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In Chapter 7 we showed that combining a fully implicit formulation with automatic differ-
entiation makes it simple to extend basic flow models with new constitutive relationships,
extra conservation equations, new functional dependencies, and so on. By using numerical
routines and vectorization from MATLAB, combined with discrete differential and aver-
aging operators from MRST, these equations can be implemented in a very compact form
close to the mathematical formulation. Writing a simulator as a single script, like we did for
single-phase flow in Chapter 7 or for two-phase flow without phase transfer in Section 11.2,
has the advantage that the code is self-contained, quick to implement, and easy to modify
as long as you work with relatively simple flow physics. However, as the complexity of the
flow models and numerical methods increases, and more bells and whistles are added to
the simulator, the underlying code will inevitably become cluttered and unwieldy.

When you research new computational methods for reservoir simulation, it is important
to have a flexible research tool that enables you to quickly test new ideas and verify
their performance on a large variety problems, from idealized and conceptual cases to full
simulation setups. The AD-OO framework was introduced to structure our fully implicit
simulators and enable us to rapidly implement new proof-of-concept codes also for more
complex flow physics. Altogether, the AD-OO framework offers many of the features
found in commercial simulators. Understanding its design and all the nitty-gritty details
of the actual implementation will obviously provide you with a lot of valuable insight
into practical reservoir simulation. If you are not interested in code details, you can read
Section 12.1 and then jump directly to Section 12.4, which presents a few simulation
examples so as to outline the functionality and technical details you need to set up your
own black-oil simulation both with and without the use of ECLIPSE input. The sections
in between give a somewhat detailed discussion of the most central classes and member
functions to demonstrate the general philosophy behind the framework, but do not discuss
in detail how boundary conditions, source terms, and wells are implemented. The purpose
of these sections is to provide you with sufficient detail to start developing new simulators
with new numerics or other types of flow physics.

413

https://doi.org/10.1017/9781108591416.016 Published online by Cambridge University Press


https://doi.org/10.1017/9781108591416.016
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12.1 Overview of the Simulator Framework

Looking back at the procedural implementations presented so far in the book, we have
introduced a number of data objects to keep track of all the different entities that make up
a simulation model:

« a state object holding the unknown pressures, saturations, concentrations, inter-cell
fluxes, and unknowns associated with wells;

« the grid structure G giving the geometry and topology of the grid;

« astructure rock representing the petrophysical data: primarily porosity and permeability,
but net-to-gross as well;

« a sparse transmissibility vector (or inner-product matrix), possibly including multipliers
that limit the flow between neighboring cells;

« a structure fluid representing the fluid model, having a collection of function handles
that can be queried to give fluid densities and viscosities, evaluate relative permeabilities,
formation volume factors, etc.;

« additional structures that contain the global drive mechanisms: wells, volumetric source
terms, boundary conditions;

« and an optional structure that contains discrete operators for differentiation and
averaging.

In a procedural code, these data objects are passed as arguments to solvers or functions
performing subtasks like computing residual equations. As an example, all incompressible
flow solvers in the incomp family require the same set of input parameters: reservoir
state, grid and transmissibilities, a fluid object, and optional parameters that describe the
drive mechanisms. The transport solvers, on the other hand, require state, grid, fluid, rock
properties, and drive mechanisms. Solvers for the fully implicit equation system require the
union of these quantities to set up the residual equations. An obvious simplification would
be to collect all data describing the reservoir and its fluid behavior in a model object,
which also implements utility functions to access model behavior. Given a reservoir state,
for instance, we can then query values for physical variables with a syntax of the form:

[p, sW, sG, rs, rv] =
model .getProps(state, 'pressure', 'water',

‘gas‘ s |rsl s lrv|);

As we saw in the previous chapter, the criteria by which we choose s, 7y, and r, as
primary reservoir variable will vary from cell to cell depending on the fluid phases present.
Ideally, the model object should keep track of this and present us with the correct vector of
unknowns for all cells. It is also natural that the model object should be able to compute
residual flow equations (and their Jacobian) by a call like

egs = model.getEquations(oldState, newState, dT);

With a generic interface like this, you can develop nonlinear solvers that require no specific
or very limited knowledge of the physical model. A next step would be to separate the
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time-stepping strategy and the linear solver from the nonlinear solvers, so that we eas-
ily can switch between different methods or replace a generic method by a tailor-made
method. Moreover, a critical evaluation of the many simulation examples developed with
the procedural approach shows that large fractions of the scripts are devoted to input and
output of data, plotting results, etc. Likewise, implementing variations of the same model
either results in code duplication or a large number of conditionals that tend to clutter
the code.

A standard approach to overcome these difficulties is to use object orientation. The
object-oriented, automatic-differentiation (AD-OQ) framework in MRST is tailor-made to
support rapid prototyping of new reservoir simulators based on fully or sequentially implicit
formulations. An essential idea of the framework is to develop general model and simulator
classes, and use inheritance to develop these into simulators for specific equations. The
framework splits

o physical models describing the porous medium and the fluids flowing in it,

« nonlinear solvers and time-stepping methods,

o linearization of discrete equations formulated using generic discretization, averaging,
and interpolation operators as discussed previously, and

« linear solvers for the solution of the linear system

into different numerical contexts. This way, we only expose needed details and enable more
reuse of functionality that has already been developed.

Figure 12.1 illustrates how these contexts may appear in the main loop of a simulator.
The left part of the figure shows an unsophisticated Newton loop of the type used for
single-phase flow in Chapter 7, which consists of an outer loop running the time steps, and
an inner loop performing the Newton iteration for each time step. The right part shows a
more advanced nonlinear solver that utilizes some kind of time-control mechanism to run

(Clie Newton)————————— + (M oon) (o)
[xit, t] = initializeSolution(...) [x, t] = initializeSolution(...) {lres, J,...] = getEqs(t +7,...)
while t < T while t < T Jxit = x
t=1t+dt [AT, ctrl}=getControl(t) /[ while res > tol & it < itmax
X = xit T=0 Isys = assembleLinSys(res, J, ...)
do while 7 < AT Isol = setupLinSolver(xit, )
[R.J] = computeResiduals(xit,x) do upd = solveLinSys(xit, lsys, Isol, ...)
upd = J'R [At, ...]=getTimeStep(...) ) upd = stabilizeStep(xit, upd, Isys, ...)
xit = xit + upd [ok, solveMinistep(t + 7, At, ...) xit = updatelterate(upd, ...)
while norm(R)>tol while ok=false f cleanupLinSolver(lsol)
end end [res, J | = getBqs(t + 7, ...)
end end

Context:

if it < itmax
ok = true
[7, x, ...] = updateSolution(xit)

—  physical model and reservoir state |

. . || else
— nonlinear solver and time loop K — fal
ok = false
— linearization of discrete equations |
end

—  linear solver

Figure 12.1 Time loop of a simulator for a simple Newton solver (left) and for a more sophisticated
solver with stabilization and time-step control (right). For the latter, the iteration has been divided
into various numerical contexts.
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the targeted control steps of a simulation schedule. (Usually, the simulator should report
the solution after each such step.)

In this setup, the physical model is responsible for initializing the reservoir state. The
nonlinear solver implements the mechanism that selects and adjusts the time steps and
performs a nonlinear iteration for this time step. Inside this nonlinear iteration, the physical
model computes residual equations defined over all cells and possibly also cell faces and
discrete entities in the well representation (connections or nodes and segments). When
the residual equations are evaluated, the corresponding Jacobian matrix containing the
linearized residual equations is computed implicitly by the AD library. This produces
a collection of matrix blocks that each represents the derivative of a specific residual
equation with respect to a primary variable. The linearization context assembles the matrix
blocks into an overall Jacobian matrix for the whole system, and if needed, eliminates
certain variables to produce a reduced linear system. The linear solver sets up appropriate
preconditioners and solves the linear system for iteration increments, while the nonlinear
solver performs necessary stabilization, e.g., in the form of an inexact line-search algo-
rithm. Finally, the physical model updates reservoir states with computed increments and
recomputes residuals to be checked against prescribed tolerances by the nonlinear solver.

Figure 12.2 shows how a single nonlinear solve with time-step estimation is realized in
terms of classes and structures in the AD-OO framework. The ad-core module utilizes
MRST’s core functionality to implement a generic nonlinear solver, a set of generic time-
step selectors, and a set of linear solvers. The nonlinear solver does not know any specific
details of the physical model, except that it is able to perform the generic operations
we just outlined; we will come back to model classes in the next section. The time-step
selectors can implement simple heuristic algorithms that limit how much solutions can
change during an iterative step, e.g., as in the Appleyard and modified Appleyard chop
[271] used in commercial simulators. The linear solver class provides an interface for

Initial ministep:

‘ Nonlinear solver At Time step selector Type color legend
Solves nonlinear problems subdivided Determines optimal time steps
into one or more mini steps using 288
Newton’s method Adjusted: SimpleTimeStepSelector,

s S

StateChangeTimeStepSelector, ...

— Input

----- Contains object

[State ] Primary vars [Physical model Linear solver
{Primary variables: p, Sy, Sg;Rs,Ry... TDefines mathematical model: Resid- Solves linearized problem and returns
H ual equations, Jacobians, limits on ax increments
' 5 ates. convergence definiti
: Update variables: updates, convergence definition... BackslashSolverAD, AGMGSolverAD,
1 PEP+HOpsEstls.. TwoPhaseDilWaterModel CPRSolverAD, ...
H ThreePhaseBlack0ilModel /
L Reg, - s A —
(V\'ell solutions W g ’ Jac% ing Hegemlifls e =6
| Well data: qW, q0, qG, bhp, ... ] L oSS
Well model Linearized problem
Well equations, control switch, well- Jacobians, residual equations and
bore pressure drop, .. meta-information about their types

Figure 12.2 Data diagram for a single nonlinear solve with time-step estimation in the AD-OO
framework.
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various solvers including MATLAB’s default backslash solver as well as a state-of-the-
art, constrained pressure residual (CPR) preconditioner [304, 305, 119], which can be
combined with efficient algebraic multigrid solvers such as the aggregation-based method
found in [238], or the more recent AMGCL library [81]. Assembly of the linearized system
is relegated to a special class that stores meta-information about the primary variables and
the residual equations, i.e., whether they are reservoir, well, or control equations. The
linear solver class employs this information to help setting up preconditioning strategies
that exploit special structures in the problem.

Example 12.1.1 (1D Buckley-Leverett) 7o illustrate the use of the nonlinear solver, let us
revisit the classical Buckley—Leverett problem from Example 9.3.4 on page 284 and Section
10.3.1. For completeness, we show all code lines necessary to set up this problem in the
AD-OO framework (which you also can find in adBuckleyLeverett1D.m in the ad-core
module). First, we construct the reservoir and water—oil fluid data with constant shrinkage
factors:

mrstModule add ad-core ad-props ad-blackoil

G = computeGeometry(cartGrid([50, 1, 1], [1000, 10, 10]*meter));
rock = makeRock(G, lxdarcy, .3);

fluid = initSimpleADIFluid('phases', 'W0', 'n', [2 2]);

We then create a two-phase black-oil model (from ad-blackoil) and set up the initial
state:

model = TwoPhaseOilWaterModel(G, rock, fluid);
state0 = initResSol(G, 50%*barsa, [0, 1]);
state0.wellSol = initWellSolAD([], model, stateO);

Notice that the water—oil model assumes that the state object contains a subfield holding
well solutions. Since there are no wells in our case, we instantiate this field to be an empty
structure having the correct subfields. Finally, we set up the correct drive mechanisms:
constant rate at the left and constant pressure at the right end.

injR = sum(poreVolume(G,rock))/(500*day) ;
bc fluxside([], G, 'smin', injR, 'sat', [1, 01);
bc = pside(bc, G, 'xmax', O%barsa, 'sat', [0, 11);

Having set up the problem, the next step is to instantiate the nonlinear solver:

T |
| solver = NonLinearSolver(); ‘
1 |

By default, the solvers employs MATLAB’s standard backslash operator to solve the linear
problems. The time-step selector employs a simplified version of the time-chop strategy
outlined in Section 10.2.2 to run the specified control steps: time steps are chopped in two
if the Newton solver requires more than 25 iterations, but no attempt is made to increase
successful substeps during a control step. The setup is the same as for the SPE 1 test
case 11.8.1 on page 399, except that we then used inexact line search to stabilize the
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Newton updates. Line search is not needed here since the fluid behavior of the Buckley—
Leverett problem is much simpler and does not involve transitions between undersaturated
and saturated states.

There are several ways we can use the nonlinear solver class. One alternative is to
manually set up the time loop and only use the solveTimestep function of the nonlinear
solver to perform one iteration:

[dT, n] = deal(20%day, 25);
states = cell(n+l, 1); states{1} = stateO;
solver.verbose = true;
for i = 1:n
states{i+1} = solver.solveTimestep(states{i}, dT, model, 'bc', bc);
end

The results are stored in a generic format and can be plotted with the plotToolbar
GUI discussed in the previous chapter. Alternatively, we can construct a simple simulation
schedule and call the generic simulation loop implemented in ad-core:

schedule = simpleSchedule(repmat(dT,1,25), 'bc', be);
[~,sstates] = simulateScheduleAD(state0, model, schedule);

This loop has an optional input argument that sets up dynamic plotting after each step in
the simulation, e.g., to monitor how the well curves progress during the simulation, or to
print out extra information to the command window. Here, we use this hook to set up a
simple graphical user interface that visualizes the progress of the simulation and enables
you to modify the time steps interactively, dump the solution to workspace, and stop the
simulation and continue running it in debug mode. The GUI may in turn call any or both of
the two GUIs shown in Figure 11.32 to plot reservoir states and well solutions. We request
1D plotting of the water saturation, and that we turn off plotting of wells, since the example
does not have any:

fn = getPlotAfterStep(state0, model, schedule, ...
'plotWell', false, 'plotReservoir', true, 'field', 's:1', ...
'lockCaxis',true, 'plotid', true);

[~,sstates,report] = ...
simulateScheduleAD(stateO, model, schedule,'afterStepFn', fn);

Figure 12.3 shows a snapshot of the GUI and the saturation profile just before the displace-
ment front reaches the right end of the domain. The first control step requires 7 iterations,
whereas the next 15 steps only use 4 iterations, giving a total of 67 iterations, or an average
of 4.19 iterations for the first 16 control steps. The GUI also reports the total runtime
so far and uses the iteration history to estimate the total runtime. A total runtime of 7
seconds for such a small model may seem high and can mainly be attributed to the GUI,
plotting, and computational overhead introduced by the AD-OO framework. This over-
head is significant for small models, but decreases in importance as the size of the model
increases.
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Figure 12.3 The default graphical user interface in the generic simulation loop reports simulation
progress and enables simple computational steering.

For large models it may not be feasible to run interactive sessions and store all simu-
lation results in memory. The solver also has a hook that enables you to control how the
computed states are stored. To control the storage, we use a so-called result handler, which
behaves almost like a cell array, whose content can either be stored in memory, on disk,
or both places. This is very useful if you have long simulations you want to run in batch
mode, or if you expect that the simulator may fail or be interrupted before the simulation is
finished and you want to store all completed time steps. Let us set up a handler for storing
computed states to disk

’ handler = ResultHandler('writeToDisk', true, 'dataFolder', 'ad-blid'); ‘

We can then pass the handler to the simulator as an optional argument

’ simulateScheduleAD(state0, model, schedule, 'outputHandler', handler); ‘

The simulator will now store each state as a separate MATLAB-formatted binary file in a
subdirectory ad-bl1d somewhere on a standard path relative to where you have installed
MRST. By default, the files are called statel.mat, and so on. The name can be changed
through the option 'dataPrefixz', whereas the parameter 'dataDirectory’ lets you
change the base directory relative to which the files are stored. To maintain results in
memory, you need to set the option 'storelnMemory'.

You can now use the result handler as a standard cell array, and you need not really
know where the results are stored. You can for instance plot the results through the same
GUI we used in the previous chapter

plotToolbar(G, handler, 'field', 's:1','lockCaxis', true, 'plotld', true);

If you at a later time wish to retrieve the data, you simply create a new handler and will
then have access to all data stored on disk. The following example shows how to extract
every second time step:
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handler = ResultHandler('dataFolder', 'ad-blid');
m = handler.numelData();
states = cell(m, 1);
for i =1:2:m
states{i} = handler{i};
end

You can delete the stored data through the call handler .resetData().

To make the AD-OO simulator framework as versatile as possible, we have tried to
develop a modular design, so that any simulator consists of a number of individual com-
ponents that can easily be modified or replaced if necessary. Figure 12.4 shows how vari-
ous classes, structures, and functions work together in the generic simulateScheduleAD
function. The function takes physical model, initial state, and schedule as input, and then
loops through all the control steps, updating time steps and drive mechanisms, calling
the nonlinear solver, and performing any updates necessary after the nonlinear solver has
converged (to track hysteretic behavior, etc.). In the next two sections, we discuss the main
elements shown in Figure 12.4.

12.2 Model Hierarchy

The mrst-core module implements two basic model classes: PhysicalModel and
ReservoirModel. Their main purpose is to provide generic templates for a wide vari-
ety of specific flow models. As such, these two generic model classes do not offer
any flow equations and hence cannot be used directly for simulation. Instead, they
provide generic quantities and access mechanisms, which we will discuss in more
detail shortly. We can then develop specific models by expanding the generic models
with specific flow equations and fluid and rock properties. The ad-core module also
contains classes implementing well models: either simple Peaceman wells of the type we
discussed in Sections 4.3.2, 5.1.5, and 11.7.1, or advanced multisegment well models from
Section 11.7.2 that give more accurate representation of deviated, horizontal, and multilat-
eral wells with advanced completions and inflow control devices.

The ad-blackoil module implements black-oil models, as discussed in Chapter 11,
utilizing functionality from the deckformat module to read ECLIPSE input decks and
from ad-props to construct models for rock-fluid and PVT properties; see Figure 12.5. The
resulting simulators can simulate industry-standard black-oil models and compute adjoint
gradients and sensitivities.

Sequential solvers, like those discussed in Chapter 10, can often be significantly faster
than fully implicit solvers, especially for where the total velocity changes slowly during the
simulation. Such solvers are also a natural starting point when developing, e.g., multiscale
methods [215, 216]. The blackoil-sequential module implements sequential (fully
implicit) solvers for the same set of equations as in ad-blackoil, based on a fractional
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Figure 12.5 Modules used to implement black-oil models in the AD-OO framework.

flow formulation wherein pressure and transport are solved as separate steps and thus are
represented as separate models.

The ad-eor module [30] implements extensions of the black-oil equations to water-
based EOR methods like polymer and surfactant flooding and the co2lab module [19]
uses inheritance from the black-oil module to implement specialized simulators for CO;
sequestration. The black-oil family also includes modules for solvents and routines for
solving optimal control problems based on the AD-OO framework. In addition, MRST
contains other AD-OO modules for compositional simulators [212], geomechanics, and
coupled geomechanics—flow simulations that do inherit from ad-blackoil, and more
modules are in the making. These are all (unfortunately) outside the scope of this book.

12.2.1 PhysicalModel — Generic Physical Models

At the lowest level of the model hierarchy, we have a generic physical model that defines
basic properties to be inherited by other models and model classes. All models in the
AD-OO framework are interpreted in a discrete sense and are assumed to consist of a
set of model equations on residual form. The primary properties of a physical model
are a structure holding discrete operators used to define the model equations and a non-
linear tolerance that defines how close the residual values must be to zero before the
model is fulfilled. Actual operators are not implemented in the PhysicalModel class and
must be specified in derived classes or explicitly set by the user for concrete instances
of PhysicalModel. These operators are typically defined over a grid, and the ad-core
module offers the function setupOperatorsTPFA for setting up the two-point operators
we have discussed in previous chapters. In addition to the optional grid property, the class
contains a flag signifying if the model equations are linear (and hence can be solved by a
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single matrix inversion), and a flag determining how verbose the member functions should
be in their output

classdef PhysicalModel
properties
operators
nonlinearTolerance
G
verbose
stepFunctionIsLinear
end
methods
function model = PhysicalModel(G, varargin)
model .nonlinearTolerance = le-6;
model .verbose = mrstVerbose();
model = merge_options(model, varargin{:});
model.G = G;
model . stepFunctionIsLinear = false;
end
end

Notice that all class names in MRST start with a capital letter to distinguish them from
functions, which always start with a lowercase letter.

Model Equations and Physical Properties

The basic class has several member functions that implement generic tasks associated with
a model. The first, and most important, is to evaluate residual equations and Jacobians,
which is done by the following function:

‘ [problem, state] = model.getEquations(state0, state, dt, forces, vararg) ‘

Here, problem is an instance of the LinearizedProblem class that implements what we
referred to as the linearization numerical context in the simulator loop in Figure 12.1. This
class has data structures to represent the linearized system for given states and member
functions that correctly assemble the full linear system from residuals and Jacobian block
matrices stored for the individual sub-equations making up the flow model; we discuss this
in more detail in Section 12.3. Input argument forces represents driving forces that are
currently active. These may vary from one step to the next and are specified by the control
part of the schedule; see e.g., Figure 12.4. Active driving forces are set by

forces = model.getDrivingForces(control) ;

The function creates a cell array that lists the forces on the same form as for the incom-
pressible solvers. What are the valid forces for a model (with reasonable defaults) can be
queried

validForces = model.getDrivingForces()
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In addition, the class has utility functions for interacting with the state structure in a con-
sistent manner. This includes querying values for one or more specific variables/properties,
setting or capping specific values, or correctly incrementing values

) = model.getProp (state, 'pressure');

[p,s] = model.getProps(state, 'pressure', 's');
state = model.setProp (state, 'pressure', 5);
state = capProperty (state, 's', 0, 1)

state = model.incrementProp(state, 'pressure', 1);

These operations are generic and hence implemented in the PhysicalModel class. How-
ever, the specific function arguments will only work for instances of ReservoirModel
or derived classes that specify the variables pressure and s. You can check whether a
variable is defined or not as follows

[fn, index] = model.getVariableField(name)

which produces the field name and column index that will extract the correct variable
from the state object. The function produces an error when called with any name for a
PhysicalModel, since this class does not implement any variables.

Linear Updates to States

The second purpose of the basic model class is to correctly update states as part of a linear
or nonlinear solution process. First of all, the function

[state, report] = model.stepFunction(state, stateO, dt, forces, ...
linsolver, nonlinsolver, itno, varargin)

implements the generic behavior of a single nonlinear update; that is, it executes the steps
of the inner while loop of the right-most box in Figure 12.1. Here, nonlinsolver is an
instance of the NonLinearSolver class, which we briefly introduced on on page 399, and
linsolver is an instance of a similar /inear solver class; more detail are given in Section
12.3. The second output, report, is a standardized step report that provides information
such as the CPU time used by the linear solver, setup of the stabilization step, convergence
status, size of residual, etc. There are also functions to extract the computed update, update
the state, check whether it is converged or not, check whether the controls have changed, as
well as a hook enabling a state to be updated after it has converged, e.g., to model hysteretic
behavior.

Let us in particular look at the function for updating the state with a given increment.
The following code updates the pressure value from 10 to 110:

state = struct('pressure', 10);
state = model.updateStateFromIncrement(state, 100, problem, 'pressure')

We can also restrict the maximum relative changes, e.g., to be at most 10%

state = model.updateStateFromIncrement(state, 100, problem, 'pressure', .1)
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which sets pressure to 11. Relative limits such as these are important when working with
tabulated and nonsmooth properties in a Newton-type loop, as the initial updates may be
far outside the reasonable region of linearization for a complex problem. On the other
hand, limiting the relative updates can delay convergence for smooth problems with ana-
lytic properties and will, in particular, prevent zero states from being updated, so use
with care.

Quality Assurance

A model must also be able to check its on validity. The function

model . validateModel (forces)

where forces is an optional argument, validates that a model is suitable for simulation.
If missing or inconsistent parameters can be fixed automatically, an updated model is
returned. Otherwise, an error should occur. This function does not have meaning for a
PhysicalModel, but should be implemented in derived classes. Likewise, there is a func-
tion to validate the state for use with the model

model .validateState(state)

The function should check that required fields are present and of the right dimensions,
and if missing fields can be assigned default values, return state with the required fields
added. If reasonable default values cannot be assigned, a descriptive error should be thrown
telling the user what is missing or wrong (and ideally how to fix it). Also this function must
be implemented in derived classes. The only function whose behavior is implemented in
PhysicalModel is

model . checkProperty(state, 'pressure', [nc, 11, [1, 21);

here called for a model of the derived ReservoirModel class to check that the pressure
field has nc elements along its first dimension and one element along the
second dimension.

Adjoint Equations

One of the reasons for introducing the AD-OO framework was to simplify the solution of
so-called adjoint equations to compute parameter gradients and sensitivities. (How this is
done is outside the scope of this book.) The base class therefore contains an interface for
computing adjoint equations:

[problem, state] = model.getAdjointEquations(state0l,state,dt,forces,vararg)

Solving adjoint equations boils down to running a backward simulation with a set
of linearized equations. PhysicalModel also offers a generic update function
solveAdjoint that computes a single step for the corresponding adjoint equations.
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12.2.2 ReservoirModel — Basic Reservoir Models

The next class in the hierarchy has properties to represent entities found in most reservoir
models: fluid model, petrophysical properties, indicators for each of the basic three phases
(aqueous, gaseous, and oleic), variables representing phase saturations and chemical com-
ponents, and a model of production facilities

classdef ReservoirModel < PhysicalModel
properties
fluid, rock, gravity, FacilityModel
water, gas, oil

% Iteration parameters
dpMaxRel, dpMaxAbs, dsMaxAbs, maximumPressure, minimumPressure,
useCNVConvergence, toleranceCNV, toleranceMB

Notice in particular that the reservoir model declares absolute and relative tolerances on
how much pressures and saturations can change during an iteration step as well as lower and
upper bounds on the pressure. In addition, the class declares that convergence of nonlinear
iterations can be measured in two different ways, either by mass balance (MB) or by scaled
residuals (CNV); more details will follow in Section 12.3.

To construct an instance of the class, we first construct an instance of a PhysicalModel
and then proceed to declare the additional properties that are part of a reservoir model. The
following is a somewhat simplified excerpt:

function model = ReservoirModel(G, varargin)
model = model@hysicalModel(G);
model.rock = varargin{1}; model.fluid = varargin{2};
[model.water, model.gas, model.oil] = deal(false);
model.dpMaxRel = inf; model.dpMaxAbs = inf;
model .dsMaxAbs = .2;

model.operators = setupOperatorsTPFA(G, model.rock, ..)
end % call for construction: ReservoirModel(G, rock, fluid, ...)

By default, the reservoir model class does not contain any active phases; these must be
specified in derived classes. However, we do declare that discrete operators should be of
the two-point type. We also declare limits on how much pressures and saturations may
change from one iteration step to the next: the default is that changes in pressure can be
arbitrarily large, whereas saturations are only allowed an absolute change of 0.2.
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Physical Variables and Active Phases

Physical variables known to a particular class are declared by the following function:

function [fn,ix] = getVariableField(model, name)
switch(lower(name))
case {'pressure' , 'p'}
ix = 1; fn = 'pressure' ;
case {'s', 'sat', 'saturation'}

ix=":"; fn = 's' ;

case {'so' , 'oil'}
ix = find(strcmpi(model.getSaturationVarNames, name));
fn = 's' ;

The purpose of this function is to provide a convenient and uniform way to access physical
variables without knowing their actual storage in the state object. Let us consider saturation
as an example. Saturation is stored in the field state. s, but this vector may have one, two,
or three entries per cell, depending upon the number of phases present. To access individual
phase saturations, the class implements two additional utility functions:

function vars = getSaturationVarNames(model)

vars = {'sw', 'so', 'sg'};
vars = vars(model.getActivePhases());
end

function isActive = getActivePhases(model)
isActive = [model.water, model.oil, model.gas] ;
end

Here, we see that oil saturation is stored in the second column of state.s for models
containing water, but in the first column for a model without water. Oil saturation can now
be extracted as follows:

[fn, ix] = model.getVariableField('so');
so = state.(fn)(:, ix);

This may seem unnecessary complicated, but enables access to variables in a uniform way
for all models so that the code continues to work if we later decide to change the name
of the saturation variable, or implement models with more than three phases to represent
precipitated solids, emulsified phases, etc.

Altogether, the reservoir model declares the possible presence of variables for pressure;
saturations for the aqueous, oleic, and gaseous phases; temperature; and well solutions, but
does not declare variables for dissolved gas—oil ratio and vaporized oil—gas ratios, as these
are specific to black-oil models. There are also a number of other functions for getting
the active phases and components and correctly storing saturations, mobilities, face fluxes,
densities, shrinkage factors, and upstream indices in the state object.
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Fluid Behavior

The ReservoirModel class implements a generic method for evaluating relative perme-
abilities:

function varargout = evaluateRelPerm(model, sat, varargin)
active = model.getActivePhases();
nph = sum(active) ;
varargout = cell(1, nph);
names = model.getPhaseNames() ;

if nph > 1

fn = ['relPerm', names];

[varargout{:}] = model.(fn) (sat{:}, model.fluid, varargin{:1});
elseif nph ==

varargout{1} = model.fluid.(['kr', names]) (sat{:}, varargin{:});
end

The function is a general interface to the relPermWO, relPerm0G, relPermWG, and
relPermW0G functions discussed in Section 11.3, which in turn are interfaces to the more
basic krW, kr0, krG, kr0G, and krOW functions of fluid objects in MRST. The generic
reservoir model neither implements nor offers any interface for PVT behavior, since this
is very different in black-oil models and models relying on an equation of state. However,
there is a function for querying surface densities of all phases.

Global Driving Forces

The basic physical model was aware of driving forces but did not implement any.
ReservoirModel has gravity as a property and can evaluate the gravity vector and
compute a gravity gradient. In addition, the class specifies the potential presence of
boundary conditions, source terms, and wells

function forces = getValidDrivingForces(model)
forces = getValidDrivingForces@hysicalModel (model) ;

forces.W = [];

forces.bc = [];

forces.src = [];
end

Wells are special because each well is represented by another model, i.e., an instance
of a derived class of PhysicalModel. Instances of such models are stored in the
FacilityModel property of the reservoir model, which in principle can contain models
of all production facilities used to bring hydrocarbons from the reservoir to the surface.
New well instances are created by the following function whenever the well controls
change
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function [model, state] = updateForChangedControls(model, state, forces)

model .FacilityModel = model.FacilityModel.setupWells(forces.W);

state.wellSol = initWellSolAD(forces.W, model, state);

[model,state] = updateForChangedControls@hysicalModel(model, state, forces);
end

The generic operation of adding the effect of wells to a system of equations by adding the
corresponding source terms and augmenting the system with additional model equations
for the wells is done in the insertWellEquations function. The same holds for source
terms and boundary conditions. If you are more interested, you should consult the code for
further details.

Updating States and Models

The computation of linearized increments in a reservoir model is inherited from the
PhysicalModel class without any special adaptions or extensions, since it follows the
exact same algorithm as in a generic Newton loop. On the other hand, the way these
increments are used to update reservoir states differs from other types of models and hence
requires special implementation. The function updateState splits state variables into four
different categories: well variables, saturation variables, pressure, and optional remaining
variables. Updating well variables is quite involved and will not be discussed herein; as
always, you can find all necessary details in the code.

Saturation variables are characterized by the fact that they should sum to unity so that
pore space is completely filled by fluid phases. If our model contains n,;, phases, the
linearized increments will contain n,; — 1 saturation increments. The n,;’th increment
is set as the negative sum of all the other increments; i.e., values added to the first
npnp — 1 variables must be subtracted from the saturation of the last phase so that
the total increment over the n,;, phases is zero. The increments are then passed to the
updateStateFromIncrement function to compute new saturations satisfying limits on
absolute and relative updates. To ensure physically correct states, the updated saturations
are then cropped to the unit interval, and then we renormalize saturations in any cells
containing capped values, so that So, < Se/ D", Sq-

We update pressure by first updating according to relative/absolute changes and then
capping values to fulfill limits on minimum and maximum pressure. Any remaining vari-
ables are updated with no limits on changes or capping.

Validating Models and States

You may recall that PhysicalModel defined functions for validating models and states
but did not implement any specific behavior. The reservoir model checks that the model
instance contains a facility model, and if not, instantiates one such object with default
values:
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function model = validateModel(model, varargin)
if isempty(model.FacilityModel)
model .FacilityModel = FacilityModel(model) ;
end
if nargin > 1
W = varargin{1}.W;
model .FacilityModel = model.FacilityModel.setupWells(W) ;
end
model = validateModel@hysicalModel(model, varargin{:});

The validation function can also be called with a structure containing drive mechanisms as
argument. In this case, we extract the well description and pass it on to the facility model so
that this model can initialize itself properly. The function then calls the validation function
inherited from its parent class (PhysicalModel), which in the current implementation
does nothing. Because the reservoir model does not contain any concrete equations and
parameters, further consistency checks of model equations and petrophysical, fluid, and
PVT properties must be performed in derived classes or implemented explicitly by the
user. However, the model should be able to check a reservoir state and make sure that this
state is compatible with the model:

function state = validateState(model, state)
% Check parent class
state = validateState@hysicalModel(model, state);
active = model.getActivePhases();
nPh = nnz(active);
nc = model.G.cells.num;
model . checkProperty(state, 'Pressure', [nc, 1], [1, 2]);
if nPh > 1
model . checkProperty(state, 'Saturation', [nc, nPh], [1, 2]);
end
state = model.FacilityModel.validateState(state) ;

To be consistent, the state should contain one unknown pressure and the correct number
of phase saturations in each cell. Once we have ensured that the reservoir states meets the
requirements, the facility model should check that the reservoir state contains the correct
data structures for representing well states. Neither of these operations check whether the
actual values represented in the reservoir state are physically meaningful.

12.2.3 Black-0il Models

The ThreePhaseBlack0ilModel class is the base class in the ad-blackoil module
and is derived from the ReservoirModel class. Unlike the two previous abstract classes,
this base class is a concrete class designed to represent a general compressible, three-
phase, black-oil model with dissolved gas and vaporized oil. The model therefore declares
two new properties, disgas and vapoil, to signify the presence of dissolved gas and
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vaporized oil, respectively. The corresponding data fields rs and rv are defined in the
getVariableField function. We also extend validateState to check that the reservoir
state contains a rs and/or a rv field if dissolution and/or vaporization effects are active in a
specific model instance. The class also defines the maximum absolute/relative increments
allowed for r; and r,. By default, the constructor sets up a dead-oil model containing the
aqueous, gaseous, and oleic phases, but with no dissolution and vaporization effects.

Unlike the generic classes from ad-core, ThreePhaseBlackOilModel implements
concrete  equations. The member function getEquations calls the
equationsBlack0il, which generates linearized equations according to how the general
black-o0il model is configured. We have already discussed the essential code lines contained
in this function, but as stated in Chapter 11, the actual code is structured somewhat
differently and contains more conditionals and safeguards to ensure that discrete residuals
are computed correctly for all combinations of drive mechanisms and possible special
cases of the general model.

In addition to implementing flow equations, the class extends updateState to imple-
ment variable switching when the reservoir state changes between saturated and undersat-
urated states. There is also a new member function that computes correct scaling factors to
be used by CPR-type preconditioners, which we outline on page 444.

The ad-blackoil module also implements three special cases of the general black-
oil model: a single-phase water model and two-phase oil-water and oil-gas models. Since
most functionality is inherited from the general model, these special cases are implemented
quite compactly, for instance:

classdef TwoPhaseOilWaterModel < ThreePhaseBlack0ilModel
properties
end
methods
function model = TwoPhaseOilWaterModel(G, rock, fluid, varargin)
model = model@ThreePhaseBlack0ilModel(G, rock, fluid, varargin{:});
model.oil = true;
model.gas = false;
model .water = true;
model = merge_options(model) ;
end

Residual equations are evaluated by the function equations0ilWater, which is a sim-
plified version of the equationsBlackOil function in which all effects relating to gas,
dissolution, and vaporization have been removed.

function [problem, state] = ...
getEquations(model, stateO, state, dt, drivingForces, varargin)
[problem, state] = ...
equationsOilWater(stateO, state, model, dt, drivingForces, varargin{:});
end
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For completeness, let us quickly go through the essential parts of this function, disregarding
source terms, boundary conditions, and computation of adjoints. We start by getting driving
forces and discrete operators and setting names of our primary variables,

W = drivingForces.W;
s = model.operators;
primaryVars = {'pressure', 'sW', wellVarNames{:}};

Then, we can use the reservoir and facility models to extract values for the primary
unknowns:

[p, sW, wellSol] = model.getProps(state, 'pressure', 'water', 'wellsol');
[pO, sWO, wellSol0] = model.getProps(state0, 'pressure', 'water', 'wellSol');
[wellVars, wellVarNames, wellMap] = ...

model .FacilityModel.getAl1PrimaryVariables(wellSol) ;

Once this is done, we compute the residual equations more or less exactly the same way as
discussed in Section 11.6. That is, we first compute fluid and PVT properties in all cells.
Then, we compute gradient of phase potentials, apply suitable multipliers, and average
properties correctly at the interface to compute intercell fluxes.

s0 =1 - sW;

[krW, kr0] = model.evaluateRelPerm({sW, s0});

[pvMult, transMult, mobMult, pvMultO] = getMultipliers(model.fluid, p, pO);
krW = mobMult.*krW; kr0 = mobMult.x*kr0;

T = s.T.*transMult;

We now have all we need to compute the residual equations

water
oil

(s.pv/dt) .*( pvMult.*bW.*sW — pvMultO.*bWO.*sWO ) + s.Div(bWvW);
(s.pv/dt) .x( pvMult.*b0.*s0 - pvMult0.*b00.*s00 ) + s.Div(bOv0);

In all codes discussed so far, we have included wells by explicitly evaluating the well
equations and adding the corresponding source terms to the residual equations in individual
cells before concatenating all the residual equations. Here, however, we first concatenate
the reservoir equations and then use a generic member function from the ReservoirModel
class to insert the necessary well equations

egqs = {water, oil};
names = {'water', 'oil'};
types = {'cell', 'cell'};
[egs, names, types, state.wellSol] = ...
model. insertWellEquations(egs, names, types, wellSolO, wellSol,
wellVars, wellMap, p, mob, rho, {}, {}, dt, opt);

Finally, we construct an instance of the linearized problem class

problem = LinearizedProblem(eqgs, types, names, primaryVars, state, dt);

We will discuss this class in more detail in Section 12.3.1.
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12.2.4 Models of Wells and Production Facilities

The AD-OO framework has primarily been developed to study hydrocarbon recovery, CO;
storage, geothermal energy, and other applications in which fluids are produced from a
porous rock formation and brought up to the surface, or brought down from the surface and
injected into a rock formation. By default, all reservoir models are therefore assumed to
have an entity representing this flow communication between the surface and the subsur-
face. If you only want to describe flow in the porous medium, you can set the well model
to be void, but it must still be present.

Facility Models

The well models discussed earlier in the book apply to a single well (see Section 11.7).
Wells are sometimes operated in groups that are subject to an overall control. The corre-
sponding well models must hence be coupled. As an example, wells can be coupled so that
gas or water produced from one well is injected into another well as displacing fluid. Wells
from different reservoirs may sometimes also produce into the same flowline or surface
network and hence be subject to overall constraints that couple the reservoir models. Hence,
there is a need to represent a wider class of production and injection facilities.

Instead of talking of a well model, the AD-OO framework therefore introduces a general
class of facility models that can represent different kinds of facilities used to enhance and
regulate the flow of reservoir fluids from the sandface to the well head or stock tank. The
FacilityModel class is derived from the PhysicalModel class and is a general container
class that holds a collection of submodels representing individual wells. In principle, the
FacilityModel container class can also incorporate models for various types of topside
production facilities, but at the time of writing, no such models are implemented in MRST.

Peaceman-Type Well Models

The inflow performance relation, ¢ = J(pg — pwsp), discussed in Sections 4.3.2 and 11.7.1,
gives an unsophisticated description of injection and production wells, and is generally
best suited for simple vertical wells, in which fluids inside the wellbore can be assumed to
be in hydrostatic equilibrium. Apart from the well index (and possibly a skin factor), no
attempt is made to model the complex flow physics that may take place in various types
of well completions. The flow in and out of the wellbore is regulated by controlling either
the surface flow rate or the bottom-hole pressure (bhp). In the AD-OO framework, this
type of well model is implemented in the SimpleWell class, which is derived from the
PhysicalModel class.

Multisegment Well Models

The MultisegmentWell class is also derived from the PhysicalModel class and imple-
ments the more general concept of multisegment wells, which we briefly introduced in
Section 11.7.2. In these models, the flow of fluids from the sandface to the well head is
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described in terms of a set of 1D flow equations on a general flow network. In ECLIPSE
[270], the network must assume the form of a tree (i.e., be a directed graph). The imple-
mentation in MRST is more general and allows for complex network topologies involving
circular dependencies among the nodes.

A Word of Caution about the Implementation

Implementing the correct behavior of wells and facilities involves quite complicated logic
and a lot of intricate details that quickly make the code difficult to understand. A detailed
discussion of the facility and well classes is therefore outside the scope of this book. As
usual, you can find all necessary details in the actual code, but let me add a small warning:
To retain the same computational efficiency as the rest of the simulator classes, the well
classes have been optimized for computational efficiency. The reason is that well and
facility models typically have orders-of-magnitude fewer unknowns than the number of
states defined over the reservoir grid. The vectorized AD library in MRST is primarily
designed to perform well for long vectors and large sparse matrices and is not necessarily
efficient for scalars and short vectors. To keep the computational efficiency when working
with individual wells, it has proved necessary to meticulously distinguish between variables
that need automatic differentiation and variables that do not. As a result, the code contains
explicit casting of AD variables to standard variables, which in my opinion has reduced
readability.

In other words: please go ahead and read the code, but be warned that it may appear less
comprehensible than other parts of the AD-OO framework.

12.3 Solving the Discrete Model Equations

In this section, we go through the three different types of classes the AD-OO framework
uses to solve the discrete equations, motivate their design, and briefly describe their key
functionality. If you are interested in developing your own solution algorithms and solvers,
the classes define generic information about the discrete equations and interfaces to the rest
of the simulator you can use as a starting point.

12.3.1 Assembly of Linearized Systems

The main purpose of the LinearizedProblem class is to assemble the individual matrix
blocks computed by the AD library invoked within a model class into a sparse matrix that
represents the linearization of the whole reservoir model. To this end, the class contains the
residual equations evaluated for a given specific state along with meta-information about
the equations and the primary variables they are differentiated with respect to. We refer to
this as a linearized problem. This description can be transformed into a linear system and
solved using a subclass of the LinearSolverAD class to be discussed in Section 12.3.4,
provided that the number of equations matches the number of primary variables. The class
also contains the following data members:
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classdef LinearizedProblem
properties

equations, types, equationNames

primaryVariables

A, b

state

dt, iterationNo, drivingForces
end

The cell array equations contains the residuals evaluated at the reservoir state repre-
sented in the state object. The residuals can be real numbers, but are most typically AD
objects. The cell array types has one string per equation indicating its type. (Common
types: 'cell! for cell variables, 'well' for well equations, etc.) These types are available
to any linear solver and can be used to construct appropriate preconditioners and solver
strategies. The cell arrays equationNames and primaryVariables contain the names of
equations and primary variables; these are used, e.g., by the linear solvers and for reporting
convergence. The sparse matrix A represents the linear system and the vector b holds the
right-hand side. For completeness, we also store the time step, the iteration number, and
the driving forces, which may not be relevant for all problems.

The linear system corresponding to a linearized problem can be extracted by the member
function

[ ]
‘ [A, b] = problem.getLinearSystem() ; ‘

The function will check whether the linear system already exists, and if not, it will assemble
it using the function:

function problem = assembleSystem(problem)
if isempty(problem.A)
iseq = cellfun(@(x) ~isempty(x), problem.equations);
eqs = combineEquations(problem.equations{iseq});
if isa(egs, 'ADI')
problem.A = -egs.jac{1};
problem.b = egs.val;
else
problem.b = egs;
end
end
end

In our previous AD solvers, the equations were always AD objects, and we could assemble
the linearized system simply by concatenating the AD variables vertically. In a general
model, we cannot guarantee that all residual equations are AD objects, and hence the
vertical concatenation is implemented as a separate function we can overload by specialized
implementations. If the residual equations are given as real numbers, this function simply
reads
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function h = combineEquations(varargin)
h = vertcat(varargin{:});
end

In this case, we cannot construct a linear system since no partial derivatives are available. If
the residual equations are represented as AD objects, the linear system is, as before, assem-
bled from the Jacobian block matrices stored for each individual (continuous) equation. The
AD library from mrst-core implements an overloaded version of combineEquations,
which ensures that AD objects are concatenated correctly and also enables concatenation
of AD objects and standard doubles.

How the linear equations are solved, will obviously depend on the linear solver. The
simplest approach is to solve all equations at once. However, as we will come back to
in Section 12.3.4, it may sometimes be better to eliminate some of the variables and
only solve for a subset of the primary variables. To this end, the LinearizedProblem
class has member functions that use a block-Gaussian method to eliminate individual
variables

[problem, eliminatedEquation] = problem.eliminateVariable(name)

where name corresponds to one of the entries in problem. equationNames. Likewise, you
can eliminate all variables that are not of a specified type

[problem, eliminated] = reduceToSingleVariableType(problem, type)

Using this function, you can for instance eliminate all equations that are not posed on
grid cells. There is also a function that enables you to recover the increments in primary
variables corresponding to equations that have previously been eliminated. In addition, the
LinearizedProblem class contains member functions for appending/prepending addi-
tional equations, reordering the equations, computing the norm of each residual equation,
querying indices and the number of equations, querying the number of equations of a
particular type, as well as a number of utility functions for sanity checks, clearing the
linear system, and so on.

12.3.2 Nonlinear Solvers

The NonLinearSolver class is based on a standard Newton—Raphson formulation and
is capable of selecting time steps and cutting them if the nonlinear solver convergences
too slowly. To modify how the solver works, you can either develop your own subclass
and/or combine the existing solver with modular linear solvers and classes for time-step
selection. You have already seen some of the properties of the class in Section 11.8.1
on page 399. The following is an almost complete declaration of the class and its data
members
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classdef NonLinearSolver < handle
properties
identifier
maxIterations, minIterations
LinearSolver, timeStepSelector, maxTimestepCuts
useRelaxation, relaxationParameter, relaxationType, relaxationIncrement
minRelaxation, maxRelaxation
uselLinesearch, linesearchReductionFn
linesearchReductionFactor, linesearchDecreaseFactor, linesearchMaxIterations
linesearchConvergenceNames, linesearchResidualScaling
enforceResidualDecrease, stagnateTol
errorOnFailure, continueOnFailure

The nonlinear solver must call a linear solver and hence has a LinearSolver class object;
the default is the standard backslash solver. Likewise, we need time-step selection, which
in the default implementation does not offer any advanced heuristics for computing optimal
time steps. Furthermore, there are limits on the number of times the control steps can be
subdivided and the maximum/minimum number of iterations within each subdivided step.
If useRelaxation is true, the computed Newton increments should be relaxed by a factor
between 0 and 1. The relaxationParameter is modified dynamically if useRelaxation
is true and you should in general not modify this parameter unless you really know what
you are doing. Relaxation can be any of the following three choices

x_new = x_old + dx; % relaxationType = 'none'
x_new = x_old + dx*w; % relaxationType = 'dampen'
x_new = x_old + dx*w + dx_prevx(1-w); % relaxationType = 'sor'

where dx is the Newton increment and w is the relaxation factor. Similarly, there are various
parameters for invoking and controlling line search.

When enforceResidualDecrease is invoked, the solver will abort if the residual does
not decay more than the stagnation tolerance during relaxation. If errorOnFailure is not
enabled, the solver will return even though it did not converge. Obviously, you should never
rely on non-converged results, but this behavior may be useful for debugging purposes.

Use of Handle Classes

You may have observed that NonLinearSolver is implemented as a subclass of the
handle class. All classes defined so far have been so-called value classes, meaning that
whenever you copy an object to another variable or pass it to a function, MATLAB creates
an independent copy of the object and all the data the object contains. This means that
if you want to change data values of a class object inside a function, you need to return
the class as an output variable. Classes representing nonlinear solvers do a lot of internal
bookkeeping inside a simulator and hence need to be passed as argument to many functions.
By making this class a handle class, the class object is passed by reference to functions,
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so that any changes occuring inside the function will also take effect outside the function
without having to explicitly return the class object as output argument.

Computing a Control Step

We have already encountered the primary member function

[state, report, ministates] = solver.solveTimestep(state0O, dT, model)

whose purpose is to solve a specified control step. Recall from our discussion of nonlinear
Newton-solvers in Section 10.2.2 that each control step may be subdivided into several
substeps (ministeps) to ensure stable computations and proper convergence. Each ministep
will involve of one or more nonlinear iterations. Each of these may consist of one matrix
inversion if we use a direct linear solver or one or more linear iterations if we use an
iterative solver.

Whether the solver will move forwards using a single time step or multiple substeps
depends on the convergence rate and what the time-step selector predicts to be a feasible
time step for the given state. For the solveTimestep function to work, the model object
must contain a valid implementation of the stepFunction member function declared in
the PhysicalModel class. Driving forces that are active for the particular model must be
passed as optional arguments in the same way as for the incompressible solvers.

Upon completion, the function will return the reservoir state after the time step and
a report structure containing standard information like iteration count, convergence
status, and any other information passed on by model.stepFunction. The cell array
ministates contains all ministeps used to advance the solution a total time step dT.
The class also has member functions for computing these ministeps, applying line search,
stabilizing Newton increments, and implementing checks for stagnation or oscillating
residuals. You have already been exposed to the essential ideas of these operations;
the implementation in the NonLinearSolver class contains more safeguards against
possible errors, has more flexible hooks for pluggable linear solvers and time-step selection
schemes, as well as more bells and whistles for monitoring and reporting the progress of the
solver.

Measures of Nonlinear Convergence

Whether the nonlinear solution process has converged or not is determined by the
PhysicalModel class; the NonLinearSolver class simply responds based on what
the model reports in terms of convergence. There are several different ways convergence
can be measured. The AD-OO framework currently implements the same two measures of
convergence as in ECLIPSE [271].

The first measure is mass balance. When summing residual equations over all cells in
the grid, all intercell fluxes cancel because the flux out of a cell across an internal face has
the same magnitude but opposite sign of the corresponding flux into the neighboring cell.
The sum of residuals therefore equals the difference between the net mass accumulation of
the phase minus the net influx from wells, source terms, and open boundaries, which is the
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definition of the mass-balance error. By convention, these errors are scaled to make them
problem-independent,

MB, = AtB, (ZiRa,i /Y, q>,»), (12.1)

where B, is the formation-volume factor of phase « evaluated at average pressure, Ry, ; is
the residual equation evaluated in cell i, and ®; is the pore volume of that cell. The result
can be interpreted as mapping from masses to saturations at field conditions. We say the
solution process is converged when the all scaled residuals are less than the toleranceMB
tolerance declared in the ReservoirModel class.

The second test computes the maximum normalized residual defined as

_ R
CNV, = AtB, m_ax‘ o (12.2)
1

i

and says that the solution is converged when this quantity is less than toleranceCNV for all
three phases. Default values for the MB and CNV tolerances are the same as in ECLIPSE
100, i.e., 10~7 and 1073, respectively.

12.3.3 Selection of Time-Steps

As indicated in the previous subsection, appropriate selection of time step is crucial to
ensure low runtimes and good convergence in the nonlinear solver. We have already
encountered several selection schemes that use experience from previous time steps to
select optimal time steps, e.g., by halving the time step if the nonlinear solver fails to
converge, or increasing the time step back once we have managed to successfully run a
certain number of chopped steps. Questions to be asked:

« How difficult was it to converge the previous time step? As a simple rule of thumb, a
single iteration is usually considered as too easy, two to three iterations is easy, whereas
more than ten iterations indicate problems with time step or model.

« How does a specified control step compare with the last successful step?

« For a ministep: how far are we away from the end of the control step?

« How does the required number of iterations for the last successful step compare with any
iteration targets?

« Which mechanism determined the size of the previous time step?

Heuristics based on these and similar questions are implemented in the time-selector classes
of MRST, which like NonLinearSolver are handle classes:

classdef SimpleTimeStepSelector < handle
properties
history, maxHistoryLength
isFirstStep, isStartOfCtrlStep
previousControl, controlsChanged, resetOnControlsChanged
firstRampupStep, firstRampupStepRelative
maxTimestep, minTimestep
maxRelativeAdjustment, minRelativeAdjustment
stepLimitedByHardLimits
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The class implements a generic member function pickTimestep,

dt = selector.pickTimestep( dtPrev, dt, model, solver, statePrev, state)

which is called by the NonLinearSolver class to determine the next time step. The logic
of this function is as follows: We start by checking whether this is the first step, or if the
well controls have changed and we want to induce a gradual ramp-up

if selector.controlsChanged && ...
(selector.resetOnControlsChanged || selector.isFirstStep);
dt = min(dt, selector.firstRampupStepRelativexdt) ;
dt = min(dt, selector.firstRampupStep) ;
selector.stepLimitedByHardLimits = true;
end

The default behavior is to not use such a ramp-up. This means that the default value of
the relative adjustment is set to unity, the lower limit on the first ministep attempted after
controls have changed is set to infinity, and the reset flag is disabled. The time step is then
passed on to the function

dt = selector.computeTimestep( dt, dtPrev, model, solver, statePrev, state) ‘
L |

which will try to compute an optimal adjustment, using some sort of heuristics based
on the stored time-step and iteration history. (By default, this consists of 50 entries.) The
base class offers no heuristics and returns an unchanged time step. The
IterationCountTimeStepSelector subclass tries to select a time step that will
maintain the number of nonlinear iterations as close as possible to a prescribed target,
whereas StateChangeTimeStepSelector attempts to ensure that certain properties of
the state change at prescribed target rates during the simulation. This can often be a good
way of controlling time steps and minimizing numerical error if good estimates of the error
are known; see [58] for more details.

The last step of the selection algorithm is to ensure that the computed time step does
not change too much compared with the previous time step, unless we are at the start of a
new control step. The default choice of tolerances is to allow relative changes of at most
a factor two. Likewise, all time steps are required to be within certain lower and upper
bounds (which by default are 0 and oo, respectively). Alternative heuristics for choosing
time steps can be introduced by implementing a new subclass of the simple selector base
class or one of its derived classes.

12.3.4 Linear Solvers

The linear solver classes in AD-OO implement methods for solving linearized problems.
All concrete solvers are subclasses of the following handle class:
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classdef LinearSolverAD < handle
properties

tolerance, maxIterations

extraReport, verbose

replaceNaN, replacementNaN, replacelnf, replacementInf
end

The intention of the class is to provide a general interface to all types of linear solvers, both
direct and iterative. Hence, the class declares both a tolerance for the linear solver (default:
10~%) and an upper limit on the number of linear iterations (default: 25), even though these
do not make sense for direct solvers. The flag extraReport determines the amount of
reporting; turning it on may consume a lot of memory for problems with many unknowns.

The main interface to linear solvers is through the following member function, which
assembles and solves a linear system:

function [dx, result, report] = solveLinearProblem(solver, problem, model)
problem = problem.assembleSystem() ;

timer = tic();

[result, report] = solver.solveLinearSystem(problem.A, problem.b);
[result, report] = problem.processResultAfterSolve(result, report);
report.SolverTime = toc(timer);

dx = solver.storeIncrements(problem, result);

The only place this function is called is within the generic stepFunction implemented
in the PhysicalModel class. The code excerpts above show the main steps of solving a
linear problem: first, the linear system is assembled by the problem object, which is an
instance of the LinearizedProblem class discussed in Section 12.3.1. Next, we call the
main member function solveLinearSystem, which is nonfunctional in the base class and
must be implemented in concrete subclasses. The linear solution is then passed back to the
LinearizedProblen class for potential postprocessing. Postprocessing is not necessary
for the models discussed herein, but the hook is provided for generality. Linear solvers
may sometimes produce infinite values or not-a-number, which the linear solver class can
replace by other values if the replaceInf and/or replaceNaN flags are set; this is done
by two simple if statements. Finally, we extract the results from the solution vector and
store them in the cell array dx, which has one increment entry per primary variable in the
linearized problem.

In addition to the two member functions for solving linearized problems and linear
systems, the LinearSolverAD class implements various utility functions that may be
utilized by concrete linear solvers. This includes interfaces for setup and cleanup of linear
solvers as well as a generic function that can reduce the problem by eliminating some of the
variables and a similar generic function for recovering increments for eliminated variables
from the linear solution. There is also a special function that reduces a problem to cell
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variables only, solves it, and then recovers the eliminated variables afterwards. Last, but
not least, the solveAdjointProblem function solves backward problems for computing
adjoints.

MATLAB'’s Standard Direct Solver

By far, the simplest approach is to use the standard direct solver. Use of this solver is
implemented very compactly:

classdef BackslashSolverAD < LinearSolverAD
methods
function [result, report] = solveLinearSystem(solver, A, b) /#ok
result = A\b;
report = struct();
end

The resulting solver is very robust and should be able to solve almost any kind of linear
system that has a solution. On the other hand, black-oil models have several unknowns per
cell and can have many nonzero matrix entries because of unstructured grid topologies.
Sparse direct solvers do generally not scale very well with the number of unknowns, which
means that both memory consumption and runtime increase rapidly with model sizes.
MATLAB’s direct solvers should therefore only be used for models having at most a few
tens of thousands of unknowns.

GMRES with ILU Preconditioner

To get a more scalable solver, you need to use an iterative method. Iterative methods used
today to solve large-scale, sparse systems are usually of the Krylov subspace type that seek
to find an approximation to the solution of the linear system Ax = b in the Krylov space
K formed by repeatedly applying the matrix A to the residual ro = b — Axq, where x is
some initial guess:

]Cv = ]CV(A,ro) = Span{ro, Ar(), Azro’ . ,A”_lro}.

One widely used example is the generalized minimal residual (GMRES) method, which
seeks the approximate solution as the vector x,, that minimizes the norm of the v’th residual
lryll = llb — Ax,||. Krylov vectors are often linearly dependent, and hence GMRES
employs a modified Gram—Schmidt orthogonalization, called Arnoldi iteration, to find an
orthonormal basis for /C,,.

The GMRES iteration is generally robust and works well for nonsymmetric systems of
linear equations. Iterative solvers are nonetheless only efficient if the condition number of
the matrix is not too high. Black-oil models often give linear systems that have quite bad
condition numbers. To remedy this, it is common to use a preconditioner. That is, instead
of solving Ax = b, we first construct a matrix B that is inexpensive to invert. Expanding,
we have b = AB™'Bx = (AB’I)y, which is less expensive to solve if AB™! has better
condition number than A.
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Herein, we apply an incomplete LU factorization (ILU) method. The true LU factors
for a typical sparse matrix can be much less sparse than the original matrix, and in an
incomplete factorization, one seeks triangular matrices L and U such that LU ~ A. When
used as a preconditioner, it is common to construct L and U so that these matrices preserve
the sparsity structure of the original matrix, i.e., that we have no fill-in of new nonzero
elements. The result is called ILU(0).

The GMRES_ILUSolverAD class implements a GMRES solver with ILU(0) precondi-
tioning by use of the built-in gmres and ilu solvers from MATLAB. As for the direct
solver, the implementation is quite compact:

function [result, report] = solveLinearSystem(solver, A, b)

nel = size(4, 1);

if solver.reorderEquations

[A, b] = reorderForILU(A, b);

end

[L, U] = ilu(A, solver.getOptsILUQ));

prec = @(x) U\(L\x);

[result, flag, res, its] = ...

gmres(A, b, [1, solver.tolerance, min(solver.maxIterations, nel), prec);

report = struct('GMRESFlag', flag, 'residual', res, 'iterations', its);

end

Notice that we permute the linear system to ensure nonzero diagonals to simplify the con-
struction of the ILU preconditioner. Notably, this utility is useful whenever well equations
are added, since these may not have derivatives with respect to all well controls.

Well equations generally consist of a mixture of different variables and can hence be
badly scaled. Control equation on pressure gives residuals having magnitudes that are
typically ©(107) since all equations are converted to SI units in MRST. Rate equations,
on the other hand, give residuals that typically are @(107). To be on the safe side, we
overload the solver for linearized problems by a new function that eliminates all equations
that are not posed on grid cells by use of a block-Gaussian algorithm, solve the resulting
problem by the GMRES-ILU(0) method, and then recover the eliminated variables

function [dx, result, report] = solveLinearProblem(solver, problem, model)
keep = problem.index0fType('cell');
[problem, eliminated] = solver.reduceToVariable(problem, keep);
problem = problem.assembleSystem() ;

timer = tic();
[result, report] = solver.solveLinearSystem(problem.A, problem.b);
report.SolverTime = toc(timer);

dxCell = solver.storeIncrements(problem, result);
dx = solver.recoverResult(dxCell, eliminated, keep);

We eliminate well equations (and other non-cell equations) by use of member functions
from the LinearSolverAD base class, which in turn relies on block-Gaussian algorithms
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implemented in the LinearizedProblem class. This algorithm is not specific to the
GMRES-ILU(0) and in the actual code the content of this function is implemented as a
member function of the LinearSolverAD class.

Constrained Pressure Residual (CPR)

The state-of-the-art approach for solving linear systems arising from black-oil type models
is to use a so-called constrained pressure residual (CPR) method [305, 119]. To explain the
method, we start by writing the equation for the Newton update in block-matrix form

L )]
Jsp JIss Axg LR
Here, we have decomposed the unknown Newton increment in primary unknowns (p),
which typically consist of pressure variables, and secondary unknowns (s) that consist of
saturations and mass fractions. The Jacobian matrix blocks read (J,,¢)i,j = 0R¢, i /0%y, j,
where the indices m, £ run over the variable types {p, s} and i, j run over all cells.

Instead of applying an iterative solver to the full linear system, we first form an (almost)

elliptic equation for the primary unknowns. This equation can be achieved by modifying
the fully implicit system to the form

_[Jip s ][ Axp }:[Ri]
J sp J ss Ax K R s '
where the off-diagonals of the coupling matrix J7,; are small, so that J7},,Ax, = R,
resembles an incompressible pressure equation. Because this CPR pressure equation is
almost elliptic, we can use on of the many efficient solvers developed for Poisson-type
equations to compute an approximate increment Ax, in an inexpensive manner. This
predictor stage is used in combination with a corrector stage, in which we iterate on the
entire system using the approximated pressure update as our initial guess.

The solver implemented in the CPRSolverAD class employs an IMPES-like reduction
(plus dynamic row sums from [119]), in which we determine appropriate weights w, so
that the accumulation terms of the residual equations cancel

S wede=0, Ay = (63 buSerea) — (63, baSurea)

Here, x. o gives the volume of component c¢ at standard conditions present in a unit stock-
tank of phase « at reservoir conditions, i.e., X5, o = 1, Xo ¢ = Ry, and so on. The (almost)
decoupled CPR pressure equation is then taken to be R’I‘, =Y . weR.. Notice that if compo-
nents are in one phase only, the weight of component c is simply 1/b,, where « is the phase
of component c. An advantage of this decoupling strategy is that the resulting pressure
block J ;p is fairly symmetric. Moreover, the decoupling can be done at a nonlinear level,
before the Jacobians are computed, and is thus less prone to errors.
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Aggregation-Based Algebraic Multigrid

The pressure equation in the CPR solver can obviously be solved using a standard direct
solver. However, a more scalable approach is to use an iterative multilevel method. To
present the idea, we consider only two levels: the fine level on which we seek the unknown
solution x and a coarser level on which we seek another unknown vector X having much
fewer elements. To move between the two levels, we have a prolongation operator P and a
restriction operator Q. Then, the iterative method can be written as follows:

x* = x,+ S — Ax,),
Xop1 =x*+PAT Qb — Ax¥).

Here, S is a so-called smoother, which typically consists of a few steps of an inexpensive
iterative solver (like Jacobi’s method or ILU(0)). For a multilevel method, this procedure
is performed recursively on a sequence of coarser levels. In classical methods, the coarser
levels are chosen by geometric partitions of the original grid. The state-of-the-art approach
is to select the coarse levels algebraically and build the operator P by analyzing the matrix
coefficients of A. The restriction operator is then chosen as the transpose of the interpola-
tion matrix, Q = PT and the coarse matrix is A, = PTAP.

The AGMGSolverAD class is an interface to the aggregation-based algebraic multigrid
(AGMQ) solver [238, 15], which builds prolongation operators using recursive aggregates
of cells with constant interpolation so that the operator on each level is as sparse as possible
to avoid that the coarse matrices A, become more dense the more one coarsens. AGMG
was originally released as free open-source, but recent versions are only freely available
for academic users. The main advantage of AGMG, beyond a simple MATLAB interface,
is that it has low setup cost and low memory requirements. In my experience, it is easy to
integrate and seems to work very well with MRST. For the black-oil equations, this solver
should either be used as a preconditioner for the CPR solver, or as a pressure solver for the
sequentially implicit method implemented in the blackoil-sequential module.

AGMG can also be run in two stages: a setup stage that builds the coarse hierarchies and
the prolongation operators, and a solution stage that employs the prolongation operators to
solve a specific problem. This way, you can hope to reduce computational costs by reusing
the setup stage for multiple subsequent solves. This behavior can be set up as follows:

function [result, report] = solveLinearSystem(solver, A, b)

cleanAfter = false;
if ~solver.setupDone

solver.setupSolver(A, b); cleanAfter = true;
end
if solver.reuseSetup

fn = Q(A, b) agmg(A, b, [], solver.tolerance, ...

solver.maxIterations, [1, [1, 1);

else

fn = Q(A, b) agmg(A, b, [], solver.tolerance, solver.maxIterations);
end
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[result, flag, relres, iter, resvec] = fn(4, b);
if cleanAfter, solver.cleanupSolver(A, b); end
end
function solver = setupSolver(solver, A, b, varargin)
if solver.reuseSetup
agmg(A, [1,01,00,0,0,0, 1); solver.setupDone = true;
end
end

For brevity, we have dropped a few lines that create the full convergence report. This
example hopefully shows that it is not very difficult to set up an external solver with MRST
if the solver has a standard MATLAB interface.

Interface to External Linear Solvers

Recently, we added a new module called 1inearsolver to MRST, whose purpose is to
offer a uniform interface to other external solvers on the form:

x = solver(A, b, tolerance, iterations)

So far, the module implements support for AMGCL [81], which is a recent and highly

efficient header-only C++ library for solving large sparse linear systems with algebraic

multigrid methods [296, 285]. AMGCL can either be used as a multigrid solver or as a

smoother, and offers a variety of basic building blocks that can be combined in different

ways:

« smoothers: damped Jacobi, Gauss—Seidel, ILU(0), ILU(k), sparse approximate inverse,

and others;

coarsening methods: aggregation, smoothed aggregation, smoothed aggregation with

energy minimization, and Ruge—Stiiben; and

o Krylov subspace solvers: conjugated gradients, stabilized biconjugate gradients, GMRES,
LGMRES, FGMRES, and induced dimension reduction.

To use AMGCL as a CPR solver, you can, e.g., set it up as follows:

1solve = AMGCL_CPRSolverAD('block_size', 2, ...
'maxIterations', 150, 'tolerance', le-3);
1solve.setCoarsening('aggregation')
1solve.setRelaxation('ilu0');
1solve.setSRelaxation('ilu0');
1solve.doApplyScalingCPR = true;
1solve.trueIMPES = false;

At the time of writing, AMGCL is not part of the official MRST release and must be
downloaded from a software repository [81], compiled, and integrated via a MEX interface.
Initial tests show that AMGCL is significantly faster than AGMG, and installing it is
definitely worth the effort if you want to use MRST on models with hundreds of thousand
unknowns.
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ECLIPSE Solver: Orthomin and Nested Factorization

The default solver in ECLIPSE is a Krylov subspace method that relies on a set of
search vectors defined so that each new vector ¢, is orthogonal to all previous vectors
q90:91, - --.q,.- Assuming a preconditioner B and an initial guess x(, we start the iteration
process by setting g, = B ~lro, where ro = b — Ax. The next approximate solution is
then defined as

-1
Xyy1 =Xy +0,B" q,,
which inserted into the linear system gives the residual
-1 ~
rvy1=ry,—w,AB q,=r, —w,q,.

The relaxation parameter w,, is optimized by minimizing |7+ ||2. The resulting orthomin
method is a special version of the conjugate gradient method. For completeness, let us
derive the remaining steps. The optimum value for w, 4 is determined by setting

0= Irveill = [rv-rv—2wry -G, + (@)°4, - 4,]
dwy 41 0wy 41
R . ry-q
:_2rv'qv+2quv'qv > Wy = AV Ava
q, 49,

The search vectors are set to lie in the space spanned by r,; and all the previous search
vectors, i.e.,

vV
¢
qyp1 =Tvy1 + E a,qy,
=0

subject to the constraint that ¢, , | is orthogonal to all g, fork < v, i.e.,

v
0=¢,.1-4,= [AB_I"vH + Zafée] Q-
=0

Using the fact that ¢, - g for £,k < v and £ # k, we can easily show that

S _(AB'rn) -,
' Qe e
This completes the definition of the orthomin method.

For grids having a rectangular topology, it is possible to develop a particularly efficient
preconditioner called nested factorization [24]. As we have seen previously, MRST uses
a global numbering of the unknowns, in which the numbering of unknowns first runs
over cells and then over variables; this to utilize highly efficient vectorization from MAT-
LAB. In a simulator written in a compiled language, it is usually more efficient to use a
local numbering that first runs over variables and then over cells. With a standard TPFA
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and single-point upwind-mobility discretization, the resulting system will have a block-
heptagonal form,

A=IL3+Lr,+Li+D+U{+U;+Us

where D is a diagonal matrix whose elements are m x m matrices representing the
unknowns per cell. The block matrices L; and U; are lower and upper bands representing
connections to neighboring cells in logical direction i = 1,2,3. Experience shows that the
numbering should be chosen so that direction 1 corresponds to the direction of highest
transmissibilities, which usually is the z-direction; see [271], whose presentation we
henceforth follow. The key idea of nested factorization is now to utilize this special
structure to recursively define a set of preconditioners, whose action can be computed
iteratively by solving block-tridiagonal systems. These can be solved very efficiently
by Thomas’s algorithm that consists of two substitution sweeps, one forward and one
backward. The factorization is built iteratively using the following definition

B=(P+Ly)P (P +Uy), (12.3)
P=(T+L)T T + U»), (12.4)
T=(G+L)GG+U). (12.5)

With a slight abuse of notation, we should understand the terms on the right-hand side as
values from the previous iteration. The matrix G is a block-diagonal matrix, which for a
fully implicit discretization is defined as,

G =D - LG 'U; — colsum(L,T~'U,) — colsum(L3 P~ 'U3). (12.6)

This definition ensures that although the solution may not yet be correct, it will have no
mass-balance errors. Alternatively, in the IMPES and AIM methods, we can construct G
using row sum rather than column sum to ensure accurate pressure.

Let us now look at how the solution proceeds: Starting at the outmost level, we see that
to solve By = r, we need to solve (P + L3)(I + P~'U3)y = r. This can be decomposed
as follows

y=P '(r—L3j), y=3-P 'Usy

If y is known in the first plane of cells, solving these two equations reduces to a forward
elimination and a backward substitution, since the products L3y and U3y only involve
values along planes where the solution is known. In this procedure, we need to invert P
and compute vectors z = P~ 'u along planes of cells. Applying the same idea to (12.4),
we obtain

i=T"u—Lyz), z=2-T'Usg

which we can solve by a forward elimination and a backward substitution provided we
know the solution along a first line of cells in each plane. Here, we must compute w =
T~ 'v on each line, which again can be decomposed and solved efficiently as follows:
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w=T"(v-—Lin), w=d-T 'Uw,

provided we know G along the lines. From the structure of (12.6), it follows that we can
construct G one cell at a time: Starting from a known inverse block G~! in a cell, we can
compute the contribution L G U 1 to the next cell in direction 1, and so on. Once G lis
known along a line in direction 1, we can compute the contribution of colsum(Lz T-'U 2)
using the forward-elimination, backward-substitution algorithm for T —1 When all the lines
in a plane are known, we can compute the contributions from colsum(LgP’lU 3) to the
next plane in a similar manner. The method may look laborious, but is highly efficient.
Unfortunately, it is not applicable to fully unstructured grids.

12.4 Simulation Examples

You have now been introduced to all key components that make up the AD-OO framework.
In the following, we demonstrate in more detail how to use the AD-OO framework to
perform simulations with or without the use of structured input decks on the ECLIPSE
format.

12.4.1 Depletion of a Closed/Open Compartment

The purpose of this example! is to demonstrate how to set up a simulator from scratch with-
out the use of input files. To this end, we consider a 2D rectangular reservoir compartment
with homogeneous properties filled by a single-phase fluid. The reservoir fluid is drained
by a single producer at the midpoint of the top edge. The compartment is either closed
(i.e., sealed by no-flow boundary conditions along all edges), or open with constant pres-
sure support from an underlying, infinite aquifer, which we model as a constant-pressure
boundary condition.
We start by making the geological model and fluid properties

G = computeGeometry(cartGrid([50 50], [1000 100]));

rock = makeRock(G, 100*milli*darcy, 0.3);

PR = 200#*barsa;

fluid = initSimpleADIFluid('phases','W', ... % Fluid phase: water
'mu', 1*centi*poise, ... % Viscosity
'rho', 1000, ... % Surface density [kg/m~3]
'c', 1le-4/barsa, ... % Fluid compressibility
'cR', 1le-5/barsa)); ... % Rock compressibility

This is all we need to set up a single-phase reservoir model represented by WaterModel,
which is a specialization of the general ReservoirModel implemented in ad-core. The
only extra thing we need to do is to explicitly set the gravity direction. By default, gravity

1 Complete code: blackoilTutorialOnePhase.min ad-blackoil.
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Figure 12.6 Drainage from a single reservoir compartment that is either sealed or supported by an
infinite aquifer from below.

in MRST is a three-component vector that points in the positive z-direction. Here, we set it
to a two-component vector pointing in the negative y-direction.

gravity reset on
wModel = WaterModel(G, rock, fluid,'gravity', [0 -norm(gravity)l);

As always, we also need to specify the drive mechanisms by use of the standard data
structures for wells and boundary conditions:

wc = sub2ind(G.cartDims, floor(G.cartDims(1)/2), G.cartDims(2));
W = addWell([], G, rock, wc,

'Type', 'bhp', 'Val', pR - 50*barsa, ...

'Radius', 0.1, 'Name', 'P1','Comp_i',1,'sign',1);
bc = pside([],G, 'South',200+barsa, 'sat',1);

We then create two simulation schedules, one with well and constant pressure on the south
boundary, and the other with well and no-flow conditions on all boundaries:

schedulel = simpleSchedule(diff(linspace(0,5*day,41)), 'bc', bc, 'W', W);
schedule2 = simpleSchedule(diff(linspace(0,5*day,41)), 'W', W);

The pristine reservoir is in vertical equilibrium, which we compute as a steady-state solu-
tion of the flow equation subject to boundary conditions only

state.pressure = ones(G.cells.num,1)*pR;

state.wellSol = initWellSolAD([], wModel, state);

nonlinear = NonLinearSolver;

state = nonlinear.solveTimestep(state, 10000*day, wModel, 'bc', bc);

We can the compute each flow solution as follows:

[wellSolsl, statesl] = simulateScheduleAD(state, wModel, schedulel);

Figure 12.6 shows the solution of the two problems. Once the well is turned on, the draw-
down at the wellbore will create an elongated pressure pulse that moves fast downward and
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expands slowly outward. The open compartment quickly reaches a steady-state in which
the flow rate into the well equals the influx across the bottom boundary. In the closed case,
the pressure inside the compartment is gradually depleted towards the perforation pressure,
which in turn causes the production rate to decline towards zero.

12.4.2 An Undersaturated Sector Model

The next example” continues in the same vein as the previous: we consider a 1,000 x
1,000 x 100 m> rectangular sector model filled with undersaturated oil and compare and
contrast the difference in production when the boundaries are closed or held at constant
pressure. The phase behavior of the oil and dissolved gas is assumed to follow that of the
SPE 1 benchmark, but unlike in the original setup, water is assumed to be mobile, following
a simple quadratic relative permeability.

[~, ~, fluid, deck] = setupSPE1(); fluid.krW = @(s) s.72;

Permeability is homogeneous and isotropic, and saturation and pressure are for simplicity
assumed to be uniformly distributed inside the reservoir:

[s0, p0] = deal([0.2, 0.8, 0], 300%barsa);

state0 = initResSol(G, p0, s0);

state0.rs = repmat(200, G.cells.num, 1);

model = ThreePhaseBlack0ilModel(G, rock, fluid, 'disgas', true);

The reservoir is produced from a single vertical well, placed in the center, operating at a
fixed oil rate, but with a lower bottom-hole pressure (bhp) limit:

ij = ceil(G.cartDims./2);

W = verticalWell([], G, rock, ij(1), ij(2), O, ...
'val', -0.25*sum(model.operators.pv)/T, ...
'type', 'orat', 'comp_i', [1, 1, 11/3, ...
'sign', -1, 'name', 'Producer');
W.1lims.bhp = 100+%barsa;

The AD-OO framework assumes no-flow boundary conditions by default, and hence we
do not need to specify boundary conditions to simulate closed boundaries. For the other
case, we assume that the pressure and fluid composition at the boundary are held at their
initial values to model additional pressure support, e.g., from a gas cap or an aquifer with
highly mobile water. Although such boundary conditions have been used often in the past,
there is in reality no physical mechanism that would be able to maintain constant boundary
conditions in a reservoir, so this is a gross simplification that should not be applied when
modeling real cases.

2 Complete code: blackoilSectorModelExample.min ad-blackoil
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bc = [1; sides = {'xmin', 'zmax', 'ymin', 'ymax'};
for side = 1:numel(sides)

bc = pside(bc, G, sides{side}, pO, 'sat', s0);
end

We also need to specify the Ry value on all boundaries. For this purpose, MRST employs
a dissolution matrix, which can either be specified per cell interface, or for all interfaces.
Here, the fluid composition is the same on the whole boundary, so we only specify a single
matrix

bc.dissolution = [1, 0, 0;... % Water fractions in phases
0, 1, 0; ...% 0il fractions in phases
0, 200, 1]; % Gas fractions in phases

To define specific dissolution factors on n individual cell faces, we would have to set up an
n x 3 x 3 array.

Turning on the well induces a fast pressure transient that lasts a few days. We do not
try to resolve this, but gradually ramp up the time step, as discussed earlier in the book, to
improve the initial stability of the simulation:

dt = rampupTimesteps(T, 30*day) ;

Specifically, the routine splits the simulation horizon T into a number of time step of length
30 days (the last step may be shorter if T is not a multiple of the specified time step). It
then uses a geometric sequence 1./2.7 [n n:-1:1] to further subdivide the first time step
(default value of n is 8). We can now set up and simulate the two schedules in the same
way as discussed in the previoius subsection

schedule = simpleSchedule(dt, 'W', W, 'bc', bc);
[ws, states] = simulateScheduleAD(stateO, model, schedule);

Figure 12.7 shows bottom-hole pressure and surface oil rate for the two simulation,
i.e., the quantities used to control the production well. After the initial transient, the case
with constant pressure boundary settles at a steady state with constant bhp and oil rate
maintained at its target value. With closed boundaries, there is no mechanism to maintain
the reservoir pressure, and hence the bottom-hole pressure starts to gradually decay. After
870 days, the bhp drops below its lower limit of 100 bar, and the well switches control from
oil rate to bhp. As production continues, the reservoir pressure will gradually be depleted
until the point where there is not sufficient pressure difference between the reservoir and
the well to drive any flow into the wellbore; this happens after approximately 4.5 years.
Grossly speaking, qualitative behavior of the pressure is similar to what we observed in the
previous single-phase example.

Figure 12.8 reports cumulative production of oil, gas, and water at surface conditions,
as well as instantaneous production rates of the oleic, gaseous, and aqueous phases at
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Figure 12.7 Bottom-hole pressure and surface oil rate for the undersaturated sector model; dashed
lines show field-average pressure. With closed boundaries, the well control switches from oil surface
rate to bottom-hole pressure after 870 days (shown as dotted lines).

reservoir conditions. As the reservoir pressure is gradually lowered, some cells drop below
the bubblepoint and free gas is liberated, starting near the wellbore, where the pressure drop
is largest, and gradually moving outward as shown in Figure 12.9.

Oil is only produced from the oleic phase. When free gas is liberated, the fraction of oil
in the oleic phase increases and the oil reservoir rate decays slightly because the reservoir
volume of the oleic phase required to produce a constant surface rate of oil decreases.
The liberated gas is very mobile and causes an accelerating pressure drop as more gas
starts flowing into the wellbore. Gas production at the surface thus increases dramatically,
because gas is now produced both from the oleic and the gaseous phase. Gas can sometimes
be sold and contribute to generate revenue, but the operator may also have to dispose of it
by reinjecting it into the reservoir to maintain reservoir pressure. Unlike in the original
SPE 1 case, the aqueous phase is mobile. As gas is liberated, the mobility of oil is reduced
and we also see a significant increase in water production. Topside facilities usually have
limited capacity for handling produced water, and the whole production may be reduced
or shut down if the water rate exceeds the available capacity. Here, it might have been
advantageous if the well was instrumented with autonomous inflow devices that would
choke back water and gas and only let oil flow through. We will return to this in the next
example.

As the well switches to bhp control, all rates fall rapidly. For oil in particular, the
additional recovery after the well switches is very limited: at 870 days, the cumulative oil
production has reached 93% of what is predicted to be the total production after 10 years.
The liberated gas (and the water) will continue to flow longer, but also here the production
ceases more or less after 4.5 years.

This idealized example is merely intended to demonstrate use of the AD-OO framework
and illustrate basic flow mechanisms and makes no claim of being representative of real
hydrocarbon reservoirs.
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Figure 12.8 Production profiles for the undersaturated sector model. The left column shows
cumulative production of the oil, gas, and water components at surface conditions, whereas the right
column shows instantaneous phase rates at reservoir conditions.

90 days 120 days 150 days

Figure 12.9 Liberation of free gas as the drawdown from the well causes the pressure in the
undersaturated oil to drop below the bubblepoint. (The plot shows Sg >5e-3.)
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12.4.1 Try to simulate the initial pressure transient, check how long it lasts, and whether
it behaves as in the previous example.

12.4.2  The simulation discussed in this section did not include any consideration of pro-
duction relative to the amount of fluids initially in place. Try to include this to
determine the recovery factor for the closed case. Can you also use this to say
something about the influx across the boundaries in the case with pressure bound-
aries.

12.4.3  With constant pressure boundaries, the water rate starts to increase after approxi-
mately seven years. Can you explain this behavior?

12.4.4  Gravity was not included in this example. Can you set up multilayer simulations
to investigate if gravity has a significant effect on the result?

12.4.3 SPE 1 Instrumented with Inflow Valves

This example? demonstrates the use of multissgment wells in MRST. The default well
model in MRST assumes that flow in the well takes place on a very short time-scale
compared to flow in the reservoir and thus can be accurately modeled as being instanta-
neous, following the linear inflow performance relationship discussed in Section 11.7.1.
Such models are not adequate for long wellbores that have significant pressure drop due
to friction, or for wells having valves or more sophisticated inflow control devices. The
multisegment well class in MRST supports transient flow inside the well and enables a more
fine-grained representation of the well itself that allows the effects of friction, acceleration,
and nonlinear pressure drops across valves and other flow constrictions to be included; see
Section 11.7.2.

To illustrate, we revisit the SPE 1 case from Section 11.8.1 and replace the vertical
producer by a horizontal well completed in six cells with valves between the production
tubing and each sandface connection. We consider two models, a simple model assuming
instantaneous flow with a standard inflow relationship and hydrostatic pressure along the
wellbore, and a more advanced model that accounts for pressure drop across the valves and
frictional pressure drop along the horizontal wellbore; see Figure 12.10.

First, we load the description of the fluid model and the simulation schedule from an
ECLIPSE input deck:

[G, rock, fluid, deck, state] = setupSPE1();
[nx, ny] = deal(G.cartDims(1),G.cartDims(2));

model = selectModelFromDeck(G, rock, fluid, deck);
model . extraStateOutput = true;
schedule = convertDeckScheduleToMRST(model, deck);

3" Complete source code: multisegmentWellExample.min ad-blackoil
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= wellbore friction, X} valve, ---- IPR

Figure 12.10 Multisegment well for the modified SPE 1 case. Nodes 1-7 represent the wellbore,
whereas nodes 8—13 represent the void outside of the valves that separate the wellbore from the
sandface.

The model selector examines which phases are present and whether the deck prescribes
dissolved gas or vaporized oil, and then determines the specific black-oil subclass that is
most suitable for simulating the deck. As we already know, the SPE 1 benchmark describes
a three-phase model with dissolved gas but no vaporized oil. The model will thus be an
instance of the general ThreePhaseBlack0ilModel class. Likewise, the schedule con-
verter will parse the specification of all wells and create a suitable schedule object, which
here has 120 steps and a single control.

To specify the well models, we first initialize the production well as a standard well
structure completed in the six given grid cells:

c = nxxny + (2:7)';

prod0 = addWell([], G, rock, c, 'mame', 'prod', ...
'refDepth', G.cells.centroids(1,3), ...
'"type', 'rate', 'val', -8ebmeter~3/day);

We then define the N1, Ny mappings for the twelve segments, as well as the mapping from
network nodes to reservoir cells represented in the well structure

topo=[12345623 4 5 6 7
2345678910 11 12 13]"';

% |  tubing | valves |

cell2node = sparse((8:13)', (1:6)', 1, 13, 6);

The cell2node matrix has dimension equal the number of nodes times the number of
reservoir cells perforated by the well. We must also specify the segment lengths and diam-
eters and the node depths and volumes

lengths = [300*ones(6,1); nan(6,1)];
diam = [.1*ones(6,1); nan(6,1)];
depths = G.cells.centroids(c([1 1:end 1:end]), 3);

vols ones(13,1);
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With this, we have all the information we need to convert the data structure of the simple
well into a corresponding data structure describing a multisegment network model:

prodMS = convert2MSWell(prodS, 'cellZnode', cell2node, 'topo', topo, ...
'G', G, 'vol', vols, 'nodeDepth', depths, ...
'seglength', lengths, 'segDiam', diam);

Finally, we must set up the flow model for each segment. The first six segments are modeled
using the wellbore-friction model (11.29)—(11.31) with roughness ¢ = 10™* m and dis-
charge coefficient C;, = 0.7. The next six segments represent valves, whose pressure losses
are modeled by use of (11.29) with mixture mass flux. The valves have thirty openings, each
with a nozzle diameter of 25 mm. We then set up the flow model as function of velocity,
density, and viscosity

[wbix, vix] = deal(1:6, 7:12);
[roughness, nozzleD, discharge, nValves] = deal(le-4, .0025, .7, 30);

prodMS. segments.flowModel = @(v, rho, mu)...
[wellBoreFriction(v(wbix), rho(wbix), mu(wbix), ...
prodMS. segments .diam(wbix), ...
prodMS. segments. length(wbix) , roughness, 'massRate'); ...
nozzleValve(v(vix)/nValves, rho(vix), nozzleD, discharge, 'massRate')];

The injector is a simple well modeled by the standard inflow performance relationship, i.e.,
a Peaceman type well model,

inj = addWell([], G, rock, 100, 'name', 'inj', 'type', 'rate', 'Comp_i', ...
[0 0 1], 'val', 2.5e6#meter~3/day, 'refDepth', G.cells.centroids(1,3));

To compare the effect of instrumenting the production well with inflow valves, we run two
different schedules: The first is a baseline simulation in which the producer is treated as
a simple well with instantaneous flow and one node per contact between the well and the
IeServoir:

schedule.control.W = [inj; prodS];
[wellSolsSimple, statesSimple] = simulateScheduleAD(state, model, schedule);

For the second simulation, we must combine the simple injector and multisegment producer
into a facility model since the two wells are represented with different types of well models

W = combineMSwithRegularWells(inj, prodMS);
schedule.control.W = W;
model .FacilityModel = model.FacilityModel.setupWells(W) ;

This is normally done automatically by the simulator, but here we do it explicitly on the
outside to view the output classes. These classes are practical if we want to incorporate
per-well adjustments to tolerances or other parameters. The model classes and the well
structures read
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SimpleWell with properties:

W: [1x1 struct]
allowCrossflow: 1
allowSignChange: O
allowControlSwitching: 1
dpMaxRel: Inf
dpMaxAbs: Inf
dsMaxAbs: 0.2000
VFPTable: []
operators: []
nonlinearTolerance: 1.0000e-06
G: [1
verbose: 0
stepFunctionIsLinear: O

W is structure with fields:
cells: 100
type: ’rate’
val: 28.9352
r: 0.1000

cell2node: []

connDZ: []
isMS: 0O
nodes: []
segments: []

The main difference in the two classes is that the

The AD-OO Framework for Reservoir Simulation

MultisegmentWell with properties:

signChangeChop: 0
W: [1x1 struct]
allowCrossflow: 1
allowSignChange: 0
allowControlSwitching: 1
dpMaxRel: Inf
dpMaxAbs: Inf
dsMaxAbs: 0.2000
VFPTable: []
operators: [1x1 struct]
nonlinearTolerance: 1.0000e-06
G: [1
verbose: 0
stepFunctionIsLinear: 0

W is structure with fields:

cells: [6x1 double]
type: ’bhp’
val: 25000000
r: 0.1000
cell2node: [13x6 double]
connDZ: [6x1 double]
isMS: 1
nodes: [1x1 struct]
segments: [1x1 struct]

SimpleWell model does not have any
operators defined. Likewise, this model does not have any representation of cell to node
mappings and structures representing the nodes and segments in the W structure. However,
what MRST uses to distinguish simple and multisegment wells is the flag isMS, which is
set to false for the injector and true for the producer. For completeness, let us also look at

the data structures representing nodes and segments for the instrumented producer

segments:

length:
roughness:
diam:
flowModel:
topo:
deltaDistance:

nodes:
[12x1 double] depth: [13x1 double]
[12x1 double] vol: [13x1 double]
[12x1 double] dist: [13x1 double]

[function_handle]
[12x2 double]
[12x1 double]

The crucial element here is the function handle f1owModel in the segments, which is used
to assemble the well equations.

Figure 12.11 shows bhp in the producer and injector, along with field-average pressure
predicted by the two different well models. Resistance to flow when the flow is constricted
through the nozzles of the valves and by friction along the tubing causes a significantly
higher pressure drop from the sandface to the datum point in the wellbore. Hence, the bhp
must be significantly lower for the multisegment model, compared with the simple well
model to sustain the same surface production rate*. Looking at the injector bhp, we see that
arelatively high pressure is required initially to force the first gas into the reservoir. As soon
as the first gas has entered the reservoir, the total mobility in the near-well region increases

4 Notice that this comparison is somewhat exaggerated. In reality, one would likely have adjusted either the well index or the
skin factor in the simple well model to account for some of this pressure loss. On the other hand, such representative values
can only be found after one has observed some production history.
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Figure 12.11 Comparison of bottom-hole pressures in the injector (left) and the producer (right)
predicted for the modified SPE 1 model with a simple well model and a well model accounting for
pressure drop across valves and caused by friction along the horizontal wellbore. Thin lines in the
right plot show average-field pressure.

and the injection pressure decays. With some gas accumulated, the total flow resistance of
the pore space from injector to producer will decrease, and hence the bhp starts to increase
in the producer after approximately 60 days. On the other hand, the injected gas is not able
to displace a similar amount of reservoir fluids from the reservoir because of lower density
and higher compressional effects, and hence the reservoir pressure will gradually increase.
This effect is observed in both models.

After approximately 20 months, the first gas has reached a neighboring cell of the
producer and will start to engulf the cells above and gradually be drawn down into the
perforated cells; see Figure 12.12. This engulfing process causes a significant decay in the
oil rate and a steeper incline in producer bhp. The rate decay is slightly delayed in the
multisegment model, but the effect on the total oil production is a mere 1.3% increase
(which still could represent significant income).

Figure 12.13 shows difference in pressure between the wellbore and the perforated
cells for both well models. The simple well model assumes instantaneous hydrostatic fluid
distribution, and since the producer is completely horizontal, the pressure is identical in
all the six points where the wellbore is open to the reservoir. The instrumented well has
a significantly larger pressure drawdown near its heel, which also lies furthest away from
the injector and the advancing gas front. Both models use the same inflow performance
relationship and hence the drawdown outside of the valve in the multisegment model will
on average be approximately the same as for the simple well model when both wells are
run on rate controls.

12.4.5 Our setup had no lower limit on the bhp. What happens if bhp in the producer is
not allowed to drop below 100 bar or 150 bar?

12.4.6  Rerun the two simulations with producer controlled by a bhp of 250 bar. Can you
explain differences in the producer and the bhp of the injector?
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Figure 12.12 Displacement front engulfing the horizontal producer causes decay in oil production.
Because of different pressure in the wellbore, the volumetric reservoir rates is largely different in the
two models, even though surface rates are almost identical.

Figure 12.13 Pressure in perforated cells (top) and wellbore (bottom) as function of time for the
simple well model (left) and the multisegment well model (right). In the latter plot, the middle surface
represents pressure outside of the valves.

12.4.4 The SPE 9 Benchmark Case

In our last example,”> we set up a more realistic simulation case, show how to use CPR
preconditioning together with an algebraic multigrid solver, and compare our simulation
results against ECLIPSE to verify that the AD-OO black-oil simulator is correct. To this

5 Complete source code: blackoilTutorialSPE9.min ad-blackoil
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end, we consider the model from the SPE 9 comparative solution project [159], which was
posed in the mid-1990s to compare contemporary black-oil simulators. The benchmark
consists of a water-injection problem in a highly heterogeneous reservoir described by a
24 x 25 x 15 regular grid with a 10-degree dip in the x-direction. By current standards, the
model is quite small, but contains several salient features that must be properly handled
by any black-oil simulator aiming to solve real problems. On one hand, the fluid and
PVT model have certain peculiarities; we have already discussed these models in detail in
Sections 11.3.3 and 11.5, respectively. In particular, the discontinuity in the water—oil cap-
illary pressure curve is expected to challenge the Newton solver when saturations change
significantly. Other challenges include strong heterogeneity, transition from undersaturated
to saturated state, abrupt changes in prescribed production rates, and dynamic switching
between rate and bhp control for the producers. Altogether, this makes the case challenging
to simulate.

Petrophysical Model and Initial Conditions

The basic setup of the grid, petrophysical parameters, fluid model, and initial state is more
or less identical to that of the SPE 1 model discussed in Section 11.8.1. For convenience,
this is implemented in a dedicated function:

[G, rock, fluid, deck, state0] = setupSPES();
model = selectModelFromDeck(G, rock, fluid, deck);
schedule = convertDeckScheduleToMRST (model, deck);

The reservoir rock is highly heterogeneous, albeit not as bad as the SPE 10 benchmark. The
model consists of 14 unique layers of varying thickness. The permeability is isotropic and
follows a lognormal distribution with values spanning more than six orders of magnitude;
see Figure 12.14. The porosity field has no variation within each layer. One of the high-
permeability layers is represented by two cells in the vertical direction, whereas two of the
other layers have the same porosity, altogether giving 12 unique porosity values.

—
i

107 et 160 181 102 1 104

Figure 12.14 Petrophysical data for the SPE 9 model: the left plot shows absolute permeability in
units md and the right plot shows porosity.
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A

Figure 12.15 Initial fluid distribution inside the reservoir. The left figure shows the saturation, which
lies on the two-phase O—W axis in the ternary diagram, whereas the right plot shows the degree of
saturation defined as rg/ R (p).

Initially, the reservoir does not contain any free gas, but a significant amount of gas is
dissolved into the oleic phase. The dissolved amount r; is constant throughout the whole
model, except for three individual cells. Some of the dissolved gas may be liberated as free
gas if the reservoir pressure drops below the bubblepoint during production. As we know,
the solution gas—oil ratio R, varies with pressure, which in turn increases with depth. At
the top of the reservoir, the oleic phase is fully saturated (r; = Ry), whereas the degree of
saturation is only 89% at the bottom of the reservoir (ry = 0.89R;). We should therefore
expect that some free gas will form at the top of the reservoir as pressure drops once the
wells start producing.

Wells and Simulation Schedule

The reservoir is produced from 25 vertical wells that initially operate at a maximum rate
of 1,500 STBO/D (standard barrels of oil per day). Pressure is supported by a single water
injector, operating at a maximum rate of 5,000 STBW/D (standard barrels of water per
day) and a maximum bhp of 4,000 psi at reference depth. Between days 300 and 360, the
production rate is lowered to 100 STBO/D, and then raised again to its initial value until the
end of simulation at 900 days. Throughout the simulation, most of the wells switch from
rate control to pressure control.

The simulation schedule consists of three control periods: days 0-300, days 300-360,
and days 360-900, with a ramp-up of time steps at the beginning of the first and third
period. All 26 wells are present during the entire simulation. The injector is injecting a
constant water rate, while the producers are set to produce a target oil rate, letting bhp
and gas/water production vary. In addition to the rate targets, the producers are limited
by a lower bhp value of 1,000 psi, which could, e.g., signify the lowest pressure we can
have in the well and still be able to lift reservoir fluids to the surface. The prescribed
limits are given in the 1ims field of each well. For producer number two, this would be
schedule.control(1).W(22) .1lims:
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Controls for PROD2: oil rate [stb/day]

1 YeOOJGZBDDZDOOO—O—CD
@eeeee 00 00009
1,400
1,200
1,000
800
600
400
200
aoo
0
0 0.5 1 1.5 2 25
Time (years)

Figure 12.16 Well placement in the reservoir (left) and simulation schedule with rate targets for the
producers (right).

Well limits for PROD2:
orat: -0.0028
wrat: -Inf
grat: -Inf
lrat: -Inf
bhp: 6.8948e+06

By convention, the oil rate has negative sign for a producer. The pressure control will be
activated if the wellbore pressure falls below the lower limit.

Customizing Linear Solver and Time-Step Control

The model has 9,000 active cells, which for a three-phase problem corresponds to a linear
system with 27,000 cell unknowns; the total number of unknowns is slightly higher because
of the 26 wells. Models of this size can be solved with the standard direct solvers in
MATLAB on most computers, but runtimes can be reduced if we instead use a CPR
preconditioner. To solve the elliptic pressure subsystem, we use the algebraic multigrid
solver AGMG, with MATLAB’s standard direct solver as potential backup, if AGMG is
not installed on the computer:

try
mrstModule add agmg
pressureSolver = AGMGSolverAD('tolerance', le-4);
catch
pressureSolver = BackslashSolverAD();
end
linsolve = CPRSolverAD('ellipticSolver', pressureSolver, ...
'relativeTolerance', 1e-3);

We also adjust the default time-step control slightly to ensure stable simulation by tighten-
ing the restriction on relative changes pressure and absolute changes in saturation
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model .dpMaxRel
model .dsMaxAbs

.1;
.1;

Beyond this, we make no modifications to the standard configuration of the simulator,
which employs robust defaults from ECLIPSE.

Running the Simulation

The simulation can now be started by the following statements:

model .verbose = true;
[wellsols, states, reports] =...
simulateScheduleAD(state0, model, schedule, 'LinearSolver', linsolve);

We give the schedule with well controls and control time steps. The simulator may use
other time steps internally, but it will always return values at the specified control steps.
Turning on verbose mode ensures that we get an extensive report of the nonlinear iteration
process for each time step:

Solving timestep 01/35: -> 1 Day
Well INJE1: Control mode changed from rate to bhp.

| It # | CNV_W | CNV_O | CNV_G | MB_W | MB_O

MB_G | waterWell| oilWells

gaslells | closure |

| 1| 2.82e-02 | 1.10e+00 | 5.00e-03 | 1.18e-05

N

.00e-04

.58e-06 | 6.81e-04

o

00e-02

.73e-01 |*0.00e+00

| 2 | 1.14e-01 | 7.25e-02 | 5.47e-02 | 5.17e-06 | 1.48e-04 | 8.86e-04 | 4.40e-03 | 2.20e-03 | 1.24e+00 | 1.47e+06
Well PROD26: Control mode changed from orat to bhp.

| 3 |*6.37e-04 | 2.38e-02 | 6.68e-02 |*7.78e-09 | 2.24e-04 | 1.13e-03 |*6.04e-07 | 4.58e-05 | 6.02e-02 |*1.73e-18

| 4 | 1.89e-03 | 8.12e-03 | 2.55e-02 | 7.23e-06 | 4.74e-05 | 3.56e-04 |*5.09e-06 | 1.85e-04 | 5.16e-02 | 5.67e+05

| 5 |*6.04e-04 | 1.69e-03 |*6.50e-04 | 1.32e-06 | 3.47e-06 | 1.90e-06 |*5.17e-07 | 1.92e-05 | 4.85e-03 |*8.67e-19

| 6 |*6.31e-04 | 1.46e-03 |*6.72e-04 | 1.16e-06 | 4.47e-06 | 1.74e-06 |*2.28e-10 | 1.56e-05 | 3.87e-03 |*0.00e+00

| 7 1%9.16e-05 |*3.79e-04 |*2.20e-04 [*7.16e-08 | 3.82e-07 |*9.41e-09 [*3.58e-11 |*2.41e-07 | 6.84e-05 |*0.00e+00

| 8 |*7.96e-05 |*2.45e-04 |*1.08e-04 |*5.50e-08 | 2.40e-07 |*7.63e-08 |*2.87e-14 |*3.82e-11 |*1.10e-08 |*0.00e+00

| 9 |*1.37e¢-05 |*5.70e-05 |*3.43e-05 |*2.16e-09 |*1.20e-09 |*1.22e-09 |*1.79e-14 |*7.86e-11 |*2.40e-08 |*0.00e+00 |

Solving timestep 02/35: 1 Day -> 2 Days

Here, we recognize the mass-balance (MB) errors and the maximum normalized residu-
als (CNV) discussed on page 438 for water, oil, and gas. The next three columns report
residuals for the inflow performance relationship defined per perforations, whereas the last
column reports residual for the control equations defined per well. A star means that the
residual is below the tolerance. In the first time step, mass-balance error for oil was the last
one to drop below the prescribed value of 10~°. Nine iterations is a quite high number and
indicates that there are significant nonlinearity in the residual equations, primarily caused
by initial transient effects. The next seven control steps all converge within 6 iterations.
Between days 80 and 100, liberated gas reaches the water zone and the next two steps
now require 7 and 12 iterations. Large jumps in the iteration count can typically be traced
back to interaction of different displacement fronts, liberation of gas or other abrupt phase
transitions, and/or steep/discontinuous changes in the well controls or other parameters
affecting the global drive mechanisms.

Switching of Well Controls

Figure 12.17 shows which control is active during each of the 35 control steps. Initially, all
wells are set to be rate controlled. The targeted injection rate of 5,000 STBW/day is much
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Figure 12.17 Well controls active during the simulation of the SPE 9 benchmark.

higher than what can be sustained with reasonable injection pressures. The injector thus
switches immediately from rate to bhp control during the first time step and stays there
throughout the whole simulation. Likewise, producer PROD26 and producers PROD21
and PROD23 switch from rate to bhp control during the first and second control step,
respectively. This switching is reported to screen during simulation, and in the report on
the facing page, we see that the injector switches during the first iteration and producer
PROD?26 after the second iteration. The overall picture is that producers are mostly rate
controlled in the beginning and mostly controlled by bhp at the end; the only exception is
PROD14, which runs rate control the whole period. This general switch from rate to bhp
control is a result of the average field pressure dropping during the simulation as fluids are
removed from the reservoir. We also notice the middle period when rates are reduced by a
factor of ten. A smaller drawdown is required to sustain this rate, and hence all producers
are able to stay above the bhp limit.

Analysis of Simulation Results

This reservoir is an example of a combined drive, in which two different mechanisms con-
tribute to push hydrocarbons towards the producers. The first is injection of water below the
initial oil-water contact, which contributes to maintain reservoir pressure and push water
into the oil zone to displace oil. Ideally, this would have been a piston-like displacement that
gradually pushed the oil-water contact upward, but because of heterogeneity and nonlinear
fluid mobilities, water displaces oil as a collection of “fingers” extending from the oil-water
contact and towards the producers; see Figure 12.18. Because the injector operates at fixed
pressure, the injection rate increases monotonically as the reservoir is gradually depleted.
The second drive mechanism is liberation of free gas, which starts near the produc-
ers where the pressure drawdown is largest. As pressure continues to decay, more gas is
liberated at the top of the formation where the pristine oil phase is closest to a saturated
state. The liberated gas forms a gas cap that gradually grows downward and contributes to
push more gas into the wells and reduce the production rates of oil; see the left column in
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0.2 0.4 086 08

Figure 12.18 Water drive contributing to enhanced production. The left column shows surface
injection rate (top) and bhp compared with the average field pressure (bottom). The right column
shows the bottom water drive, with initial water saturation at the top and water saturation after 900
days at the bottom.
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Figure 12.19. Any produced and free gas must come from the gas initially dissolved in oil,
since no gas has been injected. Figure 12.19 reports the amount of dissolved gas initially
and after 900 days.

Figure 12.20 shows production from the 25 wells. First of all, we note that there is
significant spread in the recovery from the individual wells, with some wells that experience
declining oil rates almost immediately and deviate from the upper production envelope that
corresponds to the prescribed rate targets. These are wells at which free gas appears already
during the first step. Since the free gas is more mobile and occupies a larger volume, it will
effectively choke back the production of the oleic phase so much that we see a decay in
the total surface gas rates from these wells. Some of the other wells are able to maintain
the prescribed oil rate for a longer period. These wells experience increasing surface gas
rates until the oil rate is reduced at 300 days. Other wells are of intermediate type and
first experience increasing and then decaying gas rates. Most wells only produce small
amounts of water, and for several of those who produce significant amounts of water, the
breakthrough comes after the period with reduced oil rates has ended. The only exception
in PROD17, which produces almost two orders of magnitude more water than the next
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Figure 12.19 Liberation of gas. The left column shows initial gas saturation at the top and gas
saturation after 900 days at the bottom. The right column shows the amount of gas dissolved in
the oleic phase.

producer. (PROD17 is not shown in the lower-left plot in Figure 12.20.) We note in passing
that the plot of bhp confirms our previous discussion of switching well controls.

Verification Against ECLIPSE

The default solvers in ad-blackoil have been implemented as to reproduce ECLIPSE
as closely as possible. This does not necessarily mean that ECLIPSE always computes
the correct result, but given the major role this simulator plays in the industry, it is very
advantageous to be able to match results, so that this can be used as a baseline when
investigating the performance of new models or computational methods. We have already
shown that MRST matches ECLIPSE very well for the SPE 1 benchmark. To build further
confidence in the simulator, we also show that MRST matches for the SPE 9 benchmark,
given identical input. To this end, we use the same functionality from the deckreader
module for reading restart files as we used in Section 11.8.2:

addir = mrstPath('ad-blackoil');
compare = fullfile(addir, 'examples', 'spe9', 'compare');
smry = readEclipseSummaryUnFmt (fullfile(compare, 'SPE9'));

We first get the number of report steps and the time at which these are computed
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Figure 12.20 Fluid production from the 25 producers.

compd = 1:(size(smry.data, 2));
Tcomp = smry.get(':+:+:+:+', 'YEARS', compd);

Let us for instance compare the bhp of PROD13. We extract the corresponding data as
follows:

comp = convertFrom(smry.get('PROD13', 'WBHP', compd), psia)';
mrst = getWellOutput(wellsols, 'bhp', 'PROD13');

and subsequently plot well responses using standard MATLAB commands; see
Figure 12.21. The results computed by the two simulators are not identical. If you run
the example, you will see that the output from ECLIPSE contains 37 steps whereas MRST
reports 35 steps. The reason is that MRST does not include the initial state in its output
and that ECLIPSE has a somewhat different time-step algorithm that adds one extra time
step during the ramp-up after the target oil rates have been increased back to their original
value at 360 days. Nevertheless, the match between the two computed solutions appears to
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Figure 12.21 Verification of the AD-OO black-oil solver from ad-blackoil against ECLIPSE. The
left column shows bhp for two different producers, whereas the right column shows surface gas rates.

be almost perfect. Similar matches are also seen for other types of well responses and all
the remaining 24 wells.

Bao et al. [30] report similar good match for a set of polymer injection cases including
non-Newtonian fluid rheology, In addition, we have run a number of cases in-house ver-
ifying that the AD-OO framework provides excellent match with commercial simulators.
This includes challenging compositional cases as well as black-oil cases. Altogether, this
shows that the software is a good starting point for case studies. However, when working
with black-oil models, you should expect that you may stumble upon features that are not
yet implemented in MRST, but this is also the point where you can contribute by adding
new features.

COMPUTER EXERCISES

12.4.7  Set up an animation of water and gas to better understand how the aqueous and
gaseous phases displace the oleic phase.

12.4.8 As pointed out on page 466, well PROD17 produces orders of magnitude more
water than the other wells. How would shutting this well in from the start
influence the overall field production.
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12.49  Run the simulation using CPR with AGMG or MATLAB’s direct solver and
compare with just using the direct solver for the whole system. Are there any
noticeable differences in simulation times? Try to install AMGCL and use func-
tionality from the linearsolver module discussed on page 446 to see if you
can reduce runtime even further.

12.4.10  In some cases, produced gas cannot be sold but must be reinjected. Can you set
up such a simulation based on the case discussed in this section? Where would
you place the gas injector? (Hint: Operations involving reinjection generally
require complex topside logic to determine correct rates for the reinjected fluid.
Such logic is not yet available in MRST. As a first approach, you can just assume
that the gas is readily available so that whatever amount of gas produced in step
n can be injected in step n + 1.)

12.5 Improving Convergence and Reducing Runtime

I hope that this and the previous chapters have given you a better understanding of reservoir
simulation, and also provided you with sufficient detail about MRST so that you can
use the software to perform interesting simulations. Although the software is primarily
designed for flexibility and generality, the black-oil simulators implemented by use of the
AD-OO framework offer such a comprehensive set of features that they can be used to
simulate quite complicated models. Out of the box, MRST may not always be as fast
as a simulator written in a compiled language, but with a bit customized setup you can
easily make the simulators much more competitive. A key factor to improve computational
efficiency of MRST is to replace MATLAB’s default direct solver by a modern iterative
solver with appropriate multilevel preconditioning as discussed in Section 12.3.4. With
such capabilities on board, MRST will typically be a few times slower than ECLIPSE or
comparable research simulators like OPM Flow for moderately sized models with O(10°—
10%) unknowns as long as many-core or multi-node parallelism is not utilized.

As you explore other models than those discussed in the previous section, you will
sooner or later run into convergence problems and/or cases for which the computational
performance is not satisfactory. I end this chapter by briefly discussing how to address
such problems. First, I provide a few general recommendations that apply equally well to
commercial simulators like ECLIPSE, and then end the section with a few issues that are
specific to MRST.

Tweaking Control Parameters for Solvers

Like many other things in the AD-OO framework, default values for the various parameters
that control the behavior of the NonLinearSolver class largely follow what is suggested
for ECLIPSE. These default values have been developed based on many years of expe-
rience on a large variety of simulation models and will work well in most cases. You
can observe improved performance of your simulation by tuning parameters in specific
cases, but it is generally not recommended that you change the default values unless you
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know what you are doing. In particular, it is rarely necessary to weaken the convergence
tolerances. When convergence problems occur in the nonlinear iterations, the culprit usu-
ally lurks in the time-step selection or the model itself, and it is too late to try to fix the
problem by adjusting the convergence control. Contrary to what you may think, faster
overall convergence can often be observed by tightening convergence controls rather than
weakening them since this may prevent inaccuracies earlier in the simulation, which oth-
erwise may accumulate from one time step to the next and cause severe errors later in the
simulation.

As general advice: the best way to improve convergence and computational performance
is in most cases to choose a more robust linear solver and/or time-stepping scheme. In
some cases, the cause of poor convergence and long runtimes may also lie in the model
parameters, e.g., as discussed in Section 11.8.3.

Selection of Control Steps

How you set up your simulation schedule will largely determine the efficiency of your
simulation. In many cases, the number of control steps and their individual lengths are
determined by external factors. These can be requirements of monthly or quarterly reports
for prediction runs, or the times of data points for history-matching runs. In other cases,
there are no specific requirements, and the schedule can be chosen more freely. The fol-
lowing guidelines may be useful for improving convergence and general computational
performance:

« Make sure that the limit on the maximum time step is compatible with the specified
control steps. A classical mistake is to set the maximum time step to be 30 days, and
design a simulation schedule that reports results at the end of each month. As we all
know, every second month has 31 days ...

« For cases with complex flow physics like changes between undersaturated and saturated
states, flow reversals, abrupt changes in drive mechanisms, etc., it may be advantageous
to reduce long time steps since reductions in iteration count often will compensate for the
increased number of time steps. As an example, using a gradual ramp-up of time steps
initially and after major changes in well controls and other drive mechanisms will ensure
that transients are better resolved, which in turn means that the simulation runs more
smoothly.

« In some cases, you may be asking for shorter control steps than you actually need. If,
for instance, each control step consists of only one time step and/or the nonlinear solver
converges in very few iterations (say, one to three), it may be advantageous to increase
the length of the control steps to give the time-step selector more freedom to choose
optimal time steps.

For simulations based on ECLIPSE input decks, you should be particularly wary of the
TUNING keyword, which is easy to misuse so that it interferes adversely with the standard
mechanisms for time-step selection. (This keyword is not used by MRST.)
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Issues Specific to MRST/MATLAB

In implementing MRST, we have tried to utilize MATLAB and its inherent vectoriza-
tion as effectively as possible. However, maintaining both flexibility and efficiency is not
always possible, and there are a few sticky points in the implementation of the AD-OO
framework that may contribute to increased computational time. For vectors with a few
hundred or thousand unknowns, the computational overhead in the AD library and other
parts of the software is significant. The cost of linearization and assembly of linear systems
can therefore completely overwhelm the runtime of the linear solver for small problems.
This computational overhead should in principle, and will also in many cases, gradually
disappear with larger problem sizes. However, this is not always the case.

The first factor that may contribute to maintain a significant overhead also for larger
models, is our handling of wells. Wells are generally be perforated in multiple cells through-
out the grid, and to assemble their models, we need to access and extract small subsets of
large sparse matrices. Such access, which some refer to as slicing, is not as efficient in
MATLAB as one could hope, particularly not in older versions of the software. To be able
to handle different types of well models like the SPE 1 case with inflow valves discussed
in Section 12.4.3, the FacilityModel class requires a somewhat heterogeneous memory
access, which we have not yet figured out how to implement efficiently in MATLAB.
Using this class may therefore introduce significant overhead. For cases where all wells
assume vertical equilibrium (and a Peaceman-type inflow performance relationship), you
can instead use a special facility class called UniformFacilityModel that has been opti-
mized to utilize uniform memory access. Once you have created a reservoir model, you can
convert the well description to this type by the following call:

model .FacilityModel = UniformFacilityModel(model) ;

For the SPE 9 case discussed in Section 12.4.4, the 26 wells perforated 80 out of the 9,000
cells in the grid. Adding this transformation led to a 25% reduction in runtime on my
computer.

A second factor comes from the way MRST’s vectorized AD library is constructed. By
default, this library always constructs a sparse matrix to represent the derivatives (Jacobian)
of a vector unknown. Constructing and multiplying such matrices has a significant cost that
should be avoided whenever possible. For cases with many independent primary variables,
many of the Jacobian sub-matrices tend to be be diagonal. You can represent a set of
diagonal matrices as a smaller, dense matrix, for which elementary operations are highly
efficient. At the time of writing, work is in progress to develop more efficient ADI backends
that utilize diagonal structures (and other known matrix patterns) to reduce construction,
multiplication, and assembly costs. You can instrument you models by a specific AD back
end through an assignment of the form:

model . AutoDiffBackend = DiagonalAutoDiffBackend;
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I expect that improved support for more efficient backends will continue to develop in
future versions of the software.

Last, but not least, plotting and creating new axes is slow in MATLAB and has in my
experience become even slower after the new graphics engine ("HG2") was introduced in
R2014b. Many of the examples presented in the book have plotting integrated into simula-
tion loops. For brevity and readability I have not optimized this part, and instead explicitly
cleared axes and replotted grids and cell values whenever the plot needs to be updated.
To reduce runtime, you should instead delete and recreate individual graphics handles, or
simply manipulate the color data of existing graphics objects, rather than drawing the whole
scene anew.
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