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Abstract. We describe an approach to automate the classification of Cepheid variable stars into
two subtypes according to their pulsation mode. Automating such classification is relevant to
obtain a precise determination of distances to nearby galaxies, which in addition helps reduce the
uncertainty in the current expansion of the universe. One main difficulty lies in the compatibility
of models trained using different galaxy datasets; a model trained using a training dataset may
be ineffectual on a testing set. A solution to such difficulty is to adapt predictive models across
domains; this is necessary when the training and testing sets do not follow the same distribution.
The gist of our methodology is to train a predictive model on a nearby galaxy (e.g., Large
Magellanic Cloud), followed by a model-adaptation step to make the model operable on other
nearby galaxies. We follow a parametric approach to density estimation by modeling the training
data (anchor galaxy) using a mixture of linear models. We then use maximum likelihood to
compute the right amount of variable displacement, until the testing data closely overlaps the
training data. At that point, the model can be directly used in the testing data (target galaxy).

Keywords. (stars: variables:) Cepheids, (galaxies:) Magellanic Clouds, methods: statistical,
infrared: stars, methods: data analysis.

1. Introduction
Traditional machine learning algorithms assume both training and testing data origi-

nate from the same distribution. This comes unwarranted in real-world applications. One
approach to handle the discrepancy between source (training) and target (test) domains
is called domain adaptation, where class-conditional distributions remain equal, though
class prior distributions differ Ben-David et al. (2006), Storkey (2009), Ben-David et al.
(2010). Our domain adaptation method learns a model on a source domain without using
any information from a target domain; we assume equal class conditional probabilities,
but class priors differ by a certain shift across one or more features as explained by Vilalta
et al. (2013). Different from previous work, we assume a bi-variate Linear Mixture Model
with Gaussian noise, and use Maximum Likelihood to find the shift between source and
target distributions. The idea is to align the two datasets so that a model learnt on the
source domain can be effectively used on the target domain.

We classify a particular type of variable stars named Cepheids into two pulsation
modes. We use two features: Apparent Mean Magnitude and Logarithm of Period, and
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Figure 1. Left. The distribution of Cepheids along the Large Magellanic Cloud LMC (top
sample), deviates significantly from M33 (bottom sample). Right. M33 is aligned with LMC by
shifting along Mean Magnitude.

two classes: Fundamental and First-Overtone. In our experiments, we take the Large
Magellanic Cloud (LMC) (Fig. 1a) as our source domain and M33 (Fig. 1b) as our target
domain. All data have been obtained from the Optical Gravitational Lensing Experiment
(OGLE) III in the infrared band.

2. Mathematical Formulation

We generate a mixture of linear regression models (as described in Faria & Soromenho
(2010)). The log likelihood equation for LMC data for the two features X (Log Period)
and Y (Apparent Mean Magnitude) can be written as follows:

LogL(θ|y1 , y2 , ...yn , x1 , x2 , ...xn ) =
n∑

i=1

log

⎛
⎝ 2∑

j=1

πjφj (yi |xi)

⎞
⎠ (2.1)

where y1 , y2 , ...yn are observations of Y , x1 , x2 , ...xn are observations of X, and each
component φj (yi |xi) corresponds to a Gaussian distribution N (xT

i βj ,σj ) with coefficient
πj . Parameter estimates are captured in θ. The equation can be expanded as follows:

LogL(θ|y1 , y2 , ...yn , x1 , x2 , ...xn ) =
n∑

i=1

log

⎛
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where xi = [xi1 xi2 ]
T and βj =[βj1 βj2 ]

T . Here xi1 and xi2 indicate the value of Log Period
and the bias variable for the ith observation respectively (xi2=1 for all observations). βj1
and βj2 are the corresponding regressor variables for the jth component. To align M33
data with LMC data, we assume a shift δ across Mean Magnitude only. The log likelihood
equation for M33 data can be written as follows:

LogL(θ, δ|y1 , y2 , ...yn , x1 , x2 , ...xn ) =
n∑

i=1

log
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To find the maximum value of δ we differentiate Eq. (2.3) with respect to δ and equate
to zero. After some algebraic manipulation we derive the following equation:
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where
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2

3. Experiment Results

Fitting a Mixture of Linear Models. We use Eq. (2.2) to fit a mixture of linear models
to the source data. The two components refer to the two classes: Fundamental and
First-Overtone. We use the EM algorithm (Faria & Soromenho 2010) to do parameter
estimation. The EM algorithm stops when the change in Q-value in the E-step falls below
10−10 . Initial values and final parameter estimates are shown in Table 1.

Aligning M33 Data with LMC Data. We use the parameter values in Table 1 to find
the shift δ between LMC and M33. Solving Eq. (2.6) yields a value of δ = −6.06. After
shifting M33 data by δ we obtain the results shown in Table 2. An asterisk denotes
a significant difference. Experimental results show how classification accuracy increases
significantly after the source and target datasets are aligned.

Table 1. Parameter Estimates
Parameter Initial Value Final Value

β1

[ −3.259

16.407

] [ −3.209

16.358

]

β2

[ −2.969

16.904

] [ −2.929

16.889

]

σ1 0.1 0.164
σ2 0.1 0.214
π1 0.404 0.384
π2 0.596 0.616

Table 2. Classification Accuracies
Learning Algorithm Without Shift With Shift
Neural Networks 92.70(1.19) 97.90(0.89)∗

Support Vector Machine 92.70(1.19) 96.27(0.86)∗

with Polynomial Kernel 1
Support Vector Machine 92.70(1.19) 96.10(0.80)∗

with Polynomial Kernel 2
Support Vector Machine 92.70(1.19) 96.53(0.88)∗

with Polynomial Kernel 3
J48 Decision Tree 92.90(1.24) 98.07(0.83)∗

Random Forest 92.90(1.24) 98.03(0.69)∗
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