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Abstract. We develop a flexible method for showing that Borel witnesses to

some combinatorial property of ∆1
1 objects yield ∆1

1 witnesses. We use a mod-

ification the Gandy–Harrington forcing method of proving dichotomies, and
we can recover the complexity consequences of many known dichotomies with

short and simple proofs. Using our methods, we give a simplified proof that

smooth ∆1
1 equivalence relations are ∆1

1-reducible to equality; we prove effec-
tive versions of the Lusin–Novikov and Feldman–Moore theorems; we prove

new effectivization results related to dichotomy theorems due to Hjorth and

Miller (originally proven using “forceless, ineffective, and powerless” methods);
and we prove a new upper bound on the complexity of the set of Schreier graphs

for Z2 actions. We also prove an equivariant version of the G0 dichotomy that

implies some of these new results and a dichotomy for graphs induced by Borel
actions of Z2.

1. Introduction

Recent research has focused on the projective complexity of various Borel com-
binatorial properties of Borel graphs, equivalence relations, etc. For instance, the
main result of [12] is that the set of (codes for) Borel 3-colorable Borel graphs is Σ1

2

complete. Such a complexity lower bound rules out dichotomy theorems like the
G0 dichotomy characterizing countably Borel colorable graphs [6]. It also implies
the existence of ∆1

1 graphs which are Borel 3-colorable but not ∆1
1 3-colorable. In

this note, we explain a modification of the Gandy–Harrington forcing arguments
for dichotomy theorems which yields effectivization results. That is, we show how
Borel witnesses to combinatorial properties of ∆1

1 objects imply the existence of
∆1

1 witnesses. This kind of effectivization implies a strong upper bound on projec-
tive complexity, and can be construed as a sort of weak dichotomy theorem. Our
methods give short and simple proofs of these weak dichotomies even for properties
where an actual dichotomy is unwieldy, and they allow us to make a fairly sweeping
generalization of many known results.

The basic tool that we use is the observation that, for Φ among a large class of
properties including what we will call independence properties, if B is a Borel set,
A is a Gandy–Harrington condition, Φ(B), and A  ẋ ∈ B, then Φ(A). So, for
instance, if a space can be covered with countably many Borel independent sets,
then in any nonempty Σ1

1 set we can use the forcing relation to find an independent
set, so by a reflection argument we have a cover by independent ∆1

1 sets. This is
made precise in Lemma 3.4 and Theorem 3.5.

In the next section we give three illustrative examples, including a short proof
that smooth ∆1

1 equivalence relations are ∆1
1-reducible to equality. In Section 3 we

define a large class of properties Φ where this method works and prove some general
results. In Section 4 we give several applications. We prove effective versions of the
Lusin–Novikov and Feldman–Moore theorems (Theorem 4.1). We show that any ∆1
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graph generated by a single Borel function, a countable family of Borel functions,
or a Borel free action of Z2 must be generated by a ∆1

1 function, countable family
of functions, or Z2-action (Theorems 4.5, 4.3, and 4.11 respectively). We show
that if G is locally countable, ∆1

1, and admits a Borel end selection, then it admits
a ∆1

1 end selection (Theorem 4.10). And, we prove effectivization for Borel local
colorings in the sense of Miller’s (G0,H0) dichotomy (Theorem 4.17). In the last
section we prove a handful of new dichotomy theorems related to some of the
effectivization results in section 4. In particular, we prove an equivariant version of
the G0 dichotomy which implies the results about generating graphs with functions
(Theorem 5.2). And, we prove a dichotomy for Schreier graphs of Borel actions
of Z2 which generalizes Miller’s characterization of undirectable forests of lines
(Theorem 5.16).

1.1. Conventions and Notation. Throughout, graphs are simple and undirected.
Formally, a graph on a vertex set X is a symmetric, irreflexive subset of X2. An
edge in a graph is some ordered pair in the graph (so our edges are directed, and
our graphs contain both possible directions).

For an edge e, we typically write e0 and e1 for its left and right coordinate (its
tail and head), so e = (e0, e1). And, we write −e for the edge with the opposite
direction, i.e. −(e0, e1) = (e1, e0). For a set of edges A, let −A = {−e : e ∈ A}.

We write N for Baire space, i.e. ωω with the product topology. The map πi :
Nn → N is projection onto the ith coordinate. A box is a subset of Nn of the form
A1 × ...×An for some A1, ..., An ⊆ N .

We use lightface capital Greek letters to refer to the effective projective hier-
archy. So first, A ∈ ∆1

1(x) means that A is Borel and there is some code for A
which is computable in x. We will remain agnostic about the exact details of the
coding, but one could code a Borel by a labelled well-founded tree whose leaves cor-
respond to open sets and whose other nodes are labelled with union, intersection,
and complement. And, A ∈ Σ1

1(x) means that for some B ∈ ∆1
1(x)

y ∈ A⇔ (∃z) (y, z) ∈ B

and A ∈ Π1
1(x) means that, for some B ∈ ∆1

1

y ∈ A⇔ (∀z) (y, z) ∈ A.

In general Σ1
n+1(x) sets are projections of Π1

n(x), and Π1
n(x) sets are complements

of Σ1
n(x) sets. We will mostly be concerned with n = 1 or 2 here.

Let us stress that the set of codes for a ∆1
1 sets is Π1

1, but that if we write C(x)
for the set coded by x, then there is an arithmetic property Φ so that for any code
x, y ∈ C(x)⇔ Φ(x, y).

We say that a property Φ of subsets of X is Π1
1 on Σ1

1 if, whenever A ⊆ Y ×X
is Σ1

1

{y ∈ Y : Φ(Ax)} ∈ Π1
1.

That is, Φ is Π1
1 on Σ1

1 if the set of sections with property Φ in any Σ1
1 set is Π1

1.
For instance, being empty is Π1

1 on Σ1
1:

Φ(A)⇔ (∀y) y 6∈ A.

Σ1
1 on Σ1

1 and similar notions are defined mutatis mutandis. The most important
fact about these kinds of properties are the reflection theorems:
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Theorem 1.1 (Reflection theorems, [2, Lemma 1.4],[7, Theorem 2.27]).
Say a property is monotone if it passes to supersets and continuous if it
passes to decreasing intersections.

(1) If Φ is Π1
1 on Σ1

1, A ∈ Σ1
1, and Φ(A), then there is some B ⊇ A so that

B ∈ ∆1
1 and Φ(B).

(2) For Φ a property of two sets, Φ is Π1
1 on Π1

1, monotone in both coordinates,
and continuous downward in the second coordinate, and if Φ(A,N rA) for
some A ∈ Π1

1, then there is B ⊆ A so that B ∈ ∆1
1 and Φ(B,N rB).

We say that a fact about Σ1
n or Π1

n relativizes if it remains true if we replace Σ1
n

with Σ1
n(x) for some oracle x (and likewise for Π). The reflection theorems relative.

Bold-faced Greek letters are the classical projective hierarchy, which we can
equivalently define as

Σ1
n =

⋃
x∈R

Σ1
n(x), Π1

n =
⋃
x∈R

Π1
n(x).

So, facts about the effective Projective hierarchy which relative are also true about
the classical hierarchy. We will be interested to the extent to which the converse is
true.

We will work with Gandy–Harrington forcing on Nn, i.e. the poset of non-empty
Σ1

1 subsets of Nn ordered by inclusion. We write for Pn this forcing, and we write ẋ
for the standard name for the real coded by a P1-generic filter, (ẋ, ẏ) for the name
for the reals coded by a P2-generic, and ẋ = (ẋ1, ..., ẋn) for the Pn-generic reals.

For a Borel set B, when we write  ẋ ∈ B or consider B in some generic
extension, we mean the set in coded in the extension by some ground model code
for B. In particular, Φ(B) is absolute whenever Φ is Π1

1 on ∆1
1.

When we say a ∆1
1 sequence of ∆1

1 sets 〈Aα : α ∈ β〉 (for a computable ordinal
β), we mean that there is a ∆1

1 order ≺ on ω and ∆1
1 set of pairs (cα, iα) so that

iα ∈ ω has order type α in ≺ and cα is a code for Aα. A family of Borel sets is
Π1

1 in the codes if the set of Borel codes for Borel sets in this family is Π1
1. Our

references for effective descriptive set theory are Marks’s lecture notes [7] and the
paper by Harrington, Marker, and Shelah [2].

When s1, s2, s3, ... are ordinal length sequences, say si ∈ Aαi for some A, then

their concatenation, s = sa1 s
a
2 s
a
3 ... is the squences of length

∑
i αi defined by

s(β) = si(γ) :⇔ β = (
∑
j<i

αj) + γ

1.2. Acknowledgements. Thanks to Andrew Marks for helpful comments on ear-
lier drafts of this paper, and thank you to the reviewer for many helpful comments.
The author was supported by the NSF grant DMS-1764174.

2. First examples

We begin with three examples. First we reprove the effectivization consequences
of the G0 dichotomy:

Theorem 2.1. If g is a code for a Borel graph G on N , and G admits a Borel
countable coloring, then G admits a ∆1

1(g) countable coloring.

Proof. By relativization, we may assume g ∈ ∆1
1. We first show that G admits a

∆1
1 coloring if and only if N is a union of ∆1

1 G-independent sets. If f : N → ω
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is a coloring, then N =
⋃
i f
−1(i) and each of the fibers is G-independent and ∆1

1.
For the converse, suppose every x is in some ∆1

1 independent set. Then

{(x, i) : i codes a set A ∈ ∆1
1, x ∈ A, A is G independent}

is a Π1
1 total relation, so admits a ∆1

1 uniformization by [7, Theorem 2.15]. The
uniformizing function is a countable coloring.

Let X = N r
⋃
{A ∈ ∆1

1 : A is G independent}. Note that X is Σ1
1. Suppose

X 6= ∅. (If we were to try to prove a dichotomy result here we would start trying
to build some generic obstruction to colorability.) Suppose toward contradiction f
is a Borel countable coloring of G.

Recall that Pi is Gandy–Harrington forcing on N i. By absoluteness, the inter-
pretation of the code for f remains a Borel coloring in any extension by a Pi-generic.
We can find some A ∈ P1 below X so that A  f(ẋ) = i, where ẋ is a name for
the generic real. If A is not independent, then B = {(x, y) : (x, y) ∈ G, x, y ∈ A} is
a condition in P2 and

B  f(ẋ) = f(ẏ) ∧ (ẋ, ẏ) ∈ G,

which is a contradiction. Since being independent is Π1
1 on Σ1

1, A is contained in
some ∆1

1 independent set. But this means A ∩X = ∅, contradicting our choice of
A. �

Corollary 2.2. The set of Borel countably colorable graphs is Π1
1 in the codes.

Proof. Write Bc for the set coded by a Borel code c, and write φxn for the partial
function computed by the nth oracle machine with oracle x.

For any g ∈ N , g codes a graph with a countable coloring if and only if g codes
a graph G, and

(∃f ∈ ∆1
1(g)) f is a countable coloring of G.

In detail, this second clause says

(∃n ∈ ω) φgn is a Borel code, and Bφgn is a countable coloring of G.

And f is a countable coloring of G if and only if

f ⊆ N × ω ∧ (∀x, i, j) (x, i), (x, j) ∈ f → i 6= j

∧ (∀x, y, i) (x, i), (y, i) ∈ f → (x, y) 6∈ G.

This all Π1
1. �

We will only state results for ∆1
1 sets below, but every statement relativizes and

gives a complexity bound as above.
The general outline of the method is as follows: We first reduce whatever problem

is at hand to the problem of covering some set X by countably many Borel sets
satisfying some property Φ (this is usually the combinatorial heart of the problem).
Then we suppose that some X ∈ ∆1

1 can be covered by Borel sets 〈Ai : i ∈ ω〉
satisfying Φ, but not by ∆1

1 sets. We get a contradiction by forcing below

X̃ := X r
⋃
{A ∈ ∆1

1 : Φ(A)}

to find some p and i with

p  ẋ ∈ Ai.
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We then show by contradiction that in fact Φ(p), so by a reflection argument
p ∩ X = ∅. In the next section, we formalize this proof sketch and offer some
technical variations on the idea.

Our second example involves a case where we want our covering sets to satisfy a
notion of independence and a kind of closure. We can give a much simplified proof
of the effectivization consequences of Harrington–Kechris–Louveau [10, Theorem
5.2.7] by considering boxes in N 2 which avoid a given equivalence relation.

Theorem 2.3. If E is a ∆1
1 equivalence relation and Borel reducible to (=2ω ), then

E is ∆1
1 reducible to (=2ω ).

Proof. First, say that a subset of N 2 is a box if it is a product of two subsets of
N , and note that E is ∆1

1 (or Borel) reducible to (=2ω ) if and only if Ec is covered
by a countable ∆1

1 (or Borel) family of boxes which all avoid E. Indeed, if f is a
reduction, then we can set

Ai = {x : f(x)(i) = 0} and Bi = {x : f(x)(i) = 1}
and consider the boxes Ai × Bi. Conversely, suppose Ec can be covered by ∆1

1

boxes. Setting C = {n ∈ ω : n is a code for a ∆1
1 box avoiding E}, we have

(∀(x, y) 6∈ E)(∃n ∈ ω) n ∈ C ∧ (x, y) is in the set coded by n.

This is Π1
1 on Π1

1 as a property of C, so by the first reflection theorem (applied
to the complement) there is a ∆1

1 subset of C, say D with the same property. We
can enumerate D to get a ∆1

1 covering sequence 〈Ai ×Bi : i ∈ ω〉. By the second
reflection theorem applied to

Φ(Z, Y ) :⇔ (∀(x, y) ∈ E) x ∈ Z ∨ (y ∈ Y ∧ x 6∈ Bi)
we can assume each Ai is E-invariant and avoids Bi, and we can define a reduction
by f(x)(i) = 0 if and only if x ∈ Ai.

Suppose E ∈ ∆1
1, X = Ecr

⋃
{A×B : A,B ∈ ∆1

1, (A×B)∩E = ∅} is nonempty,
and Ec =

⋃
iAi ×Bi with Ai, Bi Borel. A set Y ⊆ N 2 is a box if and only if(

∀(x, y), (a, b) ∈ Y
)

(x, b) ∈ Y.
So again by the second reflection theorem applied to

Φ(Z, Y ) :⇔ (∀(x, y), (a, b) 6∈ Z) (x, b) ∈ Y and (x, y) 6∈ E,
X does not meet any Σ1

1 boxes avoiding E. Also note that X is Σ1
1.

Since X  (ẋ, ẏ) 6∈ E, there is some p ⊆ X so that

p  ẋ ∈ Ai ∧ ẏ ∈ Bi.
And, since any P2 generic (x, y) has x and y separately P1-generic, it must be that
A = π1(p)  ẋ ∈ Ai and B = π2(p)  ẋ ∈ Bi. So, A × B must avoid E or else
(A×B) ∩ E  (x, y) ∈ E ∩ (Ai ×Bi).

But then since X doesn’t meet any boxes which avoid E, p ⊆ A × B ∩X = ∅,
which is a contradiction. �

Corollary 2.4. The set of smooth relations is ∆1
1 in the codes.

Proof. A real c codes a smooth relation E if and only if

(∃f ∈ ∆1
1)(∀x, y)f(x) = f(y)↔ xEy.

As above, (∃f ∈ ∆1
1) is equivalent to a universal quantifier over N . �
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Our last example involves an ordinal length construction. It turns out we can
also effectivize the ordinals length of the sequence to lie below ωCK1 . This gives
another proof of the effectivization consequences of a dichotomy due independently
to Kanovei and Louveau [10, Theorem 5.2.3].

Definition 2.5. For an ordinal α, ≤αlex is the lexicographic order on 2α, i.e.

x ≤αlex y :⇔ x = y or (∃β < α) [(x � β) = (y � β) and x(β) < y(β)]

Theorem 2.6. Suppose R is a quasi-order on N with a Borel homomorphism to
≤αlex for some α < ω1 which induces an injection on N/ ≡R. Then there is a ∆1

1

homomorphism of R to ≤α′

lex for some α′ < ωCK1 which induces an injection on
N/ ≡R.

Proof. Given a family of functions F on N , define an equivalence relation by

x ≡F y :⇔ (∀f ∈ F) f(x) = f(y).

And for a function f , let (≡f ) = (≡{f}). We want to find some ∆1
1 homomorphism,

say f , from R to a lexicographic ordering so that (≡R) = (≡f ).
Consider

F = {f : (∃α < ωCK1 ) f is a ∆1
1 homomorphism from R to ≤αlex}.

Note that F is Π1
1 and (≡R) ⊆ (≡F ). If (≡R) = (≡F ), then since this is a Π1

1 on
Π1

1 statement about subsets of F , by reflection there is a ∆1
1 set G ⊆ F so that

(≡G) = (≡R). We can then enumerate G as 〈fi : i ∈ ω〉 with a ∆1
1 enumeration. So

each fi is a homomorphism fromR to some≤αilex with αi < ωCK1 . Then (≡R) = (≡f )
where

f(x) = f0(x)af1(x)af2(x)a....

Now suppose towards contradiction that X = (≡F )r (≡R) is nonempty, and fix
a Borel homomorphism g from R to some ≤α̃lex. To get our contradiction we use a
reflection argument to find a ∆1

1 homomorphism which refines ≡F .
We have that

X  g(ẋ)(α) 6= g(ẏ)(α) for some α.

So we can define

α0 = min{α : (∃p ⊆ X) p  g(ẋ)(α) 6= g(ẏ)(α)}.

Note that X  g(ẋ) � α0 = g(ẏ) � α0.
Choose p ⊆ X witnessing the above formula. Without loss of generality, we may

assume p  g(ẋ)(α0) = 1 ∧ g(ẏ)(α0) = 0. Let A = π1(p) and B = π2(p). Then, if
q = (A×B) ∩R ∩ (≡F ) 6= ∅,

q  g(ẋ)(α0) > g(ẏ)(α0) ∧ g(ẋ) � α0 = g(ẏ) � α0 ∧ xRy

which contradicts the fact that g is a homomorphism.
So, (A× B) ∩ R ∩ (≡F ) = ∅. By the second reflection theorem we may assume

A is ∆1
1 and closed upwards under R∩ (≡F ) and avoids B. By reflection there is a

∆1
1 sequence of functions 〈fi : i ∈ ω〉 so that each fi is in F and

(A×B) ∩R ∩ (≡{fi:i∈ω}) = ∅.
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Suppose fi is a homomorphism into the lexicographic order on αi. We can define
a homomorphism into the lexicographic order on γ := (

∑
i αi) + 1 as follows. Set

f∞(x) = 1 if and only if x ∈ A and

f(x) :=
(
f0(x)af1(x)a...

)a
f∞(x).

To check this is a homomorphism, suppose xRy. If fi(x) <αilex fi(y) for some i,
then f(x) ≤γlex f(y). Otherwise x ≡F y, and so if x ∈ A then y ∈ A by our closure
assumption. This means f∞(x) ≤ f∞(y). In any case f(x) ≤γlex f(y) and f is a
homomorphism.

This means f ∈ F , so f(x) = f(y) for (x, y) ∈ X, but for (x, y) ∈ p ⊆ X we
have f(x) 6= f(y) which is a contradiction. �

3. General Results

Our first goal in this section is to prove a general result on effectivizing count-
able covers by Borel sets satisfying some property, Φ. We can do this when Φ is
conjunction of what we call independence properties and closure properties. These
notions are defined below, but an informal description is as follows: Φ is an in-
dependence property if Φ(A) says all points in A satisfy a combinatorial relation
(e.g. A is G-independent for a graph G), and Ψ is a closure property if Ψ(A) says
that A contains all points which stand in a combinatorial relation with points from
A (e.g. A is a box).

Definition 3.1. We say that a property Φ(A) of a subset ofN is an independence
property if there is some ∆1

1 property φ such that

Φ(A)⇔ ¬(∃x, y) x ∈ Ak and φ(x1, ..., xk, y).

Note that if Φ is an independence property then Φ is Π1
1 on Σ1

1. In practice,
many Π1

1 on Σ1
1 properties are independence properties. But the two notions are

not equivalent, and it is unclear how far beyond independence properties the results
below generalize.

Definition 3.2. A property Ψ(A) of sets is a closure property if there is a ∆1
1

property ψ so that Ψ(A) if and only if

(∀x ∈ Ak)(∀y, z) ψ(x, y, z)→ z ∈ A.

For a closure property Ψ and set A, the Ψ-closure of A is AΨ :=
⋃
m f

m(A), where

f(A) := A ∪ {z : (∃x ∈ Ak)(∃y)ψ(x, y, z)}.

Of course, the Ψ-closure of any set satisfies Ψ. And, if A is Σ1
1, then so is AΨ.

The key point about an independence property, closure property, or a conjunction
thereof, say Φ, is that any time a Gandy–Harrington condition p forces the generic
to be in set with property Φ, p is contained in a ∆1

1 set with property Φ.

Definition 3.3. A property Φ(A) is reflectable if it is Π1
1 in the codes (i.e. {c :

c codes A,Φ(A)} is Π1
1), Φ(B) is absolute between V and V [G] for any Pi-generic

G and Borel set B, and the following condition holds: whenever B is Borel, A ∈ P1,
A  ẋ ∈ B, and Φ(B), there is some Ã ∈ ∆1

1 so that A ⊆ Ã and Φ(Ã).

One subtlety to point is out that by property we mean first order property in the
language of set theory with parameters. So there should never be any confusion
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about how to interpret Φ in different models (provided all the relevant parame-
ters are present). In practice we may be ambiguous about exactly what property
we mean, but there should always be a ∆1

1 translation between any reasonable
interpretations. Also, most natural properties which are Π1

1 in the codes are uni-
formly Π1

1(x) in the codes for ∆1
1(x) sets, so this absoluteness assumption is usually

automatic.

Lemma 3.4. The following properties are all reflectable:

(1)
∨
i∈ω Φi∈ω(A), where 〈Φi : i ∈ ω〉 is a sequence of reflectable properties which

are uniformly Π1
1 in the codes

(2) Φ(f [A]), where Φ is reflectable and f : N → N is a ∆1
1 bijection

(3) Φ ∧Ψ where Φ is an independence property and Ψ is a closure property.

Proof. Checking (1) and (2) is routine. For (3), suppose A  ẋ ∈ B and (Φ∧Ψ)(B).
We first show by induction on m that fm(A)  ẋ ∈ B, with f as in the definition
of AΨ. The base case m = 0 is our assumption that

f0(A) = A  ẋ ∈ B.

Suppose toward contradiction that fm(A)  ẋ ∈ B, but that there is some
p ⊆ fm+1(A) so that p  ẋ 6∈ B. We have a nonempty condition

q := {(x, y, z) : x ∈ (fm(A))
k
, z ∈ p, and ψ(x, y, z)} ∈ Pk+2.

The first k projections of q are contained in fm(A), so by the induction hypothesis
q  ẋ ∈ Bk. Since the projection of q onto the z-coordinate is contained in p, our
assumption about p gives q  ż 6∈ B. And the definition of q ensures q  ψ(ẋ, y, z).
So,

q  ẋ ∈ Bk ∧ ż 6∈ B ∧ (∃w)ψ(ẋ, w, ż).

Thus we can find generics in the extension witnessing that ¬Ψ(B), but in the ground
model Ψ(B) contradicting Schoenfield absoluteness.

Now suppose that A  ẋ ∈ B and (Φ∧Ψ)(B). From the above, we may assume
AΨ = A. Suppose toward contradiction that ¬Φ(A). Then

C = {(x, y) : x ∈ Ak and φ(x, y)} ∈ Pn×k

and since A  ẋ ∈ B,

C  ẋ ∈ Bk ∧ φ(ẋ, ẏ)

which, just as above, contradicts the fact that Φ(B).
So, (Φ ∧Ψ)(A), and by the second reflection theorem applied to

Θ(X,Y ) := (∀x ∈ (N rX)k, y, z) (ψ(x, y, z)→ z ∈ Y ) and ¬φ(x, y)

there is a ∆1
1 set Ã ⊇ A so that (Φ ∧Ψ)(Ã).

�

With the lemma above in hand, we can quickly prove a general effectivization
result for countable covers by independent sets.

Theorem 3.5. Fix a reflectable property Φ. Suppose X ∈ ∆1
1 and X ⊆

⋃
i∈ω Bi,

where each Bi is a Borel set so that Φ(Bi). Then there is a ∆1
1 sequence of ∆1

1 sets
〈Ai : i ∈ ω〉 so that Φ(Ai) for all i and X ⊆

⋃
i∈ω Ai.
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Proof. Suppose toward contradiction X admits no ∆1
1 sequence as described. Con-

sider the following set:

X ′ = X r
⋃
{A ∈ ∆1

1 : Φ(A)}.

We want to check that X ′ is Σ1
1. The set of codes for sets with property Φ is Π1

1

by the definition of reflectable, so

x ∈
⋃
{A ∈ ∆1

1 : Φ(A)} ⇔ (∃n ∈ ω) n codes a set A ∧ x ∈ A.

Since Π1
1 sets are closed under number quantifiers, this is Π1

1.
By assumption, X ′ is nonempty, so it is in P1. We have

X ′  (∃i) ẋ ∈ Bi
so for some i ∈ ω and A ⊆ X ′,

A  ẋ ∈ Bi.
But then, Φ

(
Ã
)

for some ∆1
1 set Ã ⊇ A. So A avoids X, which contradicts our

choice of A. �

3.1. Minor Technical Variations. We want two minor technical variations on
this theorem. The first of these variations says that we can effectivize countable
Borel families whose projections cover a given space, provided the projection map
has countable fibers.

Theorem 3.6. Suppose that Φ(A) is a reflectable property, R ⊆ N 2 is ∆1
1 with

countable sections, and Φ(A) implies A ⊆ R. If X ⊆ Nn admits a countable cover
by Borel sets of the form π1(A) with Φ(A), then X admits a cover by ∆1

1 sets of
this form.

Proof. By the effective Feldman-Moore theorem (see Theorem 4.1 and the preceding
comments in Section 4 below), there is a ∆1

1 sequence of involutions 〈fi : i ∈ ω〉 so
that, for any x ∈ N and (x, y) ∈ R,

{(x, y′) : (x, y′) ∈ R} = {fi(x, y) : i ∈ ω}.

Then, X =
⋃
i π1(Ai) if and only if

{(x, y) ∈ R : x ∈ X} =
⋃
i

⋃
j

{fj(x, y) : (x, y) ∈ Ai}.

So, X admits a cover by ∆1
1 sets of the form π1(A) with Φ(A) if and only if

X̃ = {(x, y) ∈ R : x ∈ X} admits a cover by ∆1
1 sets so that (∃i)Φ(fi[A]) holds. By

Lemma 3.4, (∃i)Φ(fi[A]) is reflectable, and we can apply the previous theorem. �

The second variation generalizes beyond covering spaces with unions of sets to
covering spaces with unions of intersections of unions of sets. One could extend
this further to arbitrary finite alternations of unions and intersections with mostly
notational changes.

Theorem 3.7. Fix a sequence of reflectable properties 〈Φij : i, j ∈ ω〉 which are
uniformly Π1

1 in the codes. Suppose there is a family of Borel sets 〈Bi,j,k : i, j, k ∈ ω〉
such that

X̃ =
⋃
i

⋂
j

⋃
k

Bi,j,k,
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10 RILEY THORNTON

where X̃ ⊆ N is ∆1
1 and for all i, j, k ∈ ω

Φi,j(Bi,j,k).

Then there is a ∆1
1 such family.

By uniformity here we mean {(n, i, j) : n codes a set A,Φij(A)} is Π1
1.

Proof. Let

X = (X̃ × ω2) r
⋃
{A× {(i, j)} : A ∈ ∆1

1, (i, j) ∈ ω2,Φi,j(A)}.

If we have that

(∀x)(∃i)(∀j) (x, i, j) 6∈ X,
then we can find our ∆1

1 family by letting Bijk be a ∆1
1 enumeration of the ∆1

1 sets
with Φij(Bijk). So suppose towards contradiction that

(∃x)(∀i)(∃j) (x, i, j) ∈ X.

We can find a condition p ⊆ {x : (∀i)(∃j) (x, i, j) ∈ X}, and an index ĩ so that

p  (∀j)(∃k) ẋ ∈ Bĩ,j,k.

Refining p, we can find some j̃ so that

p ⊆ {x : (x, ĩ, j̃) ∈ X}.

But then, refining p again, we can find k̃ so that

p  ẋ ∈ Bĩ,j̃,k̃.

But then p is contained in a ∆1
1 set p̃ so that Φĩ,j̃(p̃), and p̃ × {(̃i, j̃)} ∩ X = ∅,

which contradicts the fact that p ⊆ {x : (x, ĩ, j̃) ∈ X}. �

3.2. Transfinite constructions. Our last variation is somewhat more compli-
cated and covers situations where we want to cover an object with some ordinal
length sequence of sets. This generalizes Theorem 2.6.

Definition 3.8. Given A = 〈Aα : α < β〉 a countable ordinal length sequence of
sets in N and X ⊆ N , define

XA = X r
⋃
α<β

Aα.

So, in particular, NA = N r
⋃
α<β Aα And, given F a set of such sequences, let

XF = X r
⋃
A∈F

⋃
α<β

Aα =
⋂
A∈F

XA.

Abusing notation slightly, identify the ordinal product ω·α with the lexicographic
order on α × ω. For A = 〈Aβ : β ∈ ω · α〉 = 〈Aβ,i : (β, i) ∈ α× ω〉, set A0 =
〈Aβ,0 : β ∈ α〉.

Say that a property Φ(〈Aβ : β ∈ ω · α〉) of an ordinal length sequence of sets (with
length of the form ω · α for some countable ordinal α) is a refinement property if
for some ∆1

1 sequence of Σ1
1 properties 〈φi : i ∈ ω〉 (all with arity k, though this is

just a notational convenience) and ∆1
1 sequence of closure properties 〈Ψi : i ∈ ω〉,

Φ(A) if and only if

(∀β, i)
[
Ψi(Aβ,i) ∧

(
∀x ∈ (N(A0�β))

k
)

x ∈ Akβ,i → ¬φi(x)
]
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Informally, a refinement property says an independence property holds for each
Aα,i if we ignore points in earlier Aα,0’s, and each Aα,i is Ψi-closed. For any

refinement property property Φ, the set {A ∈ ∆1
1 : (∀β) Aβ ∈ ∆1

1 and Φ(A)} is Π1
1.

If some countable collection of sequences satisfies a refinement property, so does
the sequence obtained by concatenating them together. We will often use this in
conjunction with the following proposition.

Proposition 3.9. Suppose F is a Π1
1 family of ∆1

1 sequences which is closed under
∆1

1 concatenations. For any Σ1
1 set p ⊆ Nn, whenever p ∩ (XF )n = ∅ there is a

single ∆1
1 sequence A ∈ F so that p ∩ (XA)n = 0.

Proof. For any Σ1
1 sets X and p, p ∩ (XF )n = ∅ if and only if

(∗) (∀x) x 6∈ p or (∃A1, ..., An ∈ ∆1
1)(∀i)

[
Ai ∈ F and (∃αi < ωCK1 ) xi ∈ (Ai)αi

]
.

As usual, existential quantifiers over ∆1
1 are equivalent to universal quantifiers, so

(∃α < ωCK1 )x ∈ Aα ⇔ (∃n ∈ ω)n is a code for a well-order, α & x ∈ Aα
is Π1

1 on Π1
1. Likewise, (∗) is Π1

1 on Π1
1 as a property of F . So, if F is a Π1

1 collection
of sequences with p ∩Xn

F = ∅, we can find a ∆1
1 subset G ⊆ F so that p ∩Xn

G = ∅.
We can find a ∆1

1 enumeration of the sequences in G and concatenate them together
to get a single sequence A so that p ∩Xn

A
= ∅. �

We can prove that if there is some family of ordinal length sequence of Borel sets
satisfying a refinement property that covers a ∆1

1 space, then there is a ∆1
1 such

sequence (whose length is an effective ordinal).

Theorem 3.10. Suppose that Φ is a refinement property, X ⊆ N is ∆1
1, and there

a sequence of Borel sets B = 〈Bβ : β ∈ ω · α〉 with XB = ∅, α < ω1, and Φ(B).

Then, there is a ∆1
1 sequence of ∆1

1 sets A = 〈Aβ : β ∈ ω · α′〉 so that XA = ∅,
Φ(A) and α′ < ωCK1 .

Of course one can work in Nn for some n with only notational changes, or using
the fact that N and N k are computably isomorphic.

Proof. First, define F by

F =
{
A ∈ ∆1

1 : Φ(A), and (∀β) Aβ ∈ ∆1
1

}
.

If XF = ∅, then by Proposition 3.9, there is single ∆1
1 sequence A so that XA = ∅.

So, suppose toward contradiction that XF 6= ∅. Note that XF is Σ1
1. So,

XF  ẋ ∈ Bα,i for some α.

Define

α0 := min{α : (∃p ⊆ XF , i ∈ ω) p  ẋ ∈ Bα,i}
and fix some i ∈ ω and p ⊆ XF so that p  ẋ ∈ Bα0,i. By the proof of Lemma 3.4,
we may assume Ψi(p).

Let φi be as in the definition of refinement property. So φ is Σ1
1 and has arity k.

If q = {(x1, ..., xk) ∈ pk : φi(x)} ∩ (XF )k is nonempty, then

q  ẋ1, ..., ẋk ∈ Bα0,i ∧ φi(ẋ1, ..., ẋk).

Since Φ(B), by absoluteness q  (∃j, β < α0) xj ∈ Bβ,0. But then we can find a
condition below p forcing ẋ ∈ Bβ,0 with β < α0, contradicting minimality.
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12 RILEY THORNTON

So, {(x1, ..., xk) ∈ pk : φi(x)} ∩ (XF )k = ∅, and by Proposition 3.9 there is
a single ∆1

1 sequence A so that {(x1, ..., xk) ∈ pk : φ(x1, ..., xk)} ∩ (XA)k = ∅.
But then by reflection we can find a ∆1

1 set A′ ⊇ p so that Ψi(A
′) and φi(x) for

x ∈ (A′)k ∩ (NA0
)k. Then, setting A′j = A′ if j = i and A′j = A0,j otherwise,

we get a ∆1
1 sequence of sets A

′
= 〈A′j : j ∈ ω〉 so that p ⊆ Ai and A

a
A
′ ∈ F ,

contradicting our choice of p. �

The only application of this theorem we give below is to local colorings of graphs
equipped with quasi-orders. However, we point out that the “forceless, ineffective,
and powerless” proofs of Miller typically work by marrying sequences of Borel
sets satisfying a refinement property to the usual derivative process on a tree of
attempts to build a homomorphism from a canonical obstruction (so that there
is no homomorphism if and only if the tree is well-founded if and only if there a
sequence of refining sets that cover N ). So Theorem 3.10 should usually apply
whenever Miller’s methods apply.

4. Applications

In this section we give several applications of the results above to the study of
Borel graphs and relations. Throughout, we assume that our graphs and relations
are on N . The complexity results lift to other spaces by standard universality
arguments. We start by giving poofs of two folklore theorems.

The classical Lusin–Novikov uniformization theorem says that any Borel relation
with countable sections is the union of countably many Borel partial functions [4,
Theorem 18.10]. One important corollary is the Feldman–Moore theorem, which
says that any countable Borel equivalence relation is induced by a Borel group
action and in fact is a union of countably many Borel involutions [5, Theorem 1.3].
There are elegant effective proofs of these theorems based on the effective perfect
set theorem, but these effective proofs do not seem to be recorded in the literature.
Here we show how the effective versions of these theorems can be deduced from the
classical versions.

Theorem 4.1. If R is ∆1
1 relation with countable sections, then R =

⋃
i fi where

〈fi : i ∈ ω〉 is a ∆1
1 sequence of ∆1

1 partial functions. Further, if R is an equivalence
relation, then each fi can be chosen to be an involution.

Proof. The classical Lusin–Novikov theorem tells us that R is a union of Borel
partial functions. A set f ⊆ N 2 is a partial function if and only if

(∀x, y, y′) (x, y), (x, y′) ∈ f → y = y′.

This is an independence property, so by Theorem 3.5 R is a union of a ∆1
1 sequence

of ∆1
1 partial functions.

And if R is an equivalence relation, then the classical Feldman–Moore theorem
says that R is a union of Borel involutions. A set f ⊆ N 2 is a partial involution if
and only if

f is a function and (∀x, y) (x, y) ∈ f → (y, x) ∈ f.
This is a conjunction of an independence property and a closure property. So again
by Theorem 3.5, R is a union of a ∆1

1 sequence of ∆1
1 partial involutions.

To finish, we need to show that any partial ∆1
1 involution extends to an involu-

tion. The domain of any ∆1
1 partial function is ∆1

1, so we can then extend a partial
involution f by setting f(x) = x for x 6∈ dom(f). �

https://doi.org/10.1017/jsl.2024.38 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.38


∆1
1 EFFECTIVIZATION IN BOREL COMBINATORICS 13

Next, we can characterize graphs which can be (not necessarily symmetrically)
generated by countable families of functions. That is, we reprove [11, Theorem 4.1].

Definition 4.2. A graph G is generated by a list of functions 〈fi : i ∈ I〉 if G ⊆
{(x, y) : y = fi(x) or x = fi(y)}.

We could equivalently require G = {(x, y) : y = fi(x) or x = fi(y)} if we allow
partial functions. Since any ∆1

1 partial function extends to a ∆1
1 total function, this

equivalence holds even when we restrict to Borel or ∆1
1 functions.

Theorem 4.3. If G is a ∆1
1 graph generated by a countable list of Borel functions,

then G is generated by a ∆1
1 list of ∆1

1 functions.

Proof. A graph G is generated by a countable list of functions if and only if G
can be covered by countably many sets f so that f is a partial function or −f is a
partial function (where −(x, y) = (y, x)). Since being a function is an independence
property and e 7→ −e is a ∆1

1 bijection, Lemma 3.4 tells us that this is a reflectable
property. So, if we have a Borel cover we have a ∆1

1 cover by Theorem 3.6. �

Corollary 4.4. The set of Borel graphs generated by a countable family of Borel
functions is Π1

1 in the codes.

We can prove a similar result for graphs generated by a single function. This
argument is inspired by Hjorth and Miller’s dichotomy for end selection, but we
need to make use of some features of acyclic graphs to get around their assumption
that G is locally countable. This settles [11, Problem 4.5].

Theorem 4.5. If G is ∆1
1 and generated by a single Borel function, then it is

generated by a single ∆1
1 function.

Proof. For this theorem, the reduction to a covering problem is nontrivial. First
we reduce to the case where G is acyclic.

Any graph generated by a single function is a sidewalk.1 Let

A = {x ∈ N : [x]G contains a cycle}.

Each component contains at most one cycle, so this set is ∆1
1, and we can select a

single vertex from each component of G � A in a ∆1
1 way as follows: each vertex in A

can enumerate the vertices in its cycle using the effective Luzin–Novikov theorem,
and then we choose a vertex if it is the smallest vertex in a cycle according to some
∆1

1 linear order N . From this selector, it is straightforward to construct a function
which generates G � A.

Therefore, without loss of generality we may assume that G is acyclic. This
means simple paths between points are unique, so the connectedness relation is ∆1

1.

Definition 4.6. A (directed) edge e = (e0, e1) points to a vertex x if x and e0 are
connected and the simple path from e0 to x goes through e1. We write ePx

Write eIe′ if e 6= e′, e0, e
′
0 are connected, and neither ePe′0 nor e′Pe0. Write

e ≺ e′ if ePe′0 but not e′Pe0.
A set of edges A is consistent if (∀e, e′ ∈ A) ¬(eIe′).

1A sidewalk is a graph with at most one cycle in each component. These are sometimes called
pseudoforests.
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14 RILEY THORNTON

The simple path from a vertex x to itself contains only x. So, if A is consistent,
then we cannot have (x, y) and (x, y′) both in A unless y = y′. That is, any
consistent set must be a partial function. For any ∆1

1 consistent set A, we can take
its downward closure under ≺ to get a Σ1

1 consistent ≺-closed set. By the second
reflection theorem, any Σ1

1 consistent ≺-closed set extends to a ∆1
1 consistent ≺-

closed set.

Lemma 4.7. G =
⋃
i(Ai∪(−Ai)) where 〈Ai : i ∈ ω〉 is a ∆1

1 sequence of consistent
sets if and only if G is generated by a ∆1

1 function.

Proof of lemma. Suppose f generates. We want to show that f ∩ G is consistent.
Otherwise, there are some e, e′ ∈ f so that eIe′. If there are n undirected edges
on the simple path between e0 and e′0, there are n− 1 vertices on the path besides
e0 and e′0. Label these vertices v1, ..., vn−1. Since f(e0) and f(e′0) point off of the
path and f generates G, there can only be the n− 1 edges on the path of the form
{vi, f(vi)}. This is a contradiction. So if f generates, then G ⊆ f ∪ (−f) gives a
cover.

For the other direction we may assume each Ai is ≺-closed. Note that if X,Y
are ≺-closed and consistent, then so is Y ∪ (X r (−Y )). Define fi inductively by
fi+1 = fi ∪ (Ai+1 r (−fi)), and set f =

⋃
i fi. Then f is a partial function so that

G = f ∪ (−f), and G is generated by a single function. �

So, G is generated by a (Borel) ∆1
1 function if and only if G is covered by (Borel)

∆1
1 sets A such that A is consistent and −A is consistent. �

Corollary 4.8. The set of graphs generated by a Borel function is Π1
1 in the codes.

We can also prove an effectivization result for end selection in locally countable
graphs using an argument of Hjorth and Miller [3]. Note, their dichotomy was
proven without effective methods and only gives a complexity upper bound of ∆1

2

for end selection. In the proof we will use Hjorth and Miller’s characterization
of end selection, but for completeness we include the definition of end and end
selection below:

Definition 4.9. For a graph G, write [G]<ω for the G-connected finite subsets
of G. (Note that if G is locally countable, this can be coded as a subset of N
using the effective Lusin–Novikov theorem). For S ∈ [G]<ω, [S]G is the connected
component of G. If v is a vertex, we write [v]G for [{v}]G. Write G r S for the
induced subgraph on the complement of S.

If G is a locally countable connected graph, then an end in G is an equivalence
class of infinite injective paths in G with respect to the equivalence relation

〈vi : i ∈ ω〉 ∼ 〈ui : i ∈ ω〉 :⇔ (∀S ∈ [G]<ω)(∃N ∈ ω)(∀i, j > N) vi ∈ [ui]GrS .

That is, an end is a class of paths which eventually land in the same complement
if we cut out any finite set.

An end selection in a graph G is a choice of infinite paths for each vertex so
that vertices in the same component choose paths which represent the same end.

Theorem 4.10. If G is a locally countable ∆1
1 graph which admits a Borel end

selection, then G admits a ∆1
1 end selection

Proof. Since G is locally countable, EG is ∆1
1. Let

R = {(S, x) : S ∈ [G]<∞, x ∈ [S]G}.
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Note that R has countable sections over [G]<∞. Following [3], D ⊆ [G]<∞ ×N is
directed if

(1) D ⊆ R
(2) For all (S, x) ∈ D, x 6∈ S
(3) If (S, x), (S′, x′) ∈ D and S and S′ are in the same G-component, then and

x′, x are connected in at least one of Gr S or Gr S′.

Note that directedness is an independence property. And, [3, Proposition 3.4]
says a locally countable Borel graph G admits a Borel end selection if and only
[G]<∞ can be covered by projections of Borel directed sets. It is straightforward
to check that one can replace Borel with ∆1

1 in their proof. We can then apply
Theorem 3.6. �

The theorem above implies that any ∆1
1 Schreier graph of a free Borel action of

Z is the Schreier graph of a free ∆1
1 action. Or, in the language of [8], the set of

directable forests of lines is Π1
1 in the codes. We can generalize this to effectivize

Borel actions of Z2.

Theorem 4.11. If G is a ∆1
1 graph and the Schreier graph of free Borel action of

Z2 with the usual generating set, then G is the Schreier graph of a free ∆1
1 action

of Z2.

Proof. All components of G are isomorphic the Cayley graph of Z2. In particular
G is locally countable.

Definition 4.12. A straight line is a directed path so that no other path of the
same or shorter length has the same endpoints. A rectangle is a simple directed
cycle that can be divided into 4 straight lines.

Two directed edges e, e′ are parallel if they lie on some straight line together
or if (−e) and e′ are on opposite sides of a rectangle. We write e‖e′. We say e, e′

are anti-parallel if (−e)‖e. And we say e, e′ are perpendicular if they are in the
same component and are neither parallel nor anti parallel. We write e ⊥ e′.

Note that all of these relations are ∆1
1.

Definition 4.13. Let {a, b,−a,−b} be the usual generating set for Z2. For a graph
G, say that a partial function f : G → {a, b,−a,−b} is a partial diagram if for all
e, e′,

(1) if e‖e′, then f(e) = f(e′)
(2) if e‖(−e′) then f(e) = −f(e′)
(3) if e ⊥ e′ then f(e) and f(e′) have different letters (i.e. f(e) 6= ±f(e′)).

A Cayley diagram is a partial diagram whose domain is all of G.

We first check that being induced by a free Z2 action is equivalent to having
Cayley diagram. If a : Z2 y N is an action generating G, then any straight line is
of the form {nγ ·x : n ∈ Z} for some generator γ of Z2. It follows that f(x, γ ·x) = γ
defines a Cayley diagram. Conversely, given a Cayley diagram f , we can define an
action of a generator c by c · x = y ⇔ f(x, y) = c. To see this extends to an
action of Z2, note that for any x, y f(x, y) = −f(y, x) so (γ − γ) · x = x, and
(x, a · x, (b + a) · x, (−a + b + a) · x, (−b − a + b + a) · x) must be a rectangle, so
x = (−b− a+ b+ a) · x.
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16 RILEY THORNTON

Since being a partial diagram is an independence property, it suffices to show that
any sequence of partial diagrams whose domains cover G can be patched together
into a Cayley diagram.

Suppose we have two ∆1
1 partial diagrams f and g. We show how to modify

and glue them together to get a partial diagram whose domain is the union of their
domains. The result then follows by induction. Define h by

(1) if e ∈ dom(f), then h(e) = f(e)
(2) if e ∈ dom(g) r [dom(f)]G, h(e) = g(e)
(3) else if e ∈ dom(g) and e‖e′ for some e′ ∈ dom(f) (or e‖(−e′)), then h(e) =

f(e′) (or −f(e′)).
(4) else if e ⊥ e′ ∈ dom(f), h(e) has the sign of g(e) and the opposite letter of

f(e′).

It is straightforward to check that h is a partial diagram. �

Corollary 4.14. The set of Schreier graphs of Borel Z2 actions is Π1
1 in the codes.

A similar idea works for Zn. We can also effectivize a recent result of Miller
which we will use in the next section.

Theorem 4.15 (c.f. [9, Theorem 1]). If 〈Gi,j : i, j ∈ ω〉 is a ∆1
1 array of graphs,

and there are Borel sets Bi such that N =
⋃
iBi and Gi,j � Bi has a Borel countable

coloring for every j, then there are ∆1
1 sets Ai so that Gi,j � Ai has a ∆1

1 countable
coloring for all j.

Proof. This is equivalent to effectivizing sequences 〈Aijk : i, j, k ∈ ω〉 of sets so that
Aijk is Gij-independent and so that for all x there is an i so that for all j there is
a k so that x ∈ Aijk. The result then follows from Theorem 3.7. �

Corollary 4.16. The set of arrays of Borel graphs Gi,j so that there are Borel sets
Bi with χB(Gi,j � Bi) ≤ ℵ0 for all i, j and N =

⋃
iBi is Π1

1 in the codes.

Finally, we can effectivize Miller’s dichotomy for local colorings of graphs equipped
with quasi-orders [10, Theorem 5.1.2].

Theorem 4.17. If (G,R) is a ∆1
1 graph and quasi-order on N so that R admits

a Borel homomorphism, f , to some ≤αlex with α < ω1 with G ∩ (≡f ) countably
Borel colorable, then (G,R) admits a ∆1

1 such homomorphism into some ≤αlex with
α < ωCK1 .

Proof. First we show that such a homomorphism from R is equivalent to a sequence
of pairs of sets 〈(Rα, Sα) : α < β〉 in N 2 with

(1) Each Rα is a box Aα ×Bα, and each Sα is a box Cα ×Dα

(2) (Rα ∩R) r
(⋃

γ<αRγ

)
= ∅

(3)
(
C2
α ∩G

)
r
(⋃

γ<αRγ

)
= ∅

(4) Cα ∩Dα = ∅
(5) G ⊆

⋃
α<β Rα ∪ Sα.

Given such a sequence, we may assume each Aα is closed upwards under the

quasi-order generated by R r
(⋃

γ<αRγ

)
. So, f(x)(α) = χAα(x) defines a homo-

morphism. And c(x) = min{α : x ∈ Cα} gives a coloring of G ∩ (≡f ). Conversely,
given a homomorphism and coloring we can get such a sequence by considering the
color classes and the sets of the form {x : f(x)(α) = i} for i ∈ {0, 1}.
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Since (1), (2), (3), and (4) describe a refinement property, we can apply Theorem
3.10. �

Corollary 4.18. The set of pairs (G,R) where G is a Borel graph and R is a Borel
quasi-order with a homomorphism and coloring as above is Π1

1 in the codes.

5. Some dichotomies

We end by establishing some dichotomy theorems related to some of the new
effectivization results of the previous section. Our two results about generating
graphs with functions can be deduced from a dichotomy for graphs equipped with
group actions.

Definition 5.1. For G a Borel graph on X, Γ a countable group, and a an action
of Γ on X, we say that f : N → ω × Γ is an a-coloring of (G, a) if, for all n ∈ ω,
{h ·a x : f(x) = (n, h)} is G-independent.

Fix 〈(γn, sn) : n ∈ ω〉 a sequence with (γn, sn) ∈ Γ×2n such that, for each γ ∈ Γ,
γ = γn for infinitely many n, and every string in 2<ω is extended by some sn. Call
such a sequence generic. Then GΓ is the graph on Γ× 2ω defined by

xGΓy :⇔(∃z ∈ 2ω, n ∈ ω)
[
x = san 0az and y = san 1az

]
.

We equip Γ× 2ω with the obvious Γ action, aΓ: for any z ∈ 2ω

γ · (γ′, z) = (γγ′, z).

Note that a graph G is generated by a countably family of functions if and only
if there is an a-coloring of (G′, a) where G′ is the graph on G given by

G′ = {(e, e′) ∈ G2 : e0 = e′0}

and a is the action of C2 = ({±1},×) given by

−1 · (x, y) = −(x, y) = (y, x).

This along with the following theorem settles [11, Problem 4.4]. Similarly, a graph
is generated by a single function if and only if there is an a-coloring of (G′′, a),
where eG′′e′ if and only if eIe′ (with I as in Definition 4.6) and a is as before.

Theorem 5.2. For any Borel graph G and Borel action of a : Γ y N , either (G, a)
admits a Borel a-coloring or there is an equivariant homomorphism from GΓ to G,
i.e. a map f : Γ× 2ω → N so that

(1) f(h ·aΓ x) = h ·a f(x)
(2) If xGΓy then f(x)Gf(y).

Proof. First we show that the two options are mutually exclusive. If c is an a-
coloring of (G, a) and f is an equivariant homomorphism of (GΓ, aΓ) into G, then
c◦f is an a-coloring of GΓ. So, it suffices to show no such a-coloring exists. Suppose
c : Γ × 2ω → ω × Γ is a Borel a-coloring. Then, for some (n, γ), c−1(n, γ) is
nonmeager. Since Γ acts by homeomorphisms, U = γ · c−1(n, γ) is also nonmeager.
Suppose U is comeager in N(γ′,s). By genericity of 〈(γn, sn) : n ∈ ω〉, there is some

n with γ′ = γn and s ⊆ sn. Let t be the homeomorphism that flips the (n + 1)th

bit of a string. Then, every (γ′, σ) ∈ N(γn,sn) has a neighbour (γ′, t(σ)) ∈ Nγ′,s.
So, by Baire category, there is a nonmeager set of points in U with a neighbour in
U . This contradicts the definition of a-colorings.
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For γ ∈ Γ, define Gγ by x Gγ y if and only if γ · x G γ · y. Then, there is an
a-coloring of (G, a) if and only if there a cover of X by sets which are independent
for some Gγ .

Let G0,γ be the graph on 2ω given by

x G0,γ y :⇔ (∃z ∈ 2ω, n ∈ ω) γn = γ, x = san 0az, y = san 1az.

Suppose (G, a) does not admit an a-coloring. By [9] and the genericity of
〈(γn, sn) : n ∈ ω〉, there is some g : 2ω → G which is a homomorphism from G0,γ

to Gγ for every Γ.
Now define f(γ, x) = γ·g(x). We show this is an equivariant homomorphism from

(GΓ, aΓ) to (G, a). Equivariance is clear from the definition, and if (γ, x)GΓ(γ, y),
then x G0,γ y, so g(x) Gγ g(y) and γ · g(x) G γ · g(y). �

Corollary 5.3. The set of pairs of Borel graphs and actions which admit a-
colorings is Π1

1 in the codes.

Proof. The proof above gives a reduction to the set of codes for sequences of graphs
as in Theorem 4.15. �

So, a graph G is generated by a countable family of Borel functions if and only if
there is an equivariant homomorphism from (GC2

, aC2
) to (G′, a) as defined in the

comments after Definition 5.1. We can refine this analysis somewhat to eliminate
reference to the auxiliary graph G′.

Definition 5.4. For tuples of relations R = (R1, ..., Rn) on X and S = (S1, ..., Sn)
on Y , a homomorphism from R to S is a function f : X → Y so that, for each i, f
is a homomorphism from Ri to Si: Ri(x1, ..., xk) implies Si(f(x1), ..., f(xk)).

As usual, C2 = {1,−1} acts on C2 × 2ω by a · (b, x) = (ab, x).

Theorem 5.5. Define graphs R and G−C2
on C2 × 2ω as follows

R = {(x, (−1) · x) : x ∈ C2 × 2ω}
and

G−C2
= {((−1) · x, (−1) · y) : (x, y) ∈ GC2

}.
A graph G on X is generated by a countable family of Borel functions if and only
if there is no homomorphism from (GC2 , G

−
C2
, R) to (=, 6=, G).

Proof. Let’s abbreviate (−1) · x by −x for x ∈ C2× 2ω. So, a homomorphism from
(GC2

, G−C2
, R) to (=, 6=, G) amounts to a map f : C2 × 2ω so that

(1) f(x) = f(y) if (x, y) ∈ GC2

(2) (f(x), f(−x)) ∈ G
(3) If −xGC2

− y, then f(x) 6= f(y) (or equivalently if xGC2
y then f(−x) 6=

f(−y).)

We will show that such a map exists if and only if there is an equivariant homo-

morphism from (GC2
, aC2

) into the graph G̃ = {((x, y), (x, y′)) : (x, y), (x, y′) ∈ G}
on G.

Suppose f is a map as above. Then define f̃ : C2 × 2ω → G by f̃(x) =
(f(x), f(−x)). This is well-defined by property (2). If x, y are neighbours in GC2

,
then by property (3), f(−x) 6= f(−y), and by property (1) f(x) = f(y). So,

f̃(x) = (f(x), f(−x)) = (f(y), f(−x)) and f̃(y) = (f(y), f(−y)) are neighbours in

G̃.
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Suppose f is an equivariant homomorphism from (GC2
, aC2

) to G̃. Then define

f̃ : C2 × 2ω → X by f̃(x) = x0 where f(x) = (x0, x1). If f(x) = (x0, x1) ∈ G, then

f(−x) = −(x0, x1) = (x1, x0), so f̃(−x) = x1. This means f̃(x) and f̃(−x) share
an edge in G, giving property (2). And, if x and y are neighbours in GC2 , then

f(x) and f(y) are neighbours in G̃, so x0 = y0 and x1 6= y1; this gives properties
(1) and (3) above. �

Note that (1) and (2) above say that f descends to a homomorphism to G from
the graph on (C2 × 2ω)/EGC2

with edges ([x], [−x]).

We can also characterize graphs induced by an action of Z2. There are two
canonical obstructions in this case, one in 2 dimensions and one in 1 dimension.

Definition 5.6. A square lattice is a graph isomorphic to the usual Cayley graph
on Z2. A graph is locally a square lattice if each component is a square lattice.

For G locally a square lattice, let ⊥G denote the graph whose vertex set is G
and two vertices (meaning edges in G) are adjacent if they are perpendicular in the
sense of Definition 4.12.

The proof of Theorem 4.11 gives the following:

Proposition 5.7. If G is locally a square lattice, then G is induced by a free Borel
action of Z2 if and only if ⊥G admits a Borel 2-coloring and any forest of straight
lines in G is directable.

We think of ⊥G having a 2-coloring as a 2-dimensional requirement, and having
all forests of straight lines be directable as 1-dimensional. These two requirements
are independent.

Proposition 5.8. There are Borel graphs G, Γ where ⊥G admits a Borel 2-coloring,
and every forest of lines in Γ is directable, but where neither is induced by a Borel
free action of Z2.

Proof. Let E = {e0, e1,−e0,−e1} be the standard generating set for Z2, and
let 〈n,m〉 be the canonical image of (n,m) ∈ Z2 in Aut(Cay(Z2, E)). Suppose
Γ ⊆ Aut(Cay(Z2, E)) is a subgroup so that γ(0) = 0 and 〈γ(n,m)〉−1γ〈n,m〉 ∈ Γ
for all γ ∈ Γ. Note that such a group must be finite.

Let FrΓ be the free part of [0, 1]Z
2

. The group Aut(Cay(Z2, E)) acts on FrΓ by

shifting indices, γ · x = x ◦ γ−1. Let S̃Γ be the graph on FrΓ/Γ defined by

S̃Γ := {([x], [〈a〉 · x]) : x ∈ FrΓ, a ∈ E}.

First, we show that S̃γ is always locally isomorphic to Cay(Z2, E). In fact, for any
x ∈ Frγ , (a, b) 7→ [〈a, b〉 · x] is an isomorphism from Cay(Z2, E) to the component
of [x]. Clearly, this map is a homomorphism. The relation

γ · (〈n,m〉 · x) = 〈γ(n,m)〉 ·
(
〈γ(n,m)−1〉γ〈n,m〉 · x

)
says that, for every n,m ∈ Z and γ ∈ Γ, there are unique (a, b) ∈ Z2 and δ ∈ Γ so
that γ ·(〈n,m〉·x) = 〈a, b〉·(δ ·x). So this map is a bijection. And since Γ acts freely
and preserves E, the same relation implies that non-edges are sent to non-edges.

Second, we show that if Γ is nontrivial, then S̃Γ is not the Cayley graph of a Borel
action of Z2. Suppose otherwise and for x ∈ FrΓ consider the bijection fx : E → E
defined by

fx(a) = b :⇔ [〈a〉 · x] = b · [x].
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The same relation as above says that fγ·x(a) = fx(γ(b)−1) for γ ∈ Γ. And f〈n,m〉·x =

fx for n,m ∈ Z2 since 〈n,m〉 commutes with 〈a〉 for a ∈ E.
For some f : E → E, the set {x : fx = f} has positive measure and is Z2-

invariant. By ergodicity of the shift action, this set has measure one. But then
fx = fγ·x for some x, which is a contradiction.

All that remains is to find suitable Γ and ∆ so that ⊥S̃Γ
has a Borel 2-coloring

and every forest of straight lines in S̃∆ is directable.
Let Γ be the group generated by t0 and t1 where t0(n,m) = (−n,m) and

t1(n,m) = (n,−m). Since ti(±ej) ∈ {ej ,−ej} for each i, j, we can define a Borel

2-coloring of S̃Γ by

f([x], [±ei · x]) = i.

Let ∆ be the group generated by s where s(n,m) = (m,n). Since s(−ei) =

−s(ei) for each i, we can define an orientation o of S̃∆ by

o = {([x], [y]) : x = e0 · y or x = e1 · y}.

This orientation is balanced when restricted to any straight line, so gives a direction
to every forest of straight lines.

�

Miller’s L0 dichotomy characterizes undirectable forests of lines [8], and a result
of Carroy, Miller, Schrittesser, and Vidyanszky characterizes 2-colorable graphs [1].
In the case of ⊥G, we can reflect this to a characterization of G, but we need to
strengthen the results in [1].

Definition 5.9. Let s0 = ∅, and for n > 0 let sn = 0n−11. Define a graph L on
2ω by {x, y} ∈ L if and only if

(∃z ∈ 2ω, n ∈ ω)x = san 0az, y = san 1az.

Let dG be the graph metric for G, i.e. for vertices x, y, dG(x, y) is the minimal
number of edges in a path from x to y (or infinite if x and y are not connected).
For any graph G, let Godd = {(x, y) : dG(x, y) is odd}.

If we let Gn be the graph on 2n gotten by restricting the definition of G to strings
of length n, then G is a projective limit of the sequence 〈Gn : n ∈ ω〉. Each Gn is a
path graph, and Gn+1 is gotten by connecting two endpoints of two copies of Gn+1.

Theorem 5.10 (Ess. [1, Theorem 1.1]). If G is a Borel graph and not Borel 2-
colorable, then there is a homomorphism of L into Godd.

Note that if G is locally a square lattice, then (⊥G)odd =⊥G. The strengthening
we need is a strong form of local injectivity for the homomorphism given by the
theorem above.

Theorem 5.11. If G is locally a square lattice, and ⊥G does not admit a Borel
2-coloring, then there is a Borel homomorphism from L into ⊥G so that, if x, y are
connected and x 6= y, then f(x) and f(y) do not lie on a straight line.

Proof. By relativization, we may assume G is ∆1
1. Suppose ⊥G does not admit a

∆1
1 2-coloring. Define

X := Gr
⋃
{A ∈ ∆1

1 : A is ⊥G -independent}.
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By reflection, X is the same as G without its Σ1
1 independent sets. If X is empty,

then we can construct a ∆1
1 2-coloring of ⊥G. So X is nonempty.

As usual, we will build a homomorphism by constructing trees of conditions
forcing the graph relations we want. To ensure we get the kind of injectivity we
want, we will make sure our generics force points in the image of our homomorphism
to be far apart.

For edges e, e′ let dG(e, e′) = dG(e0, e
′
0) with respect to the graph metric. Say

that e, e′ are n-spaced if, whenever we have intersecting paths p, p′ which are per-
pendicular line segments such that e0 is on p and e′0 is on p′, then the length of
p, p′ are both of length at least n.

Say that 〈Uσ : σ ∈ 2ω〉 and 〈Rσ,τ : (σ, τ) ∈ Gn〉 are an n-approximation with
spread d if

(1) Uσ ⊆ X and Rσ,τ ⊆⊥G
(2) If 〈xσ : σ ∈ 2n〉 satisfies (∀σ, τ ∈ Gn) (xσ, xτ ) ∈ Rσ,τ , then for all σ, τ ∈ 2n,

dG(xσ, xτ ) < d.
(3) For any x ∈ Uρ there is 〈xσ : σ ∈ 2n〉 so that (∀(σ, τ) ∈ Gn) (xσ, xτ ) ∈ Rσ,τ

and xρ = x

We want to build a tree of generics which contain nice approximations. I claim
that for any n-approximation with spread d, 〈Rσ,τ : (σ, τ) ∈ Gn〉 and 〈Uσ : σ ∈ 2n〉,
and any dense sets of conditions E ⊆ P1 and F ⊆ P2 there is an (n + 1)-
approximation 〈Rσ,τ : (σ, τ) ∈ Gn+1〉 and 〈Uσ : σ ∈ 2n+1〉 so that

a) Uσai ⊆ Uσ and Rσai,τai ⊆ Rσ,τ for all σ, τ ∈ Gn and i ∈ {0, 1}
b) For all σ, τ , Uσ ⊆ E and Rσ,τ ⊆ F
c) Any pair of points (xσa

n 0, xσa
n 1) ∈ Rσa

n 0,σa
n 1 are at least (3d+ 1)-spaced.

To this end, define V to be the set of realizations of our n-approximation

V := {x : (∃〈xσ : σ ∈ 2n〉)x = xσn , xσ ∈ Uσ, xσ,τ ∈ Rστ}.

Since V is a nonempty Σ1
1 subset of X, it must not be independent. That is

V contains two perpendicular edges. We need V to contain two edges which are
perpendicular and (3d+1)-spaced. If we can’t find such edges, then the intersection
of V with any component is either finite or bounded by two parallel lines. But then,
in either case, we can refine V to an independent set:

• if V meets a component in a finite set can choose a single point from that
component (say the least according to some ∆1

1 order
• if V is bounded by two parallel lines we can take all edges parallel to these

lines (or perpendicular if none are parallel).

This contradicts the fact that X doesn’t contain any Σ1
1 independent sets. So, we

can let Rσa
n 0,σa

n 1 be any condition in F below

{(x, y) ∈ V 2 ∩ (⊥G) : x, y are (3d+ 1)-spaced.}

Since Gn is acyclic, the rest of our approximation can be built by iteratively refining
out from here, just as in the proof of the G0-dichotomy.

From the claim above, working over a countable transitive model of a large
enough fragment of ZFC, we can build a sequence of n-approximations with spread
d(n) so that if (x, y) ∈ Rσa

n 0,σa
n 1 then x, y are (3d(n) + 1)-spaced, and we can build

a tree of generics 〈xs : s ∈ 2ω〉 so that

• For all n, xs ∈ Us�n
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• If (s, t) ∈ L then for all n either s � n = t � n or (xs, xt) ∈ Rs�n,t�n.

In particular, s 7→ xs is a homomorphism from L to ⊥G. Now we check that no
two connected points get sent to the same straight line. Suppose (s, t) ∈ L, say
s = σa0az and t = τa1az with |σ| = |τ | = n. Then by our assumption on
spread dG(xs, xσa

n 0az) < d(n) and likewise for xt and xσa
n 1az. And since xσa

n 0az

and xσa1az are at least (3d(n) + 1)-spaced, we must have that xs and xt are on
different straight lines. �

With this in place, we can start characterizing graphs G where ⊥G admits a
Borel 2-coloring.

Definition 5.12. If G and H are graphs on X,Y which are locally square lattices,
then say f : X → Y is a conformal map from G to H if, for any vertices x, y of G,
x, y are on a straight line if and only if f(x), f(y) are on a straight line.

Conformal maps preserve perpendicularity, so we can pull a 2-coloring back from
⊥G to ⊥H whenever there is a conformal map from H to G.

Proposition 5.13. If there is a Borel conformal map from H to G and ⊥G has a
Borel 2-coloring, then ⊥H has a Borel 2-coloring.

Proof. First note that if v1, v2, v3, and v4 are consecutive corners of a rectangle in
a square lattice if and only vi and vj are on straight line exactly when i = j ± 1
(mod 4). So the corners of a rectangle in H are sent to the corners of a rectangle
in G by any conformal map.

Now suppose that f is a Borel conformal map from H to G and g is a Borel 2-
coloring of ⊥G. Then we have a Borel map g̃ : H → 2 given by g̃(e0, e1) = g(e′) for
any edge e′ on the straight line between f(e0) and f(e1). If e ⊥H e′, then possibly
replacing e with −e, we can find a rectangle containing e, e′. This rectangle is sent
by f to a rectangle with consecutive sides containing f(e0), f(e1) and f(e′0), f(e′1).
The coloring g must assign opposite colors to all edges on consecutive sides of a
rectangle, so g̃(e) 6= g̃(e′). �

Our goal is to show there is a minimal square lattice with respect Borel conformal
maps among those where ⊥ is not Borel 2-colorable.

Definition 5.14. Let XS0
= {(x, y) ∈ 2ω : dL(x, y) is odd}/E with the quotient

Borel structure, where [(x, y)]E = {(x, y), (y, x)}. Abbreviate [(x, y)]E by [x, y].
Then S0 is the graph on XS0

defined by

[x, y] S0 [a, b] :⇔ x = a, dL(y, b) = 2, or y = b, dL(x, a) = 2.

Before proving our dichotomy, let us show that S0 is locally a square lattice.

Proposition 5.15. S0 is locally a square lattice.

Proof. Fix a component C of S0. The corresponding component of L is 2-regular
and acyclic, so we can fix an isomorphism between it and the usual Cayley graph
for Z. So we can represent C as {(n,m) : n ∈ 2Z,m ∈ 2Z + 1}. And we have that
(n,m) and (`, k) are adjacent if n = `± 2 or m = k ± 2. Thus (a, b) 7→ (2a, 2b+ 1)
defines an isomorphism between the usual Cayley graph for Z2 and C. �

Theorem 5.16. If a Borel graph G is locally a square lattice, then either ⊥G admits
a Borel 2-coloring, or there is a Borel conformal map from S0 to G.
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Proof. First we show S0 does not admit a conformal map into any graph G where
⊥G is Borel 2-colorable. It suffices to show ⊥S0 does not admit a Borel 2-coloring.
Note that the straight lines in S0 are the sets La = {[a, b] : d(a, b) is odd} for
a ∈ L. Suppose f : G → 2 is a Borel 2-coloring of ⊥S0

. Then for each a, the
edges in La are all assigned the same color by f . This defines a Borel function
g : L → 2. Suppose d(a, b) is odd, d(a, a′) = d(b, b′) = 2. Then ([a, b], [a′, b]) and
([a, b], [a, b′]) are perpendicular edges in Lb and La respectively, so edges in La and
Lb are assigned different colors by f , and g(a) 6= g(b). Thus g is a Borel 2-coloring
of L, which is a contradiction.

Now suppose G is locally a square lattice and ⊥G does not admit a Borel 2-
coloring. So, there is a Borel homomorphism f from L to ⊥G which sends connected
vertices to edges which are not on a straight line. Define an map g from S0 to G by
setting g([a, b]) to be the unique point on both the straight line containing f(a) and
the straight line containing f(b). This is well-defined since any two perpendicular
lines in the same plane must intersect. All that remains is to check this is conformal.

Suppose [x, y0] and [x, y1] are two points on a straight line Lx. Then g([x, y0])
and g([x, y1]) are on the straight line through f(x). Conversely, suppose [x0, x1]
and [y0, y1] are not a straight line, and dL(x0, y0) = 0 (mod 2). Then, x0 6= y0 and
x1 6= y1. So f(x0), f(y0), f(x1), and f(y1) are all on different straight lines. So,
g([x0, x1]) and g([y0, y1]) are not on a straight line. Thus g is conformal. �

Combining this with Miller’s L0 dichotomy for directable forests of lines, we get
the following:

Corollary 5.17. If G is a Borel graph, either G is the Schreier graph of a free
Borel action of Z2 or at least one of the following holds:

(1) G is not locally a square lattice
(2) There is a Borel conformal map from S0 to G
(3) There is a Borel betweenness-preserving embedding of L0 into some forest

of straight lines in G
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