viscous nonlinear setting one needs to find the non-trivial
responses at each point in parameter space. In the inviscid limit a perturbation analysis of
the static linearly stratified state, using the small forcing amplitude as the perturbation
variable, results at first order in a non-homogeneous linear system, where the gravity
modulation appears as an external body force (i.e. additively). A similar perturbation
analysis of the vertically forced system would lead to a trivial response at any order
because the resulting effective gravity is a gradient term and simply modifies the pressure.
The nature of the non-trivial response for the horizontally forced system depends on
whether the frequency of the forcing is resonant or not. This can be codified in terms
of the Fredholm alternative (Keller & Ting 1966), conveniently described in the context
of finite-dimensional differential systems (Hale 2009): either the response is uniquely
determined by the forcing, or it is resonant.

Responses obtained in stratified systems at the onset of instabilities also have strong
similarities with those arising in rotating systems. In both cases, the linear inviscid limit
leads to a Poincaré equation, a linear hyperbolic equation, for a perturbed temperature
field (in the stratified case) or pressure field (in the rotating case). For confined systems,
boundary conditions may lead to ill-posedness and a decrease in the regularity of solutions.
Smooth solutions do exist and have been found via separation of variables in some
geometries, such as a cylinder or a sphere in rotating systems (Kelvin 1880; Greenspan
1965) and in rectangular containers in stratified systems (Thorpe 1968; Turner 1979).
Smooth intrinsic modes which are not completely separable have also been found, for
example, in rotating rectangular containers (Maas 2003; Wu, Welfert & Lopez 2018b).
However, one should in general expect singular (non-smooth) solutions (Aldridge 1975;
Maas & Lam 1995; Rieutord, Georgeot & Valdettaro 2000; Harlander & Maas 2007;
Swart et al. 2007; Bajars, Frank & Maas 2013; Borcia, Abouzar & Harlander 2014;
Pillet et al. 2018; Rieutord & Valdettaro 2018; Wu, Welfert & Lopez 2020). These
non-smooth solutions, which can be described as the superposition of an infinite number
of regular ‘modes’ (and as such are non-separable), have been found in the inviscid limit
in geometries where some or all of the container boundaries are neither parallel nor
orthogonal to gravity or the mean rotation.

In continuously stratified systems viscosity can be quantified non-dimensionally in
terms of a buoyancy number Ry, which is the ratio of the viscous time scale and buoyancy
time scale. For small viscosity (large Ry) and small forcing amplitudes, the responses
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to horizontal oscillations at forcing frequencies (normalized by the buoyancy frequency)
corresponding to ratios r = n/m, with m and n both odd integers, have mean enstrophy
several orders of magnitude larger than at any other frequency (corresponding to either
irrational r or rational r = n/m with m and n not both odd integers). The corresponding
flow structure bears some resemblance to the eigenmodes of the unforced system at
those frequencies, except that rather than being smooth, as was the case with the vertical
forcing, the vorticity tends to be piecewise linear. The eigenmodes of the unforced system
corresponding to frequencies associated to r = n/m with m and n both odd integers
are the only eigenmodes with spatio-temporal symmetry consistent with the horizontal
forcing. At frequencies associated to r = n/m with m and n having opposite parities, the
response flows are not resonant and they tend to have piecewise constant vorticity as Ry is
increased, with the constant regions delineated by the characteristics of the linear inviscid
system emanating from the corners of the container. In contrast, the vertically forced flows
are resonant at these frequencies. Other horizontal forcing frequencies result in response
flows with further complications, including fractal patterns. By considering infinitesimal
standing wave perturbations of the static linearly stratified state, we are able to solve the
resulting non-homogeneous linear system analytically in the inviscid limit (Ry — oc) and
recover virtually all the details of the nonlinear viscous response flows computed from the
Navier—Stokes—Boussinesq equations with small viscosity (large, but finite Ry) and small
forcing amplitudes. At the core of the analytic solution process lies a set of functional
conditions obtained by imposing the symmetry and boundary conditions.

In this paper we consider the linearly stratified square container subjected to horizontal
oscillations. The body force has a constant vertical component and an oscillatory
horizontal component. In § 2 the details of the problem and the governing equations are
defined, their spatio-temporal symmetries are described, as is the numerical technique
used for the nonlinear viscous problem. Section 3 describes these nonlinear viscous
response flows at small forcing amplitudes and forcing frequencies covering the entire
spectrum of the unforced system. As viscous effects are reduced (by increasing Ry),
the response flows tend to have lower regularity with either piecewise constant or linear
vorticity. These viscous nonlinear results are reconciled by considering the linear inviscid
limit. This leads to a Poincaré equation for the temperature deviation. In § 4 synchronous
standing wave solutions to the Poincaré equation are found by exploiting the symmetries
of the contained system. Several technical details pertaining to the analysis are presented
in appendices. Section 5 provides a head-to-head comparison between the linear inviscid
solutions and the nonlinear response flows at large but finite Ry and small forcing
amplitudes. Finally, § 6 summarizes and discusses potential implications for other forcing
protocols, in particular, larger amplitude forcings, and the persistence of the results in
three-dimensional (3-D) containers.

2. Governing equations, symmetries and numerics

Consider a fluid of kinematic viscosity v, thermal diffusivity « and coefficient of volume
expansion B contained in a square cavity of side lengths L. The two vertical walls of
the cavity are insulated and the two horizontal walls are held at fixed temperatures T},
at the top and T,y at the bottom, such that AT = Ty, — Tepig > 0. Gravity g acts in
the downward vertical direction. In the absence of any other external force, the fluid
is linearly stratified. The non-dimensional temperature is T = (T* — T¢o1q)/ AT — 0.5,
where T* is the dimensional temperature. Length is scaled by L and time by 1/N, where
N = /gBAT/L is the buoyancy frequency. A Cartesian coordinate system x = (x,z) €
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Figure 1. Schematic of the stably stratified square cavity under harmonic horizontal forcing, together with the
effective gravity vector g relative to the horizontally oscillating cavity. A snapshot of the vorticity 7 is shown

corresponding to buoyancy number Ry = 10°, Prandtl number Pr = 1, forcing frequency @ = 0.71 and forcing
amplitude & = 1.75 x 107°.

[—0.5,0.5] x [—0.5, 0.5] is attached to the cavity with its origin at the centre and the
directions x and z aligned with the sides.

The cavity is subjected to small harmonic horizontal oscillations of non-dimensional
forcing frequency and amplitude @ and «. In the cavity reference frame the
non-dimensional velocity is # = (u, w). The boundary conditions are no-slip on all walls
for the velocity u = 0. For the temperature, T = £0.5 on the conducting walls at z = 0.5
and 0,7 = 0 on the insulated walls at x = £0.5. Figure 1 shows a schematic of the system.

Under the Boussinesq approximation, the non-dimensional governing equations are

1
ort + udyu + wou = —0xp + R—Vzu + aT sin wt,
N

1
oW + udyw + wo,w = —9 +—V2w—i—T,
' ! ¢ LT Ry @.1)

1
8,T + ud, T +wd,T = — V2T,
U wo = e

o+ o;w =0,

where p is the pressure, Pr = v/k is the Prandtl number and the buoyancy number

Ry = NL?/v is the ratio of the viscous and buoyancy time scales (it is the square root
of the Grashof number). The buoyancy number Ry can also be viewed as a ratio of a
Reynolds number «’'L/v and Froude number u'/NL, where u’ is a characteristic velocity,
i.e. W'L/v)/(W'/NL) = NL?/v = Ry (Riley & Lelong 2000). For the most part, we shall
report on the temperature deviation, 6 = T — z, rather than on T itself.

For linearly stratified fluid in a rectangular container, if the boundary conditions on
the horizontal walls for the stratifying agent are of Dirichlet type, such as is the case
for fixed temperature on those walls, then the static linearly stratified state is a stable
equilibrium irrespective of the viscosity or the thermal diffusivity of the fluid. This is not
the case for salt stratification as the appropriate horizontal wall boundary conditions are
of Neumann type, corresponding to no salt flux through the walls. The equilibrium state
in that case is static with uniform density. In the inviscid limit the static linearly stratified
equilibrium state with Dirichlet horizontal wall boundary conditions has neutral (i.e. zero
growth rate) modes with a dense but discrete spectrum, consisting of a set of intrinsic
frequencies (eigenvalues) which, when normalized by the buoyancy frequency, are in the
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interval 0 < |o,| < 1. Finite viscosity imparts negative growth rates to these modes, so
that in order to have a sustained non-trivial response flow, a physical viscous system needs
to be continuously forced. The values of r for the intrinsic modes depend on the aspect
ratio of the rectangular container. In the case of the square studied here, the discrete set
corresponds to rationals » = n/m. The slopes of the characteristics are 7. If r is rational
the characteristics retrace, whereas if r is irrational the characteristics never retrace and
are said to be ergodic.

The static linearly stratified state (us, wy, ps, Ts) = (0, 0, z2/2, z) is a solution of the
unforced system, (2.1) with « = 0, for any Pr and Ry. When subjected to horizontal
oscillations of small amplitude «, the response is synchronous with the forcing at
frequency w and has discrete time translation invariance

T :[u,w,p,01x,z,0) > [u,w,p,01(x,z,t + 1), (2.2)

where T = 21 /w is the forcing period. The system is also invariant to two half-period-flip
space—time symmetries H, and H,, whose actions are

Hy : [u, w,p,01(x,z,8) = [—u,w, p,0]1(—x, z, t + 7/2), (2.3)
H, : [u,w,p,01x,z,t) = [u, —w, p, —01(x, —z,t — 7/2). 2.4)

The two symmetries H,y and H, combine into a centrosymmetry C = H,H, = H,Hxy,
corresponding to a reflection through the origin, whose action is

C:luw,p,0]x, z,t) — [—u, —w, p, —0](—x, —z, t). (2.5)

The governing equations are solved numerically using a spectral-collocation method. It
is the same technique as was used in Wu, Welfert & Lopez (2018a), Yalim et al. (2019b),
Grayer et al. (2020) and Yalim et al. (2020). Briefly, the velocity, pressure and temperature
are approximated by polynomials of degree n = 160 for Ry < 10 and n = 224 for Ry =
107, associated with the Chebyshev—Gauss—Lobatto grid. A selection of results were ‘spot
tested” using n = 600 for Ry = 107 in order to confirm that the results using n = 224
are indeed converged. A fractional step improved projection method, based on a linearly
implicit and stiffly stable second-order accurate scheme, is used to integrate in time with
315/w time steps (rounded to the nearest decade) per forcing period, corresponding to a
target time step 8t = 2 x 1072, Here, we fix Pr = 1 and the forcing amplitude o = 1.75 x
107, and consider variations in Ry and . The choice of small « is such that for the
range of Ry considered, the response flow remains the primary response, invariant to the
spatio-temporal symmetries H, and H..

3. Limit cycle responses to small amplitude forcing

We begin by broadly describing how the flow responds over a wide range of squared
forcing frequencies, 0 < w? < 1, covering the spectrum of the intrinsic modes, for several
Ry € [10%, 107]. Figure 2(a) summarizes these results in terms of a Bode magnitude plot
consisting of response curves using the time-averaged enstrophy in the container, (£);, as
a measure of the relative strength of the response flow, where

1 T 0.5 0.5
(E)r = — / / / n>dxdzds, (3.1)
TJo J-05J-05

n = d0;u — dyw is the vorticity and T = 21/w is the forcing period, and figure 2(b) for
the phase lag ¢ between phases associated with maximal horizontal forcing and maximal
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Figure 2. Bode plot, consisting of (a) magnitude response curves, (£); vs. w?, and (b) phase lag response

curves, ¢ vs. w?, for Ry as indicated. The rational values indicated are the ratios r = n/m at squared frequencies
2 2

o =1/1+7r).

vorticity at the centre of the cavity in the response flow. The results are presented in
terms of w? rather than w as the responses have a certain symmetry around w? = 1/2,
which is detailed below. For the parameter ranges considered, all response flows are
centrosymmetric limit cycles synchronous with the horizontal forcing.

Focusing on the squared forcing frequency range 0.45 < w? < 0.55, which brackets
the squared frequency w? = m?/(m> 4+ n?) = 1/2 corresponding to the frequency of
the primary intrinsic inviscid eigenmode with horizontal and vertical half-wavenumbers
m = n = 1, the response is similar to that of a damped oscillator forced near its natural
frequency. The magnitude and phase lag responses are almost flat at large damping (e.g.
the Ry = 10 responses), and as Ry is increased, the magnitude response begins to show
a broad increase preferentially near but below w? = 1/2, which sharpens and whose
peak converges towards w? = 1/2 with increasing Ry. The phase lag response has an
inflection point at the frequencies where the magnitude response has its peak, converging
toward a step-function response as Ry is increased. The phase lag ¢ — 90° at > = 1/2,
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¢ — 0° for w? < 1/2, and ¢ — 180° for w? > 1/2. If the system were a simple damped
spring—mass with a single natural frequency, this is all that would happen for forcing
amplitudes that are not too large, but the unforced stratified cavity has natural frequencies
o, = m/~m? +n% = 1/+/1 + r2 for all rational values of r = n/m (Thorpe 1968). For
Ry < 103, all resonances are damped except for the r = 1/1 resonance just described.
At Ry = 10%, the magnitude response shows the development of peaks at frequencies
corresponding to » = 3/1 and r = 1/3, as well as a weaker r = 5/1 peak. These, together
with the r = 1/5 peak, sharpen with increasing Ry, much like the r = 1/1 peak. The phase
lag behaviour is consistent with traversing through resonances, with the ¢ response curve
developing inflection points near the resonating natural frequencies which develop into
step functions as Ry is increased, with the step in ¢ being 180° across each resonance. As
Ry is increased, more resonances are less damped and additional peaks become evident

in the magnitude and phase lag responses. At Ry = 107, these peaks are identified in
figure 2(a) by the rationals r = n/m, and the phase lag response only has inflections at
these frequencies. If Ry is not sufficiently large for a particular resonance, there may only
be a very slight peak in the magnitude response and the phase response does not change by
180° across the resonance but instead changes slightly and returns back to the phase lag on
the other side of the resonance. Only the rationals » = n/m with m and n both odd integers
are resonated. These correspond to intrinsic modes whose spatio-temporal symmetries are
compatible with those of the horizontal forcing, H, and H.

Figures 3 and 4 show snapshots of 7 and 6 for various @ and Ry at phases of the forcing
where 7 at the origin and 6 are maximal (note that the maxima in n and 6 are a quarter
period out of phase). The supplementary movies 1 and 2 (available at https://doi.org/10.
1017/jfm.2021.73) show animations of these over one forcing period. All cases shown in
the movies are synchronous with the horizontal forcing, so that the phase lags for each
case are easy to visualize.

When Ry is small, such as Ry = 10, the response flow across the whole frequency
range is a single-cell limit cycle, somewhat reminiscent of the 1:1 intrinsic eigenmode
with squared eigenfrequency 012 = 0.5. As Ry is increased, the response flow tends to
appear less smooth with either piecewise constant or piecewise linear vorticity, depending
on the forcing frequency. For example, for w?> = 1/(1 + r?) withr = 1/1,1/3 and 3/1 (i.e.
w? =0.5,0.9 and 0.1), the vorticity of the response flows consists of one cell or three cells
lined up either vertically or horizontally, with piecewise linear segments delimited by lines
that start and end at the four corners of the cavity, reflecting a finite number of times on the
walls, and whose slopes £ correspond to the characteristics of the linear inviscid problem.
For w? = 0.8 and 0.2, corresponding to = 1/2 and r = 2/1, the response vorticity is
piecewise constant with the pieces again being delimited by lines starting and ending at
the four corners with slopes £r. The supplementary movies 1 and 2 show that for these
rational values of r, the response flows are standing waves. For ®? = 0.3 and 0.7, the
corresponding r = +/7/3 and /3/7 are irrational and inviscid characteristic lines starting
from corners do not return to corners after a finite number of reflections, although they may
get arbitrarily close to the corners. Even at Ry = 107, viscous dissipation and detuning
effects are still present. For other irrational values of r, such as w? = 0.3 with r = /7/3
and w? = 0.6 with r = /2/3, the limit cycle response is not a standing wave. From the
vorticity response, it appears that the flow at w? corresponds to that at 1 — w? with the
vertical and horizontal directions interchanged, but this is not the case for the temperature
deviation response.

Figure 5 provides a further quantitative demonstration of the piecewise low-degree
polynomial (spline) nature of the vorticity and temperature deviation. It shows the
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Figure 3. Snapshots of the vorticity # at indicated w? and Ry, at times when 7 at the origin is maximal. The
supplementary movie 1 animates these response flows over one forcing period.
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Figure 4. Snapshots of the temperature deviation 6 at indicated w? and Ry, at times corresponding to a quarter
period after n is maximal at the origin. The supplementary movie 2 animates these response flows over one
forcing period.
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(a) (b)
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Figure 5. Horizontal profiles at z = 0 of the vorticity  and temperature deviation 6 from selected snapshots
from figures 3 and 4 at w? and Ry as indicated.

profiles at z =0 of the w? > 0.5 responses for the four largest values of Ry used.
Several observations are in order: (i) the vorticity (shown in figure Sa,c,e,g,i), being a
derived quantity obtained from the velocity components u and w, is in general less regular

than the temperature deviation (shown in figure 5b.d, f,h.j); (ii) for w?> = 0.8, both the
915 A85-11
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vorticity and temperature profiles scale with the forcing amplitude «~! and converge with
increasing Ry towards piecewise constant and linear functions of the horizontal coordinate
x, respectively; (iii) for * = 0.5 or 0.9, corresponding to peaks in the response diagram
(figure 2), the convergence with Ry requires additional scaling with a factor R;,O's ; (iv) for
w? = 0.7, the vorticity profile exhibits oscillations in the vicinity of the ‘jumps’, and

the temperature deviation also has oscillations at those locations; (v) for ®?* = 0.6, new
features appear with increasing Ry, with large oscillations in the vorticity profile as well
as noticeable oscillations in the temperature deviation profile.

While the jumps in the w? = 0.7 case are reminiscent of artifacts due to the Gibbs
phenomenon in the spectral approximation of discontinuous functions (Tadmor 2007),
the sheer size of the oscillations cannot be solely accounted for by such effects, which
are known to be limited to approximately 9 % of the jump at a discontinuity. Increasing
the numerical resolution does not change these profiles (at the respective values of Ry).
This is contrary to what is expected of Gibbs oscillations, which become more localized
with increased resolution, due to pointwise convergence away from jumps. The inviscid
analysis carried out in the next section reconciles all the nonlinear viscous responses at
large Ry and sheds light on the above observations, in particular, the general low regularity
of solutions and the property that, in this problem, the response flows seem to exhibit
finer-scale features at certain forcing frequencies when viscous effects are reduced.

4. Weak responses in the inviscid limit
The responses to horizontal forcing appear to be standing waves with less regularity than
those observed in the case of purely vertical oscillatory forcing studied in Yalim ef al.
(2018). Here, we show how the responses to horizontal forcing can be constructed in the
inviscid limit via a first-order perturbation analysis of the static linearly stratified state,
using the forcing amplitude « as the small parameter. Specifically, in the inviscid limit
(Ry — ©0), using o as the small perturbation parameter and neglecting terms of order
o and higher, the equations describing the evolution of deviations (i, w, p, #) away from
(us, ws, ps, Ts) are
ot = —0xp + zo sin wt,
ow = —0d,p+0,
8;0 = —W,
dxu + d;w = 0,

subject to Dirichlet boundary conditions u(=£0.5,z) = w(x, £0.5) = 6(x, £0.5) = 0.
Note that the term zo sinwt appearing in (4.1) cannot be absorbed into the pressure
gradient in the form of a modified pressure. This results in a non-homogeneous (forced)
linear system (4.1), whose general solution consists of the general solution to the
homogeneous (unforced, @ = 0) system plus a particular solution. For w? # 1, a particular
solution is

_ .2
u[’ — @ 0 Cos wt, pp = L XZ(l @ ) sin wt. (42a,b)
Wp 1 —a? | —xw Op 1 —w? X

Eliminating u, w and p from (4.1) leads to the Poincaré equation (Poincaré 1885)
att(axx + azz)e + axxe =0, (4-3)
which is independent of the forcing amplitude «.
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We now consider synchronous standing wave solutions of the form
O = [f(x + rz) + g(x — rz)] sino,t, 4.4)

with arbitrary waveform functions f and g (that may depend on r > 0) and frequency o,
satisfying the dispersion relation

02 =1/(1+7r%) with0 <o? < 1. (4.5)

Note that the waveform functions f and g need only be defined for arguments in the interval
[—(1+n)/2, (1 +1)/2].

Solutions to the homogeneous system are obtained by substituting (4.4) into (4.1) and
setting o = 0, i.e.

[uh] [mr[f(x +rz) —glx —rz)] }
= COS 01,
Wh —or[f(x+r2) + g(x — r2)]
|:Phj| |:/1r[F(x +7r7) — Gx — rz)]i| )
= sin o1,
On f+r2) + g —r2)

where A, = ro? = r/(1 + %), F' =f, G’ = g and ()’ denotes differentiation with respect

to the argument. The system (4.1) forced at frequency w = o, thus admits synchronous
responses

|:u:| _ [u,, - cuh:| _ [ crop[f(x +rz) — glx — r2)]

w] T D own] T [—ax/ (200 — ol f+ 1) + g = 12)]

|:Pi| _ |:Pp + Cph:| . |: oaxz + cA [ F(x +rz) — G(x — rz)]
o Op +cOn | Lax/(Po}) + c[f(x+12) + g(x — r7)]

(4.6)

] COS 0,1,
4.7

j| sin o,

for any constant ¢, where the identity 1/(1 — w?) = /(1 — 03) =1/ (rzarz) has been
used. The streamfunction ¥r, whose gradient is (., d;%) = (—w, u), and the vorticity
n = d0;u — dyw of these responses are

2 2 _
|:Wi| _ |:oex /Q2r°o,) 4 cor[F(x + rz) + G(x rz)]:| cos o1, 4.8)

n a/(rPay) + (c/o)f (x4 12) + &' (x = r2)]
The linear system (4.1) has the same spatio-temporal symmetries, H, and H_, as the full
Navier—Stokes system (2.1). For ¢ # 0, these symmetries imply, for all [x| < 0.5 and |z] <
0.5 (i.e. everywhere inside the container), that

fEFx£r) —g(FxFro) = £ (x+rz) F glx — r2), (4.9a)
fFxE£r) + g FxFrz) =Ff(x+rz) F glx —r2). (4.9b)

Adding (4.9a) and (4.9b) shows that f = g and that both waveform functions are odd. The
resulting u in (4.7) is even in x and odd in z, w and 6 are odd in x and even in z, while p is
odd in both x and z, and ¥ and n are both even in x and z.

In general, the imposition of boundary conditions on the Poincaré equation (4.3) leads
to ill-posedness, with no solution when it is overspecified or multiple solutions if it is
underspecified. The condition u(0.5, z, ) = 0 constraints f to be even around 0.5,

f(054+¢)=f(0.5—-1¢), where|¢| <r/2and = rz, (4.10)

while the boundary condition w(x, 0.5, t) = 0 requires
fG+r/2) +f(x—r/2) = —ax/(cr?c?), |x| <0.5. (4.11)
915 A85-13
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The following Fredholm alternative then holds for the waveform function f:

Al: either c = ¢, = —a/ (2r20r2) = —a/(2rd,) is finite and f satisfies the functional

equation
fx+r/2)+f(x—r/2) =2x, |x] <0.5; (4.12)
A2: or,c = oo andf is even around r/2,
f2+x)=—f(x—r/2) =f(r/2—-x), [|x[=<0.5. (4.13)

The Fredholm alternative is a classical tool describing the existence of solutions of
non-homogeneous linear equations; see Hale (2009) for a description in the differential
equations context. Here, the alternative A2 is similar to case (A) in theorem 3 of Swart
et al. (2007), corresponding to multiple solutions defined up to a scaling factor. The
three conditions, (4.10), f odd, and either of (4.12) or (4.13), form systems of functional
equations of the Schroder or Abel type (Kuczma, Choczewski & Ger (1990), § 3.5). The
relevance of these types of equations to confined stratified flows was originally recognized
by Manton & Mysak (1971), and later exploited by Beckebanze (2015) and Beckebanze &
Keady (2016) to obtain exact inviscid solutions with low regularity properties in a stratified
trapezoidal channel. One major complication in the flows presently under consideration,
compared with that considered in Beckebanze (2015), is due to the forcing term in
(4.1). Although this term does not affect the Poincaré equation (4.3), it changes the type
of the resulting condition, from a (non-homogeneous/forced) Abel equation (4.12) to a
(homogeneous/unforced) Schroder equation (4.13).

In the remainder of this section we describe solutions that are obtained for different
values of r. For the square cavity considered here, the nature of the solutions depends
on whether or not r is rational, i.e. whether the characteristic lines emanating from
the corners of the cavity, x = rz = £0.5(1 £ r), retrace or not. Furthermore, when r is
rational, the nature of the solutions depends on the parities of the integers m and n in
the irreducible representation of r = n/m (greatest common denominator gcd(m, n) = 1).
Since the waveform function f is determined from conditions that depend on r, we shall
use the notation f; instead of f when referring to a specific value of r, with a resulting
response flow (u,, wy, pr, 6;).

4.1. Alternative A1: forced responses

There is a relationship between the solutions of (4.1) at squared forcing frequency w? =
arz = 1/(1 + r?), associated with waveform function f;, and those at 1 — 0,2 =r/(1+
) =1 /A + 1/ r)?), associated with f1/r- The details are provided in Appendix A. It is
therefore sufficient to consider r € (0, 1), i.e. orz e (1/2,1).

First, we identify waveform functions f, satisfying (4.12) for selected rational values
r =n/m with m > n. Evaluating (4.12) at x = [x;]1<j<m With x; =j/2m),j=1,...,m,
and using the symmetries approximately O (f odd) and 1/2 (4.10), yields an m x m linear
system in f',.(x) = [fr(xp)]1<j<m;

Af . (x) = 2x. (4.14)

Harlander & Maas (2007) derived a similar system using a boundary collocation approach
for the solution of the Poincaré equation in two-dimensional (2-D) containers.

When m and n have opposite parities, this system is non-singular and has a unique
solution f,.(x). The construction of the system and its solution is illustrated in Appendix B
for the case with m = 11 and n = 4. The linear spline obtained by connecting the points
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(r,0%) = (1/2,0.8000)  (1/4,0.9412)  (1/6,0.9730)  (1/8,0.9846)  (1/10,0.9901)

1 \_/_\ _\ / L b = J/-/-\ N xL‘x.\jf[f\‘ N .\\\/'/f/ﬁ \\\‘-..

A

Figure 6. Waveform function f, in [—1.5, 1.5] x [—1.25, 1.25] and the associated scaled forced responses 7,
at phase 0 and 6, at phase 1t/2, from (4.15) at r as indicated. The blue curve is the 2-periodic extension of the
red curve f, defined in the interval [—(1 + r)/2, (1 4+ r)/2].

n,

[x;, fr(xj)] satisfies (4.10) and (4.12) for all x € [-(1 +r)/2, (1 + r)/2]. This solution f;,
is plotted in red in the first row of figure 6 for the cases n = 1 and m = 2, 4, 6, 8 and 10.
A unique 2-periodic extension, obtained by enforcing (4.10) and f,(—¢) = —f(¢) for all
real ¢, is shown in blue. This extension satisfies f,(+1) = 0. Note that additional periodic
extensions exist forO < r < 1, [—(1 +r)/2, (1 +r)/2] C [-1, 1].

The value of the waveform function f; in [—(1 4+ r) /2, (1 + r)/2] completely determines
the response flow of the forced linear system (4.1) everywhere in the square cavity. This
response flow is

Ur | rlfr(x +rz) — fr(x — r2)]
wr | T 2x — fox + 1) — frx — 12)

o A 2rxz — Fr(x + 1z2) + Fr(x — r2)]
o 2x = fr(x+rz) — fr(x — r2)

] coS 0,1,
(4.15)

] sin o,t.

Its magnitude is linearly proportional to the forcing amplitude «.

The forced response (4.15) is now considered for three different sequences of rationals
r=n/m with n and m of opposite parities, which converge to r =0, r = 1/+/2 (an
irrational number) and r = 1. These sequences reveal qualitatively different behaviours.

The vorticity 1, and temperature deviation 6, for the sequence r = 1/m,m = 2,4, 6, ...
converging to r = 0, associated with arz = 1/(1 +r?) = 1, are illustrated in figure 6 for
the first five cases m = 2,4, 6, 8 and 10. For r = 1/2, n, is piecewise constant with the
pieces delimited by the characteristic lines emanating from the corners forming a pattern
known as a harlequin print, and 6, is piecewise linear in the form of two pyramids, one
positive and the other negative, either side of x = 0. As the even integer m increases,
the 2-periodic extension of f, looks more and more like a triangular wave with f.(x) = x
for |x| < 0.5 and the response flows consist of m/2 copies of the r = 1/2 response with
x — (m/2)x.
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(r,02) = (7/10,0.6711)  (17/24,0.6659) (41/58,0.6668) (99/140, 0.6666) (239/338, 0.6667)

/.

N\
\ \

¢ ¢
nr ‘”’
L 4 ¢

er ‘

Figure 7. Waveform function f; in [—1.5, 1.5] x [—1.25, 1.25] and associated scaled forced responses 7, at
phase 0 and 6, at phase 7/2 for a series of rational r values converging to the irrational 1/+/2, corresponding
to 0,2 = 2/3. The blue curve is the 2-periodic extension of the red curve f, defined in the interval [—(1 +
r/2, (1+7)/2].

We now consider a sequence of rationals » = n/m with m and n of opposite parities,
converging to the irrational value r = 1/+/2, corresponding to arz =1/ 4+ =2/3.
Such a sequence can be obtained from successive partial sums of the continued fraction
representation

1 V2 1 1

V2 2 2 2+ !

24 ...
according to the iteration r — (1 + r)/(1 4 2r), starting with the case r = 1/2. Figure 7
shows the waveform function f, and the associated response 1, and 6, for five consecutive
iterates of r. The value f,(1/2) is observed to rapidly approximate 1 as r — 1/+/2, with f;
exhibiting increasingly higher frequency spatial variations, and finer and finer structure in
the corresponding 1, and 6,. The curve f; V2 obtained at the limit » = 1/+/2, appears to
be fractal.

Figure 8 shows f, and 7, at a rational value of r approximating 1/+/2, obtained from the
fourteenth iterate of the sequence. The figures appear qualitatively similar to lower iterates
shown in figure 7; the higher iterates allow us to zoom-in and explore the fractal nature of
the response in the limit r — 1/+/2, from which the similarity relation

(4.16)

[r(0.55 +[1 = 5]x) = 5£,(0.5) + [1 — 5]/, (x), (4.17)
with s = 2r/(1 + r) = 2+/2 — 2 ~ 0.828, can be inferred. The relation (4.17), equivalent
to

¢ |_| 05 x—0.5
[fr(c)] = [ fr(O.S)} +d =9 [ £ — f,(o.S)] , (4.18)
915 A85-16


https://doi.org/10.1017/jfm.2021.73

https://doi.org/10.1017/jfm.2021.73 Published online by Cambridge University Press

Stratified cavity subjected to horizontal oscillations

(@) () (©)
1 ”\,, m%—} Ha"ﬂﬁn\
7 oW PAVARRVAN
' / \
/ f \ \
0 1 [ fff '.
./ I \
| f.' '.
/ / \
W \
(@) © x %)
025 ' .
— N -
025} .

Figure 8. Zoom-in in the neighbourhood of (0.5, 0) for n, at phase 0; (a—c) waveform function f I3 in
windows [—1.5, 1.5] x [—1.25, 1.25] (a,d), [0, 1] x [0, 1] (b,e) and [s/2,1 —s/2] x [s, 1] (c,f) with s =
22 - 2; (d—f) n, in regions [—0.5, 0.5] x [—0.5, 0.5] (square cavity; a,d), [0, 1/2] x [—1/4, 1/4] (b,e) and
[s/2,1/2] x [-(1 —s)/4, (1 — 5)/4] (c,f). The supplementary movie 3 shows a continuous zoom-in of the
response 7, about the point (x, z) = (0.5, 0).

shows that the graph of f I3 is invariant under the homothety with similarity factor 1 —

s =3 —24/2 2 0.172 and centre (O.S,fl/ﬁ(O.S)) = (0.5, 1). Figure 8 illustrates how the
curve f, I3 in the range [s/2, 1 — s/2], of size 1 — s centred around 0.5, is a scaled-down
copy of itself from the range [0, 1]. The supplementary movie 3 shows a continuous zoom
into the region in the neighbourhood of the point (x, z) = (0.5, 0) of the response 71, shown
in figure 8. The relation (4.17) is not trivial and can be verified to hold for other quadratic
irrational values of r, with exactly the same definition of s(r) when rPr=1-1/m m=
3,4,...,and when 2 =1+ 1 /m,m=1,2,..., or with a modified rational relationship
for other quadratic irrational values of r.

The third sequence of rationals considered is r =n/m=(m—1)/m=1—1/m, m =
2,3,4,...converging to r = 1, which is associated with arz =1/+ r2) = 1/2. Figure 9
illustrates the behaviour of the solution of the functional equations, f,, and the
corresponding forced response 1, and 6,. As m increases, the maximum value of
fi—1/m, which is attained at 0.5, increases unboundedly as O(m) = O(1/(1 —r)). As a
consequence, the forced response also grows in magnitude as m — oo and r — 1, with
the piecewise constant vorticity 1, showing a finer and finer harlequin pattern converging
towards a piecewise linear vorticity profile in the shape of an inverted pyramid, and the
temperature deviation 6, converges towards a piecewise quadratic field with isocontours
in the form of perfect (arcs of) circles centred at (£0.5,0) and hyperbolas centred at
(0, £0.5) meeting at the limiting characteristics x & z = 0; see figure 9. The unbounded
response at the limit » = 1 corresponds to resonance, which is discussed below under the
umbrella of the Fredholm alternative A2. The unbounded growth of the magnitude of the
response being inversely proportional to the distance to the limiting critical frequency also
conforms to the standard result from forced undamped mechanical linear oscillators.
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(r,0%) = (2/3,0.6923)  (3/4,0.6400)  (6/7,0.5765) (12/13,0.5399)  (I-,0.5000")

fr II‘\, ‘ "\ \'- \ \ \
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Figure 9. Scaled waveform function f. in [—1.5,1.5] x [—1.25,1.25] and the associated scaled forced
responses 7, at phase 0 and 6, at phase /2 for a series of rational r values converging to » = 1, corresponding
to 0,2 = 1/2. The blue curve is the 2-periodic extension of the red curve f, defined in the interval [—(1 +
r/2,(1+r)/2].

4.2. Alternative A2: intrinsic modes

At exactly r = 1, the Fredholm alternative A1 fails: the conditions f(1) = f(0) ((4.10)
with ¢ = 0.5) and f(1) 4+ f(0) = 1 (alternative A1 with x = 0.5) lead to a contradiction
with £(0) = 0 (f odd). Equivalently, the system (4.14) reduces to the inconsistent single
equation [0]f(0.5) = 2[0.5]. The inconsistency of the system (4.14) is also illustrated
for r = 3/5 in Appendix B. In these cases, the Fredholm alternative A2 must hold. For
r = 1, alternative A2 reduces to (4.10); for every odd waveform function f = f(¢) which
is even around ¢ = 0.5, there is a corresponding solution of the unforced homogeneous
problem (4.1) constructed from (4.6). Examples of f that naturally satisfy these symmetry
conditions include the family of shifted Euler splines f(¢) = §;(¢ — 0.5), of regularity
class C9~1(Olver er al. (2010), (24.17.3)). These splines are defined from the Euler
polynomials E, (Olver ef al. (2010), § 24). They are 1-antiperiodic (Olver er al. (2010),
(24.2.12)) and, hence, 2-periodic. They also belong to the more general family of
exponential Euler splines (Schoenberg (1973), Lecture 3, §5). This family includes the
€Y linear triangular wave S, the C' quadratic spline S, defined by S>(¢ — 0.5) = 4¢(1 —
[¢]) for [¢] < 1, and the C*° waveform function f(¢) = sin(m¢) = limy_, 0 S¢(¢ — 0.5).
Figure 10 shows the structure of S1, S2, §3 and S ; note the remarkable similarity between
Sy forg > 2.
The choice f(¢) = S0 (¢ — 0.5) = sin(m¢) leads to the C*° intrinsic mode

u, COS TIX Sin Tz
X 0] . cosoit,
wh — sin TTx COS 77

(4.19)
|:Ph1| - [(/ll/rc) sin 7x sin 1z

. sinot,
sin TTx cos Tz

915 A85-18


https://doi.org/10.1017/jfm.2021.73

https://doi.org/10.1017/jfm.2021.73 Published online by Cambridge University Press

Stratified cavity subjected to horizontal oscillations

(a) (%) (©) (d)

Figure 10. Shifted Euler splines S, of regularity class 9!, shown in a window [—1.5, 1.5] x [—1.25, 1.25]:
(a) S1(¢ —0.5) =E| (¢ +0.5)/E(0) =2¢ for —0.5 < ¢ < 0.5, (b) S2(¢ — 0.5) = E»(¢)/E»(0.5) =4¢(1 —
O for0 < ¢ < 1,(c) S3(¢ —0.5) = —E3(¢ 4+ 0.5)/E3(0) = ¢ (3 —422) for —0.5 < ¢ < 0.5, and (d) S0 (¢ —
0.5) = sin(m¢), where E; is the Euler polynomial of degree g.

with o1 = 1/+/2 and 1; = 1/2, which was shown to be excited by purely vertical forcing
oscillations of the container (Yalim et al. 2018). In contrast, for the horizontal forcing
considered here, the limit of the forced responses associated with the sequence r = 1 —
1/m with m > 2 corresponds to the quadratic spline S». Specifically,

fi—im(©)
m —————
m—00 f1_1/m(0.5)

see Appendix C for a proof. The eigenmode components n; and 6 are visually
indistinguishable from the bottom row of figure 9, obtained for r = 1 — 1/m with m large.

The resonance at w®> = 1/2 (i.e. r = 1) corresponds to the largest peak in the Bode
response diagram in figure 2(a). Similar resonances occur for all rational values r =
n/m with both m and n odd integers, leading to other peaks in the Bode diagram at
the corresponding values of w?> = o> = 1/(1 4 ). These are all the cases for which
Fredholm alternative A2 holds. The scaling relation

Suym(C) = fi(mg), 4.21)

shown in Appendix D, implies that the resulting mode, denoted M,,.,, can be simply
constructed from Mj.;, with vorticity and temperature deviation components 7, and 6,
arranged in a regular m x n tiling of the scaled components of Mj.;.

Figure 11 shows the vorticity n, and temperature deviation 6, for the eigenmode Ms.3
resonating at squared frequency orz = 25/34 ~ (0.7353 (corresponding to r = 3/5). The
response consists of an exact 5 x 3 tiling of copies of the components of the mode M.1,
with piecewise linear 71 in a pyramid pattern and piecewise quadratic 61. The responses at
slightly detuned frequencies on either side (slightly smaller and larger values of r) of the
resonant modal case are also shown. These forced responses, being associated with rational
values of r that are approximations of the resonant case » = 3/5, have piecewise constant
n, and piecewise linear 6,. At the macroscopic scale of the figure, they appear to be smooth
with one order of regularity higher than they actually possess. This is due to the natural
visual (Riemann) integration of the small scales associated with the underlying network
of characteristic lines emanating from the corners, resulting from the large values of m
and » in the irreducible representation of » = n/m. Whereas the eigenmode has velocity
and temperature fields of regularity class C! and satisfies the homogeneous linear inviscid
system (4.1) in a pointwise or strong sense, the forced response at a detuned frequency has
velocity and temperature fields only of class CV globally, as a result of the nature of the
forcing, and are weak solutions.

Note that the waveform functions f;; shown in figure 11 are normalized, with extrema
at £1. In fact, the extrema of f, are, as in the case at » = 1, unbounded at the
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Figure 11. Scaled waveform function f, in [—1.5, 1.5] x [—1.25, 1.25] and associated scaled forced response
(n, at phase 0 and 6, at phase 7t/2) for two values r = (300 &£ 1) /500 close to 3/5 (a.e,i,d,h,l) and eigenmode
atr =3/5 (b,f,j,c.g.k, associated with opposite scaling). The blue curve is the 2-periodic extension of the red
curve f; defined in the interval [—(1 + r)/2, (1 4+ r)/2].

resonant frequency. As the forcing frequency is varied across the resonant frequency, there
is an inversion f, — —f,.. At resonance, the intrinsic mode of the unforced system is given
by

0| g, [+ 72) =gt = o)
[Wr] =0 |: —fr(x +712) — fr(x — r2) :| COS O t,

r| | A (x+12) — Fr(x — r2)]
0| | fitx+r)+fi(x—r2)

4.22)
] sin o,t,

obtained by letting « = 0 in (4.7). So, the change in sign in f, is equivalent to a
half-period phase shift in time. This is evident from comparing figures 11(a—d) and
11(i—I). Interestingly, this shift occurs in the high spatial frequency component of f, not
the low spatial frequency component. This shift is emphasized in figures 11(b,f,j) and
11(c,g.k), representing the eigenmode, scaled to =1 according to which side of the resonant
frequency and the associated parameter » = 3/5 they correspond. Also note how the
cellular grid modal pattern of the piecewise quadratic temperature deviation 6, becomes
distorted along the characteristic directions and the cells merge upon detuning away from
the resonance.

4.3. Spectral representations of modal and forced responses

The visual similarity between the quadratic spline S» and the sine wave S in
figure 10 can be quantified via the sine Fourier series expansion (Olver et al.
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Figure 12. Plots of the vorticity 7, and temperature deviation 6, associated with the partial sums in the series
expansion of Ms.3 in (4.24), for the number of indicated terms.

2010, (24.8.4))

32 sin(2k + 1)w¢ . 32

1
$2(¢ —0.5) = = okt 1p = |:Soo(§ —-0.5) + 3—3500(3§ —-0.5) +.. i| .

k>0
4.23)

By approximating the factor 32/m3 ~ 1.032 ~ 1 in (4.23), the resonating mode M,,.,
can be expanded as a superposition of an infinite number of C* intrinsic modes
I(2k+1)m:(2k+1)n- These are the odd spatial harmonics of /.., all of which have the same
intrinsic frequency Ok+1)n/k+1)m = On/m>

Myn o< )€+ D)7 Lot et - (4.24)
£>0
The components (uy,, wi, pn, On) of the modes I(2¢+1)m:(2¢+1)n» have the form
u 2 cos(2¢ + Dymmx sin(2€ + 1)nnz
X Op/m | M COS Oy /mt,
L] oo /
—sin(2¢ + mmx cos(2¢ + 1)nmz
(4.25)

__Am Gn2e + Dymmx sin2e + Dz
Q20+ Dmm

sin(2¢ + 1)mmix cos(2¢ + 1)nmz

$in oy /.

Figure 12 shows the vorticity and temperature deviation associated with the first few
partial sums in the series expansion of Ms.3 in (4.24), as well as of Ms.3, illustrating
the rapid convergence of the series (4.23) and, thus, of (4.24). It is difficult to visually
distinguish the primary fields, such as the temperature deviation, of M,,., from those of
Iy-n. The contribution of terms beyond the first term in the expansion (4.24) is more visible
for the vorticity due to the larger factor, (2k + 1)~2 vs. (2k + 1)73, resulting from the
term-wise differentiation of the velocity field.
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The expansion of forced responses in terms of odd harmonics of the sine wave can be
obtained from the sine Fourier expansion

1k
S1(¢ —0.5) = Ly ) = 8 > D sin(2k + 1)7e. (4.26)
472 n? £ 2k + 1)?

Expressing the linear spline as a superposition of m shifted triangular waves Sy (- — ¢;),

m

Fam(@) =Y 416 = §), (4.27)
j=1
where §j=(2j—1)/2m), j=1,...,m and a; = £0.5 are coefficients whose signs

depend on j, m and n in a non-trivial way (see Appendix E), and substituting (4.26) into
(4.27) leads to

Fam(©) = — Z (2k 73 Sink + D, (4.28)
k=0
with
k=2 asink + Hng, k> 0. (4.29)

J=1

The expression (4.29) amounts to a standard discrete sine transform of the coefficients a;
(the discrete sine transform denoted DST-IV in Britanak, Yip & Rao (2007)). The closed

form expression
2k+ 1
sk = (—1)Fsec ( ; ) rm, (4.30)

with r = n/m, is obtained and illustrated for the case m = 11, n = 4, k = 0 in Appendix F.
Note that s; remains finite as long as (2k + 1)r is not an odd integer, i.e. r is not rational
with m and n both odd. Using a density argument, the expression (4.30) extends to
irrational values of r (in which case the sequence {si}«>0 never repeats), so that

(—DF 2%k + 1 .
(&) = Z ( )rn sin(2k + 1)¢ . (4.31)
2 P 2k + 1)2 2

The waveform function is verified to be odd, f.(—¢) = —f,(¢). The relation
(—D¥sin(2k + )¢ = cos(2k + 1)(¢ — 0.5)7 emphasizes the parity of f, around ¢ =
0.5. Moreover, the direct verification that f. indeed satisfies (4.12) in the Fredholm
alternative A1l reduces to a trivial trigonometric exercise, once the right-hand side
of (4.12), 2x = S1(x — 0.5), is expanded for |x| < 0.5 using (4.26). While the spectral
approach employed in Maas & Lam (1995) and Wotherspoon (1995), valid for any r
different from resonant values r = n/m with m and n odd integers, can be used to derive the
infinite series expansion (4.31) directly from the functional relation (4.12), evaluating the
series requires truncation to a finite number of terms and it is not clear how the truncation
depends on r. On the other hand, the spatial approach leads to a linear system that provides
an exact solution f;, but only for rational » = n/m with m and n of opposite parities. For
irrational r, this system becomes unbounded and again a truncation, now to a finite system,
must be made.
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The value of (4.31) at ¢ = 0.5 is related to a secant zeta function introduced in Lalin,
Rodrigue & Rogers (2014) that motivated the recent study in Welfert (2020), where it was
shown that f; / /2(0.5) =1, as observed in figure 8.

Replacing the quantity 2x appearing in the components w,, p, and 6, of the forced
response (4.15), hereby denoted Ry, by its expression in terms of the function f, from
(4.12), and then substituting (4.31), shows that Ry can be decomposed as the superposition
of responses Ry, ,

Rty CD (4.32)
TP ‘

of the sequence of linear forced systems
Oy = — Pk + za cos(2k 4+ 1) 1x sin wt,
0wk = —0p + 6k,
’ ’;tek B Zf:‘% ¢ (4.33)
oyt + o;wi = 0.
An explicit expression of the components (ug, wi, pk, 6k) of Ry is given in Appendix G.

The pointwise convergence of (4.32) away from characteristics inside the cavity also
follows directly from the Fourier cosine expansion

4 ¢ (=D
So() = — > S sk Dx, (4.34)
k>0

of the 2-periodic square wave Sp, whose value is (—Df forxe (£ —0.5,£4+0.5), ¢ € Z,
and, in particular, 1 for x € (—0.5, 0.5). The magnitude of the velocity components and
temperature deviation of Ry, itself decreases inversely proportionally to k (quadratically for
the pressure); see (G5). In other words, the response to (4.33) vanishes for spatially highly
oscillatory forcings. As a result, (4.32) converges absolutely, whereas (4.34) does not.

Figures 13 and 14 show the partial sums of (4.32) for the vorticity n and temperature
deviation 6, respectively, with an increasing number of terms, for the same o> = ? values
as those from figures 3 and 4. Note that in order to avoid sec(2k + 1)7r = oo, the partial
sums at arz =0.17,0.57,0.9~ were computed using arz values slightly detuned by a
relative amount equivalent to ten times the machine epsilon (10 x 27°2). Adding terms
to the partial sums improves the approximation. The convergence depends on whether
sec(2k + 1)wtr/2 is large or not. For example, there is a big change for o*r2 = 0.4 when
adding the fifth term and for arz = 0.6 when adding the sixth term. This is particularly
noticeable when o, is very close to resonances. These near resonances occur when
2k+ Dr=2¢+1, i.e. for every k = m terms if r =~ n/m with m and n both odd. For
0,2 =0.97, (r = 1/3 = n/m), the changes occur at terms 2 (k=1, £ =0), 5 (k =4,
£ =1),etc.

For the most part, the comparison between the linear inviscid theory using 100 terms in
the partial sums shown in figures 13 and 14 shows excellent agreement with the numerical
results at the largest Ry = 107 shown in figures 3 and 4.

5. Comparison between viscous flow at large Ry and inviscid flow

This section provides quantitative comparisons between the viscous nonlinear flows
obtained via direct numerical simulations (DNS) and the linear inviscid theory.
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Figure 13. Plots of the vorticity n, associated with the partial sums in the series expansion of Ry in (4.32), at
o2 and a number of terms as indicated.
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Global comparisons using the enstrophy and local comparisons using snapshots and
horizontal profiles of the flows are made.

5.1. Inviscid versus viscous global enstrophy and a reduced-order viscous model

The global mean enstrophy (£), defined by (3.1), of the linear inviscid responses is now
compared with that of the viscous responses obtained at increasing values of Ry from
figure 2(a). The inviscid enstrophy is given by (for details, see Appendix H)

+ 2 5 tan A
rzgzz/l {1+—|:(1—|—r2)sec A — 3 =7 m ]} (5.1

" k>0
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Figure 14. Plots of the temperature deviation 6, associated with the partial sums in the series expansion of Ry
in (4.32), at orz and a number of terms as indicated.

The Dirichlet series (5.1) diverges at resonances which, for the square cavity, occur
for every rational r = n/m with m and n both odd integers. Near a specific resonance,
cos A &~ 0 for some k, (5.1) shows that the scaled global inviscid enstrophy, (r/a®) (&), =
0(r‘3ar_2[1 +2P) =0(r+ 1/r]3), is invariant under the transformation r <> 1/r, i.e.
0% <> 1 — 2. Figure 15(a) illustrates this balance in the response magnitude between
the orz < 0.5 and arz > 0.5 regimes. The graph is obtained by truncating the series (5.1)
after 10 terms (k = 9). This truncation only retains a finite subset of rational values
r = n/m at which the inviscid response becomes unbounded. However, truncating the
infinite series after a fixed number of terms independent of r allows for a larger set of
resonances to be identified in the lower forcing frequency regime, orz <0.5,ie.r>1,
compared with the higher frequency regime, orz > 0.5, because of the higher frequency
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Figure 15. Graph of the enstrophy (£); from (5.1) scaled by o /r, evaluated at 10° values w? € (0, 1) using
(@) 1 4+9 =10 terms, (b) |1 + 9//r] term(s) or (c) |1 + 99/./r| term(s) in the series, where |.x] represents
the integer part of x. Also shown in (c¢) are the scaled curves obtained from DNS for the different values of Ry
from figure 2 using the same colours, and a viscous correction factor y from (5.2). The supplementary movie
4 shows a frequency sweep of 9999 inviscid solutions uniformly distributed between w? € (0, 1) at phase 0 for
n, and phase /2 for 6,.

in the variations of cos A;. In contrast, truncating after 1 + O(1/4/r) terms results in
a comparable representation of the spatial variations of 7 in the x direction at o ~ 1
and in the z direction at arz ~ 0, making the graph and the various resonances visually
symmetric approximately arz = 0.5; see figure 15(b). This modification in the number of
terms increases the number of resonances detected by the truncated series in the o;> > 0.5
regime. For example, it decreases the frequency gap between consecutive resonances at
o2 ~ 0.8, with an inverse effect in the 07 < 0.5 regime, as can be observed from the
increased gap around orz ~ (.2. Increasing the proportionality constant of the O(1/4/r)
term allows for the representation of more oscillatory components throughout the o2
parameter inertial range, leading to many more resonances at » = n/m with larger n and m,
including those closer to 0,2 = 0.5 (r = 1), and defining an inviscid response ‘envelope’,
shown in figure 15(c). This figure also includes the synchronous (o = w?) response
curves from DNS at various Ry from figure 2(a), adjusted for viscous effects, & (r/ o?) (E)e,
where
5 = 0.82Ry,'/2(0.252 +0.750%) ",

27 \2 (5.2)

1+ r2) '

=401 — 0?) = 40*(1 —0?) = (
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The O(R;,l/ 2) correction leads to the asymptotic collapse (away from lower-order resonant
conditions) of the response curves from figure 2(a) onto a single curve as Ry increases,
with the proportionality constant calibrated by the response at w> = 0.5 (1= 1). The
factor in § inside the parentheses is a correction away from the r = 1 case, in the spirit
of the modal viscous reduced-order model used by Yalim ef al. (2019a), to obtain an
approximate critical instability curve for the linearly stratified base state subjected to
purely vertical oscillatory forcing of the container. The A'- term controls the shape of the
curves at w? &~ 0 or 1, while the A° term controls their relative ‘flatness’ in the intermediate
ranges around the values 0.25 and 0.75. Since A < 1, this mode-dependent correction
factor is larger at w? ~ 0 and 1, where the differences between the horizontal and vertical
spatial scales of the responses are large, associated to the nearly vertical/horizontal
characteristic directions, and for which the viscous boundary layers have a larger impact.

The 9999 frames in the supplementary movie 4 correspond to snapshots of 7, and
0, at phases 0 and m/2, respectively, of the linear inviscid response flows at square
forcing frequencies w? € (0, 1). The animation provides a visual catalog of the Fredholm
alternative A1 responses obtained from the truncated series (5.1) with [1+9/./r]
term(s), where |x] represents the integer part of x.

5.2. Flow field comparisons

The nonlinear viscous DNS responses from figures 3 and 4 at Ry = 107 are now
compared with the inviscid responses predicted by the analysis from § 4 at similar forcing
frequencies w. These comparisons are shown in figures 16 and 17. All the inviscid
responses shown were obtained using the discrete approach in physical space, described in
Appendix B, rather than using the truncated spectral representations discussed in § 4.3.
Responses associated with quadratic irrationals r (e.g. for 0,2 =0.3,0.4,0.6 and 0.7)
were obtained via approximations by a high-order convergent of appropriate continued
fractions, similar to (4.16). Inviscid responses associated with rationals r obtained from a
lower-order convergent, which correspond to slightly detuned responses, are also included
for comparison with viscous results obtained at smaller Ry. For example, the case r =
22/27 in the vicinity of o> = 0.6 is obtained from r = 4/5 using the iteration

[Z] GRM’ A= B %] (53)

while the case r = 27/22 in the vicinity of o> = 0.4 is obtained from r = 5/4 using
a similar iteration based on R’ instead. Note that the ratio of coefficients of the right
eigenvector of R is r = 4/2/3, while the same ratio for the left eigenvector is r = /3/2,
values that are associated with the exact forcing frequencies.

For ease of comparison, the viscous (DNS) results at large Ry = 107 from figures 3
and 4 have been reproduced in figures 16(a,c,e,g,i,k,m,0,q) and 17(a,c,e,g,i,k,m,0,q),
albeit at the fixed phases of the forcing, 0 for the vorticity n and mt/2 for the temperature
deviation 6. For rational » = n/m with sufficiently small m and n, the DNS are very similar
to the results predicted from the inviscid analysis shown in figures 16(b,d,f,h,j,l,n,p,r)
and 17(b,d.f ,h,j,l,n,p,r). For quadratic irrational r, such as r = \/7/3, \/3/2, v/2/3 and
/3/7, the DNS results at Ry = 107 are unable to fully capture the fractal nature of the
inviscid response. For finite Ry, the viscous effects smear out the small-scale details. The
DNS responses appear more like the inviscid responses obtained at nearby rational values
of r = n/m with moderate m and n, especially for .
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Figure 16. Vorticity n from DNS at Ry = 107 (a,c,e,g,i,k,m,0,q) and n, from the inviscid theory
(b,d f,h.j,l,n,p,r), all at phase 0, at the indicated squared forcing frequencies w? (with the corresponding r
values indicated). The inviscid responses at 0,2 = 0.3, 0.4, 0.6 and 0.7 are fractal and are obtained as limits of
sequences with rational r.
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Figure 17. Temperature deviation 6 from DNS at Ry = 107 (a,c,e, g,1,k,m,0,q) and 6, from the inviscid theory
(b,d.f,h,j,l,n,p,r), all at phase 7/2, at the indicated squared forcing frequencies w? (with the corresponding r
values indicated). The inviscid responses at 6> = 0.3, 0.4, 0.6 and 0.7 are fractal and are obtained as limits of
sequences with rational r.
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Figure 18. (g—v) Snapshots of 5 and 6 from the DNS limit cycle at Ry = 107 and w? = 0.6 over one forcing
period (see supplementary movies 1 and 2), while (a—f,w-z,aa,ab) show inviscid standing wave responses at

maximal amplitude at r and o/ values as indicated.

Over long periods of time, even small detunings in the forcing frequency can lead to
sizeable phase differences in the responses and peaks in an inviscid response at one forcing
frequency that may correspond to a minimal response at a nearby forcing frequency.
In the viscous DNS responses, viscous detuning at small forcing amplitudes may lead
to responses that are not perfect standing waves. Figure 18 illustrates such behaviour at
w? = 0.6 and Ry = 10”. At phases 0 and 7 (corresponding to fractions 0 and 0.50 of a
forcing period for n) or /2 and 37w/2 (i.e. fractions 0.25 and 0.75 of a forcing period
for ) the DNS response, already shown in figures 16 and 17, respectively, matches that
expected from the inviscid prediction at that forcing frequency. However, at other phases,
structures associated with inviscid responses at nearby 0,2 corresponding to r = n/m with
relatively small m and n appear to dominate. In particular, the structure associated with the
resonant response at r = 9/11 becomes clearly visible at phases where a standing wave
response would be expected to vanish. Which inviscid response is identified in the DNS at
a particular phase depends on the relative energies of the various responses at nearby (i.e.
viscously detuned) forcing frequencies in relation to viscous effects as measured by Ry.

5.3. Horizontal profile comparisons

This subsection compares the horizontal profiles at z = 0 of the vorticity 1 and temperature
deviation 6 from the DNS at Ry = 107 with the linear inviscid theory. The comparison
is performed at the maximal phase for the respective fields. In order to do this, the
corresponding inviscid 7, and 6, need to be evaluated from the waveform function f;.
How these are evaluated depends on whether the response is forced or resonant.

For the forced responses, (4.15) results in

—1 /4 2
1| _ 4 21|07 (ff(x) — o))
o |:0r:| =(1-o0) |: Filo) — x , 5.4)
with 7, affinely related to the derivative of 6,. For the resonant responses, (4.22) leads to
—1 g
Nr o, f(x)
2(7r.or 5.5
HIEE It o)
with n, now directly proportional to the derivative of 6,.
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The profiles from the DNS and linear inviscid theory are shown in figure 19. The
resonant responses are in figures 19(a,b) and 19(i,j) and the forced responses in figures
19(c,d) through 19(g,h). For w?* = 0*,2 = 0.5 with » = 1/1, the response is resonant and
fr(x) = 4x(1 — |x]) for |x|] < 0.5 from (4.20). This waveform function f, is piecewise
quadratic. Likewise, for w? = 0,2 = 0.9 with r = 1/3, the response is resonant and (4.21)
yields the piecewise quadratic f,(x) = 4(3x)(1 — 3|x|) for |x| < 1/6, and is extended by
symmetry and periodicity for |x| > 1/6. For the forced response at w?> = arz = 0.8 with
rational r = 1/2, f(x) = |x + 0.25] — |x — 0.25] for |x| < 0.5. This piecewise linear f; is
obtained either by evaluating the spectral series (4.31) for fi 2 in closed form, or by solving
the system (4.14) and collecting the linear pieces.

For the forced responses at w? = 0,2 = 0.6 and 0.7, for which r is irrational, the
evaluation of f is no longer straightforward. The inviscid profiles that are illustrated in
figures 19(c,d) and 19(e,f) were obtained by truncating the series representation of f;,
equation (4.31), as indicated in the figure. The number of terms retained is determined such
that the resulting fields capture the oscillatory behaviour of the DNS responses without
introducing high spatial frequency content due to large coefficients sec[(2k 4 1) /2]nr for
arbitrarily large k when r is irrational. While the truncation captures the oscillations in the
DNS, it overestimates their amplitude. This is partly due to the inviscid theory not having
viscous damping.

In order to improve the comparison, filtering techniques, such as the use of mollifiers
(Tadmor 2007), may be applied to the series representation of f.. The use of a mollifier
softens the effects of the truncation and provides a much better quantitative account of the
viscous results in the DNS. This is illustrated in figure 20, where the mollifier exp(—[(2k +
1)7(/40]2) is used for w? = arz = 0.6 and the mollifier exp(—[(2k + 1)31/70]4) is used for

w? = 0 = 0.7. The factors 40 and 70 are fitting parameters, on the order of R}VM ~ 56.

These factors are consistent with the R;l/ ? factor appearing in the viscous dissipation

correction (5.2) at the global enstrophy level. The power 2 in the first mollifier corresponds
to the Gaussian filtering associated with Laplacian dissipation. The power 4 in the second
mollifier corresponds to a biharmonic filtering, known for its scale selectivity. It is used
extensively in ocean models (Griffies 2004), and its tendency to overshoot large changes
in the data (Delhez & Deleersnijder 2007) is a feature exploited here to better capture the
DNS results.

6. Summary, discussion and perspectives
6.1. Summary

A static vertically stratified fluid, with temperature T = z, in a rectangular container is
viscously stable. In order to have a sustained non-trivial response flow, the system needs
to be continuously forced. The nature of the response flow depends on the nature of the
forcing. Here, we consider the effects of subjecting the container to small horizontal
oscillations that are harmonic in time, leading to a horizontally modulated effective
gravity. The static stratified state is not an equilibrium of the forced system, and the
response flow is non-trivial for all non-zero forcing frequencies w and amplitudes «. The
flows obtained via DNS of the Navier—Stokes—Boussinesq equations are synchronous with
the forcing and retain the spatio-temporal symmetries of the forced system. As viscous
effects are reduced (by increasing Ry, the buoyancy frequency relative to the viscous time
scale), these flows tend to be standing waves with spatial structure that is increasingly
less regular, with nearly piecewise constant or piecewise linear vorticity distributions,
depending on the forcing frequency.
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Figure 19. Horizontal profiles of the (scaled) vorticity n and temperature deviation 6 at z =0 and w? as
indicated. The black profiles correspond to the inviscid prediction based on the expression (4.22) (for a,b,i,j) or
(4.15) (for c—h). The waveform function f, used in these expressions is obtained either explicitly for the cases
@? = 0.5, 0.8 and 0.9 associated with rational values of r, or via the series (4.31) truncated to the indicated
number of terms for the cases w? = 0.6 and 0.7 associated with irrational values of . An appropriate factor
is used to scale the resonant cases (eigenmodes; a,b,i,j) in order to facilitate the comparison with the DNS
response obtained at Ry = 107 from figure 5 (here shown in cyan).
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Figure 20. Horizontal profiles of the (scaled) vorticity 1 and temperature deviation 6 at z = 0 similar to figures
19(c,d) and 19(e, f), but using a mollifier rather than hard truncation of the spectral series (4.31) of the waveform
function f; to account for viscous effects.

The high Ry flows are well described in the inviscid limit by a perturbation analysis
of the unforced equilibrium using the forcing amplitude as the small perturbation
parameter. The forcing term in the full nonlinear problem, «7 sin wt, reduces to «z sin wt
in the first-order perturbed system, which is linear and non-homogeneous with Dirichlet
boundary conditions. This non-homogenous linear boundary value problem is reduced to
a Poincaré equation for the temperature deviation, which is independent of the forcing.

The Poincaré equation is solved by a general standing wave ansatz for the temperature
deviation, motivated by the DNS results. Substituting this into the first-order perturbation
system leads to corresponding velocity components and pressure. Enforcing symmetries
and boundary conditions on these then leads to a system of functional equations for
the waveform function f, one of which depends on the forcing. The solutions depend
on whether the forcing resonates or not with the intrinsic modes of the static vertically
stratified fluid in the container, as categorized by a Fredholm alternative for f. Forced
responses are obtained at forcing frequency w such that w? = 1/(1 + r2), with r being
irrational, or r = n/m being rational with integers m and n of opposite parities. The linear
inviscid system has then a unique response flow (alternative A1) which scales with the
forcing amplitude «. For rational » = n/m with m and n of opposite parities, a linear
spline f can be determined by solving a non-homogeneous linear system. The resulting
response has piecewise constant vorticity which is discontinuous across characteristic lines
and forms a regular harlequin pattern. For irrational r, the waveform function f is better
expressed in the form of a spectral Dirichlet series. At least for quadratic irrationals r,
the sequence of rational cumulants of the continued fraction representation of r leads to
self-similar properties of f and the harlequin pattern of the vorticity becomes fractal.

Resonant responses are obtained at forcing frequencies w? = 1/(1 + r?) for r = n/m
with integers m and n both odd (alternative A2). These responses correspond to solutions
of the unforced, homogeneous inviscid linear perturbation equations and are intrinsic
eigenmodes of the unforced system. The spatial structure of the specific modes excited by
the particular forcing is obtained by considering the limit of forced responses as the forcing

915 A85-33


https://doi.org/10.1017/jfm.2021.73

https://doi.org/10.1017/jfm.2021.73 Published online by Cambridge University Press

H. Grayer 11, J. Yalim, B.D. Welfert and J.M. Lopez

frequency approaches a resonant frequency. The response flow becomes unbounded, with
piecewise quadratic velocity and temperature deviation, and, thus, a piecewise linear
vorticity field, and can be represented as a superposition of an infinite set of odd spatial
harmonics of smooth intrinsic modes of the unforced system.

Models of viscous dissipation both at the global enstrophy level and at the local level in
a horizontal cut via mollifiers were introduced in the inviscid model to account for viscous
effects at finite Ry. The use of filtering strategies in post-processing is in general necessary
when differentiating low regularity solutions.

6.2. Discussion

The linear inviscid theory provides an increasingly more accurate description of the DNS
responses as Ry is increased, highlighting the tendency of these DNS response flows
to become less regular, and even fractal-like for certain forcing frequencies, as viscous
regularization is reduced. These non-smooth flow features originate in the existence of
non-smooth solutions of the Poincaré equation, a possibility already raised by Aldridge
(1975). Low regularity solutions were obtained in Maas & Lam (1995) by solving
the Poincaré equation in a geometry with at least one wall oblique to the direction
of stratification or the direction perpendicular to the stratification, with homogeneous
(Dirichlet) boundary conditions specified at the boundaries. In the present study the
square cavity considered has all walls either parallel or orthogonal to gravity and the low
regularity of the solutions is a consequence of the oscillatory horizontal forcing being
orthogonal to the direction of gravity.

Solutions with low regularity that have been observed in stratified as well as rotating
flows are more typically beams with a concentrated delta-like distribution of vorticity
along rays (in two dimensions) or vortex sheets (in three dimensions). These beams usually
originate from localized forcings and are aligned with the characteristics, typically forming
a St Andrew’s cross pattern (Gortler 1943; Mowbray & Rarity 1967; Voisin 2003). The
piecewise constant vorticity solutions obtained here constitute a more regular class of
beams, with energy distributed over the container rather than focused in rays or sheets,
and can be overshadowed by these stronger beams when the latter are present, as happens,
for example, in numerical simulations of parametrically forced rotating flows (Wu et al.
2020).

The present study has focused on the very small forcing amplitude regime. The
question of what happens as this amplitude is increased remains open, and of current
interest (e.g. Savaro et al. 2020). The transition to internal wave turbulence is expected
to occur at smaller forcing amplitudes as Ry is increased as a result of higher-order
resonances becoming less viscously damped (Aldridge & Toomre 1969). We are
currently investigating how the response flows lose stability as the forcing amplitude is
increased.

When r = n/m, with integers m and n of opposite parities, the linear inviscid system
(4.1) admits, under alternative A1, a unique synchronous forced response that scales with
the forcing amplitude. However, (4.1) also admits solutions which are not standing waves
for such values of r, for example, a superharmonic component evolving at twice the forcing
frequency, 2w, if 40> < 1. The spatio-temporal symmetries then allow for superharmonic
resonant responses under alternative A2. Such a resonance is triggered by second-order
nonlinear contributions, but it is moderated by viscous effects. For large values of Ry
(larger than those considered in the present study for the very low forcing amplitude o
used), it is expected that viscous damping is sufficiently reduced so that the superharmonic
resonant response will dominate.
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6.3. Extensions and further remarks

In the present study we have considered the square cavity. However, the results are
straightforwardly extended to rectangular cavities of width-to-depth aspect ratio I". The
dispersion relation (4.5) then becomes arz =I? / (I'? + 12), with responses according to
Fredholm alternatives A1 and A2 depending on r in a similar fashion as when I" = 1.
If the container is not rectangular, for example, due to walls at oblique angles to gravity,
or is tilted, the responses may become non-trivial as a result of the peculiar reflections
of internal waves, which may lead to internal wave attractors or focusing into edges or
corners. While some aspects of this has been previously studied (e.g. Maas & Lam 1995;
Wotherspoon 1995), there is still much to learn (e.g. Bajars et al. 2013; Pillet et al. 2018;
Pillet, Maas & Dauxois 2019), and approaches from the study of how inertial waves reflect
in the obliquely rotating cube (Wu et al. 2020) can be adapted for the internal wave
problem.

In order to determine whether the low regularity patterns in the 2-D solutions persist
in a 3-D container, two cases, corresponding to w?> = 0.2 and w? = 0.5, were simulated
at Ry = 10° and o« = 1.75 x 107% in a box [—0.5, 0.5] x [—0.2, 0.2] x [—0.5, 0.5] with
no-slip, insulated walls at y = £0.2. The spanwise aspect ratio 0.4 is the same as that
used in the experiments of Benielli & Sommeria (1998) and the simulations of Yalim
et al. (2020) for the vertically forced system. The w” = 0.2 case is a prototypical example
of a forced response in the 2-D setting (Fredholm alternative A1), and the > = 0.5 case
corresponds to a resonant response associated with the main peak in the Bode diagram
(figure 2) in the 2-D setting (Fredholm alternative A2). Figure 21(a—d) shows the 2-D DNS
solutions from figures 3 and 4 for comparison with the figure 21(e—#) showing the vorticity
and temperature deviation at the spanwise midplane y = 0 of the 3-D DNS solutions. For
w? = 0.2, the solutions are qualitatively the same and quantitatively the 3-D vorticity level
is approximately 77 % that of the 2-D vorticity, while the 3-D temperature deviation is
approximately 2 % larger. For w? = 0.5, the solutions are also qualitatively the same, but
the 3-D vorticity and temperature deviation levels are both approximately 46 % those of the
corresponding 2-D solution. From the 2-D study, it appears that resonant responses tend to
be more affected by viscous effects than the forced responses are. The viscous dissipation
in the boundary layers along the spanwise walls of the 3-D container are also responsible
for dampening the response. This warrants a more detailed separate investigation. As noted
by Benielli & Sommeria (1998), the effects of friction in parametrically forced stratified
confined flows are not well understood, and, hence, neither are those associated with
variations of the Prandtl number.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jtm.2021.73.
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Figure 21. Panels (a—d) show the 2-D 7 and 6 at Ry = 10° and w? as indicated (repeated from figures 3 and 4
for ease of comparison) and panels (e—g) show the 3-D 1 and 6 in the spanwise midplane using the same colour
levels as in the 2-D cases (a—d). Panels (i—/) show the corresponding isosurfaces of the 3-D solutions (using a
different colour map), with the boundary layer regions clipped.

Appendix A. The relation between f1,, and f; and the corresponding flow responses
If f, is odd and obeys (4.10) and (4.12), then the function fi /, defined by

1+r

1
Jiyr@)=¢— ;fr(rf), 12l < (A1)

is also odd and obeys (4.10) and (4.12). To see this, assume that f; : [—(1 +r)/2, (1 +
r)/2] — R is odd and obeys the conditions

JrE+0.5) +£(¢ —-05) =2y8, & <r/2, (A2)

frxe+r/2) +fr(x—r/2) =2(1 —y)x, x| =0.5, (A3)

where y € R. We show that the function f /., defined by (A1), obeys similar properties in
appropriate ranges of its argument. For |£| < 1/(2r), we obtain

Si/r(E +0.5) + f1/r(§ —0.5) =286 — [fr(x +71/2) + frx —r/D)]/r
=28 = 2(1 —y)x/r =2y, (A4)
here x = r& with |x| < 0.5. On the other hand,
Jir(x+0.5) + fi/-(x = 0.5) = 2x — [f(§ + 0.5) + f-(§ — 0.5)]/r
=2x—2y&/r=2(1—-y)x (AS)

for & = rx with |€] < r/2 and |x| < 0.5. For y =0, (A2) and (A3) are then equivalent to
(4.10) and (4.12), respectively.
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The relation (Al) is involutory, fi,(1/» = fr on the interval [—(1 +r)/2, (1 +1r)/2],
and this provides a direct connection between the corresponding velocities of the forced
responses at r (with frequency o,) and at 1/r (with frequency oy, = /[1/2 — a,2|),
namely

[ul/r(z X, t):| _ reos(royt) |:w,(x, z, t)i| ‘ (A6)

wi/r(z, X, 1) cos(o,t) | ur(x,z,1)

The relations between (p1r, 01/r) and (p,, 0,) are not as straightforward. In particular,
61/, cannot be simply related to 6,, and py, is only related to p, up to a quadratic pressure
term proportional to «. Nevertheless, the identity (A1) shows that the response (4.15)
associated with 1/7 > 1 can be reconstructed from that obtained for < 1. In particular,
(A6) shows that the velocity oscillation amplitude associated with 1/r is r times that of the
velocity oscillation amplitude associated with r. For O < r < 1, the vorticity response at
forcing frequency w® = alz/r < 1/2 oscillates at lower amplitude and angular frequency,

nyr(z, x, 1) ~ —rn,(x, z, 1) and ro,, than the vorticity response 7,(x, z, f) at w? = arz >

1/2. This accounts for the tendency in the (£); vs. @’ response curves shown in
figure 2(a) to slightly increase (on a logarithmic scale) in proportion to 1/r =

V(1 — w?)/w?, rather than 1/r2. This is more markedly visible at small .

The relation (A1) can be used to determine f,(¢) = ¢ — rfi /(¢ /r) from fi, for r > 1,
i.e. w* < 0.5. The knots ¢ of f; are related to the knots x = ¢ /r of fi/r by { = rx, and the
corresponding value of f, becomes f,(¢) = rx — rfy-(x). The relations

oy =ror and cy; = e, (A7a,b)
then show that

L [ul ez x, t)} - [ Lfiyr(@+x/r) = fiyr(z = x/r)]/r}

cos royt | W17z %, 1) 22— fiyr(@ + x/r) = fiyr@ = x/)
_ 2 2 —frx+r1r) +fr(x—r2)
= I CyOyp [ fr(x + rZ) —fr(x - rZ) ]
_ r wr(x, z, 1)
"~ cosot [ur(x, z, t)} : (A3)

A direct consequence of (A8) is the relation between the corresponding vorticities,

7 COS 1oyt

nl/r(z7~xv t) = _—nr(-xvyv t) (A9)
COS 0,1

Appendix B. The linear system (4.14) and its solution

We illustrate the construction and solution of the linear system (4.14) obtained by enforcing
the condition (4.12) arising from the Fredholm alternative A1 in the rational case r = n/m
withm = 11 and n = 4.
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Let x; = j/(2m) = j/22 and f; = f(x;) for j € Z. Evaluating (4.12) atx;, j =1, ..., 11,

yields the system

v
f
f-1
o
il
)
3
fa
/s
Je
J1
/8
Jfo
Jio
S
2
f13
fia

L fi5

| X11_]

X1
x2
X3
X4
X5
X6 | . B1)
X7
X8
X9
X10

The parity conditions f_; = —f;, j=0,1,2,3 (in particular, fo = 0) and symmetries
Su+ =fu—j,j=1,2,3,4, reduce (B1) to the m x m = 11 x 11 system (4.14),

Af (x) = 1

S
X2
X3
X4
X5
X6
x7
X8
X9
X10

LX11

= 2x, (B2)

obtained by mirroring columns of the matrix in (B1) around the greyed-out columns. The
system (B2) can be split into two independent subsystems for odd- and even-indexed values
(a consequence of m and n having opposite parities),

—11 fi X1
-1 1
-1 1 f X3 1 ;i ;Ci
I I Sloa| %, 1 1 f | =2] x
: " . to |k g
! ) ! fo 9 11 fio X10
fu x11 B3ah)
a,
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Figure 22. The 2-periodic linear spline f4/1;. The dots indicate the interpolating points. All data can be
obtained from (x;, f;),j = 1,3,5,7,9 and 11, via the symmetries approximately x = 0 and x = 0.5. The range
of x-values associated with the red part is the range [—(1 4+ 4/11)/2, (1 +4/11)/2] ~ [—0.68, 0.68] where f
must be defined in order to evaluate the response everywhere in the square cavity.

The two subsystems can in turn be permuted into lower triangular bidiagonal systems,

2 Vi x11
AR R R P AN
I fol —o| s -1 bl=2lx|. Baap
tl A AN 7% o
1 -1 f X1 N N
L 1] Lfu x7 4 8
with (re-ordered) solutions
fl 5 f2 8 11 fl
f3 1 11 f4 1 12 1 11 f3
Gl_1|B rletliz]| =l 11 51 Bsab
f1 2 (1 g 2|3 2 11 11 ’
f9 5 flO 4 11 f9
S 3 fin

The connection between odd- and even-indexed values f; exposed by (B5a,b) shows that
the 2-periodic linear spline f interpolating (x;, f;) is fully determined, in the case m = 11,
n = 4, by the odd-indexed values f;, j = 1, 3, ..., 11, alone; see figure 22. This property
generalizes to other pairs (m, n) with m and n of opposite parities, with the linear spline
completely determined by the set of values f; such that j has the same parity as m.

The inconsistency of the system (4.14) when r = m/n with both m and n odd is argued
in § 4.2 for the case m = n = 1. For completeness, it is also illustrated here for m = 5 and
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n = 3. The system

v
f-1
fo_
1 1 ? X1
1 1 ? X2
1 1 ? —2 | (B6)
1 1 f4 x4
1 1] |22 Xs
fe
Vil
18
| fo
for f; = f(x;) at x; = j/10 is similar to (B1), and now folds into the system
-1 1 T7AT X1
—1 1 2 x
Af(x) = 1 fl=2]x], (B7)
11 Ja X4
11 /5 X5

using the parity conditions f_; = —f;, j=0,1,2, and symmetries fs; =f5—;, j=
1,2,3,4. The system (B7) is inconsistent, in view of its last two equations. In this case
alternative A1 fails and alternative A2 holds, leading to a resonant response.

Appendix C. Proof of (4.20)

Forr=1—1/m withm > 1 (i.e. n = m — 1), the system (4.14) becomes

B -1 0 197 f1 7 X1
AR =2 , (ChH
-1 0 1 Jm—2 Xm—2
0 1 fm—l Xm—1
L 2 d L fm _ L Xm

with x; =j/2m), fi=f(xj), j=1,...,m and f =fi_1/m; see Appendix B for the
construction of this system. This system is easily solved via backward substitution, i.e.
fi=J/2=1j/210j/21/m, (C2)

where |-| and [-] denote the floor and ceiling functions (functions which take a real
argument and return the greatest/least integer less/greater than or equal to the argument,
respectively). In particular, the maximal value over all j is obtained for j = m at x;,, = 0.5,

j=1,...,m,

0 if m even,

1/(4m) if m odd. )

Jm=m/2 —|m/2|[m/2]/m = m[4 + {

For j = j(m) such that x; — x € [0,0.5] as m — oo, | j/2]/m — x, [j/2]/m — x and
i/ mf4) = dx; — 4(Lj/20 /m)(Tj/21 /m) — dx — 4% = 4x(1 — x), (C4)

so that fj/f, — 4x(1 — x) as well. Using f(—x) = —f(x) and (0.5 +x) = f(0.5 — x) for
|x] < 0.5 — 1/(2m) shows that, in the limit m — oo, f satisfies (4.20).
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The right-hand side function of (4.20) is the quadratic Euler spline S>(x — 0.5) (Olver
et al. 2010, equation 24.17.3). The first m — 1 equations in the system (C1) can then be
interpreted as a central-finite-difference discretization of the boundary value problem

f)=8x)=4-8 0<x<05, Ff(0)=0, (C5)

for the scaled function f = (4/m)f. The last equation corresponds to an odd parity
condition at 0.

Appendix D. Proof that (4.21) is odd and satisfies (4.10) and (4.13) when m and n are
odd and fi is 1-antiperiodic

The odd parity of f,/, defined by (4.21) follows from that of f;. Next, note that the
1-antiperiodicity of f; implies that it satisfies (4.13) for all x, not just |x| < 0.5. Then,
for m = 2m’ + 1 an odd integer,

Fuym(0.5 4 %) = fi(m/2 + mx) = (—=1)" £1(0.5 + mx)
= (=1)"f1(0.5 — mx) = f1(m/2 — mx) = fm(0.5 — x), (D1)

for all real x. Similarly, for n = 2n’ + 1 an odd integer,

Faym@/@m) 4+ x) = fi(n/2 + mx) = (—=1)"£1(0.5 + mx) = (—=1)" (0.5 — mx)
= f1(1)2 — mx) = fujm(n/(2m) — ). (D2)

Assuming that f; is a 1-antiperiodic (i.e. extended outside the interval [—1, 1]) simplifies
the above proof and removes a technicality associated with the range [—(m + n)/2, (m +
n)/2] of mx values which (4.21) requires in order to be able to evaluate the associated
mode everywhere in the cavity.

Appendix E. Determination of the coefficients a; in (4.27)

The existence of the representation (4.27) follows from the full characterization of the
linear spline f from its values f;—1 at {j = (2j —1)/(2m) = xpj_1, as illustrated in
Appendix B. From the expression S1(¢) =1—2|¢| for |¢| <1, for k=1,...,m, we

obtain
m

—fork—3 + 2f2%k—1 — fors1 = Zaj[—Sl(é“k—l — &) + 28518k — &) — S1(Ck+1 — )]

j=1

=2 ajlla1 — gl = 21 — gl + 18k — gl

j=1
4
= 2ar[|&k—1 — Skl + [Sk+1 — &Il = G (ED)
For k=1 and m, we use the symmetries f_; = —f; and fo,+1 = —fom—1 to get the
relations 3f] — f3 = 4a; /m and —f2;,—3 + 3fom—1 = 4a,/m. Thus,
3 —1 A ai
-1 2 —1 bE) as
Col== ] (E2)
-12 -1 Joam-3 am—1
-1 3 f2m71 am
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Figure 23. Signs of coefficients a; for m = 11 and n and j as indicated; blue is negative and red is positive.

n
2
+ 90000000000
6
8

The symmetry fo,— =fr for k=1,3,...,2m—1 implies that a,_; =a; for j=

1,...,m— 1. It also makes it possible to halve the size of (E2) by only considering the
first m" = [m/2] coefficients, i.e.
3 —1 h ai
-1 2 -1 i a
S : =— : . (E3)
-12 -1 Jom'—3 Am/'—1
-22 Jom'—1 am'

The matrices in (E2) and (E3) play a fundamental role in the theory of discrete sine
transforms, introduced as alternatives to the discrete Fourier transform for data with
specific symmetries (Britanak et al. (2007), page 36). For the example with m = 11 and
n = 4 used in Appendix B, we obtain m’ = 6 and

ar’] 3 -1 5 1
ap -1 2 -1 11 1
az | 11 -1 2 -1 I 113 . 1 1
as | ~ 4 -1 2 -1 »n |1~ 2 1]
as -1 2 -1 5 —1
ag -2 2 3 —1
ay’] as 1

as as 1 1

a | =|a3| == 1]. (Eda,b)
aio ar 2 1

ai | ai 1

The fact that a; = 0.5 can be verified to hold for any m and n with opposite parities.
The + sign pattern is, in view of (E1), directly connected to the convexity of f, but its
dependence on j and rn for a fixed m is not immediately obvious. Figure 23 illustrates the
patterns when m = 11. For the case n = m — 1 = 10 considered in Appendix C, a; = +0.5
for all j. This remains true for other values of m. In particular,

2 mooo ! g
~fi1m(©) = Zsl@—g) i ], S16 e f{ | Siwdr=2(1-0)

(E5)

for 0 < ¢ < 1 shows that fj 1/, (¢) ~ (m/4)4¢(1 — ¢) grows with m as m/4 but its shape
converges to S>(¢ — 0.5) from figure 10, providing an alternate proof of (4.20).
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(b)

Figure 24. (a) Signed complex numbers 2a; expli(2j — 1)7/(2m)] for j =1, ..., m with m = 11. The blue
and red nodes correspond to 2a; = —1 and 2a; = 1, respectively, for the n = 4 case from figure 23. The nodes
are labelled by the value of j in the sum (F2). (b) The blue terms — exp[i(2j — 1)7t/(2m)] (j = 5, 6, 7) from
(a) are replaced by a red conjugate exp[—i(2j — 1)7t/(2m)] and the label in the nodes now represents the
value of the counter ¢ in the sum (F3). Nodes with successive labels are obtained via multiplication by & =
expli(m — n)7/m], corresponding to a counter-clockwise turn by an angle equal to m — n = 7 nodes, starting
with £1/2 (label 1).

Appendix F. Evaluation of the coefficients s; from (4.29)

The symmetry a;,1-; = a; for j =1, ..., m implies that Z]m=1 ajcos((2k + 1)7gj) = 0.
Thus,
m
ist = Y 2a;exp(i(2k + 1)7)). (F1)
j=1
Replacing each exponential term of the sum associated with a factor 2a; = —1 by e iy

enables the interpretation of isi/m as the arithmetic mean of complex numbers on the unit
circle and leads to the expression

Sk = —i Z exp(isign(a)) 2k + 1)7g)), (F2)
=1

where 0 < ¢ = (2j — 1)w/(2m) < m. Upon relabelling, the sum (F2) can be reformulated
as a geometric sum of powers of & = expli(2k + 1)(m — n)m/m]. The process is illustrated
in figure 24 for m = 11, n = 4 and k = 0. We obtain, with r = n/m,

L . 1-&m 2i 2k+1) (m —n)
_ t—1/2 _ie1/2
Sk = 1;_15 = —iE F TR T b1
— (_l)k sec M;ﬁn‘ (F3)

Appendix G. The linear inviscid forced response as a superposition of C* elementary
responses, (4.32), and its modal limit at resonance

Let o = 2k 4+ 1)7 and A, = pg /2. The expansion (4.31) yields
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(— l)k sin pg (x 4 rz) — sin pg(x — rz)
cos A

Ko+ —flx—r)=4)

k=0 R

_ SZ (— 1) COS PrX sin pkrz’

Gl
COS A G

k>0
—frx+r) —frlx —12)
=fr(x+7r/2) +fr(x —r/2) = fr(x +r2) — fr(x — rz2)

_4 Z (— l)k sin pg(x 4 r/2) + sin pg(x — r/2) — sin pg(x + rz) — sin pg(x — rz)

=0 Cos Ay
—1)k
=3y D" Gin g (1 _ o WZ) (G2)
=0 Pk cos A
and
Z
2z — Fr(x+r) + Fr(x—r7) = r/ [2x — fix+7r¢) — fr(x —rg)]de
—1 k sin pgrz
_SZ sinppx [ rz — ——— ).  (G3)
P k Pk COS A

The response (4.15) of the linear inviscid forced system (4.1) can thus be written as a
superposition

(=D*
(. w.p.0) =4 (g, Wi i O%) (G4)
k>0
of fields
¥ COS PrX Sin prz
2¢,0
U | _ Zorcr cos i cos ot
Wi Ok , < cos pkrz)
sinppx | 1 —
CosS A
COS PkX Sin pgrz
.« cosdg  prr
T o, 1 sin pex | cos purz cos or,
2 ok cos A s
) [ sin pgrz :| G5
Apsin pgx | rz — ——
Pk :—& Pk COS Ak sin ot
Ok Ok ) [ cos pkrz} r
sinprx |1 —
Cos A
1 sinpgrz

. Z
sin pgx cosdy  pkr

- Ok 1472 |:1 COS PiTZ

i| sin o,t.

r2 cos Ax

The fields (ug, wi, px, O%) can be verified to satisfy the forced linear system (4.33) as well
as the boundary conditions uy = 9x0; = 0 at x = £0.5, and wy = 6y = 0 at z = £0.5.
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The resulting vorticity field

2a cos,okx|:1—(1—|—r
r oy

5. COS PkTZ
Nk = OzUg — OxWg = )co—

S Ay

is also used to evaluate the vorticity of partial sums of the series (4.32) in figure 13. The
associated streamfunction

] CoS ot (G6)

o COS PX
Ve =—— [1

Or (Pk”)2

COS Prrz
COS A

] CoS ot (G

vanishes at all boundaries of the cavity. Its o, 2 dependence on k makes the series (4.32)
converge fast for the overall streamfunction i from (4.8).

The limit of (G5) as r — r* = n/m, with m and n both odd and m A n = 1 (prime with
each other), can be taken for values of k such that cos A} = 0, where A} = pxr*/2. These
are the sole contributors, at the limit, to the overall series (4.32). In this case, (2k + 1)r* is
an odd integer. Since m An = 1,2k + 1 = (2¢ + 1)m for £ € N. Consequently, ppr*/2 =
2ié(n—1)/24+ £+ (n—1)/2)m + 7/2 and

cos A = cos[ A} + (A — A)] = —sin Af sin(A — ) ~ —(=DFE=D2 %),

(G8)
Thus, pr = € + Dmm, ppr* = (2€ + Dnm, and as r — r*,
wl| ., o 1 r* cos prx sin pgrz COS Ont
Wk COS A pr*2ay | — Sin pix coS prr*z g
N r*cos(2¢ 4+ 1)mmxsin(2¢ 4+ 1)nmz
~ o [— $in(2¢ + 1)ymmxcos(2€ + Dynmz, | €08 o (G9a)
. re
pr| .. o sinpx — sin pgr*z Sin ot
Ok cos A pyr? K2 * '
(1 +r*)cos prr*z
I"*O'Z
—— " sin(2¢ + 1 in(2¢ + 1
~ i | @3 mm sin(2¢ + 1)mmxsin(2¢ + 1)nmz —— (G9b)

sin(2¢ 4+ 1)mmxcos(2¢ + 1)nmz
where
o 2(_1)@‘%(7!71)/2 a 2(_1)(n71)/2 1 1 (_1)@
Ve = % 2422 % 2 o T - (GlO)
r—r piT*eoL r—r T m nc) 20+ 1)
The forced responses Ry, ~ ylj, with components given by (G9) that are scaled versions
of those in (4.25) of Iy = I(2¢+1)m:(2¢+1)n, combine into the infinite sum (4.32),

4 (—=DF
R~ — I
! ngzkﬂ"""

o 8(_1)(n71)/2 ( 1 1) (_1)€m+(m71)/2 (_1)5
£>0

T+ ym:2e+1)n

T m 2 20+ Dhm (20 +1)?
1
= [ Z m1(22+1)m:(2€+1)m (G11)

£>0
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using the fact that £(m + 1) is an even integer, with

8 (=mtm/iz 1 o
o(F) — — (= 4+ = . G12
() = == (mz n2> — (G12)
Note that p1,«(r) = —(1/r) jt1/+(1/r), i.e. the resonant response is stronger for r ~ r* < 1

(w? > 0.5), which is consistent with the response diagram in figure 2(a).
The limiting process r — r* carried out directly on f,. from (4.31), using (G8), yields

(= 1tm+m=1)/2 sin(2¢ 4+ Dmne¢
Q0+ 1)2m2 (—D)FE=D220 + 1)y mm (r — r%)/2

N 4
fr(;‘) ~ _E

£>0

S2(m¢ —0.5),

(—1)m+m/2 (32) Z sin2¢ + Dmng (= D/2

4m3(r — %) = (2 + 1)3 B 4m3(r )

(G13)

where S>(- — 0.5) is the 1-antiperiodic quadratic spline shown in figure 10(b). For the case
m = 1, one immediately recovers (4.20). Note that m in (4.20) is related tor = 1 — 1/m,
while m here is related to the limiting value r* = n/m. Moreover, the scaling of (G13)
reduces, in the case n = 1, to the factor m/4, with m as in (G13), already obtained in
Appendix C.

Appendix H. Inviscid estimate of mean enstrophy

The inviscid enstrophy is determined by substituting the expression (G7) into the series
(G4). The orthogonality

0.5
/ cos pgxcos ppxdx =0, k #4, (HT)
-0.5

implies that {n;}¢>0 forms an orthogonal sequence with respect to the L, ([—0.5, 0.5]% x
[0, T]) inner product. This yields

2
0.5 0.5
16
/ / / 4y (- 1)"’7" dxdz Z / / / n? dxdz
-05| =0 o o} -0.5
16 0.5
= _oz2 Z / cos’ oyt dt/ cos’ Pix dx
rto; = o} 0.5
0.5 2
X / [1 -1+ 2)COS ,Okrz:| dxdz
~0.5 0S Ay
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4a Z= ) {1—4(1+ Z)M+(1+r2)21+Sin(pkr)/(pkr)}

o? P Ak 2 cos? A
o? - 1+72 N 5. tan Ay
=r2_0r2§ak {1+ 5 [(1+r)sec A —3=1r) IR (H2)

Note that, for fixed &, the term in the curly brackets is orYasr — 0(w=o0, — 1).
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