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We propose a theoretical method to decompose the solution of a Stokes flow past a body
immersed in a confined fluid into two simpler problems, related separately to the two
geometrical elements of these systems: (i) the body immersed in the unbounded fluid
(represented by its Faxén operators); and (ii) the domain of the confinement (represented
by its Stokesian multipoles). Specifically, by using a reflection method, and assuming
linear and reciprocal boundary conditions (Procopio & Giona, Phys. Fluids, vol. 36,
issue 3, 2024, 032016), we provide the expression for the velocity field, the forces, torques
and higher-order moments acting on the body in terms of: (i) the volume moments of the
body in the unbounded ambient flow; (ii) the multipoles in the domain of the confinement;
(iii) the collection of all the volumetric moments on the body immersed in all the regular
parts of the multipoles considered as ambient flows. A detailed convergence analysis of
the reflection method is developed. In light of the practical applications, we estimate the
truncation error committed by considering only the lower-order moments (thus, truncating
the matrices) and the errors associated with the approximated expressions available in
the literature for force and torques. We apply the theoretical results to the archetypal
hydrodynamic system of a sphere with Navier-slip boundary conditions near a plane wall
with no-slip boundary conditions, to determine forces and torques on a translating and
rotating sphere as a function of the slip length and of the distance of the sphere from the
plane. The hydromechanics of a spheroid is also addressed.
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1. Introduction

The behaviour of particles immersed in a viscous fluid in the low-Reynolds-number regime
is inevitably affected by hydrodynamic interactions with other nearby bodies, such as
other particles, fluid interfaces and solid walls confining the fluid. These interactions,
that are the origin of fundamental phenomena, including the enhanced resistance on
bodies (Hill & Power 1956), the intrinsic convection of suspensions (Beenakker & Mazur
1985), the Segre–Silberberg effect (Segre & Silberberg 1961), to quote just few of them,
become significant whenever the characteristic particle length �b is comparable with the
characteristic separation distance �d from the nearest boundary. Therefore, the accurate
description of fluid–particle interactions is of paramount relevance in several areas of
microfluidics, such as separation devices (Huang et al. 2004; Striegel & Brewer 2012;
Cerbelli, Giona & Garofalo 2013), capillary transport (Goldsmith & Skalak 1975; Popel &
Johnson 2005; Undvall et al. 2022), dynamics of micro-swimmers (Lauga 2020) and active
particles (Michelin 2023), where, by definition, the micrometric (or even sub-micrometric)
characteristic dimension of the fluid domain may be of the same order of magnitude of the
particle size.

Microfluidics is typically characterised by low Reynolds numbers (apart from the
specific applications referred to as inertial microfluidics Di Carlo 2009; Zhang et al.
2016) so that, in most of the cases, the fluid can be considered in the Stokes regime and,
when the inertia of the fluid becomes significant (Re ∼ 1) but not too large, it can be
treated by perturbative methods with respect to the Stokes-flow solution (Cox & Brenner
1968; Ho & Leal 1974). Although hydrodynamic problems related to particles in confined
fluids can be approached by means of typical numerical methods for solving the Stokes
equation (such as the finite-element method (FEM) (De Corato et al. 2015; Venditti et al.
2022) and boundary-element method (BEM) (Pozrikidis 1992), a deeper mathematical
understanding of fluid–particle interactions can be beneficial in order to overcome, by
means of explicit analytical solutions, the limits and shortcomings of the numerical
approaches, to improve the current numerical methods (such as Stokesian dynamics Brady
& Bossis 1988) and develop new ones, and to explain and predict the non-intuitive flow
and transport phenomena that may occur at the microscale.

One of the main difficulties in the analytical approaches to multibody systems is the
intrinsic geometric complexity induced by the presence of bodies and surfaces of different
shapes where to impose the boundary conditions (BCs). This difficulty holds even when
dealing with the most regular bodies (such as spheres or ellipsoids) and the simplest
confinement geometries (for example, planar or cylindrical walls), since the union of many
bodies, in most of the cases, breaks down the original symmetries making impossible to
find a coordinate system which permit to express simultaneously all the BCs in a simple
mathematical way. This is the reason why the only exact solutions available in the literature
regard axisymmetric geometries of the hydrodynamic problem (where the symmetry is
defined with respect to a suitable orthogonal system of curvilinear coordinates). This
is the case of the resistance of a rigid sphere close to a plane considering no-slip BCs
(Jeffery 1915; Brenner 1961; Dean & O’Neill 1963; O’Neill 1964), Navier-slip BCs (Goren
1979) and phoretic slip BCs (Desai & Michelin 2021), the resistance between two spheres
moving relative to each other (O’Neill & Majumdar 1970) and of the resistance of a sphere
at the centre of a cylindrical channel, translating parallelly to the symmetry axis assuming
no-slip BCs (Haberman & Sayre 1958). Only in few cases an ambient flow has been also
considered, such as in (Haberman & Sayre 1958), for a sphere immersed in a Poiseuille
flow and in Pasol et al. (2005), where a sphere immersed in an axisymmetric polynomial
flow bounded by a plane wall has been analysed.
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On the theory of body motion in confined Stokesian fluids

Whereas, for the majority of the confined systems considered in the literature,
approximate analytical solutions have been obtained under the assumption of asymptotic
approximations, by using mainly a lubrication method for short-range interactions (�d �
�b) and a reflection method for long-range interactions (�d � �b). In some cases, such
as that of the resistance of two rigid moving spheres with no-slip BCs (Jeffrey & Onishi
1984), the solution has been approximated by matching the asymptotic solutions.

In the case of short-range interactions, many specific solutions are available in the
literature, such as the resistance on a sphere near a plane by considering both no-slip (Cox
& Brenner 1967b; Goldman, Cox & Brenner 1967) and Navier-slip (Hocking 1973) BCs,
and a general lubrication theory, regardless of the shape of the surfaces in close contact,
has been developed by Cox (1974) assuming no-slip BCs.

On the other hand, in the case of long-range interactions, the reflection method (in its
multifaceted variations (Happel & Brenner 1983)) is commonly employed to obtain the
leading-order terms for the series expansion in powers of �b/�d of the particle transport
parameters, such as resistance, mobility and diffusivity. The reflection method, developed
by Smoluchowski (1911) (see Happel & Brenner 1983, p. 236) in order to match the BCs
of Stokes flows on a system of n spheres, consists of expressing the total flow (i.e. the
solution of the Stokes equations with BCs assigned simultaneously on each sphere) as
a series of an infinite number of flows satisfying Stokes equations with BCs assigned
separately on each body considered in a unbounded domain. For example, a simple version
of this method, to obtain the exact flow in the case of two moving spheres, can be
summarised as follows: the first term of the series is the flow due to the motion of the first
sphere considered in the unbounded fluid, which generates, in turn, a flow on the domain
occupied by the second sphere; the second term of the series corrects the flow on the
surface of the second sphere generating a flow on the domain of the first sphere and so on.
A similar ping-pong correction at the boundaries of the two spheres proceeds iteratively.
Although the Stokes equations and the BCs of the global problem are formally satisfied,
this procedure is affected by two main limitations: (i) it is not easy to obtain analytical
expressions for the solutions of the infinite system of Stokes problems involved even for
the simplest geometries; (ii) the convergence of the series can be ensured only for some
specific problems, and it is still an open question in the general case.

For example, as regards the second limitation, convergence has been proved heuristically
for two equal spheres moving with the same velocity for all the separation distances
(Happel & Brenner 1983, p. 259), but in the case of three equally separated spheres it
has been shown that the reflection method does not converge if the distance between the
centres of the spheres is smaller than 2.16 times the radius of the spheres (Ichiki & Brady
2001). In fact, as shown by Höfer & Velázquez (2018), if particle velocities are imposed by
Dirichlet BCs, the method converges only for diluted systems enclosed in an finite volume;
whereas, as proved by Luke (1989) using a variational method, in the case of suspensions
with n particles enclosed in a finite volume, the convergence of the reflection method is
ensured regardless of the particles concentration, if particle velocities are not assigned,
i.e. if they move under the action of an external force as in the case of sedimentation
phenomena.

Therefore, given that the convergence is ensured only for �d � �b and that the exact
evaluation of the terms in the series is feasible only for the first ones, i.e. the first
corrections to the unbounded approximation, reflection methods are widely employed to
model very long range interactions between particles. The main fields of application are
in the analysis of suspensions, indirectly applied in Stokesian dynamics (Durlofsky, Brady
& Bossis 1987; Brady & Bossis 1988) under the form of inverting the particle–particle
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interaction mobility matrix (Ichiki & Brady 2001), and in the analysis of confined
systems, mainly considering the interaction between a single particle with the walls of
the confinement, such as a sphere or a spheroid near planar (Swan & Brady 2007, 2010;
Mitchell & Spagnolie 2015) or cylindrical (Goldsmith & Mason 1962; Sonshine, Cox &
Brenner 1966; Hasimoto 1976) walls.

However, the convergence of the method even for touching bodies, such as in the case of
two translating spheres or in the case of the Luke’s suspensions, and the relative small
breakdown gap (∼ 0.16 �b), computed by Ichiki & Brady (2001) for three translating
spheres, suggest that, if all the terms of the series were evaluated exactly, reflection
method should be a valid approach to provide exact solutions not only in the asymptotic
limit �d � �b, but also in a closer region �d ∼ �b, albeit external to the lubrication
range �d � �b. A general theory, furnishing the reflection solution regardless of the
geometry of the bodies involved, has been developed by Brenner (1962, 1964a) and Cox
& Brenner (1967a) for obtaining the resistance on an arbitrary body immersed in an
arbitrarily confined Stokesian fluid, that can be also regarded as confined by a second fixed
body. In Brenner (1962, 1964a), the first-order correction with respect to the unbounded
approximation of the hydrodynamic resistance (force and torque) on a body rigidly moving
(translating and rotating) is provided in terms of the resistance matrix of the body in
the unbounded fluid and the Stokes’s Green function of the domain of the confined fluid
without the body inclusion; whereas in Cox & Brenner (1967a) a formal expression for the
resistance in the large-distance limit is derived, considering also an arbitrary ambient flow,
in terms of unspecified tensors depending separately on the geometry of the body and on
the geometry of the confinement. The formal approach by Cox & Brenner (1967a) is not
easily amenable to a simple practical implementation as regards the higher-order terms
in the expansion, and for this reason it has remained as a beautiful formal development
disjoint from practical implementation in confined flows.

In this work we develop a novel approach, amenable to practical implementation, in
the theory of the hydrodynamic interactions between a body in a confined fluid and the
confinement walls, by providing exact reflection solutions for the fluid flow in the system
and for the grand-resistance matrix on the body (force, torque and higher moments). We
express the global solution in terms of well-defined tensors depending separately on the
geometry of the body and on the geometry of the confinement: moments on the body in
the unbounded fluid (or the Faxén operators of the body), and multipoles of the domain
of the confinement (hence, derivatives of the confined Green function). Unlike the tensors
appearing in the expressions for the resistance on the body provided by Cox & Brenner
(1967a), these tensors, when not yet available in the literature, can be directly evaluated by
classical analytical or numerical methods in all the practical cases of interest. Furthermore,
we consider BCs on the body more general than the no-slip case, requiring only that
these BCs satisfy the principle of BC reciprocity as defined in Procopio & Giona (2024).
For instance, Navier-slip and many other fluid–fluid boundary conditions of common
hydrodynamic practice fall in this class.

To this aim, we enforce the bitensorial formulation (Poisson, Pound & Vega 2011)
of the Stokes singularities developed by Procopio & Giona (2023) in dealing with the
entries of the two-point-dependent tensorial field (in hydrodynamics these fields depend
simultaneously on the position of fluid element and on the position of the body in the
confinement). Furthermore, we make use of the results derived in Procopio & Giona
(2024) in order to express the hydrodynamics of a body with arbitrary BCs (requiring
solely BC reciprocity) in ambient flows generated by the walls of the confinement, which
turn out to be highly non-trivial flows even in the simplest case of translation motion.
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On the theory of body motion in confined Stokesian fluids

The article is organised as follows. Section 2 states the problem and provides the
definition of the two simpler sub-problems, the solution of which permits to obtain the
analytic expression for the global confined hydrodynamics: (i) the Faxén operators of
the body and (ii) the multipoles in the domain of the confinement. In § 3, we derive
the exact expression for the terms entering in the reflection expansion, showing that
they can be expressed as the product of suitable tensorial quantities depending on the
volume moments on the body immersed in the ambient flows associated with the regular
parts of the bounded multipoles. In § 4 we introduce a generalised matrix notation for
tensorial systems more compact than the componentwise representation in terms of the
entries of each individual tensor, and we obtain a simple expression for the global velocity
field. Moreover, by using the properties of infinite matrices (Cooke 1950), we show in
Appendix A that the convergence of the method is ensured for �d � 2.65�b. This does not
mean that the series expansion could not converge under more general conditions, although
it is reasonable to hypothesise that there exist a constant Γ = O(1) > 0, depending on the
geometry of the problem, such that the reflection solution converges for �d > Γ �b. In
§ 5, we provide the exact reflection formulae for force, torque and higher-order moments
on the body. The estimate of the error resulting in truncating the exact solutions by
considering only lower-order multi-pole (or Faxén operators) is addressed in § 6. We also
analyse the truncation error made in classical literature works in the field, specifically
in Brenner (1962, 1964a) and in Swan & Brady (2007, 2010), and we extend these
approximate approaches to more general hydrodynamic problems than those for which
they were originally developed. In § 7 we compare and contrast the reflection solution
obtained with the present theory (using Faxén operators and bounded multi-pole available
in the literature), approximated to the order O(�b/�d)

5, with the exact solution of a sphere
translating and rotating near a planar wall, and we provide the expressions for forces and
torques considering the more general situation of Navier-slip BCs assumed at the surface
of the body. Finally, in § 8, we investigate the effect of the shape and of the orientation
on the hydrodynamic interactions between the body and the confinement. Specifically, by
using the approximated expressions obtained in § 6, we estimate the resistance matrix
truncated to the order O(�b/�d)

4 of a prolate spheroid near a plane wall by solely
employing the zeroth-order Faxén operator available in the literature (Hasimoto 1983;
Kim 1985) for no-slip BCs. This case study shows how it is possible to obtain accurate
hydromechanical effects using lower-order approximations for complex geometries of the
system. In fact, by comparing the results obtained with numerical FEM simulation, we
show that approximated solutions provide correctly the far-field hydrodynamic interaction
independently of the orientation and the shape of the body. We also address the effect of
the confinement on the lift force experienced by the spheroid.

2. Statement of the problem

Consider a rigid body immersed in a Newtonian fluid with viscosity μ at vanishing
Reynolds number. Let Vb ⊂ R

3 be the domain representing the space occupied by the
body and Vf the space occupied by the fluid domain. The surface bounding the body is Sb,
whereas the surface bounding the fluid is Sb ∪ Sw ∪ S∞, where Sw is the surface bounding
externally the fluid and considered in the proximity of the body, and S∞ the boundary
at infinity, i.e. any surface considered infinitely far from the body. See the schematic
representation of the system geometry in figure 1.

The body is immersed in an ambient flow (u(x),π(x)), which is defined as any flow,
regular at the surface of the body Sb, satisfying the Stokes equations (Kim & Karrila
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n

Vb

Vf

Sb S∞S∞

Sw

Sw

Figure 1. Schematic representation of geometry of the system.

2005). Considering no-slip BCs on Sw, the Stokes equations for the ambient flow read

−∇ · π(x) = μ�u(x)− ∇p(x) = 0,

∇ · u(x) = 0, x ∈ Vf ∪ Vb,

u(x) = 0, x ∈ Sw,

⎫⎪⎬
⎪⎭ (2.1)

where u(x) represents the velocity field, p(x) the pressure field and

π(x) = p(x)I − μ(∇u(x)+ ∇u(x)t) (2.2)

is the stress tensor. In (2.2) I represents the identity matrix and the superscript ‘t’ denotes
the transposition operation for a matrix.

Assuming linear homogeneous BCs at the surface of the body Sb, expressed by a generic
linear operator L[ ] acting on the velocity at the surface of the body (this implies that
L[v(x)] at the point x ∈ Sb may depend not only on the velocity v(x) but also on its
derivatives at that point), and no-slip BCs at the surface of the confinement Sw, the total
(or disturbed) flow (v(x), σ (x)) is

−∇ · σ (x) = μ�v(x)− ∇s(x) = 0,

∇ · v(x) = 0, x ∈ Vf ,

L[v(x)] = 0, x ∈ Sb,

v(x) = 0, x ∈ Sw,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.3)

with the obvious meaning for v(x), s(x), and σ (x), representing velocity, pressure and
stress tensor fields of the total flow, respectively. Henceforth, we require that the BCs
expressed by the linear operator L[ ], satisfy the following condition at the surface of
the body: for any couple of flows (v′(x), σ ′(x)) and (v′′(x), σ ′′(x)) solution of (2.3), the
following identity holds:∫

Sb

(v′(x) · σ ′′(x)− v(x) · σ ′(x)) · n(x) dS = 0, (2.4)

where n(x) is the unitary normal vector outwardly oriented with respect to the body
as shown in figure 1. This condition has been introduced and thoroughly discussed in
Procopio & Giona (2024) in connection to the concept of the Hinch–Kim dualism, and
it is referred to as the condition of BC reciprocity. BCs satisfying (2.4), are therefore
called reciprocal BCs. As it will become clear in the remainder, the assumption of BC
reciprocity, coupled with the linearity of the BCs expressed by the operator L[ ], are the
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On the theory of body motion in confined Stokesian fluids

(a)

(b)

Figure 2. Schematic representation of the decomposition of the main problem (a body in a confined fluid with
an ambient flow) in problems separately related to the geometry of the confinement and of the particle: (i)
multipoles of the confinement (at the top) centred at the position point (e.g. the barycentric coordinate) in the
volume the body; (ii) flows around the body in nth-order ambient flows centred at the position of the body
provided by the Faxén operators (at the bottom). Green arrows in (a) represent concentrated forces whereas
blue arrows in (b) represent velocity fields. The black dot is the position point of the body.

necessary prerequisites in the development of the present theory. Linear reciprocal BCs
are, for example, no-slip v(x) = 0, complete slip σ (x) = 0 and Navier-slip BCs

v(x)+ λ
μ

n(x) · σ (x) · t(x) = 0 (2.5)

with λ being the slip length and t(x) an unitary base vectors tangents to the surface of
the body. On the other hand, BCs representing the interaction of the Stokes fluid with a
non-Newtonian fluid, for example, are not reciprocal because the reciprocity theorem does
not hold in the body domain.

In the next paragraph, the solution of the problem (2.3) is expressed in terms of the
hydrodynamic solutions of two simpler problems related separately to the confinement of
the fluid and to the body: (i) the Green function of the Stokes equations in the domain of
the confinement Vf ∪ Vb and (ii) the geometrical moments of the body in the unbounded
fluid. See the schematic representation in figure 2. For this reason, it is useful to define
these solutions and discuss briefly their formal properties, introducing and clarifying in
this way the notation that we use throughout this article.

2.1. Green function of the confinement
As discussed in Procopio & Giona (2023), the Green function in the confined domain
Vf ∪ Vb is a bitensorial field, hence a field depending on two points (called field and source
points) with entries at both points expressed, in principle, in different coordinate systems.

The Green function Gaβ(x, ξ) of the confined flow is the solution of the equations

−∇bΣabβ(x, ξ) = �Gaβ(x, ξ)− ∇aPβ(x, ξ) = −8πδaβδ(x − ξ),

∇aGaβ(x, ξ) = 0, x, ξ ∈ Vf ∪ Vb,

Gaβ(x, ξ) = 0, x ∈ Sw ∪ S∞,

⎫⎪⎬
⎪⎭ (2.6)

where Gaβ(x, ξ), Pβ(x, ξ), Σabβ(x, ξ) are the associated velocity, pressure and stress
tensor field. In (2.6) and in the remainder, the notation of the bitensor calculus is applied:
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(i) Latin letters a, b, . . . = 1, 2, 3 are used for indices referred to the entries of the tensorial
entities at the field point x, with Greek letters α, β, . . . = 1, 2, 3 for indices referred to the
entries of the tensorial entities at the source points (i.e. the poles of the singularity) ξ ;
(ii) Einstein’s summation convention is adopted; and (iii) ∇a, with the Latin index, is the
gradient with respect to the field point x, while ∇β , with the Greek index, is the gradient
with respect to the source point ξ .

It is useful to define also the regular part of the Green function (Waβ(x, ξ),Qβ(x, ξ))
as the bitensorial fields solving the problem

−∇bTabβ(x, ξ) = �Waβ(x, ξ)− ∇aQβ(x, ξ) = 0,

∇aWaβ(x, ξ) = 0, x, ξ ∈ Vf ∪ Vb,

Waβ(x, ξ) = −Saβ(x − ξ), x ∈ Sw ∪ S∞,

⎫⎪⎬
⎪⎭ (2.7)

where Saβ(x − ξ) is the Stokeslet (Pozrikidis 1992; Kim & Karrila 2005), i.e. the
bitensorial velocity field of the unbounded Green function

Saβ(x − ξ) = δaβ

|(x − ξ)| + (x − ξ)a(x − ξ)β

|(x − ξ)|3 . (2.8)

Therefore, the bounded Green function can be written as the superposition of a regular
field Waβ(x, ξ) and a singular contribution given by the Stokeslet

Gaβ(x, ξ) = Saβ(x − ξ)+ Waβ(x, ξ). (2.9)

By differentiating (2.9) at the pole, higher-order singularities in the domain Vb ∪ Vf are
obtained. For example, the nth-order multipole, with n = 1, 2, . . ., is obtained by

∇βnGaβ(x, ξ) = ∇βnSaβ(x − ξ)+ ∇βnWaβ(x, ξ), (2.10)

where bold index βn = β1 . . . βn denotes a multi-index and ∇βn = ∇β1 . . .∇βn is a
compact notation for nth-order differentiation.

2.2. Moments on the body and Faxén operators
Let us briefly define the nth-order moments, the (m, n)th-order geometrical moments and
the nth-order Faxén operators of a body, addressed in more detail in Procopio & Giona
(2024).

Consider the same body immersed in an ambient flow (u(x),π(x)) in the unbounded
domain. The disturbance flow (w(x), τ (x)) generated by the body immersed in the ambient
flow is solution of

−∇ · τ (x) = μ�w(x)− ∇q(x) = 0,

∇ · w(x) = 0, x ∈ Vf ,

L[w(x)] = −L[u(x)], x ∈ Sb,

w(x) = 0, x → ∞,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.11)

where w(x), q(x) and τ (x) are the associated disturbance velocity, pressure and stress
tensor fields accounting for the hydrodynamics at the surface Sb of the rigid body due to
the interaction with the ambient flow u(x).
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To begin with, consider the entries ψa(x) of any force field distribution, with compact
support belonging to Vb, such that the Ladyzhenskaya (2014) volume potential reads

1
8πμ

∫
Vb

ψβ(ξ)Saβ(x − ξ) dV(ξ) = wa(x) x ∈ Sb. (2.12)

Next, the nth-order moments on the body immersed in a generic ambient flow u(x),
generating a disturbance field at the surface of the body w(x), are defined as

Mββn(ξ) =
∫

Vb

(x − ξ)βnψβ(x) dV(x) ξ ∈ Vb, (2.13)

where (x − ξ)βn = (x − ξ)β1 . . . (x − ξ)βn and where (x − ξ)β = gβa(ξ , x)(x − ξ)a
and ψβ(x) = gβa(ξ , x)ψa(x), gβa(ξ , x) being the transformation matrix between the
coordinate systems at the pole and field point (or, more generically, the parallel propagator
(Poisson et al. 2011), i.e. the bitensor transforming the entries of a vector at the point x
into the entries at the point ξ ).

Consider an nth-order polynomial ambient flow u(n)(x, ξ), centred at a point ξ ′ ∈ Vb
within the domain of the body, with entries

ua(x) = Aaan(x − ξ ′)an, ξ ′ ∈ Vb (2.14)

(Aaan being an (n + 1)-dimensional constant tensor) and its associated disturbance field
w(n)a (x, ξ ′), obtained from (2.13) by a force field distribution ψ (n)(ξ , ξ ′). According to the
definition (2.13), the mth-order moments on the body immersed in the nth-order ambient
flow can be expressed as

M(n)
ββm

(ξ , ξ ′) =
∫
(x − ξ)βmψ

(n)
β (x, ξ ′) dV(x) ξ , ξ ′ ∈ Vb. (2.15)

By the linearity of the Stokes equations with respect to the constant tensor Aaan , we can
define the (m, n)th-order geometrical moments mββmγ

′γ ′
n
(ξ , ξ ′) by the relation

M(n)
ββm

(ξ , ξ ′) = 8πμAγ γ nmββmγ
′γ ′

n
(ξ , ξ ′), (2.16)

where the multi-index γ ′γ ′
n is referred to the entries of the field at the point ξ ′.

Based on the hierarchy of the geometrical moments, the operator

Fβγ ′γ ′
n

=
∞∑

m=0

mββmγ
′γ ′

n
(ξ , ξ ′)∇βm

m!
(2.17)

can be introduced. As shown in Procopio & Giona (2024), if BC reciprocity holds, Fβγ ′γ ′
n

represents the nth-order Faxén operator of the body. By the assumption that the operator
L[v(x)] in the total Stokes system (2.3) belongs to the class of linear homogeneous
reciprocal BCs satisfying (2.4), the following relations for the body in the unbounded
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domain hold (Procopio & Giona 2023, 2024):

Mββn(ξ) = 8πμFγ ′ββnuγ ′(ξ ′) (2.18)
and

wa(x) =
∞∑

n=0

∇γ ′
n
uγ ′(ξ ′)
n!

Fβγ ′γ ′
n
Saβ(x − ξ). (2.19)

Furthermore, owing to the property that Fβγ ′γ ′
n

is a Faxén operator, the disturbance field
can be expressed by

wa(x) =
∞∑

m=0

Fγ ′ββmuγ ′(ξ ′)
m!

∇βmSaβ(x − ξ)

= 1
8πμ

∞∑
m=0

Mββm(ξ)

m!
∇βmSaβ(x − ξ). (2.20)

Finally, it is useful in the remainder to remark that the force exerted by the fluid on the
body is Fβ = −Mβ(ξ), thus, by (2.18),

Fβ = −8πμFγβuγ (ξ) (2.21)
whereas the torque Tβ = εβγ γ1Mγ γ1(ξ), is given by

Tβ = 8πμTγβ uγ (ξ), (2.22)
where Tδβ = εβγ γ1Fδγ γ1 and εβγ γ1 the Ricci–Levi Civita symbol.

3. The flow due to a body in a confined fluid

3.1. The reflection method
Consider the problem defined by (2.3) providing the total flow in the system in the
case of no-slip conditions both on the body surface and on the confinement walls, thus
considering the identity matrix as operator L[ ] = I. Owing to the linearity of the equations
and of the BCs, we can apply the reflection method (see Happel & Brenner 1983) to
express the solution (va(x), σab(x)) as the superposition of a countable system of fields
(v

[k]
a (x), σ [k]

ab (x)), with k = 0, 1, 2, . . .,

va(x) = v[0]
a (x)+ v[1]

a (x)+ · · · + v[k]
a (x)+ · · · ,

σab(x) = σ
[0]
ab (x)+ σ

[1]
ab (x)+ · · · + σ

[k]
ab (x)+ · · · ,

}
(3.1)

where
σ

[k]
ab (x) = s[k](x)δab − μ(∇av

[k]
b (x)+ ∇bv

[k]
a (x)), (3.2)

with s[k](x) being the associated pressure, each of which is the solution of the Stokes
equations equipped with the following system of BCs:

v[2k+1]
a (x) = −v[2k]

a (x), x ∈ Sb,

v[2k+2]
a (x) = −v[2k+1]

a (x), x ∈ Sw.

}
(3.3)

For k = 0,

v[0]
a (x) = ua(x), x ∈ Vb ∪ Vf . (3.4)

Hence, as can be observed from (3.3), for odd k the condition involves the boundary of the
body, for even k the walls of the confinement.
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On the theory of body motion in confined Stokesian fluids

3.2. The velocity fields v[1] and v[2]

Let us start by expressing the first velocity fields v[1]
a (x) and v[2]

a (x) in terms of the Green
function of the confinement and the Faxén operator of the body that are supposed to be
given.

Comparing (3.3) with (2.11) it is easy to recognise that v[1](x) is the disturbance field
of the ambient field u(x). Therefore, by using (2.19), it is possible to explicit the velocity
field with k = 1 as

v[1]
a (x) =

∞∑
n=0

∇γ nuγ (ξ)
n!

Fβγ γ nSaβ(x − ξ). (3.5)

Alternatively, from (2.20), the first velocity field can be expressed as

v[1]
a (x) = 1

8πμ

∞∑
m=0

Mββm(ξ)

m!
∇βmSaβ(x − ξ). (3.6)

Since, by linearity, any v[k](x) is solution of the Stokes equations, equipped with the BCs
(3.3), the flow with k = 2 is the solution of the problem

μ�v[2]
a (x)− ∇as[2](x) = 0,

∇av
[2]
a (x) = 0, x ∈ Vb ∪ Vf ,

v[2]
a (x) = −v[1]

a (x), x ∈ Sw.

⎫⎪⎪⎬
⎪⎪⎭ (3.7)

By applying the operator
∞∑

n=0

∇γ nuγ (ξ)
n!

Fβγ γ n, (3.8)

at a source point ξ ∈ Vb of the regular part of the Green function defined by the (2.7), and
comparing the resulting problem with (3.7), it is easy to conclude, by the uniqueness of
the solution of Stokes equations, that

v[2]
a (x) =

∞∑
n=0

∇γ nuγ (ξ)
n!

Fβγ γ nWaβ(x, ξ) (3.9)

or, alternatively, by applying the operator

1
8πμ

∞∑
m=0

Mββm(ξ)

m!
∇βm, (3.10)

we obtain the representation

v[2]
a (x) = 1

8πμ

∞∑
m=0

Mββm(ξ)

m!
∇βmWaβ(x, ξ) (3.11)

and, thus,

v[1]
a (x)+ v[2]

a (x) =
∞∑

n=0

∇γ nuγ (ξ)
n!

Fβγ γ nGaβ(x, ξ)

= 1
8πμ

∞∑
m=0

Mββm(ξ)

m!
∇βmGaβ(x, ξ). (3.12)
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3.3. The velocity fields v[3] and v[4]

From the BCs (3.3), the velocity field for k = 3 is the disturbance field of v[2]
a (x) and,

therefore, by (2.19),

v[3]
a (x) =

∞∑
�=0

∇δ′�v
[2]
δ′ (ξ

′)
�!

Fγ δ′δ′�Saγ (x − ξ) (3.13)

and, equivalently to (3.9),

v[4]
a (x) =

∞∑
�=0

∇δ′�v
[2]
δ′ (ξ

′)
�!

Fγ δ′δ′�Waγ (x − ξ). (3.14)

Substituting (3.11) into (3.13) one obtains

v[3]
a (x) = 1

8πμ

∞∑
m=0

Mββm(ξ)

m!

∞∑
�=0

∇δ′�∇βmWδ′β(ξ
′, ξ)

�!
Fγ δ′δ′�Saγ (x − ξ). (3.15)

By the equivalence between the two expressions (2.19) and (2.20),

∞∑
�=0

∇δ′�∇βmWδ′β(ξ
′, ξ)

�!
Fγ δ′δ′�Saγ (x − ξ) =

∞∑
n=0

Fδ′γ γ n
∇βmWδ′β(ξ

′, ξ)
n!

∇γ nSaγ (x − ξ).

(3.16)
It is useful to introduce the tensor Nααmββn(ξ) defined as

Nββmγ γ n(ξ) = Fδ′γ γ n
∇βmWδ′β(ξ

′, ξ)
∣∣
ξ ′=ξ , (3.17)

which corresponds to the nth-order moment on the body immersed in an ambient field
consisting in the regular part of the mth derivative of the Green function. The tensor
defined in (3.17) is fundamental for the further development of this analysis because, as
shown in the following, it completely represents the hydrodynamic interaction between the
body and the confinement.

Using the identity (3.16) and the definition (3.17), (3.15) can be expressed as

v[3]
a (x) = 1

8πμ

∞∑
m=0

Mββm(ξ)

m!

∞∑
n=0

Nββmγ γ n(ξ)

n!
∇γ nSaγ (x − ξ) (3.18)

and, enforcing the same argument applied above to obtain (3.7)–(3.11), we have

v[4]
a (x) = 1

8πμ

∞∑
m=0

Mββm(ξ)

m!

∞∑
n=0

Nββmγ γ n(ξ)

n!
∇γ nWaγ (x, ξ) (3.19)

so that

v[3]
a (x)+ v[4]

a (x) = 1
8πμ

∞∑
m=0

Mββm(ξ)

m!

∞∑
n=0

Nββmγ γ n(ξ)

n!
∇γ nGaγ (x, ξ). (3.20)
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3.4. The velocity fields v[5] and v[6]

The subsequent velocity fields can be determined following the same procedure used for
v[3](x) and v[4](x). In fact, v[5](x) can be considered as the disturbance field of v[4](x)
and, thus,

v[5]
a (x) =

∞∑
�=0

∇γ ′
�
v

[4]
γ ′ (ξ

′)
�!

Fδγ ′γ ′
�
Saδ(x − ξ) (3.21)

and, equivalently to (3.9),

v[6]
a (x) =

∞∑
�=0

∇γ ′
�
v

[4]
γ ′ (ξ

′)
�!

Fδγ ′γ ′
�
Waδ(x − ξ). (3.22)

Enforcing the same argument used previously in (3.15)–(3.20) for v[3]
a (x) and v[4]

a (x), we
obtain

v[5]
a (x) = 1

8πμ

∞∑
m=0

Mββm(ξ)

m!

∞∑
n=0

Nββmγ γ n(ξ)

n!

∞∑
�=0

Nγ γ nδδ�(ξ)

�!
∇δ�Saδ(x − ξ), (3.23)

v[6]
a (x) = 1

8πμ

∞∑
m=0

Mββm(ξ)

m!

∞∑
n=0

Nββmγ γ n(ξ)

n!

∞∑
�=0

Nγ γ nδδ�(ξ)

�!
∇δ�Waδ(x, ξ), (3.24)

so that

v[5]
a (x)+ v[6]

a (x) = 1
8πμ

∞∑
m=0

Mββm(ξ)

m!

∞∑
n=0

Nββmγ γ n(ξ)

n!

∞∑
�=0

Nγ γ nδδ�(ξ)

�!
∇δ�Gaδ(x, ξ).

(3.25)

3.5. The total velocity field
Iterating the same procedure for any k, it is possible to generalise the above results in the
form

v[2k+1]
a (x)= 1

8πμ

∞∑
m=0

Mββm(ξ)

m!

∞∑
m1=0

Nββmγ γm1
(ξ)

m1!
. . .

∞∑
mk=0

Nδδmk−1ηηmk
(ξ)

mk!
∇ηmk

Saη(x − ξ)

(3.26)
and

v[2k+2]
a (x)= 1

8πμ

∞∑
m=0

Mββm(ξ)

m!

∞∑
m1=0

Nββmγ γm1
(ξ)

m1!
. . .

∞∑
mk=0

Nδδmk−1ηηmk
(ξ)

mk!
∇ηmk

Waη(x, ξ),

(3.27)
so that

v[2k+1]
a (x)+ v[2k+2]

a (x) = 1
8πμ

∞∑
m=0

Mββm(ξ)

m!

∞∑
m1=0

Nββmγ γm1
(ξ)

m1!

· · ·
∞∑

mk=0

Nδδmk−1ηηmk
(ξ)

mk!
∇ηmk

Gaη(x, ξ). (3.28)
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Summing all the fields according to (3.1), the total velocity field can be expressed as

va(x)− ua(x) =
∞∑

k=0

v[2k+1]
a (x)+ v[2k+2]

a (x)

= 1
8πμ

∞∑
m=0

Mββm(ξ)

m!

∞∑
k=0

∞∑
m1=0

Nββmγ γm1
(ξ)

m1!
. . .

∞∑
mk=0

Nδδmk−1ηηmk
(ξ)

mk!
∇ηmk

Gaη(x, ξ).

(3.29)

3.6. Extension to Linear and BC-reciprocal BCs on the body
The extension to more general linear homogeneous reciprocal BCs is straightforward. To
this purpose, the expansion (3.1) still applies, but the BCs (3.3) are substituted by the
conditions

L[v[2k+1]
a (x)] = −L[v[2k]

a (x)], x ∈ Sb,

v[2k+2]
a (x) = −v[2k+1]

a (x), x ∈ Sw,

}
(3.30)

for k = 1, 2, . . ., keeping for k = 0

v[0]
a (x) = ua(x), x ∈ Vb ∪ Vf . (3.31)

In fact, by applying the operator L[ ] to the total field in (3.1) at the surface of the body,
and using the linearity of L[ ], we have

L[va(x)] = L[v[0]
a (x)+ v[1]

a (x)+ v[2]
a (x)+ v[3]

a (x)+ · · · ] =
L[v[0]

a (x)] + L[v[1]
a (x)] + L[v[2]

a (x)] + L[v[3]
a (x)] + · · · = 0, x ∈ Sb,

}
(3.32)

where all the terms on the right-hand side cancel each other for (3.30). Therefore, the
Stokes flow provided by (3.1), with BCs (3.30)–(3.31), is a solution of (2.3).

Since the procedure developed in the previous paragraph (3.5)–(3.29) is independent of
the BCs at the surface of the body, with the only constraint of the BC reciprocity of L[ ],
we can conclude that (3.29) is still valid considering the Faxén operators associated with
the BCs assumed on the body surface.

4. Matrix representation of the velocity field

In this section, a compact and useful matrix representation of the equations obtained in
the § 3 is developed. To this aim, collect the entries of the system of moments Mββm(ξ) in
an infinite-dimensional vector (Cooke 1950)

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M (0)
M (1)
M (2)

2
...

M (m)

m!
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.1)

where M (m) are 3m+1 dimensional vectors obtained by the vectorisation of the (m +
1)th-order tensors Mββm(ξ) so that any entry [M]i corresponds to the entry Mββm(ξ)
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

(β β1 β2 . . . βm) (1) (2) (3) (11) (12) (13) (21) (22) (23) (31) (32) (33) (111) (112) (113) (121) . . .

Table 1. Conversion according to (4.2) between the index i of the entries of the vector [M]i and the
multi-index β βm of the entries of the (m + 1)th-order tensors Mββm (ξ).

according the conversion i ↔ ββm

i =
m∑

h=0

βh3m−h, (4.2)

where β0 ≡ β.
The conversion i ↔ ββm for m = 0, 1, 2, according to (4.2), is presented in table 1.
We use the notation [M(n:m)] to indicate the part of the array (4.1) collecting the entries

of the tensors with orders going from n to m (m > n), i.e.

[M(n:m)] =

⎡
⎢⎢⎢⎢⎣

M (n)

n!
...

M (m)

m!

⎤
⎥⎥⎥⎥⎦ . (4.3)

In the same way, the entries of ∇βmGaβ(x, ξ) can be collected in the 3m+1 × 3 matrices
G(0),G(1), . . . ,G(m), . . . (with column indices corresponding to the Latin field point
indices) to build the ∞ × 3 matrix [G] defined by

[G] =

⎡
⎢⎢⎢⎢⎢⎣

G(0)
G(1)
...

G(m)
...

⎤
⎥⎥⎥⎥⎥⎦ . (4.4)

Adopting this representation, (3.12) can be compactly expressed as

v[1](x)+ v[2](x) = [M]t[G]
8πμ

, (4.5)

with [M]t being the transpose of [M].
It is also possible to define the infinite matrix [N] as

[N] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N (0,0) N (0,1) · · · N (0,n)

n!
· · ·

N (1,0)
. . .

...
...

. . .
...

N (m,0) · · · · · · N (m,n)

n!
· · ·

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.6)

where N (m,n) are 3m+1 × 3n+1 matrices obtained unfolding the (m + n + 2)th-order
tensors Nββmγ γ n(ξ) so that the entries [N]i,j are obtained by converting both i ↔ β βm
and j ↔ γ γm according to (4.2).
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Using this representation, (3.20) becomes

v[3](x)+ v[4](x) = [M]t[N][G]
8πμ

, (4.7)

whereas (3.25) takes the form

v[5](x)+ v[6](x) = [M]t[N]2[G]
8πμ

, (4.8)

where [N]2 = [N][N]. Defining the power of [N] by induction as [N]3 = [N]2[N], [N]k =
[N]k−1[N] and [N]0 = [I], [I] being the infinite identity matrix, the total velocity field
expressed by (3.29) can be compactly represented as

v(x)− u(x) = 1
8πμ

∞∑
k=0

[M]t[N]k[G]. (4.9)

Let us consider the sum entering (4.9) truncated up to k = K and multiply it by ([I] − [N]).
It is straightforward to show that

([I] − [N])
K∑

k=0

[N]k = [I] − [N]K (4.10)

as for the truncated geometric series defined over a scalar field. As shown in Appendix A,
the series in (4.10) converges for characteristic distances �d of the body from the nearest
walls larger enough than the characteristic length �b of the body itself, since there exists a
constant Γ = O(1) > 0, depending on the geometry of the system, such that

lim
K→∞

[N]K = 0, for �d > Γ �b. (4.11)

As a consequence

([I] − [N])
∞∑

k=0

[N]k = [I], �d > Γ �b (4.12)

and, thus,
∞∑

k=0

[N]k = ([I] − [N])−1, �d > Γ �b, (4.13)

with ([I] − [N])−1 being the inverse matrix of ([I] − [N]) (Cooke 1950).
Therefore, the velocity field attains the simple expression

v(x)− u(x) = [M]t([I] − [N])−1[G]
8πμ

, �d > Γ �b (4.14)

or, alternatively,

v(x)− u(x) = [M]t[X]
8πμ

, �d > Γ �b, (4.15)

where [X] is the solution of the infinite-matrix equation

([I] − [N])[X] = [G]. (4.16)

In the remainder, we consider exclusively the situation �d > Γ �b, for which (4.14) holds.
By (4.14) it is possible to conclude that, for �d > Γ �b, the solution of a the Stokes flow past

1000 A11-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.651


On the theory of body motion in confined Stokesian fluids

a body immersed in a confined fluid can be expressed in terms of the vector [M], depending
only on the hydrodynamic interaction of the body with unbounded (external) Stokes flows,
the matrix [G], depending only on the hydrodynamic interaction of the confinement with
unbounded (internal) Stokes flows and the matrix [N] ([N]-matrix, for short), representing
the hydrodynamic interaction between the body and the confinement.

5. Force and torque on the particle

By linearity, the force and the torque acting on the particle due to the hydrodynamic
interactions with the fluid, are given by the summation of all the forces and torques
associated with the terms in (3.1), i.e.

F = F [0] + F [1] + F [2] + · · · ,
T = T [0] + T [1] + T [2] + · · · ,

}
(5.1)

where

F [k] = −
∫

Sp

σ [k](x) · n dS, k = 0, 1, 2, . . . ,

T [k] = −
∫

Sp

(x − ξ)× σ [k](x) · n dS, k = 0, 1, 2, . . . .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.2)

Since ∇ · σ [k](x) = 0, and due to the symmetry of the stress tensors σ [k](x), the forces
and torques associated to even values of k (i.e. the forces due to regular fields on the
boundary of the particle) vanish for the Gauss–Green theorem (Brenner 1962). The only
terms contributing to the total force and torque are the terms corresponding to odd value
of k = 1, 3, 5, . . .

F = F [1] + F [3] + F [5] + · · · ,
T = T [1] + T [3] + T [5] + · · · .

}
(5.3)

The first contribution F [1] in the sum (5.3) is the force experienced by the body immersed
in the unbounded ambient flow u(x), therefore it can be obtained by applying the
zeroth-order Faxén operator according (2.21)

F[1]
β = F[∞]

β = −Mβ(ξ) = −8πμFγβuγ (ξ), (5.4)

where we used the notation F[∞]
β to remark that the force F[1]

β is exactly that experienced
by the body if the fluid were unbounded.

The other contribution F [3] + F [5] + · · · in (5.3) is the force experienced by the body
immersed in the ambient flow v[2](x)+ v[4](x)+ · · · . Therefore,

F[3]
β + F[5]

β + · · · = −8πμFγβ(v[2]
γ (ξ)+ v[4]

γ (ξ)+ · · · ). (5.5)

Indicating with [S] the ∞ × 3-dimensional matrix collecting all the derivatives of the
Stokeslet ∇βmSaβ(x − ξ) (analogously to the definition (4.4) for [G]) and with [W] the
∞ × 3-dimensional matrix collecting all the derivatives of the regular part of the Green
function ∇βmWaβ(x, ξ), according to (2.8) and (2.9), the matrix [G] can be decomposed
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as
[G] = [S] + [W] (5.6)

and the sum of the fields v[2]
γ (ξ)+ v

[4]
γ (ξ)+ · · · with even values of k, (4.9), takes the

form
∞∑

k=0

v[2k+2](x) = [M]t([I] − [N])−1[W]
8πμ

, (5.7)

whereas the sum of all the fields corresponding to odd values of k, associated with the
disturbance field due to the body, is given by

∞∑
k=0

v[2k+1](x) = [M]t([I] − [N])−1[S]
8πμ

. (5.8)

Substituting (5.4), (5.5) and (5.7) into (5.3), a compact representation of the force is
achieved

F = F [∞] − [M]t([I] − [N])−1[N(:,0)], (5.9)

where the matrix

[N(:,0)] =

⎡
⎢⎢⎢⎢⎢⎣

N (0,0)
N (1,0)
...

N (m,0)
...

⎤
⎥⎥⎥⎥⎥⎦ (5.10)

collecting the entries Nααmββn(ξ) for n = 0, is exactly the ∞ × 3 matrix corresponding to
the first three columns of the matrix [N].

The same procedure can be applied to obtain an analogous relation for the torque
acting on the body. By (2.22), the torque T [1] = T [∞] is provided by the operator
Tγβ = εβδδ1Fγ δδ1 applied at the ambient flow u(x), i.e.

T [1]
β = T [∞]

β = εβδδ1Mδδ1(ξ) = 8πμTγβuγ (ξ) (5.11)

and the remaining term in (5.3) is equal to

T [3]
β + T [5]

β + · · · = 8πμTγβ(v[2]
γ (ξ)+ v[4]

γ (ξ)+ · · · ). (5.12)

Therefore, the total torque is compactly expressed by the equation by

T = T [∞] + [M]t([I] − [N])−1[L] (5.13)

with

[L] =

⎡
⎢⎢⎢⎢⎢⎣

L(0)
L(1)
...

L(m)
...

⎤
⎥⎥⎥⎥⎥⎦ , (5.14)

where L(m) are the 3(m+1) × 3-dimensional matrices with entries εβδδ1Nγ γmδδ1(ξ), thus

[L] = [N(:,1)] εt, (5.15)
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On the theory of body motion in confined Stokesian fluids

where

ε =
⎛
⎝ 0 0 0 0 0 1 0 −1 0

0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

⎞
⎠ (5.16)

corresponds to the vectorisation of the Ricci–Levi Civita tensor εβδδ1 with respect to
indices δδ1.

This result can be generalised to the moments: the nth-order moment M̄ (n)(ξ) on the
particle in a confined fluid is given by

M̄ t
(n)(ξ) = M t

(n)(ξ)+ [M]t([I] − [N])−1[N(:,n)], (5.17)

where

[N(:,n)] =

⎡
⎢⎢⎢⎢⎢⎣

N (0,n)
N (1,n)
...

N (m,n)
...

⎤
⎥⎥⎥⎥⎥⎦ . (5.18)

6. Error estimate in truncation

The exact results obtained for velocity field, force and torque in (4.14), (5.9) and (5.13)
are expressed in terms of infinite matrices. In practical application, it is not possible to
take into account all the entries of these matrices. In fact, in the overwhelming majority
of cases, only lower order analytical expressions for Faxén operators and multipoles
singularities are available and, moreover, there are no recursive relations able to predict
higher-order terms even for the simplest geometries. Furthermore, whenever complex
geometries are considered, for which no analytical solutions are available, numerical
approaches represent the only feasible alternative in order to evaluate moments and
multipoles, and approximations or series truncations become necessary.

Therefore, a central issue in the practical applications of reflection methods
is the determination of the order of magnitude of the error committed in the
approximations/truncations as function of the geometric dimensionless ratio �b/�d.
Specifically, consider the error deriving by considering only the first moments and
multipoles up to the Kth order in the exact expressions (4.14), (5.9) and (5.13), hence
by substituting to [M] its truncated counterpart [M(0:K)] (where, according the notation
introduced in (4.3), [M(0:K)] is the vector collecting all the unbounded moments from the
zeroth to the Kth order) and similarly for the other infinite matrices, [N] → [N(0:K,0:K)],
[G] → [G(0:K)],∣∣∣∣v(x)− u(x)− [M(0:K)]t([I(0:K,0:K)] − [N(0:K,0:K)])−1[G(0:K)]

8πμ

∣∣∣∣ . (6.1)

To this aim, consider the (4.5) rewritten in the form

v[1]
a (x)+ v[2]

a (x) = [M(0:K)]t[G(0:K)]
8πμ

+ 1
8πμ

∞∑
m=K+1

(
M (m)

)t G(m)

m!
. (6.2)

Enforcing the dimensional analysis developed in Appendix A, specifically (A5) and (A7)
providing

MββK+1(ξ) = μUcO
(
�K+2

b

)
; ∇βK+1Gaβ(x, ξ) = O

(
1/�K+2

f

)
, (6.3)
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the leading-order term in the series on the right-hand side of (6.2) is

|M t
(K+1)G(K+1)| = μUcO

(
�b

�f

)K+2

, (6.4)

with Uc being the characteristic magnitude of the ambient velocity field. Therefore,
truncating the series up to the Kth order, the order of magnitude of the remainder follows

v[1]
a (x)+ v[2]

a (x) = [M(0:K)]t[G(0:K)]
8πμ

+ UcO
(
�b

�f

)K+2

. (6.5)

The velocity fields due to the next reflections, hence for k = 1, can be written as

v[3]
a (x)+ v[4]

a (x) = [M(0:K)]t[N(0:K,0:K)][G(0:K)]
8πμ

+ 1
8πμ

∞∑
m=K+1

∞∑
n=K+1

(
M (m)

)t N (m,n) G(n)

m!
, (6.6)

where the leading-order term in the series, estimated via (A5), (A7) and (A12), is

|M t
(K+1)N (K+1,K+1)G(K+1)| = μUcO

(
�b

�f

�b

2�d

)K+2

. (6.7)

Since �b/(2�d) < 1, the term in (6.7) is always smaller than the term in (6.4), thus

|M t
(K+1)N (K+1,K+1)G(K+1)| = μUcO

(
�b

�f

)K+2

(6.8)

and (6.6) can be rewritten as

v[3]
a (x)+ v[4]

a (x) = [M(0:K)]t[N(0:K,0:K)][G(0:K)]
8πμ

+ Uc O
(
�b

�f

)K+2

. (6.9)

Reiterating the same procedure for the higher-order reflected velocity fields, hence for
k > 1, we obtain

v[2k+1]
a (x)+ v[2k+2]

a (x) = [M(0:K)]t[N(0:K,0:K)]k[G(0:K)]
8πμ

+ Uc O
(
�b

�f

)K+2

,

k = 1, 2, . . . . (6.10)

Therefore, the truncation error committed considering only up to Kth-order terms in the
infinity matrix expressions entering (4.14) satisfies the scaling relations

v(x)− u(x) = [M(0:K)]t([I(0:K,0:K)] − [N(0:K,0:K)])−1[G(0:K)]
8πμ

+ UcO
(
�b

�f

)K+2

. (6.11)

A similar analysis can be extended to forces and torques, obtaining

F − F [∞] = −[M(0:K)]t([I(0:K,0:K)] − [N(0:K,0:K)])−1[N(0:K,0)] + FcO
(
�b

�d

)K+2

(6.12)

and

T − T [∞] = [M(0:K)]t([I(0:K,0:K)] − [N(0:K,0:K)])−1[L(0:K)] + TcO
(
�b

�d

)K+2

, (6.13)

where Fc = μ�bUc and Tc = μ�2
bUc.
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On the theory of body motion in confined Stokesian fluids

The scaling analysis of the truncation error addressed previously can be applied to
the approximations of the hydromechanical properties addressed in the literature. In the
following, we analyse and discuss, from the point of view of the present theory, the
classical literature results of hydromechanics of bodies in confined Stokes flow, extending
such expressions to more general BCs, geometries and motions of the bodies.

6.1. The approximation for K = 0 and Brenner’s formula
An explicit approximation for the force acting on an arbitrary body translating in a confined
fluid has been first derived by Brenner (1964a) in terms of the resistance matrix of the
body in the unbounded fluid and the regular part of the Green function at the position of
the body. Within the present formalism, the Brenner (1964a) formula for the force is

F = F [∞]
(

I + W (0) R
8πμ

)−1

+ FcO
(
�b

�d

)2

, (6.14)

where Rβγ = −8πμmβγ is the resistance matrix of the body in the unbounded fluid.
For K = 0 in (6.11)–(6.13), substituting M t

(0) = −F [∞], we have the zeroth-order
approximation of the velocity field

v(x)− u(x) = −F [∞](I − N (0,0))
−1G(0)

8πμ
+ UcO

(
�b

�f

)2

, (6.15)

the force

F − F [∞] = F [∞](I − N (0,0))
−1N (0,0) + FcO

(
�b

�d

)2

(6.16)

and the torque

T − T [∞] = −F [∞](I − N (0,0))
−1L(0) + TcO

(
�b

�d

)2

, (6.17)

with I being the 3 × 3 identity matrix.
By the dimensional analysis developed in Appendix B.1, the velocity field (6.15)

becomes

v(x) = u(x)− F [∞]
(

I + W (0)R
8πμ

)−1 G(0)

8πμ
+ UcO

(
�b

�f

)2

, (6.18)

the force (6.16) returns, as expected, the Brenner’s formula

F = F [∞]
(

I + W (0)R
8πμ

)−1

+ FcO
(
�b

�d

)2

(6.19)

and the torque (6.17) is

T = T [∞] − F [∞]
(

I + W (0)R
8πμ

)−1 W (0)C
8πμ

+ TcO
(
�b

�d

)2

, (6.20)

where Cβγ = 8πμεβδδ1mγ δδ1(ξ, ξ) is the coupling matrix between forces and rotations of
the body in the unbounded fluid (Happel & Brenner 1983; Procopio & Giona 2024).

Equations (6.18), (6.19) and (6.20), requiring solely the Green function of the
confinement and the grand-resistance matrix of the body, provide the first-order terms
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associated with any flow past a body immersed in a confined fluid. In the case the body
translates with velocity U in a quiescent fluid, we can consider the disturbance flow
associated with an ambient flow past the still body u(x) = −U . Therefore, from (6.18)
and considering F [∞] = −UR, the velocity field around the translating body is

w(x) = UR
(

I + W (0)R
8πμ

)−1 G(0)

8πμ
+ UcO

(
�b

�f

)2

. (6.21)

By (6.19), the force is

F = −UR
(

I + W (0)R
8πμ

)−1

+ FcO
(
�b

�d

)2

, (6.22)

whereas, by considering that T [∞] = −UC , from (6.20) the torque is

T = −U

(
C − R

(
I + W (0)R

8πμ

)−1 W (0)C
8πμ

)
+ TcO

(
�b

�d

)2

. (6.23)

If the particle rotates (without translating) with angular velocity ω, the force on the particle
in the unbounded fluid is given by F [∞] = −ωC t (Happel & Brenner 1983) and, therefore,
following the same procedure as previously, the velocity field is

w(x) = ωC t
(

I + W (0)R
8πμ

)−1 G(0)

8πμ
+ UcO

(
�b

�f

)2

, (6.24)

the force on the body takes the expression

F = −ωC t
(

I + W (0)R
8πμ

)−1

+ FcO
(
�b

�d

)2

(6.25)

and the torque, considering T [∞] = −ωΩ , can be written as

T = −ω
[
Ω − C t

(
I + W (0)R

8πμ

)−1 W (0)C
8πμ

]
+ TcO

(
�b

�d

)2

, (6.26)

where Ω , having entries Ωαβ = −8πμεαγγ1εβδδ1mγ γ1δδ1(ξ , ξ), is the angular resistance
matrix.

6.2. Extended Swan and Brady’s approximation for rigid motion
In obtaining the approximate expressions (6.19) and (6.20), valid to the order (�b/�d),
we have neglected the higher-order terms in the zeroth-order Faxén operator for the force
and in the first-order Faxén operator for the torque (see the derivation in Appendix B.1).
Supposing that these Faxén operators are exactly known, it is possible to obtain more
accurate expressions for the force and the torque on a rigid moving body. This has been
found by Swan & Brady (2007, 2010) in the case of confined spherical bodies with no-slip
BCs. Specifically, expressing their result in the mobility representation, Swan and Brady
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provided the velocity U and angular velocity ω of a sphere under the action of a force F
and a torque T

U = −FR−1(I − R−1Φ)+ TΩ−1Ψ tR−1 (6.27)

and
ω = FR−1ΨΩ−1 − TΩ−1(I −Ω−1Θ), (6.28)

where

Φαβ = −8πμFγβFγ ′αWγ γ ′(ξ , ξ ′)
∣∣
ξ ′=ξ , (6.29)

Ψαβ = 8πμTγβFγ ′αWγ γ ′(ξ , ξ ′)
∣∣
ξ ′=ξ (6.30)

and
Θβα = −8π μTγβTα′δWγα′(ξ , ξ ′)

∣∣
ξ ′=ξ , (6.31)

with the Faxén operators being those of a sphere with no-slip BCs.
By using the theory developed previously, it is possible to extend the Swan and Brady

expressions to bodies with generic shape and generic reciprocal BCs. Furthermore, it is
possible to evaluate the error committed by adopting the Swan and Brady approach to
estimate the hydrodynamic interaction. In Appendix B.2, we obtain that the force and
torque acting on a body rigid moving with velocity U and angular velocity ω can be
expressed as

F = −U
(

R +
(

I −Φ R−1
)−1

Φ

)
− ω

(
C t + Ψ t

(
I −ΦR−1

)−1
)

+ O
(
�b

�d

)3

(6.32)
and

T =−U
(

C+
(

I−ΦR−1
)−1

Ψ

)
−ω

(
Ω+Θ+Ψ tR−1

(
1−ΦR−1

)−1
Ψ

)
+O

(
�b

�d

)3

,

(6.33)
where the Faxén operators entering Φ, Ψ ,Θ , defined in (6.29)–(6.31), are those of a body
with generic shape and reciprocal BCs.

In the case of a spherical body, for which C = 0, (6.32) and (6.33) become

F = −U
(

R +
(

I −Φ R−1
)−1

Φ

)
− ωΨ t

(
I −ΦR−1

)−1 + O
(
�b

�d

)4

(6.34)

and

T = −U
(

I −ΦR−1
)−1

Ψ − ω

(
Ω +Θ + Ψ tR−1

(
1 −ΦR−1

)−1
Ψ

)
+ O

(
�b

�d

)5

.

(6.35)

From these equations it is possible to obtain the Swan and Brady ‘mobility’ representation
(6.27) and (6.28) by inverting the block grand-resistance matrix (Bhatia 1997) and
considering that, for a spherical particle, Φ = O(�b/�d), Ψ = O(�b/�d)

2 and Θ =
O(�b/�d)

3. As shown in Brenner (1964b), there exists a vast class of bodies for which,
choosing the centre of hydrodynamic reaction as centre of rotation, the coupling between
translation and rotation vanishes, then C = 0. Providing that the geometrical moments
entering the Faxén operators are evaluated with respect to the centre of hydrodynamic
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Rp

ξ3 ξ2

ξ1

h

Figure 3. Schematic representation of a sphere near a plane wall.

rotation, for all these bodies it is possible to employ (6.34) and (6.35) obtaining, hence, an
improved error in the truncation.

Equations (6.32)–(6.33) and (6.34)–(6.35) are fundamental scaling relations permitting
to obtain good approximations for the resistance on bodies (especially if possess special
symmetries) in confined systems by the knowledge of solely the zeroth- and first-order (for
torque) Faxén operators. However, although such corrections improve the approximations
in evaluating force and torques on body in confined fluids, the scaling analysis indicates
that the approximate relation (6.34) (and, hence, the Swan and Brady expressions) cannot
provide correctly the term O(�b/�d)

4 for the force. In the Faxén’s expressions for a
sphere translating near a plane wall and for a sphere translating between two parallel
plane walls (see Happel & Brenner 1983, p. 327), a non-vanishing term O(�b/�d)

4 has
been found, whereas in Swan & Brady (2007, 2010) the term O(�b/�d)

4 is considered
vanishing, but the terms O(�b/�d)

5 (which fortuitously agrees with that obtained by Faxén
performing high-order reflections) has been obtained. In the next section, we apply the
exact expression (6.12) for the force on a sphere translating near a plane wall truncated
to the order O(�b/�d)

5 and we find that, in accordance with the Faxén result, the term
O(�b/�d)

4 is not vanishing.

7. A sphere near a plane wall

Next, consider the archetypical hydrodynamic problem of a sphere with radius Rp and
centre at distance h from a plane, as depicted in figure 3. Furthermore, consider Navier-slip
BCs (2.5) at the surface of the sphere and no-slip BC at the surface of the plane wall.

For this hydrodynamic system, both the Faxén operator of the body and the Green
function of the confinement, required to construct analytically the [N]-matrix in (4.6),
are available in the literature up to the second order. Specifically, the zeroth-, first- and
second-order Faxén operators with pole at the centre of the sphere can be found in
Procopio & Giona (2024), whereas the Green function and its derivatives in the semi-space
have been derived by Blake (1971); Blake & Chwang (1974); Procopio & Giona (2023).
Both the Faxén operators and the multipoles evaluated at the position of the sphere,
useful for the computation of the [N]-matrix, are reported in the supplementary material
available at https://doi.org/10.1017/jfm.2024.651 expressed in the Cartesian coordinate
system (ξ1, ξ2, ξ3) represented in figure 3.

According to the definition (3.17), the entries of the [N]-matrix, representing the
hydrodynamic interaction between the sphere and the plane, are obtained by applying the
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On the theory of body motion in confined Stokesian fluids

Faxén operators to the regular part of the multipoles. Therefore, by the knowledge of the
Faxén operators up to the second order, it is possible to construct the matrix

[N(0:2,0:2)] =

⎡
⎢⎢⎢⎢⎣

N (0,0) N (0,1)
N (0,2)

2!
N (1,0) N (1,1)

N (1,2)

2!
N (2,0) N (2,1)

N (2,2)

2!

⎤
⎥⎥⎥⎥⎦ . (7.1)

The entries of the submatrix

N (0,0) =
⎡
⎣ N1 1 N1 2 N1 3

N2 1 N2 2 N2 3
N3 1 N3 2 N3 3

⎤
⎦ (7.2)

expressed in the Cartesian coordinate system (ξ1, ξ2, ξ3), are

N1 1 = Fγ ′1Wγ ′1(ξ
′, ξ)

∣∣
ξ ′=ξ=(0,0,h) = 9Rp(1 + 2λ̂)

16h(1 + 3λ̂)
− R3

p

16h3(1 + 3λ̂)
,

N2 2 = Fγ ′2Wγ ′2(ξ
′, ξ)

∣∣
ξ ′=ξ=(0,0,h) = 9Rp(1 + 2λ̂)

16h(1 + 3λ̂)
− R3

p

16h3(1 + 3λ̂)
,

N3 3 = Fγ ′3Wγ ′3(ξ
′, ξ)

∣∣
ξ ′=ξ=(0,0,h) = 9Rp(1 + 2λ̂)

8h(1 + 3λ̂)
− R3

p

4h3(1 + 3λ̂)
,

N1 2 = N1 3 = N2 1 = N3 1 = N3 2 = N2 3 = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.3)

with λ̂ = λ/Rp being the dimensionless slip length of the fluid–sphere interface. The
entries of the other submatrices entering (7.1) can be obtained by the Faxén operators
and multipoles reported in the supplementary material.

7.1. Force and torque on a translating sphere near a plane wall
Consider a spherical body translating with velocity U , hence an ambient flow u(x) = −U .
The force acting onto the sphere is given by (6.12). Assuming K = 3, we have

F = F [∞] − [M(0:3)]t([I(0:3,0:3)] − [N(0:3,0:3)])−1[N(0:3,0)] + FcO
(
�b

�d

)5

, (7.4)

where

F [∞] = −M t
(0) = −6πμRp

(
1 + 2λ̂

1 + 3λ̂

)
U (7.5)

is the well-known Hadamard–Rybczynski force, M1 = M (3) = 0 and, as shown in
Appendix C.1,

M t
(2) = − R2

p

3(1 + 2λ̂)
F [∞]I(0,2), (7.6)

where I(0,2) is a matrix obtained by the vectorisation of the multi-index (ββ1β2) of the
tensor δγβδβ1β2 . As shown in Appendix C.1, since M (3) = 0, the submatrices N (3,q)
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and N (q,3) (with q = 0, 1, 2, 3) entering [N(0:3,0:3)] and [N(0:3,0)] in (7.4) are immaterial
and can be assumed vanishing (in point of fact, we show in Appendix C.1, that only
the submatrix N (0,p), with p = 0, 1, 2, contribute to the force obtained by (7.4)). After
substituting the entries of the N-matrix in (7.4) and after some algebra we obtain

F = F [∞]

⎛
⎜⎜⎜⎜⎜⎝

1
1 − β‖

0 0

0
1

1 − β‖
0

0 0
1

1 − β⊥

⎞
⎟⎟⎟⎟⎟⎠+ O

(
Rp

h

)5

, (7.7)

where

β‖ = 9Rp

16h

(
1 + 2λ̂

1 + 3λ̂

)
− R3

p

8h3(1 + 3λ̂)
+ 45R4

p

256h4

(
(1 + 2λ̂)2

(1 + 3λ̂)(1 + 5λ̂)

)
(7.8)

and

β⊥ = 9Rp

8h

(
1 + 2λ̂

1 + 3λ̂

)
− R3

p

2h3(1 + 3λ̂)
+ 135R4

p

256h4

(
(1 + 2λ̂)2

(1 + 3λ̂)(1 + 5λ̂)

)
. (7.9)

For λ̂ = 0 (i.e. in the no-slip case), existing literature results can be recovered. In fact,
the force F⊥ on a sphere translating perpendicularly to the plane wall with velocity U⊥
is in perfect agreement with the Taylor series expansion of the exact solution obtained by
Brenner (1961), which reads

F⊥
6πμRpU⊥

= 1 + 9Rp

8h
+ 81Rp

2

64h2 + 473Rp
3

512h3 + 4113Rp
4

4096h4 + O
(

Rp

h

)5

(7.10)

and β‖ reduces to the same expression obtained by Faxén (see Happel & Brenner 1983,
p. 327).

As expected by the dimensional analysis performed in § 6, by using the approximate
Brenner’s relation (6.22), only the first terms O(Rp/h) on the right-hand side of (7.8) and
(7.9) are correctly obtained, whereas by using the Swan and Brady approximations (6.34)
also the second terms O(Rp/h)3 are correctly evaluated, but the third O(Rp/h)4 term is
erroneously vanishing. Figures 4 and 5 depict the results obtained in (7.7)–(7.9) and by the
approximated relations developed in §§ 6.1 and 6.2 compared with the exact results (such
as those deriving by solving the Goren (1979) equations) and to FEM simulations (in the
cases the exact results are not available in the literature). From the visual inspection of
figures 4 and 5, it readily follows that (7.7) provides an accurate representation of the force
on a spherical body valid for gaps δ = (h − Rp) � Rp or even smaller, if one considers all
the terms for β‖ and β⊥ entering (7.8) and (7.9). Further improvements of the expansion,
taking into account higher-order Faxén operators, could increase the range of validity of
the theoretical expressions to smaller gap values.

It can be observed that there is a larger error in the solution obtained by the Swan and
Brady approximation (6.34) to the order O(Rp/h)3 compared with the solution obtained by
the Brenner approximation (6.22) to the order O(Rp/h), despite the higher-order reflection
considered. This additional error arises from the negative terms in the denominator of the
expressions (7.8) and (7.9), associated with the dipole potential of the Stokes solution for
the sphere translating in the unbounded fluid, which induce a slight ‘boost’ upon reflection
by the plane.
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λ̂ = 1 λ̂ = ∞

Figure 4. Dimensionless force on a spherical body translating perpendicularly to a planar wall for different
slip lengths on the surface of the sphere. Solid black lines represent exact results obtained by solving the
equations provided by Goren (1979), red dashed-dotted lines depict (7.7) taking into account all the terms,
green dashed lines represent (7.7) where the terms O(Rp/h)4 are neglected (corresponding to the approximated
relation (6.34)) and blue dotted lines represent (7.7) where the terms O(Rp/h)3 are neglected (corresponding to
the approximated relation (6.22)). For complete slip (λ̂ = ∞), blue dotted and green dashed lines are practically
coincident.

According (6.13), the torque on the translating sphere with velocity U truncated to K =
3 reads

T = T [∞] + [M(0:3)]t([I(0:3,0:3)] − [N(0:3,0:3)])−1[L(0:3)] + TcO
(
�b

�d

)5

. (7.11)

Substituting the expressions for the entries of the N-matrix and considering the error
estimated in Appendix C.2 (or, equivalently, considering the (7.20) and the symmetry of
the grand-resistance matrix), after some algebra one obtains

T = RpF [∞]

⎛
⎝ 0 −γ 0
γ 0 0
0 0 0

⎞
⎠+ O

(
Rp

h

)6

(7.12)

or, by (7.5),

T = −6πμR2
p

(
1 + 2λ̂

1 + 3λ̂

)
U

⎛
⎝ 0 −γ 0
γ 0 0
0 0 0

⎞
⎠+ O

(
Rp

h

)6

, (7.13)
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Figure 5. Dimensionless force on a spherical body translating parallel to a plane wall for different slip lengths
on the surface of the sphere. The solid black line represents the exact no-slip result obtained by solving the
equations provided by O’Neill (1964), black circles are the results of FEM simulations, red dashed-dotted lines
depict (7.7) taking into account all the terms, green dashed lines represent (7.7) where the terms O(Rp//h)4 are
neglected (corresponding to the approximated relation (6.34)) and blue dotted lines represent (7.7) where the
terms O(Rp/h)3 are neglected (corresponding to the approximated relation (6.22)). For complete slip (λ̂ = ∞),
blue and green dashed lines are practically coincident.

where

γ = 1
8

(
Rp

h

)4
(

1

(1 + 2λ̂)(1 + 3λ̂)
− 3

8

(
Rp

h

)
(1 + 5λ̂+ 15λ̂2)

(1 + 3λ̂)2(1 + 5λ̂)

)
. (7.14)

As expected from the dimensional analysis performed in § 6.1 (6.23), the K = 0-order
approximation cannot predict the leading-order term O(Rp/h)4 as in (7.13)–(7.14). In fact,
since the coupling matrix C of a sphere in the unbounded fluid is vanishing, the torque on
a translating sphere near a plane would vanishing according to this approximation. Using
the approximation (6.35) it is possible to obtain correctly the leading-order term O(Rp/h)4

in (7.14), but not the term O(Rp/h)5.
The results obtained by (7.14) truncated to the orders O(Rp/h)4 and O(Rp/h)5 are

compared in figure 6 with the exact solutions provided by O’Neill (1964) for no-slip
BCs assumed on the surface of the sphere and with FEM simulations performed for
λ̂ = 0.1, 0.5, 1.
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Figure 6. Dimensionless torque on a spherical body translating parallel to a plane wall for different slip lengths
on the surface of the sphere. The solid black line represents the exact no-slip result obtained by solving
the equations by O’Neill (1964), black circles are the results of FEM simulations, red dashed-dotted lines
correspond to (7.14) taking into account all the terms and green dashed lines correspond to (7.14) neglecting
the term O(Rp/h)5, corresponding to the approximated relation (6.35).

7.2. Torque and force on a rotating sphere near a plane wall
The torque truncated to K = 4 on a sphere rotating near a plane wall is obtained by
considering

T = T [∞] + [M(0:4)]t([I(0:4,0:4)] − [N(0:4,0:4)])−1[L(0:4)] + TcO
(
�b

�d

)6

, (7.15)

where M (0) = M (2) = M (4) = 0 and, as shown in Appendix C.3,

M (1) = T [∞]ε

2
. (7.16)

In Appendix C.3, we show that M (3), L(3), N (q,3) and N (3,q) (with q = 0, 1, 2, 3) are
immaterial for this approximation order and, hence, they can be assumed to be zero in
(7.15). By substituting the other entries of the N-matrix, we obtain

T = T [∞]

⎛
⎝ 1 + ν‖ 0 0

0 1 + ν‖ 0
0 0 1 + ν⊥

⎞
⎠+ O

(
Rp

h

)6

, (7.17)
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Figure 7. Dimensionless torque on a spherical body rotating with angular velocity perpendicular to a plane
wall for different slip lengths on the surface of the sphere. The solid black line represents the exact no-slip
result obtained by solving the equations provided by Dean & O’Neill (1963), black circles are the results of
FEM simulations and red dashed-dotted lines represent (7.17) which, in the present case, is equivalent to (6.35).

where

ν‖ = 15R3
p

16h3

(
1

1 + 3λ̂

)
(7.18)

and

ν⊥ = R3
p

8h3

(
1

1 + 3λ̂

)
. (7.19)

The result expressed by (7.17) can be obtained by applying the extended Swan and Brady
approximation (6.35). The graph of (7.17) is depicted in figures 7 and 8, compared with
the exact expressions for a sphere with no-slip BCs provided by Jeffery (1915) and Dean
& O’Neill (1963) and with FEM simulations for λ̂ = 0.1, 0.5, 1.

The force acting on a rotating sphere near a plane wall can be deduced from

F = [M(0:4)]t([I(0:4,0:4)] − [N(0:4,0:4)])−1[N(0:4,0)] + FcO
(
�b

�d

)6

. (7.20)
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Figure 8. Dimensionless torque on a spherical body rotating with angular velocity parallel to a plane wall for
different slip lengths on the sphere. The solid black line represents the exact no-slip result obtained by solving
the equations provided by Dean & O’Neill (1963), black circles are the results of FEM simulations and red
dashed-dotted lines represent (7.17) which, in the present case, is equivalent to (6.35).

The same result admits a more straightforward derivation by considering the linearity
between F and ω expressed by the coupling matrix C̄

F = −ωC̄ + O
(

Rp

h

)6

. (7.21)

Enforcing the symmetry of the grand-resistance matrix (see Appendix A in Procopio &
Giona (2022) or for the case of a body in a confined fluid considering Navier-slip BCs),
we have

C̄ = D̄t, (7.22)

where D̄ is the coupling matrix entering the expression T = −UD̄ in (7.13). Therefore,

F = −6πμR2
p

(
1 + 2λ̂

1 + 3λ̂

)
ω

⎛
⎝ 0 γ 0

−γ 0 0
0 0 0

⎞
⎠+ O

(
Rp

h

)6

, (7.23)
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Figure 9. Schematic representation of a prolate spheroid near a plane wall. The prolate spheroid translates
with velocity U , forming an angle φ with the major axis of the spheroid. Here F d is the hydrodynamic drag
force experienced by the body aligned with U and F L the hydrodynamic lift force orthogonal to U .

where γ is given in (7.14). Analogously to (7.12)

F = T [∞]

Rp

⎛
⎝ 0 δ 0

−δ 0 0
0 0 0

⎞
⎠+ O

(
Rp

h

)6

, (7.24)

where

δ =
(

1 + 2λ̂
) 3γ

4
. (7.25)

8. Force on a translating prolate spheroid near a plane wall

In this section, we investigate the effect of the shape and of the orientation of a body in a
confined fluid on the hydrodynamic interactions between the body and the confinement
in light of the theory developed here. To this aim, we consider a prolate spheroid
translating in the Stokes fluid with velocity U near a plane wall, at distance h between
its centroid and the plane. Unlike the spherical case addressed in the previous section,
two additional geometrical parameters should be introduced: the eccentricity e of the
spheroid, accounting for the effects of the shape of the body on its hydromechanics, and
the angle θ between the symmetry axis of the prolate spheroid and the plane (see figure 9),
accounting for the effects of the orientation of the body. In order to highlight these effects,
the translational motion of the spheroid without rotation is considered, although a full
hydromechanic analysis of this system can be developed within the present approach.
To obtain the hydrodynamic force acting on the spheroid, we employ the approximate
expressions obtained in §§ 6.1 and 6.2, and we show that, owing to these approximations,
accurate expressions for the hydromechanics of particles in confined fluid can be derived
solely from the knowledge of the unbounded resistance matrix or the lower-order Faxén
operators.

We consider a prolate spheroid defined by the surface equation

ζ 2
1

a2 + ζ 2
2 + ζ 2

3
b2 = 1, (8.1)

where (ζ1, ζ2, ζ3) is a Cartesian coordinate system with origin at the centroid, a the
semi-length of the major axis and b the semi-length of the minor axis (see figure 9).
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The resistance matrix of a prolate spheroid with no-slip BCs in the unbounded fluid,
expressed in the coordinate system (ζ1, ζ2, ζ3), is R = 16πμcA(e) (Kim & Karrila 2005)
where e is the eccentricity of the spheroid, c = ae the focal length and

A(e) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e2

(1 + e2) log
(

1 + e
1 − e

)
− 2e

0 0

0
2e2

(1 − 3e2) log
(

1 + e
1 − e

)
− 2e

0

0 0
2e2

(1 − 3e2) log
(

1 + e
1 − e

)
− 2e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(8.2)

Substituting the resistance matrix into (6.14), the first-order approximation is
straightforward

F = F [∞]
(

I + 2
c
h

w (θ)A(e)
)−1 + O

(a
h

)2

, (8.3)

where F [∞] = −16πμcU · A(e) and w(θ), having as its entries the regular part of the
Green function −Wαβ(ζ/h, ζ/h) at the position of the centroid ζ = (0, 0, 0), reads

wαβ(θ) = −

⎛
⎜⎜⎜⎜⎝

3
8
(3 − cos(2θ)) 0

3
8

sin(2θ)

0
3
4

0
3
8

sin(2θ) 0
3
8
(3 + cos(2θ))

⎞
⎟⎟⎟⎟⎠ . (8.4)

To obtain the higher-order terms providing the hydrodynamic force, we can employ the
zeroth-order Faxén operator for the prolate spheroid available in the literature (Hasimoto
1983; Kim 1985; Kim & Karrila 2005) by using the extended Swan and Brady relations
obtained in § 6.2. Specifically, the zeroth-order Faxén operator can be expressed as

Fβγ = Rβγ
16πμc

∫
Γ

dΓ

(
1 + (1 − e2)(c2 − ζ 2

1 )�ζ

4e2

)
, (8.5)

where �ζ is the Laplacian acting on the coordinates (ζ1, ζ2, ζ3), the curve Γ is the line
segment between the two foci at ζ1 = ±c of the spheroid with parametrisation

Γ (s) =
⎧⎨
⎩
ζ1(s) = s,
ζ2(s) = 0,
ζ3(s) = 0,

s ∈ [−c, c] (8.6)

and dΓ ≡ ds is its measure element.
The geometrical moments entering the Faxén operator (8.5) are expressed with respect

to the centroid (being the centre of hydrodynamic reaction) as pole. For the symmetry of
the spheroid, a rotation around this point is uncoupled to the translations, thus providing
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C = 0. Therefore, we can use (6.34) assuming ω = 0, which, after some algebra, attains
the more compact form

F = −UR(I − R−1Φ)−1 + O
(a

h

)4
. (8.7)

From (8.7), in order to obtain the hydrodynamic force acting on the spheroid by (8.7),
it is necessary to evaluate the matrix Φ defined by (6.29), which, considering the Faxén
operator (8.5), reads

Φβγ = −Rδ′βRδγ
32πμc2

[∫ c

−c
ds′
∫ c

−c
ds Wδ′δ

(
ζ ′(s′), ζ (s)

)

+ 1 − e2

4e2

∫ c

−c
ds′
∫ c

−c
ds (c2 − s2)�ζWδ′δ

(
ζ ′(s′), ζ (s)

)

+ 1 − e2

4e2

∫ c

−c
ds′
∫ c

−c
ds (c2 − s′2)�ζ ′Wδ′δ

(
ζ ′(s′), ζ (s)

)]+ O(a/h)4, (8.8)

where the primed subscripts δ′ = 1, 2, 3 refer to the coordinate system at the point ζ ′.
Substituting (8.8) into (8.7), we finally obtain

F = F [∞]
(

I + c
2h

P
( c

h
, θ
)

A(e)+
( c

h

)3
(

1 − e2

8e2

)
Q
( c

h
, θ
)

A(e)
)−1

+ O
(a

h

)4

,

(8.9)
where the entries of P(c/h, θ) and Q(c/h, θ) are, respectively,

Pδ′δ
( c

h
, θ
)

=
∫ 1

−1
ds′
∫ 1

−1
ds Wδ′δ

(
ζ ′(s′)

c
h
, ζ (s)

c
h

)
(8.10)

Qδ′δ
( c

h
, θ
)

=
[∫ 1

−1
ds′
∫ 1

−1
ds(1 − s2)�ζWδ′δ

(
ζ ′(s′)

c
h
, ζ (s)

c
h

)

+
∫ 1

−1
ds′
∫ 1

−1
ds(1 − s′2)�ζ ′Wδ′δ

(
ζ ′(s′)

c
h
, ζ (s)

c
h

)]
. (8.11)

To perform the derivatives and integrals along the segment between the foci of the spheroid
entering (8.8) (or the normalised integrals entering (8.10) and (8.11)) independently of
the orientation of the prolate spheroid, it is fundamental to employ the representation of
the Green function invariant both at the field and the pole points, corresponding to the
‘bi-invariant’ form of the regular part of the Green function in the semi-space obtained in
Procopio & Giona (2023)

Wbβ(x, ζ ) = Sbβ(x − ζ ∗)− (ζ ∗ − ζ ) · n Jβγ ∗

×
[

nδ∗∇γ ∗Sbδ∗(x − ζ ∗)− (ζ ∗ − ζ ) · n
2

�ζ ∗Saγ ∗(x − ζ ∗)
]
, (8.12)

with x ≡ ζ ′ and where n = (sin θ, 0, cos θ) is the normal to the plane wall inward to the
fluid, J = I − 2n ⊗ n the mirror operator (that in Procopio & Giona (2023) has been
shown to coincide with the parallel propagator between the fluid space and the reflected
space), ζ ∗ = J · ζ − 2h n is the reflected point by the plane and the starred subscripts,
such as β∗, refers to the coordinate system at the mirror point (ζ ∗

1 , ζ
∗
3 , ζ

∗
3 ).
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Solving the integrals (8.10) and (8.11) with the regular part of the Green function (8.11)
(normalised accordingly) and expanding the results in Taylor series of (c/h), we obtain

F =16πμcUA(e)
(

I+ c
2h

p0 (θ)A(e)+
( c

2h

)3
(

p2(θ)+
1 − e2

4e2 q0(θ)

)
A(e)

)−1

+O
(a

h

)4

,

(8.13)
where p0(θ) = 4 w(θ),

p2 =

⎛
⎜⎜⎜⎜⎝

60 cos (2θ)− 9 cos (4θ)+ 5
96

0
3
4

sin θ cos3 θ

0
9 cos (2θ)+ 1

24
0

3
4

sin θ cos3 θ 0 cos (2θ)+ 9 cos(4θ)+ 55
96

⎞
⎟⎟⎟⎟⎠

(8.14)
and

q0 =

⎛
⎜⎜⎜⎜⎝

20
3

− 4 cos(2θ) 0 8 sin(θ) cos(θ)

0
8
3

0

8 sin(θ) cos(θ) 0 4 cos(2θ)+ 20
3

⎞
⎟⎟⎟⎟⎠ . (8.15)

From (8.13), we can evince that the second-order term O(a/h)2 in the inverse matrix
entering the expression of the force is vanishing for any orientation θ of the prolate
spheroid. Therefore, comparing this result with (8.3), we can conclude that the error
committed by using the K = 0 approximation is O(a/h)3, hence smaller than O(a/h)2
expected from general considerations.

When particle dynamics is considered, it might be useful to express the force in the fixed
reference frame of the plane. Specifically, considering the coordinate system with origin
on the plane (see figure 9)

⎧⎪⎨
⎪⎩
ξ1 = ζ1 cos θ − ζ3 sin θ,
ξ2 = ζ2,

ξ3 = ζ1 sin θ + ζ3 cos θ − h,
(8.16)

the entries of the matrices p0(θ), p2(θ), q0(θ), expressed in this system, read

p0(θ) =
⎛
⎝ −3 0 0

0 −3 0
0 0 −6

⎞
⎠ , (8.17)
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p2(θ) =

⎛
⎜⎜⎜⎜⎝

11 cos(2θ)+ 3
24

0 −sin(2θ)
6

0
9 cos(2θ)+ 1

24
0

−sin(2θ)
6

0
7 cos(2θ)+ 3

6

⎞
⎟⎟⎟⎟⎠ , (8.18)

q0(θ) =

⎛
⎜⎜⎜⎜⎝

8
3

0 0

0
8
3

0

0 0
32
3

⎞
⎟⎟⎟⎟⎠ . (8.19)

An expression for the mobility, conceptually analogous to (8.13), has been proposed by
Mitchell & Spagnolie (2015) using a Swan and Brady approach, directly extended to the
ellipsoids. However, it can be observed that the entries of the mobility matrix reported
in Mitchell & Spagnolie (2015) do not match the entries of the mobility of the sphere
obtained by Swan & Brady (2007) (or obtainable by inverting the resistance matrix
provided in § 7.1) in the limit of vanishing eccentricity e → 0. On the other hand, by
inverting the resistance matrix entering (8.13), the limit of spherical bodies is correctly
matched. For instance, the velocity of the spheroid U along the plane under the effect of
an external force Fext parallel to the plane reads

6πμaU
Fext = 3

8

(
cos2(θ)

eA11(e)
+ sin2(θ)

eA33(e)

)
−
(a

h

) 9
16

+
(a

h

)3
(
11e2 cos(2θ)− 13e2 + 16

)
128

,

(8.20)

where A11(e) and A33(e) are the entries of the matrix A(e) in (8.2) in the coordinate system
(ζ1, ζ2, ζ3). Since eA11(e) → 3/8 and eA33(e) → 3/8 in the limit e → 0, (8.20) yields the
mobility

6πμaU
Fext = 1 −

(a
h

) 9
16

+
(a

h

)3 1
8

(8.21)

of a sphere in this limit. Equation (8.20) differs from that provided by Mitchell &
Spagnolie (2015) for terms O(a/h)0 and O(a/h)3. The discrepancy is likely due to the fact
that the relations derived by Mitchell & Spagnolie (2015) were obtained by differentiating
only at the field point of the Green function to obtain higher-order terms, also in
those cases the derivative at the pole point was necessary (for example to obtain terms
∇β∇β ′W(ξ , ξ ′)), since the pole point cannot be differentiated in the Blake’s formulation
(Blake 1971) of the Green function bounded by a no-slip plane (see Liron & Mochon
(1976) or Spagnolie & Lauga (2012) for a discussion on this point). As regards this
technical but important issue, bitensorial calculus represents the proper geometrical setting
for addressing the differentiation problems, owing to its bi-invariance both with respect to
field and pole point coordinates.

The comparison of the theoretical relations (8.3) and (8.13) and the numerical FEM
simulations depicted in figures 10 and 11, shows that the theoretical approximated relations
provide accurate results up to h ≈ 2a, independently of the orientation of the spheroid.
More specifically, figure 10 depicts the drag force Fd (hence, the force aligned with the
translatory direction, see figure 9) experienced by the spheroid translating with velocity
parallel to the plane along the axis ξ1 and intensity U. It can be observed that, for small
values of the eccentricity e, the approximation (8.13), truncated to the order O(a/h)4,
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provides a worse approximation with respect to (8.3) truncated to a lower order. This
phenomenon could indeed be expected by considering the case of a spherical body
addressed in § 7.1, where it is shown that the approximation for the drag force is improved
once the next correction term O(Rp/h)4 is accounted for. However, it is possible to
observe in figure 10 that, for higher values of the eccentricity e, the error decreases with
the inclusion of the next correction term O(a/h)3. As shown in figure 11 for the lift
force (i.e. the force orthogonal to the translation of the body, see figure 9) experienced
by prolate spheroid moving parallel to the plane along the axis ξ1, (8.13) provides a
better approximation with respect to the lower-order truncation (8.3) for any value of
eccentricity e.

In contrast to the case of a spheroid in a unbounded flow, the plane wall generates a
lift force F L even when the translation occurs along the principal axes of the spheroid, as
shown in figure 12(a). This implies that, if we want to move the spheroid along its principal
axes, the external force applied to it cannot be aligned with the axes itself. Specifically, the
lift force always opposes the approach of the body to the plane, pointing towards the plane
when the direction of motion points out of the plane and vice versa. In figure 12(b–d), it
is possible to observe that the hydrodynamic effects of the plane wall on the resistance
of the spheroid determine a lift force that may have an opposite sign with respect to the
case of the unbounded flow. This occurs when the orientation of the spheroid is θ = π/2
or θ = π/4, whereas for θ = 0 the spheroid experiences a lift force in the same direction
of the unbounded case. This implies that if the spheroid is perpendicular to the plane and
we want to move it in a direction forming an angle φ = π/4 with its axis of symmetry, an
external force in a direction forming a smaller angle with the axis should be applied. This
is opposite to the unbounded case, where the force direction must have a greater angle.

9. Conclusions

The aim of this article was to provide useful mathematical–physical tools for studying the
hydromechanics of bodies in confined fluids in its general setting.

By decomposing the hydrodynamics of a body in a confined Stokes fluid into two
simpler problems, separately related to the body in the unbounded fluid, and to the
confinement in the absence of the body, the method developed in this article allows us
to overcome the typical difficulties arising from the intrinsic complexity of the geometries
of such systems.

Two main significant advantages emerge straightforwardly from this decomposition,
mainly represented by the mathematical factorisations in (4.14) and (5.17). (i) The
decomposition provides a simpler and more systematic analysis of the problems
concerning the hydrodynamics of bodies in confined fluids, without requiring special
symmetries, as shown in the archetypal examples of a sphere near a plane wall reported
in § 7 or of a spheroid near a plane wall in § 8, where the hydrodynamic resistance
matrices are derived by simply applying the general equations, without enforcing any
special symmetry of the systems. (ii) The decomposition may represent the theoretical
starting point in the development of new numerical methods. Specifically, it is possible to
collect a widely enough system of Faxén operators for bodies (estimating the geometrical
moments using classical numerical methods) and of multipole fields for the confinements
(solely the value of the regular part at the pole is necessary) to obtain, by combining them,
a large number of solutions of hydromechanics problems related to bodies suspended in
confined fluids. In this way, it is possible to reduce significantly either the computational
cost or the amount of collected data necessary for the numerical solution of the
hydromechanic problem. In addition, in the cases when the geometrical moments or
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Figure 10. Dimensionless drag force acting on prolate spheroids with eccentricity e = 0.3, 0.6, 0.9 translating
parallel to the plane wall along the axis ξ1 with intensity U as a function of the orientation angle θ (see figure 9)
for different distances h between the centroid and the plane wall. Symbols represent FEM simulations, green
dashed lines the O(a/h)3 approximation (8.3) and red lines the O(a/h)4 approximation (8.12).
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Figure 11. Dimensionless lift force acting on prolate spheroids with eccentricity e = 0.3, 0.6, 0.9 translating
parallel to the plane wall along the axis ξ1 with intensity U as a function of the orientation angle θ (see figure 9)
for different distances h between the centroid and the plane wall. The arrows indicate increasing distances
h/a = 2, 4, 6,∞. Symbols represents FEM simulations, black dashed lines the unbounded case, green dashed
lines the O(a/h)3 approximation (8.3) and red lines the O(a/h)4 approximation (8.12).
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Figure 12. Dimensionless lift force acting on a prolate spheroid with eccentricity e = 0.5 at distance h = 3a.
Panel (a) depicts the lift force acting on a spheroid translating along its principal axis as a function of the
orientation angle θ . Panels (b–d) depict the lift force as a function of the angle φ between the velocity of
the body and its symmetry axis (see figure 9) for different orientations of the spheroid. Specifically, in panel
(b) the spheroid is normal to the plane, in panel (c) forms an angle θ = π/4 with the plane and in panel (d) is
parallel to the plane. The black dashed lines represent the force on prolate spheroids in the unbounded flow, the
green dashed lines the O(a/h)3 approximation (8.3) and the red lines the O(a/h)4 approximation (8.12).

the Green function are not available, the present approach leads to efficient numerical
strategies. For instance, consider the case of a spheroid near a plane wall as addressed
in § 8, and suppose to estimate the 6 × 6 resistance matrix for the force and the torque
by FEM simulations (or, equivalently, by other numerical methods such as BEM). With
the eccentricity of the spheroid fixed, assume we are interested in the entries of the
resistance matrix for all the positions from ranging h = a to h = 100a and for all the
orientations from θ = 0 to θ = π/2 with a resolution δh = δθ = 10−2. To this end, 6
FEM simulations for each configuration are needed, providing a total number of 9 386 148
FEM simulations. On the other hand, assuming that no geometric moments are known for
the spheroid (without considering the symmetries of the body), we need less then 1092
FEM simulations of the unbounded (one for each ambient flow) in order to obtain the
geometrical moments mααmββn(ξ , ξ) up to the order m = n = 5 (for any order n of
the geometrical moments, we need, in principle, 3n+1 different ambient flows) providing
the entries of the resistance matrix truncated to an order O(a/h)10 according to (B5). This
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number reduces to 126 if the symmetry of the spheroids is enforced (for any order n of the
geometrical moments, we need, in principle, 2n+1 different ambient flows).

Another non-secondary advantage provided by the explicit expressions obtained in
this article is that the result found do not depend on the specific BCs chosen, provided
they are linear and satisfy BC reciprocity. This can be helpful in dealing with complex
combinations of BCs, such as in systems involving Janus particles or stick–slip surfaces.
Furthermore, by this approach, it is possible, as addressed in §§ 6.1 and 6.2, to extend
and generalise the classical approximated expressions for the grand-resistance matrix of
bodies with no-slip BCs in confined fluids to the more general case of arbitrary linear
reciprocal BCs.

Obviously, the infinite matrices entering the exact solution (4.14) and (5.17), should be
necessarily truncated/approximated in all the practical calculations, leading to unavoidable
truncation errors that have been thoroughly analysed and estimated in § 6. However, as
addressed in § 7 for the case of a sphere translating and rotating near a plane wall, accurate
results can be achieved, even for gaps smaller than the characteristic length of the body,
by considering Faxén operators up to the second order.

Unfortunately, as shown in Appendix A, although the convergence of the reflection
method is ensured for gaps δ � 1.65 �b, the reflection method could fail in describing
hydrodynamic problems in the lubrication limit for vanishing gaps δ → 0. It would be
interesting, to test further the range of validity of the reflection method by identifying the
exact critical gap starting from which the reflection method diverge in prototype system
(such as a sphere near a plane). Explicit expressions provided in this work are an invaluable
tool to achieve this aim, since they allow to compute even higher-order terms entering the
characteristic expressions of the reflection method. A possible approach to overcome the
reflection method limit, related to the convergence in the small gap limit, is to construct the
total solutions by matching the reflection solution with the lubrication solution, applying
matching methods (see, for example, Jeffrey & Onishi 1984; Swan & Brady 2010). This
method is widely employed in Stokesian dynamics (Guazzelli & Morris 2012), wherein the
interaction between multiple particles is constructed based on the hydrodynamic solution
in the far field between two isolated particles and, next, matched with lubrication solutions.
Making use of (4.15), (5.9), (5.13) and (5.17), the interactions between two particles in
the far field can be derived even in the confined case (i.e. considering two particles in a
confined flow). This potentially paves the way for extending Stokesian dynamics methods
to confined cases as well.

In any case, the detailed description of the hydrodynamics of two surfaces getting
in touch, for which many questions are still open (Procopio & Giona 2022), is very
complex and would require the hydrodynamic description to be complemented with other
microscopic factors (such as the accurate estimate of the slip length or the inclusion of
Casimir (Klimchitskaya, Mohideen & Mostepanenko 2009) and electrostatic effects), and
this goes beyond the mere lubrication analysis.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.651.
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Appendix A. Analysis of series convergence

In this Appendix the convergence of the series introduced in §§ 3 and 4 is investigated.
To begin with, let us consider the convergence of the series (3.12) yielding the first two

terms v[1](x)+ v[2](x) in the reflection formula (3.1). Equation (3.12) can be compactly
expressed in matrix form as

v[1](x)+ v[2](x) = [M]t[G]
8πμ

. (A1)

It is easy to verify that the row by column multiplication [M]t[G] corresponds to the sum
of products between the elements M (m) and G(m), i.e.

[M]t[G] =
∞∑
m

(
M (m)

)t G(m)

m!
(A2)

and using the Cauchy–Schwarz inequality we have

∣∣[M]t[G]
∣∣ =

∣∣∣∣∣
∞∑
m

(
M (m)

)t G(m)

m!

∣∣∣∣∣ ≤
∞∑
m

∣∣∣(M (m)
)t G(m)

∣∣∣
m!

≤
∞∑
m

∥∥M (m)
∥∥ ∥∥G(m)

∥∥
m!

, (A3)

where ‖·‖ represents the norm of a matrix.
In order to obtain an upper bound for the rightmost term in (A3), an estimate for the

norms ‖M (m)‖ and ‖G(m)‖ is required. According to the reflection procedure followed in
§ 3, the moments Mααm(ξ) refer to a body with characteristic length �b, immersed in a
unbounded ambient flow u(x), with characteristic velocity Uc. Therefore, by dimensional
analysis, the force field distribution ψ(x), matching the BCs according to (2.12), and the
position vector (x − ξ) can be normalised as follows:

(x̂ − ξ̂) = (x − ξ)

�b
, ψ̂(x) = ψ(x)

μUc

�2
b

. (A4)

By definition of the moments (2.13), the entries of the moments can be normalised by

M̂ααm(ξ) = Mααm(ξ)

μUc�
m+1
b

(A5)

so that M̂ααm(ξ) ∼ O(1), and we can define the characteristic velocity Uc such that
|M̂ααm(ξ)| ≤ 1, strictly. Therefore, if M̂ (m) is the (m + 1)-dimensional vector with
M̂ααm(ξ) as its entries, we have

∥∥M (m)
∥∥ =

∥∥∥M̂ (m)

∥∥∥μUc�
m+1
b ≤ 3(m+1)/2μUc�

m+1
b . (A6)

On the other hand, since the leading term in the Green function derivatives (2.10), is the
derivative of the Stokeslet, we can normalise the entries of the mth-order derivative of the
Green function evaluated at the field point by a characteristic distance �f between the body
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and the field point as

∇̂αmĜaα(x, ξ) = �m+1
f ∇αmGaα(x, ξ) (A7)

with �f > �b defined so that

∥∥G(m)
∥∥ =

∥∥∥Ĝ(m)

∥∥∥
�m+1

f

≤ 3(m+1)/2

�m+1
f

, (A8)

with Ĝ(m) being the vector admitting ∇̂αmĜaα(x, ξ) as its entries.
Therefore, since �f > �b, the velocity field v[1](x)+ v[2](x) is bounded by

∣∣∣v[1](x)+ v[2](x)
∣∣∣ =

∣∣[M]t[G]
∣∣

8πμ
≤ Uc

8π

∞∑
m

3m+1

m!

(
�m+1

b

�m+1
f

)
= Uc

8π

(
3
�b

�f

)
e(3�b/�f ).

(A9)
Next, consider the velocity field v[3](x)+ v[4](x), given in matrix form by (4.8)

v[3](x)+ v[4](x) = [M]t[N][G]
8πμ

, (A10)

for which, analogously to the inequalities (A3), we have

∣∣[M′]t[N][G]
∣∣ =

∣∣∣∣∣
∞∑
m

∞∑
n

(
M (m)

)t N (m,n)G(n)

m!n!

∣∣∣∣∣ ≤
∞∑
m

∞∑
n

∣∣∣(M (m)
)t N (m,n)G(n)

∣∣∣
m!n!

≤
∞∑
m

∞∑
n

∥∥M (m)
∥∥ ∥∥N (m,n)

∥∥ ∥∥G(n)
∥∥

m!n!
. (A11)

By definition (3.17), the entries of the matrices N (m,n) are nth-order moments evaluated for
a body immersed in an ambient flow corresponding to the regular part of the mth derivative
of the Green function. Since the regular part of the Green function is a disturbance field
for the Stokeslet with pole in the body generated by the walls of the confinement, its
characteristic magnitude can be considered as that of a Stokeslet with pole at distance
2�d, �d being the characteristic distance between the body and the nearest walls from the
body. Thus, the characteristic magnitude of its mth-order derivatives can be estimated as
W (m) = O(1/(2�d)

m+1), hence, by the same arguments used for Mααm , we have

N̂ααmββn(ξ) = Nααmββn(ξ)

μW(m)
c �n+1

b

= Nααmββn(ξ)

μ�n+1
b

(2�d)m+1

. (A12)

Therefore, given that ‖N̂ (m,n)‖ ∼ O(1) is the norm of the matrix with normalised entries
N̂ααmββn(ξ), there exists a constant C(1)m,n, such that |‖N̂ (m,n)‖| ≤ C(1)m,n, and

∥∥N (m,n)
∥∥ =

∥∥∥N̂ (m,n)

∥∥∥ (�b)
n+1

(2�d)m+1 ≤ C(1)m,n3(m+n+2)/2 (�b)
n+1

(2�d)m+1 . (A13)

1000 A11-43

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.651


G. Procopio and M. Giona

By considering the inequalities (A6), (A8) and (A13), the velocity field v[3](x)+ v[4](x)
is bounded by∣∣∣v[3](x)+ v[4](x)

∣∣∣ =
∣∣[M]t[N][G]

∣∣
8πμ

≤ C(1)m,n
Uc

8π

(
3�b

�f

)(
3�b

2�d

) ∞∑
m

∞∑
n

1
m!n!

(
3�b

�f

)m (3�b

2�d

)n

= C(1)
Uc

8π

(
3�b

�f

)
e3�b/�f

(
3�b

2�d

)
e3�b/2�d , (A14)

where C(1) = supm,n C(1)m,n ∼ O(1). Iterating the same procedure for all k = 0, 1, 2, 3, . . .,
we have∣∣∣v[2k+1](x)+ v[2k+2](x)

∣∣∣ =
∣∣[M]t[N]k[G]

∣∣
8πμ

≤ C(k)
Uc

8π

(
3�b

�f

)
e3�b/�f

[(
3�b

2�d

)
e3�b/2�d

]k

(A15)

with C(k) ∼ O(1), and because of it, there exists a constant C > 0, such that C(k) < C for
any k. Therefore, for k → ∞, the contribution given by v[2k+1](x)+ v[2k+2](x) to the total
velocity field in (4.8) vanishes only if(

3�b

2�d

)
e3�b/2�d ≤ 1, (A16)

i.e. for
�d � 2.65�b. (A17)

Therefore, if �d = �b + δ, where δ is characteristic length of the gap between the surface
of the particle and the walls of the confinement, the convergence of the method is ensured
for

δ � 1.65�b. (A18)

The convergence analysis developed above establishes a sufficient condition �d � �b,
regardless the geometry of the system, for the convergence of the reflection method
developed in § 3. However, the convergence is not excluded even for smaller distances
and (A17) suggests that it holds for �d ∼ �b. Extending this argument, we can state that
there exist a constant Γ > 0, depending on the geometry of the system and in principle
smaller than the value 2.65 reported in (A17), such that, for

�d > Γ �b (A19)

the reflection method developed in § 3 converges and the velocity field can be represented
in terms of the Faxén operator of the body and the Green function of the confinement by
(4.13).

Appendix B. Scaling analysis of approximate expressions

In this appendix, the approximate expressions reported in §§ 6.1 and 6.2 for forces and
torques acting on a body in a bounded fluid are derived.
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On the theory of body motion in confined Stokesian fluids

B.1. Derivation of velocity fields, forces and torques for K = 0
By (3.17) and (2.17), the entries of N (0,0) can be expressed explicitly in terms of the
geometrical moments,

Nαβ(ξ) = Fγ ′βWγ ′α(ξ
′, ξ)

∣∣
ξ ′=ξ =

∞∑
n=0

mγ ′γ ′
nβ
(ξ ′, ξ)∇γ ′

n
Wγ ′α(ξ

′, ξ)
n!

∣∣∣∣∣
ξ ′=ξ

. (B1)

In order to determine the terms in (B1) that can be neglected once compared with the
truncation error in (6.15), a dimensional analysis of the geometrical moments should be
carried out. Enforcing the linearity of the Stokes equations, the volume force ψ(n)α (x, ξ ′)
in (2.15) can be expressed in terms of a ‘geometrical’ volume force ψαβ ′β ′

n
(x, ξ ′) as

ψ(n)α (x, ξ ′) = 8πμAβ ′β ′
n
ψαβ ′β ′

n
(x, ξ ′) (B2)

by means of which the geometrical moments can be rewritten as

mααmββn(ξ , ξ
′) =

∫
(x − ξ)αmψαβ ′β ′

n
(x, ξ ′) dV(x) ξ , ξ ′ ∈ Vb. (B3)

Considering that

ψ(n)α (x, ξ ′) = μUcO

(
1
�2

b

)
, Aβ ′β ′

n
= UcO

(
1
�n

b

)
, (B4)

we have ψαβ ′β ′
n
(x, ξ ′) = O(� n−2

b ) and thus, by (B3), the geometrical moments scale as

mααmββn(ξ , ξ) = O(�m+n+1
b ). (B5)

Therefore, neglecting in (B1) the terms of N (0,0) of higher order than O(�b/�d), and
indicating with Rαβ = −8πμmαβ the resistance matrix, we obtain

Nαβ(ξ) = −RγβWγα(ξ , ξ)

8πμ
+ O

(
�b

�d

)2

(B6)

so that (6.15) reads

v(x) = u(x)− F [∞]
(

I + W (0)R
8πμ

)−1 G(0)

8πμ
+ UcO

(
�b

�f

)2

. (B7)

Substituting (B6) in (6.16), and performing elementary matrix operations, we obtain the
approximation provided by Brenner (1964a)

F = F [∞]
(

I + W (0)R
8πμ

)−1

+ FcO
(
�b

�d

)2

. (B8)

Considering (6.16), the entries of L(0) are, by definition (5.14),

Lαβ = Tγ ′βWγ ′α(ξ
′, ξ)

∣∣
ξ ′=ξ = εβδδ1Fγ ′δδ1Wγ ′α(ξ

′, ξ)
∣∣
ξ ′=ξ

= εβδδ1

∞∑
n=0

mγ ′γ ′
nδδ1(ξ

′, ξ)∇γ ′
n
Wγ ′α(ξ

′, ξ)
n!

∣∣∣∣∣
ξ ′=ξ

. (B9)

Following the same dimensional analysis developed in (B3)–(B6), and identifying Cβγ =
8πμεβδδ1mγ δδ1(ξ, ξ) as the coupling matrix between forces and rotations of the body in
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the unbounded fluid (Happel & Brenner 1983; Procopio & Giona 2024)

Lαβ = CβγWγα(ξ , ξ)

8πμ
+ O

(
�3

b

�2
d

)
(B10)

and, therefore, considering that W (0) is a symmetric matrix (Ladyzhenskaya 2014;
Pozrikidis 1992), we obtain

T = T [∞] − F [∞]
(

I + W (0) R
8πμ

)−1 W (0)C
8πμ

+ TcO
(
�b

�d

)2

. (B11)

B.2. Derivation of extended Swan and Brady’s approximations
To begin with, let us suppose that the body translates without rotating with velocity U
(therefore u(x) = −U). By (3.9), the velocity field v[2](x), of the order of magnitude
UcO(�b/�d) at the pole ξ , where Uc = |U |, can be obtained exactly by the zeroth-order
Faxén operator

v[2]
α (ξ) = −UβFα′βWαα′(ξ , ξ ′)

∣∣
ξ ′=ξ (B12)

and, hence, the force is exactly given by

F[3]
γ = −8πμFαγ v[2]

α (ξ) = 8πμUβFαγFα′βWαα′(ξ , ξ ′)
∣∣
ξ ′=ξ (B13)

whereas the torque is

T [3]
γ = 8πμTαγ v[2]

α (ξ) = −8πμUβTαγFα′βWαα′(ξ , ξ ′)
∣∣
ξ ′=ξ . (B14)

To obtain the contributions F [5] and T [5] to the force and the torque, it is necessary to
provide an explicit expression for the velocity field v[4](x), which, in turn, implies the
knowledge of the higher-order Faxén operators. From (2.17), (B5) and (B12), we have

v[2]
α (ξ) = UcO

(
�b

�d

)
, ∇βnv

[2]
β (ξ) = UcO

(
�b

�1+n
d

)
, (B15)

hence ∇β1v
[2]
β (ξ)Fα′ββ1Wαα′(ξ , ξ ′) = O(�b/�d)

3 and, approximating the field v[4](ξ) in
(3.14) to the zeroth-order Faxén operator, we get

v[4]
α (ξ) = v

[2]
β (ξ)Fα′βWαα′(ξ , ξ ′)

∣∣∣
ξ ′=ξ

+ O
(
�b

�d

)3

. (B16)

Using (B16) we obtain for the force

F[5]
γ = −8πμFαγ v[4]

α (ξ) = −8πμv
[2]
β (ξ)FαγFα′βWαα′(ξ , ξ ′)

∣∣∣
ξ ′=ξ

+ O
(
�b

�d

)3

(B17)

and for the torque

T [5]
γ = 8πμTαγ v[4]

α (ξ) = 8πμv
[2]
β (ξ)TαγFα′βWαα′(ξ , ξ ′)

∣∣∣
ξ ′=ξ

+ O
(
�b

�d

)3

. (B18)
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By (B13), enforcing the definition of the resistance matrix R

F[3]
γ = Rγαv[2]

α (ξ)+ O
(
�b

�d

)2

, v[2]
α (ξ) = (R−1)αγF[3]

γ + O
(
�b

�d

)2

. (B19)

Substituting (B19) into (B17) and (B18), and using the definitions (6.29)–(6.30), it follows
that

F [5] = F [3]R−1ΦΦΦ + O
(
�b

�d

)3

(B20)

and

T [5] = F [3]R−1Ψ + O
(
�b

�d

)3

. (B21)

Using the same approach, these results can be generalised for k = 2, 3, . . ., obtaining

F [2k+3] = F [2k+1]R−1Φ + o
(
�b

�d

)3

, (B22)

T [2k+3] = F [2k+1]R−1Ψ + o
(
�b

�d

)3

(B23)

and, thus,

F = F [∞] +
∞∑

k=0

F [2k+3] = F [∞] + F [3]
∞∑

k=0

(R−1Φ)k + O
(
�b

�d

)3

, (B24)

T = T [∞] +
∞∑

k=0

T [2k+3] = T [∞] + T [3] + F [3]R−1
∞∑

k=0

(R−1Φ)kΨ + O
(
�b

�d

)3

. (B25)

Considering that F [∞] = −UR, T [∞] = −UC and, from (B13)–(B14), F [3] = −UΦ,
T [3] = −UΨ , we obtain

F = −U
(

R +
(

I −ΦR−1
)−1

Φ

)
+ O

(
�b

�d

)3

(B26)

and

T = −U
(

C +
(

I −ΦR−1
)−1

Ψ

)
+ O

(
�b

�d

)3

. (B27)

The same procedure can be applied to the case the body is rotating with angular velocity
ω, obtaining

F = −ω
(

C t + Ψ t
(

I −ΦR−1
)−1
)

+ O
(
�b

�d

)3

(B28)

and

T = −ω
(
Ω +Θ + Ψ tR−1

(
1 −ΦR−1

)−1
Ψ

)
+ O

(
�b

�d

)3

, (B29)

where Θ is defined by (6.31) and applies for bodies with generic shape in the presence of
reciprocal BCs. In the case of a spherical body, the (m, n)th-order geometrical moments
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mααmββn(ξ , ξ) vanish for m + n odd (which means that m and n are neither both even or
odd). More specifically, the geometrical moments providing the coupling matrix C vanish,
i.e. mαα1β(ξ , ξ) = mαββ1(ξ , ξ) = 0. Therefore, the first-order Faxén operator contributes
to the force F [5] with a term of the order of magnitude O(�b/�d)

4 smaller than the leading
error term considered in (B17) and, hence, the error committed in the approximated the
global force is O(�b/�f )

4 instead of O(�b/�f )
3. Furthermore, since the coupling resistance

matrix vanishes, T [∞] = 0. Hence, the leading-order contribution is provided by T [3],
which can be written in term of the resistance matrix as

T [3] = F [∞]R−1Ψ . (B30)

The next-order contribution T [5] can be evaluated as in (B18), considering that the first
term in the Faxén operator for the torque vanishes, thus

T [5] = F [3]R−1Ψ + O
(
�b

�d

)5

. (B31)

Following the same procedure adopted in (B22)–(B25), we obtain for a spherical body (or,
more generally, for any body for which the unbounded coupling terms vanish)

F = −U
(

R +
(

I −ΦR−1
)−1

Φ

)
+ O

(
�b

�d

)4

(B32)

and

T = −U
(

I −ΦR−1
)−1

Ψ + O
(
�b

�d

)5

, (B33)

whereas for rotations

F = −ωΨ t
(

I −ΦR−1
)−1 + O

(
�b

�d

)5

(B34)

and

T = −ω
(
Ω +Θ + Ψ tR−1

(
1 −ΦR−1

)−1
Ψ

)
+ O

(
�b

�d

)5

. (B35)

Appendix C. Scaling analysis of the entries of the [N ]-matrix for a sphere near a plane
wall

C.1. Force on a translating sphere
From (7.4), it is possible to express the force acting on the translating sphere as

F = F [∞] − [M(0:3)]t[X(0:3,0)] + O
(

Rp

h

)5

= F [∞] − M t
(0)X (0,0) − M t

(1)X (1,0) − M t
(2)X (2,0) − M t

(3)X (3,0) + O
(

Rp

h

)5

, (C1)

where the matrix [X(0:3,0)] = [X (0,0),X (1,0),X (2,0),X (3,0)]t is given by

[X(0:3,0)] =
∞∑

k=0

[N(0:3,0:3)]k[N(0:3,0)] (C2)
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and, thus,

X (m,0) = N (m,0) + [N(m,0:3)]
∞∑

k=0

[N(0:3,0:3)]k[N(0:3,0)], m = 0, 1, 2, 3. (C3)

Since in a constant unbounded flow the first- and third-order moments on a translating
sphere vanish, M (1) = 0, M (3) = 0, whereas M t

(0) = −F [∞], whereas

F [∞] = −6πμRp

(
1 + 2λ̂

1 + 3λ̂

)
U . (C4)

Equation (C1) becomes

F = F [∞] + F [∞]X (0,0) −
M t

(2)X (2,0)

2!
+ O

(
Rp

h

)5

. (C5)

The entries of the vector M t
(2) correspond to the vectorisation according (4.2) of the tensor

−8πμFγαα1α2Uγ = − R2
p

3(1 + 2λ̂)

(
F[∞]
α δα1α2 + λ̂(F[∞]

α1
δαα2 + F[∞]

α2
δαα1)

)
, (C6)

where Fγαα1α2 , evaluated in (Procopio & Giona 2024), is reported in the supplementary
material. The second term within parentheses at the right-hand side of (C6) yields a
vanishing contribution to the total force since, once applied to X (2,0), it provides terms
Nαα1...α...αmββn(ξ , ξ) = 0, vanishing due to the incompressibility of Stokes flows.

Therefore, the vector M (2) can be expressed in matrix form as

M t
(2) = − R2

p

3(1 + 2λ̂)
F [∞]I(0,2), (C7)

where (I(0,2))ij, following the notation developed in § 3, is the matrix collecting the entries
of the tensor δβαδα1α2 by the conversion i ≡ β and j ↔ αα1α2 according to

j =
( 3∑

h=0

αh3h−3

)
− 12, (C8)

thus

I(0,2) =⎛
⎝ 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

⎞
⎠.

(C9)

Considering (C7), the force on the sphere (C5) reads

F = F [∞]

(
I + X (0,0) + R2

p

6(1 + 2λ̂)
I(0,2)X (2,0)

)
+ O

(
Rp

h

)5

. (C10)
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By (C3) and by the dimensional analysis of the entries of the [N]-matrix (see (A12))

X (0,0) = N (0,0) + N2
(0,0) + N (0,1)N (1,0) + 1

2
N (0,2)N (2,0) + N3

(0,0)

+ N (0,0)N (0,1)N (1,0) + N (0,1)N (1,0)N (0,0) + N4
(0,0) + O

(
Rp

h

)5

(C11)

and

X (2,0) = N (2,0) + N (2,0)N (0,0) + O
(

Rp

h

)5

. (C12)

Equations (C10)–(C12), can be equivalently written as

F = F [∞]
(
(I − N (0,0))

−1 + N (0,1)N (1,0) + 1
2

N (0,2)N (2,0) + N (0,0)N (0,1)N (1,0)

+ N (0,1)N (1,0)N (0,0) + R2
p

6(1 + 2λ̂)
I(0,2)(N (2,0) + N (2,0)N (0,0))

)
+ O

(
Rp

h

)5

,

(C13)

where

(I − N (0,0))
−1 =

⎛
⎜⎜⎜⎜⎜⎝

1
1 − N1,1

0 0

0
1

1 − N1,1
0

0 0
1

1 − N3,3

⎞
⎟⎟⎟⎟⎟⎠ , (C14)

with N1,1 and N3,3 reported in (7.2). Finally, using the entries of the matrix N (0,1), N (1,0),
N (0,2), N (2,0), we obtain

F = F [∞]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

1
1 − N1,1

0 0

0
1

1 − N1,1
0

0 0
1

1 − N3,3

⎞
⎟⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Rp
3

16h3(1 + 3λ̂)
0 0

0
Rp

3

16h3(1 + 3λ̂)
0

0 0
Rp

3

4h3(1 + 3λ̂)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

27Rp
4
(

1 + 7λ̂+ 20λ̂2 + 20λ̂3
)

256h4(1 + 3λ̂)2(1 + 5λ̂)
0 0

0
27Rp

4
(

1 + 7λ̂+ 20λ̂2 + 20λ̂3
)

256h4(1 + 3λ̂)2(1 + 5λ̂)
0

0 0 −
9Rp

4
(

1 + 7λ̂− 80λ̂2 − 180λ̂3
)

256h4(1 + 3λ̂)2(1 + 5λ̂)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ O
(

Rp

h

)5

. (C15)

After some algebra, the latter expression can be simplified as (7.7)–(7.9).
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C.2. Torque on a translating sphere
Considering that T [∞] = 0 and M (1) = M (3) = 0, (7.11) becomes

T = [M(0:3)]t[Y(0:3)] + O
(

Rp

h

)5

= M t
(0)Y (0) + M t

(2)Y (2) + O
(

Rp

h

)5

, (C16)

where M (0) and M (2) are given by (C4) and (C7), and

Y (m) = L(m) + [N(m,0:3)]
∞∑

k=0

[N(0:3,0:3)]k[L(0:3)], m = 0, 1, 2, 3. (C17)

Truncating Y (0) and Y (2) up to the order O(Rp/h)5, we have

Y (0) = L(0) + N (0,0)L(0) + N2
(0,0)L(0) + N (0,1)L(1) + 1

2
N (0,2)L(2)

+ N (0,0)N (0,1)L(1) + N (0,1)N (1,0)L(0) + O
(

Rp

h

)5

(C18)

and

Y (2) = L(2) + N (2,0)L(0) + O
(

Rp

h

)5

. (C19)

The leading order neglected in (C18) and (C19) is smaller than that estimated for the
forces, because, for the symmetries of the sphere, the first term in the first-order Faxén
operator vanishes and L(m) ∼ O(R2

p/h
m+2) instead of L(m) ∼ O(R2

p/h
m+1) in the general

case. Therefore, analogously to the expression for the force (C13)

T = −F [∞]
(
(I − N (0,0))

−1L(0) + N (0,1)L(1) + 1
2

N (0,2)L(2) + N (0,0)N (0,1)L(1)

(C20)

+ N (0,1)N (1,0)L(0) + R2
p

6(1 + 2λ̂)
I(0,2)(L(2) + N (2,0)L(0))

)
+ O

(
Rp

h

)6

. (C21)

C.3. Torque on a rotating sphere
The torque on a rotating sphere with angular velocity ω near a plane wall can be evaluated
by using (6.13) with K = 4 and ua(x) = −εabcωb(x − ξ)c as ambient flow. In such ambient
flow, M (2m) = 0 (m = 0, 1, 2 . . .) due to spherical symmetry and, thus,

T = T [∞] + [M(0:4)]t[Y(0:4)] + O
(

Rp

h

)6

= T [∞] + M t
(1)Y (1) + M t

(3)Y (3) + O
(

Rp

h

)6

. (C22)

The entries of the vector M (1) are given by the vectorisation of the tensor

Mαα1(ξ) = −8πμFβ ′αα1εβ ′γ ′δ′ ωγ ′(ξ ′ − ξ)δ′
∣∣
ξ ′=ξ . (C23)
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After some algebra, using the Faxén operator Fβ ′αα1 reported in the supplementary
material,

Mαα1(ξ) = εγαα1T [∞]
γ

2
, (C24)

where

T [∞]
γ = −8πμR3

p ωγ

1 + 3λ̂
. (C25)

Following the notation developed in § 4, (C24) reads

M (1) = T [∞]ε

2
, (C26)

where ε is defined in (5.16).
By (C17), enforcing the scaling error analysis addressed previously, we have

Y (1) = L(1) + N (1,0)L(0) + N (1,1)L(1) + 1
2

N (1,2)L(2) + N (1,0)N (0,0)L(0) + N (1,1)N (1,0)L(0)

+ N (1,1)N (1,0)L(0) + N (1,0)N (0,1)L(1) + N (1,0)N (0,0)N (0,0)L(0) + O
(

Rp

h

)6

. (C27)

Hence, (C22) reads

T = T [∞] + T [∞]ε

2

(
L(1) + N (1,0)L(0) + N (1,1)L(1) + 1

2
N (1,2)L(2) + N (1,0)N (0,0)L(0)

+ N (1,1)N (1,0)L(0) + N (1,1)N (1,0)L(0) + N (1,0)N (0,1)L(1) + N (1,0)N (0,0)N (0,0)L(0)
)

+ M t
(3)Y (3) + O

(
Rp

h

)6

(C28)

according to which, in order to obtain the expression for torque, the quantity M t
(3)Y (3)

should be estimated. The entries of the vector M t
(3) are

Mαα1α2α3(ξ) = −8πμFβ ′αα1α2α3εβ ′γ ′δ′ ωγ ′(ξ ′ − ξ)δ′
∣∣
ξ ′=ξ (C29)

and they can be evaluated starting from the definition of the Faxén operators (2.17),
entailing the knowledge of the geometrical moments of a sphere with Navier-slip BCs. As
obtained in Procopio & Giona (2024), if ξ is the centre of the sphere, mβαα1α2α3(ξ , ξ) = 0
and

mββ1αα1α2α3(ξ , ξ) = − R5
p

30(1 + 5λ̂)(1 + 3λ̂)

×
[(

4 + 12λ̂− 15λ̂2
)
δαβηβ1α1α2α3 +

(
1 + 3λ̂+ 15λ̂2

)
δαβ1ηβα1α2α3

+ 5λ̂(1 + 3λ̂)(δαα1ηββ1α2α3 + δαα2ηββ1α1α3 + δαα3ηββ1α1α2)
]

(C30)

with ηαβγ δ = δαβδγ δ + δαδδβγ + δαγ δβδ . Therefore, since the ambient flow is linear,
higher-order moments do not contribute to M (3) and, thus,

Mαα1α2α3(ξ) = −8πμεβγ δmβδαα1α2α3(ξ , ξ)ωγ . (C31)
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Substituting (C30) into (C31), we have

Mαα1α2α3(ξ) = R2
pT [∞]
γ

10
(1 − 2λ̂)

(
εγαα1δα2α3 + εγαα2δα1α3 + εγαα3δα1α2

)
. (C32)

As regards Y (3), from (C17), performing the scaling error analysis discussed previously,
we obtain

Y (3) = L(3) + N (3,0)L(0) + O
(

Rp

h

)6

(C33)

hence, by definition of L(m) (5.15), the entries of Y (3) are given by

Yβαα1α2α3 = εβδδ1(Nαα1α2α3δδ1(ξ)+ Nαα1α2α3γ (ξ)Nγ δδ1(ξ))+ O
(

Rp

h

)6

. (C34)

Due to the harmonicity of the vorticity of Stokes flows and the reciprocal symmetry of the
Green function Wθ ′α(ξ

′, ξ) = Wαθ ′(ξ , ξ ′) (Pozrikidis 1992)

εγαα1δα2α3Nαα1α2α3δδ1(ξ) = Fθ ′δδ1 �ξ εγαα1∇α1Wθ ′α(ξ
′, ξ)

∣∣
ξ ′=ξ = 0. (C35)

Therefore, the entries of M t
(3)Y (3) are vanishing

εβδδ1 Mαα1α2α3(ξ)(Nαα1α2α3δδ1(ξ)+ Nαα1α2α3γ (ξ)Nγ δδ1(ξ))) = 0 (C36)

and (C28) becomes

T = T [∞] + T [∞]ε

2

(
L(1) + N (1,0)L(0) + N (1,1)L(1) + 1

2
N (1,2)L(2) + N (1,0)N (0,0)L(0)

+ N (1,1)N (1,0)L(0) + N (1,1)N (1,0)L(0) + N (1,0)N (0,1)L(1) + N (1,0)N (0,0)N (0,0)L(0)

)

+ O
(

Rp

h

)6

. (C37)

Substituting the entries of the [N]-matrix, L(1) is the only term within the parentheses in
(C37) contributing to the torque on the sphere. Therefore, (C37) attains the simpler form

T = T [∞] + T [∞]εL(1)
2

+ O
(

Rp

h

)6

, (C38)

which provide (7.17).
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