11
Multicolor QCD

The method of 1/N-expansion can be applied to QCD. This was done by
't Hooft [Hoo74a] using the inverse number of colors for the gauge group
SU(N) as an expansion parameter.

For an SU(N) gauge theory without virtual quark loops, the expansion
goes in 1/N? and rearranges diagrams of perturbation theory according
to their topology. The leading order in 1/N? is given by planar diagrams,
which have the topology of a sphere, while the expansion in 1/N? plays
the role of a topological expansion. This is similar to an expansion in the
string coupling constant in string models of the strong interaction, which
also has a topological character.

Virtual quark loops can be easily incorporated in the 1/N-expansion.
One distinguishes between the 't Hooft limit when the number of quark
flavors Ny is fixed as N — oo and the Veneziano limit [Ven76] when the
ratio N¢/N is fixed as N — oo. Virtual quark loops are suppressed in
the 't Hooft limit as 1/N and lead in the Veneziano limit to the same
topological expansion as dual-resonance models of strong interaction.

The simplification of QCD in the large- N limit arises from the fact that
the number of planar graphs grows with the number of vertices only ex-
ponentially rather than factorially as do the total number of graphs. Cor-
relators of gauge-invariant operators factorize in the large-N limit, which
looks like the leading-order term of a “semiclassical” WKB-expansion in
1/N.

We begin this chapter with a description of the double-line represen-
tation of diagrams of QCD perturbation theory and rearrange it as the
topological expansion in 1/N. Then we discuss some properties of the
1/N-expansion for a generic matrix-valued field.
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11.1 Index or ribbon graphs

In order to describe the 1/N-expansion of QCD, the extension of which
to N colors has already been considered in Sect. 5.1, it is convenient to
use the matrix-field representation (5.5).

In this chapter we shall use a slightly different definition

[Au(@)]7 = Y Au@) [t (11.1)

which is similar to that used by 't Hooft [Hoo74a] and differs from (5.5)
by a factor of g:

Aff(m) = gAY(z). (11.2)

The matrix (11.1) is Hermitian.
The propagator of the matrix field AY(x), in this notation, takes the
form

<A§'{ () A’;l(y)> (5“5’fﬂ' - %5”‘5”) Du(z—1v), (11.3)

Gauss

where we have assumed, as usual, a gauge-fixing to define the gluon prop-
agator in perturbation theory. For instance, one has

1 O
Du(z—y) = mr_“yﬁ (11.4)

in the Feynman gauge.
Equation (11.3) can be derived immediately from the standard formula

<AZ($) Aﬁ(y)> = 6Dy (z—y) (11.5)

Gauss
multiplying by the generators of the SU(N) gauge group according to the
definition (5.5) and using the completeness condition

N2-1
Z (ta)ij (ta)kl _ <5il5k’j_%5ij5kl> for SU(N)|. (11.6)

a=1

We shall explain in Sect. 13.1 how Eq. (11.3) can be derived directly from
a path integral over matrices.

We concentrate in this chapter only on the structure of diagrams in the
index space, i.e. the space of the indices associated with the SU (V) group.
We shall not consider, in most cases, space-time structures of diagrams
which are prescribed by Feynman’s rules.
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Omitting at large N the second term in parentheses on the RHS of
Eq. (11.3), we depict the propagator by the double line

<A;g(x) Af;l(y)>Gauss o Silghi = ;:}C . (11.7)
Each line, often termed the index line, represents the Kronecker delta-
symbol and has an orientation which is indicated by arrows. This notation
is obviously consistent with the space-time structure of the propagator
that describes a propagation from x to y. N

The arrows are a result of the fact that the matrix A/ is Hermitian
and its off-diagonal components are complex conjugate. The independent
fields are, say, the complex fields A} for i > j and the diagonal real fields
Afj The arrow represents the direction of the propagation of the indices
of the complex field A/ for ¢ > j, while the complex-conjugate field,
Al = (A}])", propagates in the opposite direction. For the real fields AZ,
the arrows are not essential.

The double-line notation (11.7) looks similar to that of Sect. 6.5. The
reason for that is deep: double lines appear generically in all models
describing matriz fields in contrast to vector (in internal symmetry space)
fields, the propagators of which are depicted by single lines as in the
previous chapter.

The three-gluon vertex, which is generated by the action (5.13), is de-
picted in the double-line notation as

i1

J1
%\kig x g (5i1j35i2j15i3j2 _ 5i1j25i2j35i3j1) 7
J3

%

J1 1
i2 )/\gjs J2
2 i3

J

(]
“ (11.8)
where the subscripts 1, 2 or 3 refer to each of the three gluons. The
relative minus sign arises from the commutator in the cubic-in-A term
in the action (5.13). The color part of the three-vertex is antisymmetric
under an interchange of gluons. The space-time structure, which is given
in the momentum space as

V1 pops (plap27p3)
= 5#1#2 (pl _p2)u3 + 5#2#3 (p2 _p3)M1 + 5#1#3 (p3 - pl)uz )
(11.9)

is antisymmetric as well. We consider all three gluons as incoming so that

their momenta obey p; + p2 + p3 = 0. The full vertex is symmetric as
prescribed by Bose statistics.
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7

Fig. 11.1. Double-line representation of a one-loop diagram for the gluon prop-
agator. The sum over the NV indices is associated with the closed index line. The
contribution of this diagram is ~ g>N ~ 1.

The color structure in Eq. (11.8) can alternatively be obtained by mul-
tiplying the standard vertex

Lo (P1sp2:13) = f Y pops (D1, P2, P3) (11.10)

by (t%1)71 (¢92)1272 (43)133 with fo¢ being the structure constants of the
SU(N) group, and using the formula

forazas (ta1)i1j1 (taz)izjz (ta3)i3j3 = i (5i1j35i2j15i3j2 _ 5i1j25i2j35i3j1) ’
(11.11)

which is a consequence of the completeness condition (11.6).

The four-gluon vertex involves six terms — each of them is depicted by
a cross — which differ by interchanging of the color indices. We depict the
color structure of the four-gluon vertex for simplicity in the case when
i1 = J2 =1, 02 = J3 = J, i3 = ja =k, ia = j1 = [, but 7,5, k,l take on
different values. Then only the following term is left:

KT
k“]{‘]‘_]

and there are no delta-symbols on the RHS since the color structure is
fixed. In other words, we pick up only one color structure by equating
indices pairwise.

The diagrams of perturbation theory can now be completely rewritten
in the double-line notation [Hoo74a]. The simplest one which describes
the one-loop correction to the gluon propagator is depicted in Fig. 11.1.
This diagram involves two three-gluon vertices and a sum over the IV in-
dices which is associated with the closed index line analogous to Eq. (6.70).
Therefore, the contribution of this diagram is ~ ¢g>N.

g%, (11.12)
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In order for the large-N limit to be nontrivial, the bare coupling con-

stant g2 should satisfy
7@ ~ 1 (11.13)
N .
This dependence on N is similar to Egs. (10.14) and (10.65) for the vector
models and is prescribed by the asymptotic-freedom formula
1272
2
= 11.14
g 11N In (A/Agep) (11.14)
of the pure SU(N) gauge theory.
Thus, the contribution of the diagram in Fig. 11.1 is of order

Fig. 11.1 ~ ¢°N ~ 1 (11.15)

in the large-N limit.

The double lines of the diagram in Fig. 11.1 can be viewed as bounding
a piece of a plane. Therefore, these lines represent a two-dimensional
object rather than a one-dimensional one as the single lines do in vector
models. In mathematics these double-line graphs are often called ribbon
graphs or fatgraphs. In the following we shall see their connection with
Riemann surfaces.

Remark on the U(N) gauge group

As was mentioned previously, the second term in the parentheses on
the RHS of Eq. (11.6) can be omitted at large N. Such a complete-
ness condition emerges for the U(N) group, the generators of which, T4
(A=1,...,N?), are

TA = (t“, H/\/N), tr TATE = §4B, (11.16)
They obey the completeness condition
S @H? (@ = s [for U] (1117)
A=1

The point is that elements of both the SU(N) group and the U(N) group
can be represented in the form

U = éb, (11.18)

where B is a general Hermitian matrix for U(NN) and a traceless Hermitian
matrix for SU(N).

Therefore, the double-line representation of the perturbation-theory di-
agrams which is described in this chapter holds, strictly speaking, only
for the U (V) gauge group. However, the large-N limit of both the U(N)
group and the SU(N) group is the same.
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Fig. 11.2. Double-line representation of a four-loop diagram for the gluon prop-
agator. The sum over the IV indices is associated with each of the four closed
index lines, the number of which is equal to the number of loops. The contribu-
tion of this diagram is ~ g8 N4 ~ 1.

11.2 Planar and nonplanar graphs

The double-line representation of perturbation-theory diagrams in the
index space is very convenient to estimate their orders in 1/N. Each
three- or four-gluon vertex contributes a factor of g or g2, respectively.
Each closed index line contributes a factor of N. The order of g in 1/N
is given by Eq. (11.13).

Let us consider a typical diagram for the gluon propagator depicted in
Fig. 11.2. It has eight three-gluon vertices and four closed index lines,
which coincides with the number of loops. Therefore, the order of this
diagram in 1/N is

Fig. 112 ~ (¢°N)" ~ 1. (11.19)

The diagrams of the type in Fig. 11.2, which can be drawn on a sheet
of paper without crossing any lines, are called planar diagrams. For such
diagrams, the addition of a loop inevitably results in the addition of two
three-gluon (or one four-gluon) vertices. A planar diagram with ng loops
has n9 closed index lines. It is of order

no-loop planar diagram ~ (g2N)n2 ~ 1, (11.20)

so that all planar diagrams survive in the large-N limit.

Let us now consider a nonplanar diagram of the type depicted in
Fig. 11.3. This diagram is a three-loop one and has six three-gluon ver-
tices. The crossing of the two lines in the middle does not correspond to
a four-gluon vertex and is merely a result of the fact that the diagram
cannot be drawn on a sheet of paper without crossing the lines. The di-
agram has only one closed index line. The order of this diagram in 1/N
is

1
Fig. 11.3 ~ ¢°N ~ el (11.21)

It is therefore suppressed at large N by 1/N2.
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Y

Fig. 11.3. Double-line representation of a three-loop nonplanar diagram for
the gluon propagator. The diagram has six three-gluon vertices but only one
closed index line (although it has three loops!). The order of this diagram is
~g°N ~1/N2,

The nonplanar diagram in Fig. 11.3 can be drawn without line-crossing
on a surface with one handle which in mathematics is usually called a torus
or a surface of genus one. A plane is then equivalent to a sphere and has
genus zero. Adding a handle to a surface produces a hole according to
mathematical terminology. A general Riemann surface with A holes has
genus h.

The above evaluations of the order of the diagrams in Figs. 11.1-11.3
can be described by the single formula

1 genus
genus-h diagram ~ (ﬁ) . (11.22)
Thus, the expansion in 1/N rearranges perturbation-theory diagrams ac-
cording to their topology [Hoo74a]. For this reason, it is referred to as
the topological expansion or the genus exrpansion. The general proof of
Eq. (11.22) for an arbitrary diagram is given in Sect. 11.4.

Only planar diagrams, which are associated with genus zero, survive
in the large-N limit. This class of diagrams is an analog of the bubble
graphs in the vector models. However, the problem of summing the pla-
nar graphs is much more complicated than that of summing the bubble
graphs. Nevertheless, it is simpler than the problem of summing all the

graphs, since the number of planar graphs with ng vertices grows geomet-
rically at large ng [Tut62, KNN77]

#,(no) = no of planar graphs ~ const™, (11.23)

while the total number of graphs grows factorially with ng. There is no
dependence in Eq. (11.23) on the number of external lines of a planar
graph which is assumed to be much less than ny.

It is instructive to see the difference between the planar diagrams and,
for instance, the ladder diagrams which describe e*e™ elastic scattering in
QED. Let the ladder have n rungs. Then there are n! ladder diagrams, but
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Fig. 11.4. Cutting a planar graph into two graphs. The cutting is along the
dotted line. The numbers of vertices of each part and of the whole graph obey
Eq. (11.24).

only one of them is planar. This simple example shows why the number
of planar graphs is much smaller than the total number of graphs, most
of which are nonplanar.

In the rest of this book, we shall discuss what is known concerning
solving the problem of summing the planar graphs.

Problem 11.1 Show that Eq. (11.23) for the number of planar graphs is con-
sistent with its independence of the number of external lines.

Solution Let us split a planar graph into two parts by cutting along some line
as depicted in Fig. 11.4. The numbers of vertices of each part, n{, and ng, are
obviously related to that of the original graph, ng, by

ny+nyg = ng. (11.24)

We assume that both n{, and n{ are large.

The number of cut lines is ~ /ng for a planar graph in contrast to that for
a generic nonplanar one, when it would be ~ ng. Disregarding the cut lines, we
obtain

#p(no) = #p(ng) - #o(ng) , (11.25)
which is obviously satisfied by the formula (11.23) accounting for Eq. (11.24).
Problem 11.2 Cutting all loops of a planar graph, obtain the upper bound
#, < (1024)"2 (11.26)
for the number of planar graphs with ny loops.

Solution Since #;, does not depend on the number of external lines (see Prob-
lem 11.1), let us consider a one-particle irreducible planar graph with one ex-
ternal line and cut all the loops as depicted in Fig. 11.5a. By a continuous
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(a) (b)

Fig. 11.5. Cutting a planar graph into trees and arches. The line of cutting is
depicted in (a) by a dotted line. The combination of tree and arches in (b) is
obtained from (a) by a continuous distortion.

(a) (b)

Fig. 11.6. Alternative cutting of the same planar graph as in Fig. 11.5 into trees
and arches.

distortion, it can be depicted as in Fig. 11.5b, where below the dotted line we
have a tree with ng vertices and above the dotted line we have no arches. The
latter number coincides with the number of loops of the planar graph. The
number of tips of the tree is 2ns.

Since each planar graph can be cut in several ways, #p is bounded from above
by

#p < #a(n2) #1(no, 2n2) (11.27)

where # a (n2) denotes the number of arches and #r(ng, 2n2) denotes the number
of trees with ng vertices and 2ny tips. An alternative way of cutting the same
planar graph, which leads to a different combination of arches and trees, is
depicted in Fig. 11.6.
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Fig. 11.7. A tree graph (the solid lines) and its dual (the dashed arches).

myam...m\

Fig. 11.8. Recurrence relation for the number of arches. The dotted line sepa-
rates a configuration of n arches into two pieces: n’ to the left and n —n’ to the
right.

The number of arches is well-known in mathematics and is given by the Cata-
lan number of order n:

#a(n) =

—_ 4m . 11.2
nl(n+ 1)! (11.28)

The number of trees is not independent since a graph, dual to a tree graph,
consists of arches as is illustrated by Fig. 11.7. The number of arches of this
dual graph equals the sum of the number ng of vertices and the number 2ns
of tips, i.e. equals ng 4+ 2no. Given the number ns of loops, the number ngy of
vertices is maximal when all vertices are trivalent, so that

ng < 2ny—1 (11.29)

(ng = 2nq for trivalent and ng = nq for fourvalent vertices when no is large).
Therefore, the number of arches of the dual graph is bounded by 4ns, so that

#1(no,2n2) < Fa(dnz). (11.30)

Substituting in (11.27), we obtain [KNN77] the inequality (11.26).
Finally, Eq. (11.23) can be obtained by noting that ng ~ ns for large no.

Problem 11.3 Derive Eq. (11.28) for the number of arches.

Solution Let us consider a general configuration of n arches as depicted in
Fig. 11.8. Let us pick up the leftmost arch, splitting the configuration into two
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Fig. 11.9. Recurrence relation for the number of trees. The trees inside the left
and right dotted circles have n’ and n — n’ tips, respectively.

pieces: n/ arches to the left and n —n’ arches to the right of the dotted line. The
number of arches obviously satisfies the recurrence relation

#a(n) = Y #an' =D #a(n—n'), (11.31)

where the number of arches to the left of the dotted line is described by
#a(n' — 1) because one arch encircles n’ — 1 others. Equation (11.31) expresses

#a(n) recurrently via #4(0) = 1.
Introducing the generating function

> g #a(n), (11.32)
=0

we rewrite Eq. (11.31) as the quadratic equation

falg)—g = filg). (11.33)

Its solution

faly) = —5— 1 — Z ntl 31 o (11.34)

gives Eq. (11.28) for the number of arches.

Problem 11.4 Improve the inequality (11.26), calculating the number of triva-
lent tree graphs with n tips.

Solution Let us first note that the number of vertices of a trivalent tree graph
with n tips equals n — 1. Hence, we are interested in

#r(n) = #r(n—1,n) (11.35)

in the notation of Problem 11.2. Picking up the first vertex in a tree as depicted
in Fig. 11.9, we obtain the following recursion relation for the number of trivalent
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tree graphs:

Z #o(n') #r(n —n'), (11.36)

n’'=1

which expresses #r1(n) via #r(1) = 1.
Introducing the generating function

i “r(n (11.37)

where g"~! corresponds to n — 1 vertices of each tree, we rewrite Eq. (11.36) as
the quadratic equation

frlg) =1 = gfi(g). (11.38)

Its solution

1-T-4g <& ,_, (2n—2)
_ o n-l = = 11.39
gives
_ (2n—2)!
#1(n) = W= 1) (11.40)
Returning to Problem 11.2, it is shown that
#1(no,2n2) < #1r(2ne —1,2n) = #a(2n2—1). (11.41)

The inequality here is a result of (11.29) and the equality is because of the explicit
formulas (11.28) and (11.40). Thus we have improved the estimate (11.30) having
calculated the number of tree graphs. The inequality (11.26) is now improved as

#, < (64)". (11.42)

The actual number of planar graphs was first evaluated by Tutte [Tut62]. In
Sect. 13.2 we shall obtain the estimate

Ho ~ (12\/§)"2 (11.43)

for the number of trivalent planar graphs at asymptotically large ns.

11.3 Planar and nonplanar graphs (the boundaries)

Equation (11.22) holds, strictly speaking, only for the gluon propagator,
while the contribution of all planar diagrams to a connected n-point Green
function is ~ ¢"~2, which is its natural order in 1/N. The three-gluon
Green function is ~ g, the four-gluon one is ~ g2 and so on. In order
to make contributions of all planar diagrams to be of the same order
~ 1 in the large-N limit, independently of the number of external lines,
it is convenient to contract the Kronecker delta-symbols associated with
external lines.
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Fig. 11.10. Generic index diagram with ny = 10 vertices, n; = 10 gluon prop-
agators, ng = 4 closed index lines, and B = 1 boundary. The color indices of
the external lines are contracted by the Kronecker delta-symbols (represented
by the single lines) in a cyclic order. The extra factor of 1/N arises from the
normalization (11.44). Its order in 1/N is ~ 1/N? in accord with Eq. (11.22).

Let us do this in a cyclic order as depicted in Fig. 11.10 for a generic con-
nected diagram with three external gluon lines. The extra delta-symbols,
which are added to contract the color indices, are depicted by the single
lines. They can be viewed as a boundary of the given diagram. The actual
size of the boundary is not essential — it can be shrunk to a point. Then a
bounded piece of a plane will be topologically equivalent to a sphere with
a puncture. I shall prefer to draw planar diagrams in a plane with an
extended boundary (boundaries) rather than in a sphere with a puncture
(punctures).

It is clear from the graphical representation that the diagram in
Fig. 11.10 is associated with the trace over the color indices of the three-
point Green function

3
g
GP (@1, 02,23) = (0 (A (21) Apy (22) Ay (23)]) . (11.44)

Here we have introduced the factor of g3/N to make G®) of O(1) in the
large-N limit. Therefore, the contribution of the diagram in Fig. 11.10
having one boundary should be divided by N, while the factor of ¢°
is naturally associated with three extra vertices which appear after the
contraction of color indices.

The extension of Eq. (11.44) to multipoint Green functions is obvious:

@) = L (A (@) A ()] (1045)
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>
<> €

(a) (b)

Fig. 11.11. Planar (a) and nonplanar (b) contributions of the two color struc-
tures in Eq. (11.8) for three-gluon vertex to G® in the lowest order of pertur-
bation theory.

The factor of 1/N, which normalizes the trace, provides the natural nor-
malization G(©) = 1 of the averages.

Though the two terms in the index-space representation (11.8) of the
three-gluon vertex look very similar, their fate in the topological expan-
sion is quite different. When the color indices are contracted anticlock-
wise, the first term leads to the planar contributions to G, the simplest
of which is depicted in Fig. 11.11a. The anticlockwise contraction of the
color indices in the second term leads to a nonplanar graph in Fig. 11.11b
which can be drawn without a crossing of lines only on a torus. Therefore,
the two color structures of the three-gluon vertex contribute to different
orders of the topological expansion. The same is true for the four-gluon
vertex.

Remark on oriented Riemann surfaces

FEach line of an index graph of the type depicted in Fig. 11.10 is oriented.
This orientation continues along a closed index line, while the pairs of
index lines of each double line have opposite orientations. The overall
orientation of the lines is prescribed by the orientation of the external
boundary which we choose to be, say, anticlockwise. Since the lines are
oriented, the faces of the Riemann surface associated with a given graph
are also oriented — all in the same way — anticlockwise. Vice versa, such an
orientation of the Riemann surfaces unambiguously fixes the orientation
of all the index lines. This is the reason why we shall often omit the
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(a) (b)

Fig. 11.12. Example of (a) connected and (b) disconnected planar graphs.

arrows associated with the orientation of the index lines: their directions
are obvious.

Remark on cyclic-ordered Green functions

The cyclic-ordered Green functions (11.45) arise naturally in the expan-
sion of the trace of the non-Abelian phase factor for a closed contour,
which was considered in Problem 5.2 on p. 89. One obtains

1 .
<N tr P oY $r dm“A“(x)>
0o xr1 Tn—1
= Z i”%dm‘l“ /dx‘f... /dxﬁ" GEZ)...#n(azl,...,xn).
n=0 T x1 x1

(11.46)

The reason for this is that the ordering along a closed path implies cyclic-
ordering in the index space.

Remark on generating functionals for planar graphs

By connected or disconnected planar graphs we mean, respectively, the
graphs which were connected or disconnected before the contraction of
the color indices as illustrated by Fig. 11.12. The graph in Fig. 11.12a is
connected-planar, while the graph in Fig. 11.12b is disconnected-planar.

The usual relation (2.52) between the generating functionals W[.J] and
Z|[J] for connected graphs and all graphs, which is discussed in the Re-
mark on p. 44, does not hold for the planar graphs. The reason for
this is that exponentiation of such a connected planar diagram for the
cyclic-ordered Green functions (11.45) can give disconnected nonplanar
diagrams.
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The generating functionals for all and connected planar graphs can
be constructed [Cvi81] by means of introducing noncommutative sources
Ju(x). “Noncommutative” means that there is no way to transform
Ju (1) 3, (22) into j,,(z2) 7, (v1). This noncommutativity of the
sources reflects the cyclic-ordered structure of the Green functions (11.45)
which possess only cyclic symmetry.

Using the shorthand notation (10.62) where the symbol o includes the
sum over the d-vector (or whatever is available) indices except for the
color ones:

joAd = Z/dd;vj#(x)ftu(a:), (11.47)
i

we write down the definitions of the generating functionals for all planar
and connected planar graphs, respectively, as

2] = Zi”<%tr(joA)”> (11.48)

n=0

and

[e.e]

Wi = Zi”<%tr(jo/l)”> . (11.49)

n=0

The planar contribution to the Green functions (11.45) and their con-
nected counterparts can be obtained, respectively, from the generating
functionals Z[j] and W[j] by applying the noncommutative derivative
which is defined by

S WIG) = i) fG),  (150)
5ju($)JV )7 v CINAVIE .

where f is an arbitrary function of j,. In other words, the derivative
picks up only the leftmost variable.
The relation which replaces Eq. (2.52) for planar graphs is

Zl3l = WliZlj]], (11.51)
while the cyclic symmetry gives
Wiizl5ll = WIZ[jl3]. (11.52)

A graphical derivation of Egs. (11.51) and (11.52) is given in Fig. 11.13.
In other words, given W{j], one should construct an inverse function as
the solution to the equation

Ju(@) = Ju(z) Wiil, (11.53)
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Fig. 11.13. Graphical derivation of Eq. (11.51): Z[j] is denoted by an empty
box, W3] is denoted by a shaded box, j is denoted by a filled circle. By picking
the leftmost external line of a planar graph, we end up with a connected planar
graph, whose remaining external lines are somewhere to the right interspersed
by disconnected planar graphs. It is evident that jZ[j] plays the role of a new
source for the connected planar graph. If we instead pick up the rightmost
external line, we obtain the inverse order Z[j] j, which results in Eq. (11.52).

after which Eq. (11.51) gives
Z[g] = WIJ]. (11.54)

More concerning this approach to the generating functionals for planar
graphs can be found in [CLS82].

Problem 11.5 Solve Eq. (11.51) iteratively for the Gaussian case.

Solution In the Gaussian case, only G(? is nonvanishing which yields

W[j] = 1-g’joDoj, (11.55)
where the propagator D is given by Eq. (11.4). Using Eq. (11.51), we find
explicitly

2l = 1 [ dodly Dyt~ ), 26)3,0) 2. (1150)

While this equation for Z [j] is quadratic, its solution can be written only as
a continued fraction owing to the noncommutative nature of the variables. In
order to find it, we rewrite Eq. (11.56) as
. 1
2] = )
L4 [ dodly Dyte — ), 2013, )

the iterative solution of which is given by [Cvi81]

Z[j] = lopo . (11.58)

1+92j oDo J

——
.oDo |
1+g%—3

1+ ¢%j
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IV W @\
N/

(a) (b)

Fig. 11.14. Diagrams for the gluon propagator with a quark loop which is rep-
resented by the single lines. Diagram (a) involves one quark loop and has no
closed index lines so that its order is ~ g2 ~ 1/N. Diagram (b) involves three
loops, one of which is a quark loop. Its order is ~ g N? ~ 1/N.

11.4 Topological expansion and quark loops

It is easy to incorporate quarks in the topological expansion. A quark field
belongs to the fundamental representation of the gauge group SU(N) and
its propagator is represented by a single line

(i) o &5 = i——13. (11.59)

The arrow indicates, as usual, the direction of propagation of a (complex)
field ¥. We shall omit these arrows for simplicity.

The diagram for the gluon propagator which involves one quark loop
is depicted in Fig. 11.14a. It has two three-gluon vertices and no closed
index lines so that its order in 1/N is

. 2 1
Fig. 11.14a ~ ¢* ~ —. (11.60)
N
Analogously, the order of a more complicated tree-loop diagram in
Fig. 11.14b, which involves one quark loop and two closed index lines,
is

Fig. 11.14b ~ ¢5N? ~ % (11.61)

It is evident from this consideration that quark loops are not accom-

panied by closed index lines. One should add a closed index line for each

quark loop in order for a given diagram with L quark loops to have the

same double-line representation as for pure gluon diagrams. Therefore,

given Eq. (11.22), diagrams with L quark loops are suppressed at large
N by

1 L+2-genus
> . (11.62)

L k1 ~ (=
quark loops ( N
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0at

Fig. 11.15. Generic diagram in the index space which has L = 1 quark loop and
B =1 loop associated with the external boundary. Its order in 1/N is described
by Eq. (11.70).

The single-line representation of the quark loops is similar to that of the
external boundary in Fig. 11.10. Moreover, such a diagram emerges when
one calculates perturbative gluon corrections to the vacuum expectation
value of the quark operator

1 -
O = v, (11.63)

where the factor of 1/N is introduced to make it O(1) in the large-N
limit. Therefore, the external boundary can be viewed as a single line
associated with valence quarks. The difference between virtual quark
loops and external boundaries is that each of the latter has a factor of
1/N owing to the definitions (11.45) and (11.63).

In order to prove Egs. (11.22) and its quark counterpart (11.62), let

us consider a generic diagram in the index space which has n(()g) three-

point vertices (either three-gluon or quark—gluon ones), n((]4) four-gluon
vertices, ny propagators (either gluon or quark ones), ny closed index
lines, L virtual quark loops and B external boundaries. A typical such

diagram is depicted in Fig. 11.15. Its order in 1/N is

1 @, 5,® B39, _p

Wgno g N2 N N2 /27 (11.64)
as has already been explained. The extra factor of 1/N® arises from the
extra normalization factor of 1/N in operators associated with external
boundaries.

The number of propagators and vertices are related by

oy = 3 +4n{Y, (11.65)
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since three- and four-point vertices emit three or four propagators, re-
spectively, and each propagator connects two vertices. Using the rela-
tion (11.65), we rewrite the RHS of (11.64) as

N7eng f2ngU =B nma—mitno=B (11.66)

where the total number of vertices
ny = n(()3) —I—n(()4) (11.67)
is introduced.

The exponent on the RHS of Eq. (11.66) can be expressed via the Euler
characteristic y of a given graph of genus h. Let us first mention that an
appropriate Riemann surface, which is associated with a given graph, is
open and has B+ L boundaries (represented by single lines). This surface
can be closed by attaching a cap to each boundary. The single lines then
become double-lines together with the lines of the boundary of each cap.
We have already considered this procedure when deducing Eq. (11.62)
from Eq. (11.22).

The number of faces for a closed Riemann surface constructed in such
a manner is ng + L + B, while the number of edges and vertices are ny
and ng, respectively. Euler’s theorem states that

X =2—-2h = na+L+B—ni+ng. (11.68)
Therefore the RHS of Eq. (11.66) can be rewritten as
an—nl-i-no—B — N2_2h_L_2B. (1169)

We have thus proven that the order in 1/N of a generic graph does not
depend on its order in the coupling constant and is completely expressed
via the genus h and the number of virtual quark loops L and external
boundaries B by

1\ 2hHL+2(B-1)
) (11.70)

. oo (£
generic grap ( N

For B = 1, we recover Egs. (11.22) and (11.62).

Remark on the order of gauge action

We see from Eq. (11.45) that the natural variables for the large-N limit
are the calligraphic matrices A, which include the extra factor of g with

respect to A, (see Eq. (11.2)). For these matrices
1 n
(0 M @) - A (@n)]) = G (2, m,)  (1L71)

so that they are O(1) in the large-N limit since the trace is O(N).
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In these variables, the gluon part of the QCD action (5.13) takes the
simple form

1
S = P dz tr 73, (x) . (11.72)

Since g in this formula is ~ 1/N and the trace is ~ N, the action is
(’)(Nz) at large N.

This result can be anticipated from the free theory because the kinetic
part of the action involves the sum over N? — 1 free gluons. Therefore,
the non-Abelian field strength (3.62) is ~ 1 for g2 ~ 1/N.

The fact that the action is O(N 2) in the large-IN limit is a generic
property of the models describing matrix fields. It will be crucial for de-
veloping saddle-point approaches at large N which are considered below.

Problem 11.6 Rederive the formula (11.70) using the calligraphic notation.

Solution The propagator of the A-field is ~ g2, while both three- and four-
gluon vertices are now ~ g~2 as a consequence of Eq. (11.72). The contribution
of a generic graph is now of the order

(gg)n1—no NM2—B o Nm2—mtno—B (1173)

for g> ~ 1/N. This coincides with the RHS of Eq. (11.66) which results in
Eq. (11.70).

11.5 ’t Hooft versus Veneziano limits

In QCD there are several species or flavors of quarks (u-, d-, s- and so
on). We denote the number of flavors by N; and associate a Greek letter
a or B with a flavor index of the quark field.

The quark propagator then has the Kronecker delta-symbol with re-
spect to the flavor indices in addition to Eq. (11.59):

(vpa) o 8% (11.74)

Their contraction results in
> baa = N (11.75)

Therefore, an extra factor of N; corresponds to each closed quark loop for
the Ny flavors.
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Fig. 11.16. Diagrams with quark loops in the Veneziano limit. Color and flavor
indices of a quark loop are represented by the solid and dashed single lines,
respectively. Diagram (a) is ~ g?N; ~ Ny/N. Diagram (b) is ~ g°N2Np ~
N¢/N.

The limit when Ny is fixed as N — 00, as was considered in the original
paper by 't Hooft [Hoo74a], is called the ’t Hooft limit. Only valence
quarks are left in the 't Hooft limit. Hence, it is associated with the
quenched approximation which was discussed in the Remark on p. 158.
In order for a meson to decay into other mesons built out of quarks, say
for a p-meson to decay into a pair of m-mesons, a quark—antiquark pair
must be produced out of the vacuum. Consequently, the ratios of meson
widths to their masses are

I‘total ~ %
M N

in the ’t Hooft limit. The ratio on the LHS of Eq. (11.76) is 10-15%
experimentally for the p-meson. The hope of solving QCD in the 't Hooft
limit is the hope to describe QCD with this accuracy.

An alternative large-N limit of QCD when Ny ~ N as N — oo was
proposed by Veneziano [Ven76]. Some diagrams for the gluon propagator,
which involve one quark loop, are depicted in Fig. 11.16. The dashed
single line represents propagation of the flavor index. Each closed loop of
the dashed line is associated with the factor of Ny according to Eq. (11.75).
This is analogous to the vector models which exactly describe the O(Ny)
flavor symmetry in this notation.

The diagrams in Fig. 11.16 contribute, respectively,

N¢

(11.76)

Fig. 11.16a ~ ¢°N; ~ ~ (11.77)
and

. 6 N2 Nf

Fig. 11.16b ~ ¢"N*N; ~ — (11.78)

in the limit (11.13).
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Likewise, a more general diagram with L quark loops will contribute

N, L 1 genus
L quark loops ~ (Nf> <m> . (11.79)
This formula obviously follows from Eq. (11.62) since each quark loop
results in Ng.

We see from Eq. (11.79) that quark loops are not suppressed at large
N in the Veneziano limit

Ny ~N — oo (11.80)

if the diagram is planar. Furthermore, the representation of a flavored
quark by one solid and one dashed line is obviously similar to the double-
line representation of a gluon. All that is said above concerning the
topological expansion of pure gluodynamics holds for QCD with quarks
in the Veneziano limit.

It is the Veneziano limit (11.80) that is related to the hadronic topo-
logical expansion in the dual-resonance models. In the Veneziano limit
hadrons can have finite widths according to Eq. (11.76). I refer the reader
to the original paper by Veneziano [Ven76] for further details.

There is an alternative way to show why virtual quarks are suppressed
in the 't Hooft limit and survive in the Veneziano limit. Let us integrate
over the quark fields which yields

\/Dw D'l/} e—fd4$ ('l,l_)ﬁw-i-m'lz)?f}) — eTrln(@-‘rm) (1181)

as is discussed in Sect. 2.2. The trace in the exponent involves summation
both over color and flavor indices, so that

Trln(§+m) ~ NN;. (11.82)

The order in N of the pure gluon action is O(N 2) as was discussed in
the Remark on p. 232. Hence, the quark contribution to the action is
~ Nt/N in comparison with the gluon one. The quark determinant can
be disregarded in the 't Hooft limit, but is essential in the Veneziano limit.

The consideration of the previous paragraph also explains why each
quark loop contributes a factor of ~ N¢/N. The exponent on the RHS of
Eq. (11.81) is associated with one-loop diagrams. A diagram with L quark
loops corresponds to the Lth term of the expansion of the exponential.
This explains the factor of (N¢/N)¥ in Eq. (11.79). A diagram with
two quark loops, which appears in the second order of this expansion, is
depicted in Fig. 11.17.
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Fig. 11.17. Diagram with two quark loops in the Veneziano limit. The diagram
is ~ g8 NNZ ~ (Nt/N)>.

Remark on asymptotic freedom in the Veneziano limit

Though the number of flavors becomes large in the Veneziano limit, this
does not mean that asymptotic freedom is lost. The leading-order coef-
ficient of the B-function of QCD with N colors and Ny flavors is given
by

1 11 2
b = —|——N+ =N 11.83

Ar? < 3073 f) (11.83)
which reproduces Eq. (9.71) for N = 3. It is still negative if Ny/N < 11/2
in the Veneziano limit.

Remark on phenomenology of multicolor QCD

While N = 3 in the real world, there are phenomenological indications
that 1/N may be considered as a small parameter. We have already
mentioned some of them in the text — the simplest one is that the ratio of
the p-meson width to its mass, which is ~ 1/N, is small. Considering 1/N
as a small parameter immediately leads to qualitative phenomenological
consequences which are preserved by the planar diagrams associated with
multicolor QCD, but are violated by the nonplanar diagrams.

The most important consequence is the relation of the 1/N-expansion to
the topological expansion in the dual-resonance model of hadrons. Vast
numbers of properties of hadrons are explained by the dual-resonance
model. A very clear physical picture behind this model is that hadrons
are excitations of a string with quarks at the ends.

I shall briefly list some consequences of multicolor QCD.

(1) The “naive” quark model of hadrons emerges at N = co. Hadrons
are built out of a pair of (valence or constituent) quark and anti-
quark ¢g, while exotic states like qggq do not appear.

(2) The partial width of decay of the ¢-meson, which is built out of ss
(the strange quark and antiquark), into KK~ is ~ 1/N, while that
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into 77~ 7" is ~ 1/N?2. This explains Zweig’s rule. The masses of
the p- and w-mesons are degenerate at N = co.

(3) The coupling constant of the meson—meson interaction is small at
large N.

(4) The widths of glueballs are ~ 1/N?2, i.e. they should be even nar-
rower than mesons built out of quarks. The glueballs do not interact
or mix with mesons at N = oo.

All of these hadron properties (except the last one) agree approximately
with experiment, and were well-known even before 1974 when multicolor
QCD was introduced. Glueballs have not yet been detected experimen-
tally (possibly because of their property listed in item (4)).

11.6 Large-N factorization

The vacuum expectation values of several colorless or white operators,
which are singlets with respect to the gauge group, factorize in the large-
N limit of QCD (or other matrix models). This property is similar to
that already discussed in Sect. 10.5 for the vector models.

The simplest gauge-invariant operator in a pure SU(N) gauge theory
is the square of the non-Abelian field strength:

O(x) = %mﬂ( ). (11.84)

The normalizing factor provides the natural normalization

<%m~F2( )> _ <N2F“( )ng(x)> ~ 1. (1185)

In order to verify the factorization in the large-N limit, let us consider
the index-space diagrams for the average of two colorless operators O(z1)
and O(z2), which are depicted in Fig. 11.18.

The graph in Fig. 11.18a represents the zeroth order of perturbation
theory. It involves four closed index lines (the factor of N*) and the
normalization factor of 1/N* according to the definition (11.84). Its con-
tribution is

Fig. 11.18a ~ mN2 mN2 ~ 1, (11.86)

i.e. O(1) in accord with the general estimate (11.85).
The graph in Fig. 11.18b involves a gluon line which is emitted and
absorbed by the same operator O(x;). It has five closed index lines (the

https://doi.org/10.1017/9781009402095.012 Published online by Cambridge University Press


https://doi.org/10.1017/9781009402095.012

238 11 Multicolor QCD

() (d)

Fig. 11.18. Demonstration of the large-N factorization to the lowest orders
of perturbation theory. The closed double line represents the average of the
operator (11.84) to the zeroth order in g. Diagrams (a) and (b), which are
associated with the factorized part of the average on the LHS of Eq. (11.90),
are O(1). Diagrams (c¢) and (d), which would violate the factorization, are
suppressed by 1/N2.

factor of N®), the normalization factor of 1/N*, and ¢g? owing to two
three-gluon vertices. Its contribution is

Fig. 11.18b ~ ¢*N ~ 1, (11.87)

i.e. also O(1) in the limit (11.13).

The graph in Fig. 11.18c is of the same type as the graph in Fig. 11.18a,
but the double lines now connect two different operators. It has two closed
index lines (the factor of N?) and the normalization factor of 1/N%, so
that its contribution

i 1
Fig. 11.18¢c ~ e (11.88)
is suppressed by 1/N2.

The graph in Fig. 11.18d, which is of the same order in the coupling
constant as the graph in Fig. 11.18b, involves only three closed index lines
(the factor of N3) and is of order 1/N?:

Fig. 11.18d 2L L (11.89)
g. 11. 9N N7 .
Therefore, it is suppressed by 1/N? in the large-N limit. For this graph,
the gluon line is emitted and absorbed by different operators O(x;) and
O(aﬁg)
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This lowest-order example illustrates the general property that only
(planar) diagrams with gluon lines emitted and absorbed by the same
operators survive as N — oo. Hence, correlations between the colorless
operators O(x1) and O(x3) are of order 1/N?, so that the factorization
property holds as N — oc:

1 1
<m trF2(IE1)m ter(x2)>

— <%trF2(m1)> <$trF2(a;2)>+O(N_2). (11.90)

For a general set of gauge-invariant operators Oq, ..., O,, the factor-
ization property can be represented by
(01---0,) = (O1)---{0,)+O(N7?). (11.91)

This is analogous to Eq. (10.123) for the vector models.

The factorization in large-N QCD was first discovered by A.A. Migdal
in the late 1970s. The important observation that the factorization im-
plies a semiclassical nature of the large-IV limit of QCD was made by
Witten [Wit79]. We shall discuss this in the next two sections.

The factorization property also holds for gauge-invariant operators con-
structed from quarks as in Eq. (11.63). For the case of several flavors Ny,
we normalize these quark operators by

1 -
Or = —=yI'y. 11.92
: A (11.92)
Here I' denotes one of the combination of the y-matrices:
. 1
r = Ha Y55 Yur 1Yu5, Eyy = E[’Yﬂ,’}/y] g . (1193)

The lowest-order diagrams of perturbation theory for the average of
two quark operators (11.92) are depicted in Fig. 11.19. The estimation
of their order in 1/N is analogous to that for the pure gluon graphs in
Fig. 11.18.

The graph in Fig. 11.19a represents the zeroth order of perturbation
theory for the average of two quark operators. It involves two closed
color and two closed flavor index lines (the factor of NZN?) and the
normalization factor of 1/(N;N)? according to the definition (11.92). Its
contribution is

. 1 2 772

This justifies the normalization factor in Eq. (11.92).
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Fig. 11.19. Same as in Fig. 11.18 but for quark operators (11.92). The solid
and dashed lines are associated with color and flavor indices, respectively. Dia-
grams (a) and (b), which contribute to the factorized part of the average on the
LHS of Eq. (11.98), are O(1). Diagrams (c) and (d), which would violate the
factorization, are suppressed by 1/(N¢N) and 1/N?2, respectively.

The graph in Fig. 11.19b involves a gluon line which is emitted and
absorbed by the same quark operator. It has three closed color and two
closed flavor index lines (the factor of N?N?), the normalization factor of
1/(NtN)?, and g2 arising from two quark-gluon vertices. Its contribution
is )
NZN?
in full analogy with the pure gluon diagram in Fig. 11.18b.

The graph in Fig. 11.19c is similar to the graph in Fig. 11.18c — the
lines connect two different quark operators. It has one closed color and
one closed flavor index lines (the factor of NyN) and the normalization
factor of 1/(N;yN)?, so that its contribution

Fig. 11.19b ~ NEg*’N3 ~ ¢*N ~ 1 (11.95)

1
Fig. 11.1 ~ — 11.
ig 9c NN (11.96)

is suppressed by 1/(N¢N).

Finally, the graph in Fig. 11.19d involves a gluon line which is emitted
by one quark operator and absorbed by the other. It has one closed color
and two closed flavor index lines (factor of NZN), the normalization factor
of 1/(N¢N)2%, and g? owing to two quark-gluon vertices. Its contribution

2
Fig. 11.19d ~ @NEQQN ~ QN ~ % (11.97)

is suppressed by 1/N? in the limit (11.13).
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We see that the factorization of the gauge-invariant quark operators
holds both in the 't Hooft and Veneziano limits:

(Or,---Or,) = (Ory) - (Or,)+O(1/(NtN)). (11.98)

The nonfactorized part, which is associated with connected diagrams, is
~ 1/N in the 't Hooft limit. This leads, in particular, to the coupling
constant of meson—meson interaction of order 1/N, clarifying the property
of multicolor QCD listed in item (3) on p. 237. The Veneziano limit is
analogous to pure gluodynamics as has already been mentioned.

It is worth noting that the factorization can be seen alternatively (at
all orders of perturbation theory) from Eq. (11.70) for the contribution of
a generic connected graph of genus h with B external boundaries which
are precisely associated with the quark operators Or, as is explained in
Sect. 11.4. The diagrams with gluon lines emitted and absorbed by the
same operator as in Fig. 11.19b are products of diagrams having only
one boundary. Hence, their contribution is of order one. Otherwise, the
diagrams with gluon lines emitted and absorbed by two different operators
as in Fig. 11.19d have two boundaries. According to Eq. (11.70), their
contribution is suppressed by 1/N2. Alternatively, the diagrams as in
Fig. 11.19¢ (including its planar dressing by gluons) have one boundary.*
Their contribution is O(1) times 1/(N¢N) coming from the normalization
of the operator (11.92). This proves the factorization property (11.98) at
all orders of perturbation theory.

Remark on factorization beyond perturbation theory

The large-N factorization can also be verified at all orders of the strong-
coupling expansion in the SU(N) lattice gauge theory. A nonperturbative
proof of the factorization will be given in the next chapter using quantum
equations of motion (the loop equations).

Problem 11.7 Prove the factorization of the Wilson loop operators within the
strong-coupling expansion of the SU(N) lattice gauge theory as N — oo.

Solution Let us first estimate the order in N of the Wilson loop average (6.42).
The explicit result to the leading order in 3 is given by Egs. (6.73) and (6.72),
where

B ~ N? (11.99)

in the limit (11.13) as prescribed by Eq. (6.32). Therefore, W(C) ~ 1 in the
large-N limit.

* In the dual-resonance model, they are associated with the meson—meson interaction
arising from an exchange of constituent quarks.
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Fig. 11.20. Factorization of the Wilson loop operators in the strong-coupling
expansion as N — oo. The surfaces are constructed from plaquettes which
come from the expansion of the exponential of the lattice action. Each link
in the surface is passed at least twice: otherwise the result vanishes. Diagram
(a) involves two separate surfaces enclosed by Wilson loops. It contributes to
the factorized part of the average on the LHS of Eq. (11.101). The surface in
diagram (b) connects two different Wilson loops and would violate factorization.
It has two boundaries and its contribution is suppressed by 1/N? according to
the general formula (11.100).

f

To be precise, we first perform the strong-coupling expansion in 8 and then
set N — oo in each term of the strong coupling expansion. As we shall see in a
moment, the actual parameter is /N2, so that the limits 3 — 0 and N — oo
are interchangeable.

It is easy to estimate the order in N of any graph of the strong coupling ex-
pansion for W(C'), which looks like that in Fig. 6.8 on p. 116. Let the plaquettes
fill an arbitrary surface enclosed by the loop C, with ns, ni, and ng being the
number of plaquettes, links, and sites which belong to the surface. Each pla-
quette contributes 8/N since it comes from the expansion of the exponential of
the lattice action, each link contributes 1/N owing to Eq. (6.60), and each site
contributes N since it is associated with summing over the color indices owing
to Eq. (6.70). Accounting for the normalization factor of 1/NZ, where B =1 is
the number of boundaries, the contribution is of order

n n n 2h+2(B—1
ﬁ : N—nl—l-no—B ~ ﬁ : N’n,g—nl—l-no—B ~ ﬁ : i * ( )
N N2 N2 N ’

(11.100)
where we have used Euler’s theorem (11.68). In the limit (11.99), the contri-
bution does not depend on the order of the strong-coupling expansion and is
completely determined by the number B of boundaries and the genus h of the
surface. This is analogous to the perturbation theory. For the minimal surface,
we reproduce previous results.

We are now in a position to analyze the order in IV of different terms in the
strong-coupling expansion of the average of two Wilson loop operators. The
factorized part results from the surfaces of the type depicted in Fig. 11.20a,
which are spanned by each individual loop. Its contribution is O(1) as N — oco.
A nonfactorized part emerges from surfaces of the type depicted in Fig. 11.20b,
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which connect two different Wilson loops. They look like a cylinder and have two
boundaries. Their contribution is suppressed by 1/N? according to the general
formula (11.100).

Thus, we have proven the factorization property

<%trU(Cl)%trU(Cz)> = <%trU(Cl)> <%trU(C2)>+O(N_2)

(11.101)
at all orders of the strong-coupling expansion.

Problem 11.8 Find the relation between the Wilson loop averages in the fun-
damental and adjoint representations for an SU(N) pure gauge theory at large
N.

Solution The characters in the fundamental and adjoint representations are
related by Eq. (6.28). Using the factorization formula (11.101) with coinciding
contours C7 and Cs, we obtain

Woaai(C) = [Waun(C)]> + O(N72). (11.102)

As was discussed in Part 2, the Wilson loop average in the fundamental repre-
sentation obeys the area law (6.75). The same is true at N = oo for the Wilson
loop average in the adjoint representation owing to Eq. (11.102). In particular,
the string tensions in the fundamental and adjoint representations at N = oo
are related by

Kadj = 2Kfun- (11103)

On the other hand, the adjoint test quark can be screened at finite NV by a gluon
produced out of the vacuum. This is similar to the breaking of the flux tube in
the fundamental representation by a quark—antiquark pair, which is discussed in
Sect. 9.5. Therefore, the perimeter law (6.79) must dominate for large contours.
The point is that the perimeter law appears owing to connected diagrams which
are suppressed as 1/N?:

arge 1
Waai(C) "ESC o 2K Amn(©) 4 Fm e . (11.104)

These properties of the adjoint representation were first pointed out in [KMS81].

11.7 The master field

The large-N factorization in QCD assumes that gauge-invariant objects
behave as c-numbers, rather than as operators. Likewise for vector mod-
els, this suggests that the path integral is dominated by a saddle point.

We have already seen in Sect. 10.5 that the factorization in the vector
models does not mean that the fundamental field itself, for instance 7 in
the sigma-model, becomes “classical”. It is the case, instead, for a singlet
composite field.
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We are now going to apply a similar idea to the Yang—Mills theory, the
partition function of which is

Z = / DAG e~ [ 3 F (11.105)

The action, ~ N2, is large as N — oo, but the entropy is also ~ N? as a
result of the N2 — 1 integrations over Al

2
DAY ~ N (11.106)

Consequently, the saddle-point equation of the large-N Yang—Mills theory
is mot the classical one which is given by*

58
A

= —(V,E.,)" = 0. (11.107)

The idea is to rewrite the path integral over A, for the Yang-Mills
theory as that over a colorless composite field ®[A], likewise this was
done in Sect. 10.4 for the sigma-model. The expected new path-integral
representation of the partition function (11.105) would be something like

L _Ne2gpe)
dAg
The Jacobian
OP[A]| _ —N2J[®]
‘8AZ = e (11.109)

in Eq. (11.108) is related to the old entropy factor, so that J[®] ~ 1 in
the large-N limit.
The original partition function (11.105) can be then rewritten as

7 /D%N”[‘I’}—NW‘I’], (11.110)

where S[®] represents the Yang-Mills action in the new variables. The
new entropy factor of D® is O(1) because the variable ®[4] is a color
singlet. The large parameter NV enters Eq. (11.110) only in the exponent.
Therefore, the saddle-point equation can be immediately written as

08 0J

* It was already discussed in Problem 5.1 on p. 87.
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Remembering that ® is a functional of A,, ® = ®[A], we rewrite the
saddle-point equation (11.111) as

0S 0J
el —_ FI/ a = .
5Ae (Vi) 5Ae

(11.112)

It differs from the classical Yang-Mills equation (11.107) by the term on
the RHS coming from the Jacobian (11.109).

Given J[®], which depends on the precise from of the variable ®[A],
Eq. (11.112) has a solution

Au(z) = A(x). (11.113)

Let us first assume that there exists only one solution to Eq. (11.112).
Then the path integral is saturated by a single configuration (11.113),
so that the vacuum expectation values of gauge-invariant operators are
given by their values at this configuration:

(0) = O<Af}(a:)> . (11.114)

The factorization property (11.91) will obviously be satisfied.

The existence of such a classical field configuration in multicolor QCD
was conjectured by Witten [Wit79]. It was discussed in the lectures by
Coleman [Col79] who called it the master field. Equation (11.112) which
determines the master field is often referred to as the master-field equa-
tion.

A subtle point with the master field is that a solution to Eq. (11.112)
is determined only up to a gauge transformation. To preserve gauge
invariance, it is more reasonable to speak about the whole gauge orbit
as a solution of Eq. (11.112). However, this will not change Eq. (11.114)
since the operator O is gauge invariant.

The conjecture concerning the existence of the master field has surpris-
ingly rich consequences. Since vacuum expectation values are Poincaré
invariant, the RHS of Eq. (11.114) is also. This implies that Af}(m) must
itself be Poincaré invariant up to a gauge transformation: a change of
Af}(m) under translations or rotations can be compensated by a gauge
transformation. Moreover, there must exist a gauge in which Af}(:n) is
space-time-independent: Af}(aj) = Af}(O). In this gauge, rotations must
be equivalent to a global gauge transformation, so that Azl(O) transforms
as a Lorentz vector.

In fact, the idea concerning such a master field in multicolor QCD
may not be correct as was pointed out by Haan [Haa81]. The conjecture
concerning the existence of only one solution to the master-field equa-
tion (11.112) seems to be too strong. If several solutions exist, one needs
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an additional averaging over these solutions. This is a very delicate mat-
ter, since this additional averaging must still preserve the factorization
property. One might be better to think about this situation as if Af} (0)
were an operator in some Hilbert space rather than a c-valued function.
This is simply because Af} (0) is, in the matrix notation (11.1), an N x N
matrix which becomes, as N — oo, an infinite matrix, or an operator in
Hilbert space. Such an operator-valued master field is sometimes called
the master field in the weak sense, while the above conjecture concerning
a single classical configuration of the gauge field, which saturates the path
integral, is called the master field in the strong sense.

The concept of the master field is rather vague until a precise form of
the composite field ®[A], and consequently the Jacobian ®[A] that enters
Eq. (11.112), is defined. However, what is important is that the master
field (in the weak sense) is space-time-independent. This looks like a
simplification of the problem of solving large-N QCD. A Hilbert space, in
which the operator Af}(O) acts, should be specified by ®[A]. In the next
section we shall consider a realization of these ideas for the case of ®[A]
given by the trace of the non-Abelian phase factor for closed contours.

Remark on noncommutative probability theory

An adequate mathematical language for describing the master field in
multicolor QCD (and, generically, in matrix models at large N') was found
by I. Singer in 1994. It is based on the concept of free random variables of
noncommutative probability theory, introduced by Voiculescu [VDN95].
How to describe the master field in this language and some other applica-
tions of noncommutative free random variables to the problems of planar
quantum field theory are discussed in [Dou95, GG95].

11.8 1/N as semiclassical expansion

A natural candidate for the composite operator ®[A] from the previous
section is given by the trace of the non-Abelian phase factor for closed
contours — the Wilson loop. It is labeled by the loop C' in the same sense
as the field A, (z) is labeled by the point x, so we shall use the notation

C) = BA] = Pt A, (11.115)

Nobody up to now has managed to reformulate QCD at finite N in
terms of ®(C) in the language of the path integral. This is due to the
fact that self-intersecting loops are not independent (they are related by
the so-called Mandelstam relations [Man79]),* and the Jacobian is huge.

* See, for example, Appendix C of the review [Mig83].
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The reformulation was performed [MM79] in the language of Schwinger—
Dyson or loop equations which will be described in the next chapter.

Schwinger-Dyson equations are a convenient way of performing the
semiclassical expansion, which is an alternative to the path integral. Let
us illustrate an idea of how to do this by an example of the 3 theory,
the Schwinger—Dyson equations of which are given by Eq. (2.47).

The RHS of Eq. (2.47) is proportional to Planck’s constant h as is
explained in Sect. 2.5. In the semiclassical limit & — 0, we obtain

(~0% +m?) <<P(w1)"'<ﬂ(wn)>+g<s02(m1)~~<p(wn)> = 0, (11116)

the solution of which is of the factorized form

(p(@1) - plzn)) = (p(@1)) - (p(xn)) + O(R) (11.117)
provided that

(p(z)) = valz) (11.118)
obeys
(0% +m?) pule) + 564() = 0. (11.119)

Equation (11.119) is nothing but the classical equation of motion for the
¢ theory, which specifies extrema of the action (2.22) entering the path
integral (2.2). Thus, we have reproduced, using the Schwinger-Dyson
equations, the well-known fact that the path integral is dominated by a
classical trajectory as i — 0. It is also clear how to perform the semiclas-
sical expansion in A in the language of the Schwinger—-Dyson equations:
one should solve Eq. (2.47) by iteration.

The reformulation of multicolor QCD in terms of the loop functionals
®(C) is, in a sense, a realization of the idea of the master field in the weak
sense, when the master field acts as an operator in the space of loops. The
loop equation of the next chapter will be a sort of master-field equation
in the loop space.

Remark on the large-IN limit as statistical averaging

There is yet another, purely statistical, explanation why the large- /N limit
is a “semiclassical” limit for the collective variables ®(C'). The matrix
U¥[Cy,), that describes the parallel transport along a closed contour Cy,,
can be reduced by the unitary transformation to

UlCra] = Q[Cm]diag(eigo‘l(c),...,eigaN(C)) OfCh]. (11.120)
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Then ®(C) is given by
| X
o iga; (C
2(C) = % E 1 el923(C), (11.121)
=

The phases «;(C) are gauge invariant modulo permutations and normal-
ized so that «;(C) ~ 1 as N — oo. For simplicity we omit below all the
indices (including space ones) except for color.

The commutator of ®s can be estimated using the representation
(11.121). Since

[i(C), a;(C")] o 645, (11.122)
one obtains
[®(C), 2] ~ @5 ~ 7 (11.123)

in the limit (11.13), i.e. the commutator can be neglected as N — oo, and
the field ®(C') becomes classical.

Note that the commutator (11.123) is of order 1/N2. One factor of
1/N is because of g in the definition (11.121) of ®(C'), while the other has
a deeper reason. Let us image the summation over j in Eq. (11.121) as
some statistical averaging. It is well-known in statistics that such averages
fluctuate weakly as N — oo, so that the dispersion is of order 1/N. It is
this factor that emerges in the commutator (11.123).

The factorization is valid only for the gauge-invariant quantities which
involve the averaging over the color indices, such as that in Eq. (11.121).
There is no reason to expect factorization for gauge invariants which do
not involve this averaging and therefore fluctuate strongly even at N = oo.
An explicit example of such strongly fluctuating gauge-invariant quanti-
ties was first constructed in [Haa81].

This Remark may be summarized to give that the factorization arises
from the additional statistical averaging in the large-IN limit. There is
no reason to assume the existence of a master field in the strong sense in
order to explain the factorization.
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