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STRICTLY n-FINITE VARIETIES OF HEYTING ALGEBRAS

TAPANI HYTTINEN , MIGUEL MARTINS, TOMMASO MORASCHINI , AND
DAVIDE E. QUADRELLARO

Abstract. For any n < � we construct an infinite (n + 1)-generated Heyting algebra whose n-generated
subalgebras are of cardinality ≤ mn for some positive integer mn . From this we conclude that for every
n < � there exists a variety of Heyting algebras which contains an infinite (n + 1)-generated algebra, but
which contains only finite n-generated algebras. For the case n = 2 this provides a negative answer to a
question posed by G. Bezhanishvili and R. Grigolia in [4].

§1. Introduction. A Heyting algebra (H,∧,∨,→, 0, 1) is a bounded distributive
lattice with a binary operation → such that

a ∧ b ≤ c ⇐⇒ a ≤ b → c,
for every a, b, c ∈ H [1, 7, 9, 16]. Heyting algebras appear naturally in many areas
of mathematics. For instance, the lattice of open sets of a topological space forms
a Heyting algebra. The subobject classifier of a topos can also be endowed with
the structure of a Heyting algebra. Lastly, every distributive algebraic lattice is a
Heyting algebra.

In this paper we focus on finitely generated Heyting algebras. We recall that an
algebra A is said to be n-generated when there is a subset X ⊆ A of size ≤ n such
that the least subalgebra of A containing X is A itself. Accordingly, we say that A is
finitely generated when it is n-generated for some n < �. A class of similar algebras
that can be axiomatised by (universally quantified) equations is called a variety.
Examples of varieties include the class of all Heyting algebras, as well as that of all
Boolean algebras. A variety is said to be n-finite when its n-generated members are
finite, and locally finite when it is n-finite for every n < �. We call a variety strictly
n-finite if it is n-finite, but not (n + 1)-finite.

Dual characterisations of finitely generated Heyting algebras were obtained in [10]
(see also [5, Section 3.1]), while locally finite varieties of Heyting algebras were
studied by G. Bezhanishvili and R. Grigolia in [4]. In the same paper, they raise the
following question [4, Problem 2.4]: is it true that a variety of Heyting algebras is
locally finite iff it is 2-finite? While this holds in the restrictive context of varieties
of Heyting algebras of width two [2], in this paper we establish that for any n < �
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2 TAPANI HYTTINEN ET AL.

there exists an infinite (n + 1)-generated Heyting algebra Hn whose n-generated
subalgebras are of size ≤ mn for somemn < �. From this we deduce the main result
of this article: for every n < � the variety generated by Hn fails to be locally finite,
although it is n-finite (Theorem 5.1). For n = 2 this provides a negative answer to
Bezhanishvili and Grigolia’s question.

From the viewpoint of propositional logic, the key importance of varieties of
Heyting algebras is that they provide an algebraic semantics to the axiomatic
extensions of the intuitionistic propositional calculus, i.e., superintuitionistic logics.
As a consequence of this fact, properties of varieties of Heyting algebras
correspond to properties of superintuitionistic logics, and vice versa. It thus follows
immediately from the main result of this paper that, for every n < �, there exists a
superintuitionistic logic with only finitely many formulas up to logical equivalence
in n variables, but which has infinitely many non-equivalent formulas in (n + 1)
variables. In Remark 5.5 we additionally make explicit that this logic can be chosen
to be finitely axiomatisable.

The structure of this article is based around the proof of Theorem 5.1. In
Section 2 we recall the Esakia duality between the category of Heyting algebras
with homomorphisms and the category of Esakia spaces with Esakia morphisms.
In Section 3 we introduce the notion of colouring of a poset, which is the essential
combinatorial tool in the proof of our main result. We believe that everything from
Section 3 is essentially folklore, or a slight variation on the standard ideas from
bisimulations and back-and-forth systems, but we provide details of every proof as
the finitary version of these claims are not common in the literature. In Section 4 we
introduce the counterexamples to the question of Bezhanishvili and Grigolia. We
describe for every n < � an Esakia Space Xn and we use the Colouring Theorem
to show that its dual Hn is an infinite (n + 1)-generated Heyting algebra, but every
n-generated subalgebras of Hn is bounded in size by some mn < �. Finally, in
Section 5 we use standard arguments from universal algebra to establish the main
result of the article (Theorem 5.1) and we point out some immediate corollaries.

This result was first established in 2020, although it never appeared in print [14].
Independently, the first and fourth authors discovered an alternative simpler proof
in 2023 [13]. To make the result available, we decided to publish the latter together.

§2. Esakia duality. We review in this section the Esakia duality [8, 9] between
Heyting algebras and Esakia spaces. We start by fixing some notation: whenever
(X,≤) is a poset and Y ⊆ X we let

↑Y = {x ∈ X | ∃y ∈ Y and y ≤ x} and ↓Y = {x ∈ X | ∃y ∈ Y and y ≥ x}.

For x ∈ X , we write ↑x and ↓x for the sets ↑{x} and ↓{x}, respectively. A subset
Y ⊆ X is said to be an upset when U = ↑U . We write Up(X ) for the set of upsets
of a poset X. Also, given any subset Y ⊆ X we write Yc for its complement X \ Y .
If x ∈ ↓U , we often say that x sees U. We will always use the convention that the
“arrow operators” defined above bind stronger than other set theoretic operations.
For example, the expressions ↑U \ V and ↓U ∩ V are to be read as (↑U ) \ V and
(↓U ) ∩ V , respectively.
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STRICTLY n-FINITE VARIETIES OF HEYTING ALGEBRAS 3

We recall that an Esakia space is a triple X = (X, �,≤), where (X, �) is a compact
topological space and (X,≤) a poset satisfying the following conditions:

(i) Priestley separation axiom: For all x, y ∈ X such that x � y, there is a clopen
upset U such that x ∈ U and y /∈ U .

(ii) If U is clopen, then also ↓U is clopen.
Given Esakia spaces X and Y, an Esakia morphism p : X → Y is a continuous map
satisfying the two following conditions:

(i) For all x, y ∈ X if x ≤ y, then p(x) ≤ p(y).
(ii) For all x ∈ X and y ∈ Y such that p(x) ≤ y, there exists z ∈ X such that
x ≤ z and p(z) = y.

Esakia duality is a dual categorical equivalence between the category of Heyting
algebras with homomorphisms and the category of Esakia spaces with Esakia
morphisms, which generalizes Stone duality. We shall review the definition of the
two contravariant functors (–)∗ and (–)∗ witnessing Esakia duality. On the one
hand, with every Heyting algebra H we associate an Esakia space H∗ as follows.
A prime filter F of H is a proper filter for which x ∨ y ∈ F entails x ∈ F or y ∈ F .
Then the Esakia space H∗ is obtained by endowing the poset of prime filters of H
ordered under the inclusion relation with the topology generated by the subbasis

{φ(a) | a ∈ H} ∪ {φ(a)c | a ∈ H},
where φ(a) is the set of prime filters of H containing a. Furthermore, every
homomorphism h : H → H ′ between Heyting algebras is associated with the Esakia
morphism h∗ : H ′

∗ → H∗ defined as h∗(F ) = h–1[F ]. On the other hand, with every
Esakia space X we associate a Heyting algebra X ∗ as follows. Let ClUp(X ) be the
set of clopen upsets of X. Then

X ∗ = (ClUp(X ),∩,∪,→, ∅, X ),

where → is defined by letting U → V = (↓(U \ V ))c . Furthermore, every Esakia
morphism p : X → Y is associated with the homomorphism p∗ : Y ∗ → X ∗ defined
as p∗(U ) = p–1[U ].

§3. Poset colourability. We introduce in this section the colouring technique,
which is the key combinatorial technique used in our subsequent proofs. The first
item in the next definition exemplifies the idea of a back-and-forth system, and
can also be seen as a version of the notion of layered bisimulation from [18]. The
connection between back and forth systems and types goes back to Fraı̈ssé [11].

Remark 3.1. In this paper, we always identify natural numbers with finite
ordinals, i.e., we identify each natural number n < � with the set {m ∈ � | m < n}.
In particular, we stress that when we write n < �, it may be the case that n = 0.

Definition 3.2. Let X be a poset and G ⊆ Up(X ).
(i) For every n < � we define recursively an equivalence relation ∼Gn on X as

follows: for every x, y ∈ X ,

x∼G0 y ⇐⇒ ∀g ∈ G (x ∈ g ⇐⇒ y ∈ g);

x∼Gn+1y ⇐⇒ ∀z ≥ x ∃v ≥ y (z∼Gn v) ∧ ∀v ≥ y ∃z ≥ x (z∼Gn v).

https://doi.org/10.1017/jsl.2024.48 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.48


4 TAPANI HYTTINEN ET AL.

Moreover, we consider the following equivalence relation on X :

∼G� =
⋂
n∈�

∼Gn .

(ii) The n-type and the �-type over G of an element x ∈ X are, respectively,
the sets

{y ∈ X | x∼Gn y} and {y ∈ X | x∼G�y}.

(iii) We say an element x ∈ X is G-isolated if x∼G�y entails x = y.
(iv) We say that X is G-coloured (or coloured by G) if every element of X is

G-isolated.

Lemma 3.3. Let X be a poset. For every G ⊆ Up(X ) and n < �, the equivalence
relation ∼Gn+1 refines ∼Gn .

Proof. We proceed by induction. For n = 0 we assume x�G0 y. Without loss of
generality there is some g ∈ G such that x ∈ g and y /∈ g. Since g is an upset, it
follows that z ∈ g for every z ≥ x but y /∈ g, showing x�G1 y.

For n = m + 1 assume x�Gn y. Without loss of generality there is some z ≥ x such
that for all v ≥ y it holds z �Gn–1 v. Hence, by the induction hypothesis, we obtain
z �Gn v and therefore x�Gn+1y. �

By a term we understand a first-order term in the language of Heyting algebras.

Definition 3.4. The implication rank rank(φ) of a term φ is defined as follows:
(i) If φ is a constant or a variable, then rank(φ) = 0;

(ii) rank(� ∧ �) = max{rank(�), rank(�)};
(iii) rank(� ∨ �) = max{rank(�), rank(�)};
(iv) rank(� → �) = max{rank(�), rank(�)} + 1.

Let H be a Heyting algebra. Given a subset G ⊆ H , we denote by 〈G〉 the
subalgebra of H generated by G. We recall that the universe of 〈G〉 is

{φH (�g) | �g ∈ G and φ is a term},

where φH (�g) is the interpretation of φ in H under the assignment �g.

Definition 3.5. Let X be an Esakia space and G = {gi | i < k} ⊆ X ∗. The
implication rank rank(U ) of an element U ∈ 〈G〉 is

min{rank(φ) | φ is a term such that U = φX
∗
(g0, ... , gk–1)}.

In addition, with every U as above we associate a term φU (x0, ... , xk–1) such that
U = φX

∗
U (g0, ... , gk–1) and rank(U ) = rank(φ).

The following lemma and the subsequent Colouring Theorem generalize [12,
Proposition 34] and are essentially a reformulation of [5, Theorem 3.1.5]. The
relation between the implication rank of a term and the existence of a back-and-forth
system of corresponding length was established in [18, Theorems 4.7 and 4.8].

Lemma 3.6. Let X be an Esakia space and x, y ∈ X . The following condition holds
for every finite G ⊆ X ∗:

x∼Gn y ⇐⇒ ∀U ∈ 〈G〉 with rank(U ) ≤ n : (x ∈ U ⇐⇒ y ∈ U ).
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STRICTLY n-FINITE VARIETIES OF HEYTING ALGEBRAS 5

Proof. We fix an enumeration G = {gi | i < k} and let �g = (g0, ... , gn–1).
Moreover, given a termφ(x0, ... , xn–1), we will writeφ(�g) as a shorthand forφX

∗
(�g).

Both implications in the statement will be proven by induction on n.
(⇒) For the case where n = 0, suppose that x∼G0 y and consider U ∈ 〈G〉 such

that rank(U ) = 0. Then we may assume that φU is a meet of joins of constants
and variables. If φU = 0 or φU = 1, then U = ∅ or U = X and the claim follows
immediately. On the other hand, if φU = gi for some i < k, we have that x ∈ gi if
and only if y ∈ gi by the definition of ∼G0 . As φU is a meet of joins of constants and
variables, this implies that the claim holds.

Then we consider the case where n = m + 1. Suppose that x∼Gm+1y and
consider U ∈ 〈G〉 such that rank(U ) ≤ m + 1. First suppose that rank(U ) ≤ m.
By Lemma 3.3 we have x∼Gmy and, therefore, the claim holds by the induction
hypothesis. Then we consider the case where rank(U ) = m + 1. We may assume
that φU is a conjunction of disjunctions of terms of the form α → � of implication
rank ≤ m + 1 and with variables among x0, ... , xn–1.

For each of these implications α → � , let

Uα� := α(�g) → �(�g) = (↓(α(�g) \ �(�g)))c .

We will show that x ∈ Uα� if and only if y ∈ Uα� . By symmetry, it suffices to prove
the implication from right to left. Accordingly, suppose x /∈ (↓(α(�g) \ �(�g)))c . Then
there is some z ≥ x such that z ∈ α(�g) \ �(�g) and, since x∼Gm+1y, there is some
v ≥ y such that z∼Gmv. As α(�g), �(�g) ∈ 〈G〉 and rank(α(�g)), rank(α(�g)) ≤ m,
we can apply the induction hypothesis obtaining v ∈ α(�g) \ �(�g). Hence, we
conclude that y /∈ (↓(α(�g) \ �(�g)))c = Uα� .

Since U is a meet of joins of sets of the form Uα� , the claim follows from the fact
no Uα� separates x and y.

(⇐) For the case where n = 0, suppose that x�G0 y. Without loss of generality,
we may assume that there is some gi ∈ G such that x ∈ gi and y /∈ gi . Since
rank(gi) = 0, the claim follows immediately.

For the case where n = m + 1, suppose that x �Gm+1 y. We may assume that there
is z ≥ x such that for all v ≥ y we have z �Gm v. By the induction hypothesis, for
every v ≥ y, there is either �v(�g) ∈ 〈G〉 such that z ∈ �v(�g) and v /∈ �v(�g), or
�v ∈ 〈G〉 such that z /∈ �v(�g) and v ∈ �v(�g), with rank(�v), rank(�v) ≤ m. We let

I0 := {v ∈ ↑y | z ∈ �v(�g) and v /∈ �v(�g)};

I1 := {v ∈ ↑y | z /∈ �v(�g) and v ∈ �v(�g)}.

By construction we have ↑y = I0 ∪ I1. Then we define

Z :=
⋂
v∈I0

�v(�g) →
⋃
v∈I1

�v(�g) =
(
↓
( ⋂
v∈I0

�v(�g) \
⋃
v∈I1

�v(�g)
))c
.

Notice that by the previous direction the number of terms of rank ≤ m is finite,
whence the intersections and unions above are finitary and thus Z is a well-
defined element of 〈G〉. Furthermore, rank(Z) ≤ m + 1 because each �v and �v
has implication rank ≤ m. Therefore, to conclude the proof, it suffices to show that
x /∈ Z and y ∈ Z.
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6 TAPANI HYTTINEN ET AL.

Since for every v ∈ I0 we have z ∈ �v(�g) and for every v ∈ I1 we have z /∈ �v(�g),
it follows that z ∈

⋂
v∈I0 �v(�g) \

⋃
v∈I1 �v(�g). As x ≤ z, we obtain

x /∈
(
↓
( ⋂
v∈I0

�v(�g) \
⋃
v∈I1

�v(�g)
))c

= Z.

To prove that y ∈ Z, suppose the contrary. Then there is some w ≥ y such
that w ∈

⋂
v∈I0 �v(�g) \

⋃
v∈I1 �v(�g). As w ≥ y and ↑y = I0 ∪ I1, either w ∈ I0 or

w ∈ I1. If w ∈ I0, then w /∈ �w(�g). While if w ∈ I1, then w ∈ �w(�g). In both cases,
we obtain w /∈

⋂
v∈I0 �v(�g) \

⋃
v∈I1 �v(�g), a contradiction. �

Let X be an Esakia space and G ⊆ X ∗. In view of Esakia duality, the subalgebra
〈G〉 of X ∗ is proper if and only if the relation

R = {〈x, y〉 ∈ X × X | x ∈ U iff y ∈ U, for every U ∈ 〈G〉}

differs from the identity relation on X (see, e.g., [5, Corollary 2.3.10]). As a
consequence, we deduce the following:

Lemma 3.7. Let X be an Esakia space and G ⊆ X ∗. Then X ∗ = 〈G〉 if and only if
for every x, y ∈ X ,

{U ∈ 〈G〉 | x ∈ U} = {U ∈ 〈G〉 | y ∈ U} implies x = y.

In view of the next result, the concept of subalgebra generation can be studied
through that of colouring.

Colouring Theorem 3.8. Let X be an Esakia space and G ⊆ X ∗ finite. Then
X ∗ = 〈G〉 if and only if X is G-coloured.

Proof. (⇒) To prove that every element of X is G-isolated, it suffices to show that
for every pair of distinctx, y ∈ X we havex �G� y. Accordingly, consider two distinct
x, y ∈ X . By symmetry we may assume that x � y. The Priestley separation axiom
implies that there is U ∈ X ∗ such that x ∈ U and y /∈ U . From the assumption
that X ∗ = 〈G〉 it follows that U ∈ 〈G〉. By Lemma 3.6 we obtain that x �Gn y for
n = rank(U ). Therefore, the definition of ∼G� guarantees that x �G� y.

(⇐) By Lemma 3.7 it suffices to prove that if x, y ∈ X are such that {U ∈
〈G〉 | x ∈ U} = {U ∈ 〈G〉 | y ∈ U}, then x = y. Together with Lemma 3.6, the
assumption that {U ∈ 〈G〉 | x ∈ U} = {U ∈ 〈G〉 | y ∈ U} implies x∼G�y. Since X
is G-coloured, we conclude that x = y. �

For the following definition to make sense, recall that we always identify natural
numbers with finite ordinals, i.e., we identify n < � with the set {m ∈ � | m < n}.

Definition 3.9. Let X be an Esakia space.

(i) A colouring of X is a function c : n → X ∗ where n < � and X is coloured by
c[n];

(ii) X is said to be n-colourable if there is a colouring c : n → X ∗.

The following is an immediate consequence of the Colouring Theorem 3.8:

Corollary 3.10. An Esakia space X is n-colourable if and only ifX ∗ is n-generated.
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STRICTLY n-FINITE VARIETIES OF HEYTING ALGEBRAS 7

§4. The counterexamples. Our aim is to construct for each n < � an infinite
(n + 1)-generated Heyting algebra whose n-generated subalgebras are of size ≤ mn
for some mn < �. We will do this by exhibiting their dual Esakia spaces Xn.

Definition 4.1. For every n < �, let Xn = (Xn, �,≤) be the ordered topological
space where

Xn = {xli | l ≤ 2n and i < �} ∪ {x∞},
� = {U ∈ ℘(Xn) | if x∞ ∈ U , then U is cofinite},

and ≤ is the unique partial order with minimum x∞ such that for every xli , x
l ′
i′ ∈ Xn,

xli ≤ xl
′
i′ ⇐⇒ either i ≥ i ′ + 2 or (i = i ′ + 1 and l ′ �= l + 1).

Lastly, for each i < � we let Lin = {xli | l ≤ 2n} and we refer to this as the ith
level/layer of Xn.

Notice that X0 is the dual of the Rieger–Nishimura lattice, i.e., the free Heyting
algebra on one generator [15, 17]. On the other hand, X2 is depicted in Figure 1 as
an exemplification.

Lemma 4.2. For every n < �, Xn is an Esakia space.

L5
2

L4
2

L3
2

L2
2

L1
2

L0
2

x∞

Figure 1. The Esakia space X2.
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Proof. First, Xn is compact because it is the Alexandroff extension of the
countable discrete space Xn \ {x∞}. To prove that the Priestley separation axiom
holds, consider x, y ∈ Xn such that x � y. Then x differs from the minimum x∞.
Consequently, ↑x is finite and omits x∞. It follows that ↑x is a clopen upset which,
obviously, omits y. It only remains to prove that the downset of a nonempty clopen
set U is clopen. Since U is open and nonempty, the definition of the topology
guarantees that U contains an element of the form xli . Therefore, ↓U contains
Xn \ (L0

n ∪ ··· ∪ Li+1
n ). It follows that ↓U is cofinite and contains x∞, whence it is

clopen. �

By the previous lemma, the dual Heyting algebra X ∗
n of Xn is well-defined. The

goal of this section is to show that X ∗
n is an infinite (n + 1)-generated Heyting

algebra whose n-generated subalgebras are of size ≤ mn, for some mn < � which
depends only on n. Firstly, notice that to prove that X ∗

n is (n + 1)-generated, it
suffices by Corollary 3.10 to show that Xn is (n + 1)-colourable. Intuitively, the
latter holds because of two reasons. On the one hand, since Xn has strictly less than
2n+1 maximal elements, we can assign to each maximal element a different subset
of colours. On the other hand, the construction of Xn makes sure any two points at
level i + 1 see different elements at level i, and thus have different �-types. We make
this intuition precise in the proof of the next proposition.

Proposition 4.3. The Esakia space Xn is (n + 1)-colourable.

Proof. Since n < n + 1 there is an injection e : 2n + 1 → ℘(n + 1). Then let
c : n + 1 → X ∗

n be the map defined by letting

c(k) = {xl0 ∈ Xn | k ∈ e(l)}.

By the definition of Xn we have

Xn = {x∞} ∪
⋃
i<�

Lin.

Therefore, to prove that Xn is (n + 1)-colourable, it suffices to show that for every
i < � the points in Lin are all c[n + 1]-isolated. We proceed by induction on i,
noting that, by the definition of c and of ∼c[n+1]

0 , it is clear that every point in L0
n is

c[n + 1]-isolated. Now, let i > 0 and assume that, for all j < i , every point in Ljn is
c[n + 1]-isolated.

Let us first show that xli�
c[n+1]
� xl

′
i , for every l �= l ′ ≤ 2n. By the construction

of Xn we can suppose, without loss of generality, that there exists z ∈ Li–1
n lying

above xli but not above xl
′
i . As z is c[n + 1]-isolated by our induction hypothesis, it

follows that for all v ≥ xl ′i , there existsmv satisfying z�c[n+1]
mv v. Takem := max{mv ∈

� : v ≥ xl ′i }, which exists, as ↑xl ′i is finite. By Lemma 3.3 we have that z�c[n+1]
m v for

every v ≥ xl ′i . It is now clear that xli�
c[n+1]
m+1 x

l ′
i , thus xli�

c[n+1]
� xl

′
i .

Next we show that, given l ≤ 2n, then for every t > i and y ∈ Ltn, we have
xli�

c[n+1]
� y. By the construction of Xn we know that xl

′
i > y, for some l �= l ′ ≤ 2n.

It follows from our induction hypothesis and from what we just proved above that
for every z ≥ xli , there exists mz ∈ � such that z�c[n+1]

mz xl
′
i . As ↑xli is finite, taking
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STRICTLY n-FINITE VARIETIES OF HEYTING ALGEBRAS 9

m′ := max{mz ∈ � : z ≥ xli } and applying Lemma 3.3 yields z�c[n+1]
m′ xl

′
i for every

z ≥ xli . Since xl
′
i ≥ y, this implies xli�

c[n+1]
m′+1 y, hence also xli�

c[n+1]
� y.

Again using our induction hypothesis, we can now conclude that every point in
Lin is c[n + 1]-isolated. �

Corollary 4.4. The Heyting algebra X ∗
n is infinite and (n + 1)-generated.

Proof. Since Xn is infinite, the Heyting algebra X ∗
n is also infinite. Furthermore,

it is (n + 1)-generated by Corollary 3.10 and Proposition 4.3. �
Therefore, it only remains to prove that the n-generated subalgebras of X ∗

n are of
size≤ mn for somemn < �. This result follows from two facts. Firstly, in Lemmas 4.5
and 4.7, we show that for every n-colouring c : n → X ∗

n we can find a level j < �
such that at least two elements ofLjn have the same type under c[n] and every element
in ↓Lj+1

n has the same 0-type. Then, in Lemma 4.9, we use the specific configuration
ofXn to show that there is a level j′ > j such that every element in ↓Lj

′
n has the same

�-type under c[n]. We then conclude in Proposition 4.10 that every subalgebra of
X ∗
n is bounded in size by some mn < � depending only on n. We will now proceed

to prove three technical lemmas.

Lemma 4.5. Let c : m → X ∗
n be a function and i, k < � such that the following

conditions hold:

(i) |Lin/∼
c[m]
� | ≤ k ≤ 2n.

(ii) For all x, y ∈ Li+1
n we have x∼c[m]

0 y.

Then |Li+1
n /∼

c[m]
� | ≤ k ≤ 2n.

Proof. By condition (i) we can enumerate Lin/∼
c[m]
� as {Aj | j < k}. Recall that

we say that an element x ∈ Li+1
n sees some Aj when x ∈ ↓Aj .

Claim 4.6. If two elements of Li+1
n see the same Aj ’s, then they have the same

�-type.

Proof of the claim. Consider x, y ∈ Li+1
n and suppose that they see the same

Aj ’s. We need to show thatx∼c[m]
p y for everyp < �. The proof proceeds by induction

on p. The case where p = 0 holds by condition (ii). For the case where p = q + 1,
the induction hypothesis guarantees that x∼c[m]

q y. Then consider some z ≥ x. We
need to find some v ≥ y such that z∼c[m]

q v. If z = x, then we are done taking v := y.
Then we consider the case where x < z. If z ∈ ↑Li–1

n , the definition of Xn and the
assumption that x, y ∈ Li+1

n guarantee that y ≤ z, in which case we take v := z.
It only remains to consider the case where z ∈ Lin. Clearly, there exists j < k such
that z ∈ Aj . Therefore, x sees Aj and so does y by assumption. Let v ∈ Aj be
such that y ≤ v. As z, v ∈ Aj , the elements z and v have the same �-type, whence
z∼c[m]
q v. �

Now, observe that ifAj contains at least two elements ofLin, then every element of
Li+1
n seesAj because of the structure ofXn. Furthermore, asLin has 2n + 1 elements

and the Aj ’s are exactly k ≤ 2n, we may assume without loss of generality that Ak–1

contains at least two elements ofLin. Together with the claim, this implies that if two
elements of Li+1

n see the same elements of {Aj | j < k – 1}, then they have the same
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�-type. As the structure of Xn guarantees that every element of Li+1
n sees every Aj

except possibly one, we conclude that Li+1
n /∼

c[m]
� has ≤ k elements. �

Lemma 4.7. For every function c : n → X ∗
n , there is j < � such that at least two

elements in Ljn have the same �-type and every element in ↓Lj+1
n has the same 0-type.

Proof. For each l < n, let Ul := c(l). We may assume without loss of generality
that every Ul is finite and nonempty, for otherwise the topology of Xn would yield
Ul = ∅ orUl = Xn, in which caseUl does not contribute to distinguish between the
�-type or 0-type of the elements of Xn. Furthermore, for each l < n we denote by il
the least i such that Ul ∩ Li+1

n = ∅, which exists because Ul is finite. Lastly, we may
assume without loss of generality that il ≤ il ′ for each l < l ′.

Claim 4.8. For each l < n, the number of distinct �-types over c[l + 1] of the
elements of Liln is bounded above by 2l+1. Furthermore, every member of ↓Lil+1

n has
the same 0-type over c[l + 1].

Proof of the claim. From the definition of i0, ... , il and the assumption that
i0 ≤ ··· ≤ il it follows that ↓Lil+1

n ∩ (U0 ∪ ··· ∪Ul ) = ∅. Therefore, the last part of
the claim holds. We prove the first part of the claim by induction on l.

Induction Base. We need to prove that the number of distinct �-types over
c[1] = {U0} of the elements of Li0n is ≤ 2. It suffices to show that

(x ∈ U0 ⇐⇒ y ∈ U0) implies x∼c[1]
� y,

for every pair of distinct x, y ∈ Li0n . If i0 = 0, this is clear, as the sole possible
�-types over {U0} of the elements of L0

n are U0 and {x ∈ Xn | ↑x ∩U0 = ∅}. Then
we consider the case where i0 > 0. Clearly, ifx, y ∈ U0, the�-type over {U0}of x and
y is U0. Then we consider the case where x, y /∈ U0. If Li0–1

n ⊆ U0, then x, y /∈ U0,
but ↑x \ {x}, ↑y \ {y} ⊆ U0, so that x∼c[1]

� y. Then we consider the case where
L
i0–1
n � U0. By assumption there is an element z ∈ U0 ∩ Li0n . The definition of Xn

guarantees that the set ↑z ∩ Li0–1
n is either Li0–1

n or Li0–1
n \ {v} for some v ∈ Xn.

Since ↑z ⊆ U0 and Li0–1
n � U0, we obtainU0 ∩ Li0–1

n = Li0–1
n \ {v} for some v ∈ Xn.

As x and y are distinct from z (because x, y /∈ U0 and z ∈ U0) and z � v ∈ Li0–1
n ,

the definition of Xn guarantees that x, y < v. As x, y, v /∈ U0 and ↑x \ {x, v}, ↑y \
{y, v} ⊆ ↑z ⊆ U0, we conclude that x∼c[1]

� y as desired.
Induction Step. Suppose that the statement holds for l, i.e., that the number of

distinct �-types over c[l + 1] of the elements of Liln is bounded above by 2l+1. We
will prove that this also holds when l is replaced by l + 1. If il+1 = 0, this is clear, as
the sole possible �-types over {U0, ... , Ul+1} of the elements of L

il+1
n = L0

n are the
sets of the form

⋂
j∈J Uj ∩

⋂
j /∈J U

c
j for some J ⊆ l + 1. Thus we may assume that

il+1 > 0.
We will prove that the number of distinct �-types over c[l + 1] of the elements of

L
il+1–1
n is at most 2l+1, that is,

|Lil+1–1
n /∼c[l+1]

� | ≤ 2l+1. (1)

We have two cases: either il < il+1 or il = il+1. Suppose first that il < il+1. If
il = il+1 – 1 we are done by the inductive assumption. Then we may assume that
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il < il+1 – 1. Recall that i0 ≤ ··· ≤ il < il + 1 ≤ il+1. Moreover, from the definition
of i0, ... , il it follows

(U0 ∪ ··· ∪Ul ) ∩ ↓Lil+1
n = ∅.

Therefore, for each x, y ∈ ↓Lil+1
n it holds x∼c[l+1]

0 y. Consequently, the result follows
from the induction hypothesis and il+1 – il applications of Lemma 4.5. It only
remains to consider the case where il = il+1.

Let m be the greatest integer such that im < il = il+1, if it exists, or – 1 otherwise.
If m �=– 1, then m < l and by the induction hypothesis, the number of distinct
�-types over c[m + 1] of the elements of Limn is at most 2m+1. Since

(U0 ∪ ··· ∪Uim ) ∩ ↓Lim+1
n = ∅,

by the definition of the it ’s and by the structure of Xn, it follows from il – 1 – im
applications of Lemma 4.5 that |Lil –1

n /∼c[m+1]
� | ≤ 2m+1.

Now, for an arbitrary m satisfying the above definition, notice that if m < k <
l + 1, then ik = il = il+1. Again by the definition of the it ’s, it follows that, for any
such k, we have that Ljn ⊆ Uk = c(k), for every j < il – 1. As m < m + 1 < l + 1
becausem < l , the�-type of an element x ofLil –1

n over c[l + 1] is totally determined
by its �-type over c[m + 1] (of which there are none if m= –1, and at most 2m+1

otherwise, by above) together with whether or not x belongs to Uk , for each
m < k < l + 1. Thus, there are at most 2m+1 · 2l–m = 2l+1 possible �-types over
c[l + 1] thatx ∈ Lil –1

n can have, as desired. This concludes the proof of condition (1).
To conclude the proof of the claim, it is convenient to separate the following cases.
Case A. Suppose that L

il+1–1
n ⊆ Ul+1. This entails that the �-types over c[l + 2]

of the elements in L
il+1–1
n are the same as those over c[l + 1]. Hence, the elements

from L
il+1
n which see the same �-types over c[l + 1] from L

il+1–1
n also see the same

�-types over c[l + 2] from L
il+1–1
n . Consequently, the �-types over c[l + 2] of the

elements inL
il+1
n are determined by their�-types over c[l + 1] (of which there are at

most 2l+1, by induction hypothesis and by possibly repeatedly applying Lemma 4.5
if il < il+1) together with whether or not they belong to the set Ul+1 ∩ L

il+1
n , in the

sense that for x, y ∈ Lil+1
n ,

x∼c[l+2]
� y ⇐⇒ x∼c[l+1]

� y and x∼{Ul+1}
0 y.

This gives us at most 2l+2 possible �-types over c[l + 2] for elements of L
il+1
n .

Case B. Suppose thatL
il+1–1
n � Ul+1. Recall thatUl+1 ∩ L

il+1
n �= ∅by the definition

of il+1. Moreover, by the definition of Xn the upset generated by any pair of distinct
elements ofL

il+1
n contains the wholeL

il+1–1
n . Therefore, the assumption thatL

il+1–1
n �

Ul+1 allows us to assume, without loss of generality, that L
il+1
n ∩Ul+1 = {x0

il+1
}

and L
il+1–1
n ∩Ul+1 = L

il+1–1
n \ {x1

il+1–1}. By condition (1), the elements in L
il+1–1
n ∩

Ul+1 = {xtil+1–1 | t �= 1} have at most 2l+1 different �-types over c[l + 1] and, since

they all belong to Ul+1, they have at most 2l+1 different �-types also over c[l + 2].
Now, the definition of Xn guarantees that for every m > 0 we have that xmil+1

≤
x1
il+1–1. Furthermore, xmil+1

does not belong to Ul+1 because L
il+1
n ∩Ul+1 = {x0

il+1
}.
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Therefore, the �-type over c[l + 2] of an element of the form xmil+1
with m > 0 is

determined by the fact that xmil+1
does not belong to Ul+1 and by the elements of

L
il+1–1
n with distinct �-types over c[l + 2] it sees. Since xmil+1

sees all but possibly

one of the element of L
il+1–1
n and the elements of L

il+1–1
n have at most 2l+1 different

�-types, this implies that

|Lil+1
n \ {x0

il+1
}/∼c[l+2]

� | ≤ 2l+1 + 1.

Consequently,

|Lil+1
n /∼c[l+2]

� | ≤ 2l+1 + 2 ≤ 2l+2,

thus finishing the proof of the claim. �
From the claim it follows that the number of �-types of the elements in Lin–1

n over
c[n] is bounded above by 2n. Since Lin–1

n has 2n + 1 elements, it follows that at least
two elements of Lin–1

n have the same �-type. Moreover, the second part of the claim
guarantees that every element of ↓Lin–1+1

n has the same 0-type over c[n]. Thus, the
statement holds for j := in–1. �

The proof of the following lemma shows concretely why, in the Esakia space Xn,
we defined each element x2n

i+1 so that it sees every element at levelLin. The key point is
that, if two elements at level i have the same �-type, then x2n+1

i+1 will have exactly the
same type of some other element at level i + 1. Proceeding inductively, we find a level
from which every element has the same type under the given colouring. We make
this reasoning explicit in the next proof.

Lemma 4.9. Let c : m → X ∗
n be a function and i < �. Suppose two distinct elements

of Lin have the same �-type over c[m] and that for every q > i the elements of Lqn
have the same 0-type over c[m]. Then every element of ↓Li+2n+1

n has the same �-type
over c[m].

Proof. Since two distinct elements of Lin have the same �-type over c[m] and
all the elements of Li+1

n have the same 0-type over c[m], then it follows from the
construction of Xn that x2n

i+1∼
c[m]
� x

j
i+1 for some j < 2n. Therefore, the construction

of Xn guarantees that the elements x2n–1
i+2 and x2n

i+2 see the same equivalence
classes of Li+1

n /∼
c[m]
� . Since by assumption x2n–1

i+2 and x2n
i+2 have the same 0-type

over c[m], this implies that x2n–1
i+2 ∼c[m]

� x
2n
i+2. For the same reason, we have that

x2n–2
i+3 ∼c[m]

� x
2n–1
i+3 ∼c[m]

� x
2n
i+3. By proceeding in this way, we obtain that every element

of Li+2n+1
n has the same �-type over c[m]. Since for t ≥ i + 2n + 1 every element of

Ltn has the same 0-type over c[m], this is enough to conclude that every element of
↓Li+2n+1
n has the same �-type over c[m]. �
We can now conclude by showing that the Heyting algebraX ∗

n satisfies the desired
property.

Proposition 4.10. There exists mn < � such that the n-generated subalgebras of
X ∗
n are of size ≤ mn.
Proof. We begin by the following observation.
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Claim 4.11. There exists k < � such that for every function c : n → X ∗
n the number

of �-types over c[n] of elements of Xn is ≤ k.

Proof of the claim. Recall the definition of the integers i0, ... , in–1 associated
with c in the proof of Lemma 4.7. In view of Claim 4.8 and the fact that eachLiln has
2n + 1 elements, we obtain that for each il at least two elements of Liln have the same
�-type over c[l + 1] and every point in ↓Lil+1

n has the same 0-type over c[l + 1].
Hence, it follows from Lemma 4.9 that all the elements of ↓Lil+2n+1

n have the same
�-type over c[l + 1]. Furthermore, from the construction of Xn and the definition
of il it follows that the upset ↑Lil –2

n (which is the emptyset if il ≤ 1) is contained in
Ul := c(l). Let us partition Xn as the union

↑Lil –2
n ∪ Lil –1

n ∪ Liln ∪ ··· ∪ Lil+2n
n ∪ ↓Lil+2n+1

n ,

and note that the above discussion entails that the effect of the clopen Ul in the
determination of the�-type over c[n] of a point x is trivial if x ∈ ↑Lil –2

n ∪ ↓Lil+2n+1
n ,

and noticeable only if x ∈ Lil –1
n ∪ Liln ∪ ··· ∪ Lil+2n

n . Since each of these (il + 2n) –
(il – 2) = 2n + 2 layers has 2n + 1 many elements, we conclude that the clopen Ul
can only contribute to distinguish at most (2n + 1)(2n + 2) + 2 �-types over c[n]
in Xn.

Since the il in the above argument was arbitrary, it now follows that each clopen in
c[n] = {U0, ... , Un–1} can only contribute to distinguish at most (2n + 1)(2n + 2) +
2 �-types over c[n] in Xn. Therefore, there are at most k := n[(2n + 1)(2n + 2) + 2]
distinct �-types over c[n] in Xn. As this bound is independent of the choice of the
function c, we have found the desired uniform upper bound. �

In order to conclude the proof, it suffices to show that the n-generated subalgebras
of X ∗

n are of size ≤ 2k , for in this case the statement holds for mn := 2k . Suppose,
on the contrary, that there is an n-generated subalgebra of X ∗

n containing distinct
elements U0, ... , U2k . Moreover, let m < � be such that rank(Ui) ≤ m for every
i ≤ 2k . Since every family of 2k + 1 distinct subsets of a set Y separates at least k + 1
elements of Y, there are distinct x0, ... , xk ∈ Xn that are separated by U0, ... , U2k .
By Lemma 3.6 the elements x0, ... , xk are unrelated by ∼c[n]

m . By the definition of
∼c[n]
� , this implies that x0, ... , xk are also unrelated by ∼c[n]

� . Therefore, there are
k + 1 distinct �-types over c[n] (that is, x0/∼c[n]

� , ... , xk/∼c[n]
� ), but this contradicts

Claim 4.11. �

§5. The main result. Given a class K of similar algebras, we let

V(K) := the variety generated by K;

S(K) := the class of subalgebras of the members of K.

The aim of this section is to establish the main result of the paper, namely:

Theorem 5.1. For each n < �, the variety V(X ∗
n ) is strictly n-finite, i.e., it is

n-finite but contains an infinite (n + 1)-generated algebra.
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In particular, the varietyV(X ∗
n ) is n-finite, but not locally finite. For the case where

n = 2, this provides a negative answer to [4, Problem 2.4]. The proof of Theorem 5.1
relies on the next observation [3, Lemma 1.3].

Proposition 5.2. Let K be a variety and Var a set of variables. Moreover, let
{vi | i ∈ I } be a family of functions vi : Var → Ai with Ai ∈ K such that for every
pair of terms ϕ and � with variables in Var it holds that

K � ϕ ≈ � implies that there exists i ∈ I such that ϕAi (vi( �x)) �= �Ai (vi( �x)).

Then the n-generated free algebra of K embeds into the direct product
∏
i∈I Ai .

As a consequence, we deduce the following:

Corollary 5.3. Let K be a class of similar algebras of finite type and n < �. If the
cardinality of the n-generated members of S(K) is bounded above by some mn < �,
then V(K) is n-finite.

Proof. Since the type ofK is finite and the cardinality of the n-generated members
of S(K) is bounded above by somemn < �, up to isomorphism there are only finitely
many n-generated algebras in S(K), all of whom are finite. We enumerate them as
H0, ... , Hk .

Now, consider the set of variables Var := {x0, ... , xn–1}. Clearly, if two terms ϕ
and � with variables in Var differ when interpreted in the variety V(K), then there
exist some i ≤ k and a function v : Var → Hi such that ϕHi (v( �x)) �= �Hi (v( �x)).
Therefore, we can apply Proposition 5.2 obtaining that the free n-generated algebra
Fn of V(K) embeds into H := HVar0 × ··· ×HVark . Since both Var and each Hi
are finite, so is H and, therefore, Fn. As every n-generated member of V(K) is a
homomorphic image of Fn, we conclude that V(K) is n-finite. �

We are now ready to prove Theorem 5.1.

Proof. By Corollary 4.4 the Heyting algebraX ∗
n is infinite and (n + 1)-generated.

As X ∗
n ∈ V(X ∗

n ), it only remains to prove that the variety V(X ∗
n ) is n-finite. But this

is an immediate consequence of Proposition 4.10 and Corollary 5.3. �

Remark 5.4. In view of Theorem 5.1, for each n < � there is an n-finite variety of
Heyting algebras that contains an infinite (n + 1)-generated algebra. We will prove
that such a variety can be chosen finitely axiomatisable.

First, recall from Theorem 5.1 that V(X ∗
n ) is n-finite. Therefore, there is some

m < � such that every n-generated member of V(X ∗
n ) has size ≤ m (for instance, m

can be taken to be the size of the free n-generated algebra of V(X ∗
n )). This property

can be expressed by a first-order sentence, namely,

�n = ∀(xi)i<n∃(yj)j<m

((∧
i<n

xi = yi

)
∧

( ∨
j<m

yj = 0
)
∧

( ∨
j<m

yj = 1
)
∧

( ∧
�∈{∧,∨,→}

∧
i,i′<m

∨
j<m

yi � yi′ = yj

))
.

Then, let Σn be the set of universally quantified equations valid in V(X ∗
n ). Since

V(X ∗
n ) is a variety, it is axiomatized by Σn. Together with the fact that every
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n-generated member of V(X ∗
n ) has size ≤ m, this implies Σn |= �n (where |= stands

for the consequence relation of first-order logic). By the compactness theorem
there is a finite T ⊆ Σn such that T |= �n. Let V be the class of all the Heyting
algebras satisfying T. Clearly, V is a variety of Heyting algebras. Furthermore,
from T ⊆ Σn it follows immediately that X ∗

n ∈ V . Therefore, V contains an infinite
(n + 1)-generated algebra, namely, X ∗

n (Corollary 4.4). Lastly, V is n-finite because
T |= �n and, therefore, every n-generated algebra in V is of size ≤ m.

Remark 5.5. From a logical standpoint, the importance of Heyting algebras is
that they algebraize the intuitionistic propositional calculus IPC in the sense of [6].
As a consequence, the axiomatic extensions of IPC (known as superintuitionistic
logics, or si-logics for short) form a lattice that is dually isomorphic to that of
varieties of Heyting algebras (see, e.g., [7]). Because of this, Remark 5.4 can be
rephrased as follows: for every n < � there is a finitely axiomatisable si-logic that
has only finitely many formulas in variables x0, ... , xn–1 up to logical equivalence,
but that has infinitely many nonequivalent formulas in variables x0, ... , xn.
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