
OVALS, DUALITIES, AND DESARGUES'S THEOREM 
T. G. OSTROM 

Introduction. Consider a projective plane with n + 1 points on each line, 
An oval £ is a set of n + 1 points, no three of which are collinear. 

DEFINITION. (1) A line which contains two points of £ will be called a 
secant of £. 

(2) A line which contains exactly one point of £ will be called a tangent of 
£ or an absolute line. 

(3) A line which contains no points of £ will be called an exterior line of £. 
Each point of £ lies on exactly one tangent of £. Qvist (10) has shown 

that, for n odd, no three tangents of £ are concurrent. For n odd, we can make 
the following definitions. 

DEFINITION. (4) A point which lies on two tangents of £ will be called an 
exterior point of £. 

(5) A point which lies on no tangents of £ will be be called an interior 
point of £. 

(6) Points of £ will sometimes be referred to as absolute points. 

There is a natural correspondence between secants and exterior points. 
Each secant contains two absolute points; by taking the point of intersection 
of their tangents a definite exterior point is determined corresponding to the 
secant. Let the point corresponding to a given secant be called the pole of the 
secant, the secant will be called the polar of the point. The number of exterior 
points and the number of secants are both equal to \n{n + 1) (the number of 
pairs of absolute points). Since there are n2 + n + 1 points in all, n + 1 of 
which are absolute, the number of interior points is \n(n — 1). Now Baer 
(1) has shown that the absolute points of a polarity form an oval unless n 
is a square or is even. Segre has shown that, in a Desarguesian plane, every 
oval determines a conic. It is well known that a conic in a Desarguesian plane 
determines a polarity. 

The following form of Desargues's theorem holds in any plane admitting a 
polarity: "If two self-polar triangles are perspective from a point, they are 
perspective from the polar of that point." While we do not restrict ourselves 
to Desarguesian planes, we find that Desargues's configuration comes up again 
and again for suitably restricted pairs of triangles. 

In §1, we study certain kinds of collineations which carry an oval into 
itself. In §2, we study certain respects in which an oval resembles a conic in a 
Desarguesian plane, especially in its relations to a modified type of harmonic 
set. In § 3, we specialize the results of §2 to the case where the oval consists 
of the absolute points of a polarity. In §4, we consider ovals in cyclic and other 
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transitive planes. In §5, we show the existence of Fano's configuration for 
certain planes with n even. Except in §5, we restrict ourselves to odd values 
of n. The author is greatly indebted to the referee for suggestions which led 
to the inclusion of §2. 

1. Collineations carrying an oval into itself. In this part, we consider 
collineations a satisfying the following conditions: (1) a must carry some oval 
6 into itself. (2) Excepting the identity, no power of a leaves fixed any points 
which are not left fixed by a itself. 

aj then, may leave certain points fixed, but the other points are arranged 
in cycles whose length is equal to the order of a. 

We list some fairly obvious properties of a: 
1.1. Any collineation which carries S into itself must carry exterior points 

of S into exterior points and interior points into interior points. 
1.2. Since the g.c.d. of n + 1, \n{n + 1) and \n{n — 1) is 1, a must leave 

at least one point fixed. 
1.3. If an exterior point U is fixed, its polar is fixed, and vice versa. This 

follows from the fact that the two tangents through U must either be fixed 
or mapped into each other. In turn, the corresponding points of tangency 
must either be fixed or mapped into each other. 

1.4. If the fixed points of a constitute a proper subplane with Wi + 1 points 
on a line, and one of the fixed points belongs to 6, then n\ + 1 points of S 
are fixed and the fixed points of Ê constitute an oval of the subplane. 

Proof. Let A be a fixed point of 6. There are n\ + 1 fixed lines through A, 
one of which will be the tangent at A. The other will be secants. But if we have 
a fixed secant through a fixed absolute point, the other absolute point on the 
secant must also be fixed. 

1.5. If three points of Ê are fixed, the fixed points of the plane constitute a 
proper subplane, since the poles of the corresponding secants must also be 
fixed. 

1.6. If (a) no points (b) one point (c) two points or (d) ri\ + 1 points of E 
are fixed, then the order of a divides (a) n + 1, (b) n, (c) n — 1, or (d) n — ri\. 
This is essentially a generalization of some of the results in (9). See (2, 
Theorem 3) for a further characterization of a if the order of a is a prime 
power. 

It should perhaps be noted that properties 1.1, 1.3, 1.4, and 1.5 apply to any 
collineation carrying S into itself. 

THEOREM 1.1. If a leaves invariant a proper subplane with n i + 1 points on a 
line, and if all of the fixed points are interior, then the order of a divides 

(è(» + l), » i + l ) . 

Proof. If a secant were fixed, the exterior point which is its pole would 
also be fixed. Hence there are no fixed secants. Similarly, no tangents are 
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fixed. Hence the fixed lines are all exterior lines. Since each exterior point 
lies on two of the w + 1 tangents, it follows that half of the points on an 
exterior line are exterior and the other half are interior points. (Similarly, a 
secant contains \{n — 1) exterior points and \(n — 1) interior points). 
Consider a fixed exterior line u. The order of a must divide the number of 
non-fixed interior points on u, which is \{n + 1) — (n\ + 1). But the number 
of non-fixed exterior points on u is \{n + 1), so that the order of a must also 
divide \{n + 1). 

THEOREM 1.2. If a is of even order, and leaves invariant a proper subplane 
with n\ + 1 points per line, at least one point of which belongs to S, then n = ni2 

and none of the fixed points is interior. 

Proof. If a is of even order, some power of a is of order 2 and has the same 
fixed points. Without loss of generality, take a to be of order 2. By property 
4, n\ + 1 points of E are fixed. These nx + 1 points determine \n\{n\ + 1) 
fixed secants. In addition, the remaining n — n\ points of £ are interchanged 
in pairs, thus determining \ (n — ni) fixed secants. Each fixed secant determines 
a fixed point. The number of fixed interior points is then 

tii2 + nx + 1 - Oi + 1) - J^i(^i + 1) — \{n - nx) = %(nx
2 — n). 

But (6) n > nx
2. 

This theorem would seem to be closely related to Mann's theorem (7) 
that a cyclic plane possesses a multiplier of even order only if n is a square, 
since, as we shall see, there are ovals in cyclic planes which are left invariant 
by the multipliers. We have been unable to obtain any interesting results 
for the case where no point of (5 is fixed except that \{n + 1) exterior points 
remain fixed if the order of a is even. 

THEOREM 1.3. If the fixed points of a consist of the points on a line u and a 
point U not belonging to u or S, then (a) a is of order 2; (b) every triangle and its 
image satisfy Desargues's theorem; (c) if U is exterior, u is its polar; (d) if U 
is exterior and AB, CD are two secants through U, where A, B, C, and D are 
absolute points, then the secants A C and BD intersect in a point of u, similarly, 
AD and BC intersect in a point of u. 

Proof, (a) Every line through U is fixed. Let AB be a fixed secant through 
U. Then A i=± B, or A and B are fixed. But at most two points of S lie on u 
and there are at least \{n — 1) (fixed) secants through U. Hence at least 
one pair of absolute points on a secant must be interchanged, (b) Let V, W, 
X be three non-fixed collinear points and let Vi, Wi, and Xx be their images. 
Then the lines Wi, WWi, and XXi are fixed lines and must intersect in U. 
The lines VW and ViWi are each other's images and must intersect in a point 
on u. Similarly, the other pairs of corresponding sides intersect in a point on u. 
(c) If U is exterior, its polar is a fixed line not through U and hence must be u. 
(d) Since A <± B and C<=±D, it follows that AC<=±BD and AD <=>BC so 
that these pairs of lines must intersect in u. 
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THEOREM 1.4. Suppose that, for every point U not on an oval S, there is a 
collineation taking 6 into itself which leaves U and every point on some line u 
fixed (u depending on U) then (£ determines a polarity. 

Proof. Since all secants through U are fixed, their poles are fixed and lie 
on the line u. If U is interior, define the polar of U to be u, U the pole of u. 
With this extended relation of pole and polar, it is still true that a line is 
fixed if and only if its pole is fixed. Now, if we consider all lines through any 
point £7, their poles must lie all on a certain line u. Note that only one such 
collineation is possible for each point U, since if there were two such collinea-
tions ci and a2 then G\ a-2

_1 would leave every point of 6 fixed and aia2~
1 is 

the identity. 

2. Harmonic sets and harmonic ovals. 

DEFINITION. An ordered set of collinear points {AB: CD} will be said to be 
harmonic with respect to the oval S if (1) A and B belong to 6, (2) C is an 
exterior point, and (3) D is on the polar of C. When only one oval is under 
discussion, we shall merely speak of a harmonic set of points. The point D 
will sometimes be referred to as the fourth harmonic point or the harmonic 
conjugate of C. 

DEFINITION. A perspectivity between the points of a secant and the points 
of a secant will be said to be a perspectivity on 6 if either (1) the point of 
intersection of the secants is not absolute and absolute points correspond to 
absolute points, or (2) the secants intersect in an absolute point A, the center 
of perspectivity is on the tangent at A, and absolute points correspond to 
absolute points. The symbol — between two sets of points will indicate that 
they are related by a perspectivity on S. 

ASSUMPTION Al . Let {AB: UE} and {AiBi: UEi} be harmonic sets on two 
secants intersecting in the exterior point U. Then ABUE — AiBiUEi and 
ABLE -KBIAJJEX. 

Remark. Assumption Al is a consequence of Theorem 1.3 (d). In a Desargue-
sian plane, sets harmonic with respect to S are harmonic sets in the ordinary 
sense, and Assumption Al is satisfied. Much of what we say about ovals 
applies as well to a curve 6 in an infinite plane provided that (£ has the 
following properties: (1) no three points of S are collinear; (2) no three 
tangents to 6 are concurrent. (At each point of (5 there must be a tangent 
which contains no other points of (£.) Now in the infinite case, we have a very 
natural example of a plane in which Al is satisfied. We refer to the well known 
example (8) of a non-Desarguesian plane constructed by distorting the 
interior of a conic in a Desarguesian plane. 

DEFINITION. If Assumption Al is satisfied for every exterior point of an 
oval S, we shall call S an harmonic oval. 
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THEOREM 2.1. If U and V are exterior points of the harmonic oval S, and 
V is on the polar of U, then U is on the polar of V. 

Proof. Let A be a point on E, not on the polars of either U or V. Then the 
line UA is not a tangent and intersects E in another point B. Similarly, let 
the line VA intersect S in a point A i. Now A i cannot be on the polar of U, 
else the line VA is the polar of U, contrary to the choice of A. Hence the line 
UAi intersects E in another point B\. Let {AB: UE} and {AxBi*. UEI] be 
harmonic sets. By Assumption Al, the lines AAi, BBi, and EEi are con­
current. But EEi is the polar of U. Therefore, A A i and EE\ intersect in V, 
since V is on the polar of U by hypothesis. Hence BB i goes through V. 

Now let {AA\\ VD] and {BBi: VF} be harmonic sets. Again, by Assumption 
Al, AB, A\B\, and DF are concurrent. But DF is the polar of V, while AB 
and AiBi intersect in U. Hence U is on the polar of V. 

LEMMA 2.1. Let U and V be conjugate exterior points of an harmonic oval 
S, {i.e., U and V are on each other's polars) then (a) the line UV is a secant 

if n = 1 (mod 4), (b) the line UV is an exterior line if n = — 1 (mod 4). 

Proof. Let A be an absolute point not on the polars of U or V and not on 
the line UV. As in the proof of Theorem 2.1, a set of four absolute points 
AAiBBi is determined such that U and V are diagonal points of the quad­
rangle AA\BB\. The n + 1 points of E occur in sets of four points, omitting 
(1) two points each on the polars of U and V and (2) the absolute points, 
if any, on the line UV. If UV is a secant, then 4 must divide n — \ — (n+1) — 2. 
If UV is an exterior line, then 4 must divide n + 1. 

THEOREM 2.2. Ifn^l (mod 4), the fourth harmonic point is always exterior, 
while if n = — 1 (mod 4), the fourth harmonic point is always interior. 

Proof. Consider the lines connecting an exterior point U to the exterior 
points on its polar u. If n = 1 (mod 4), every one of these lines is a secant. 
There are \(n — 1) exterior points on u and \{n — 1) secants through U. 
Thus all of the secants are accounted for and in each one of these cases the 
fourth harmonic point is exterior. If n = — 1 (mod 4), every one of these 
lines is an exterior line. All of the exterior lines are accounted for and the 
remaining non-absolute lines through U must be secants which intersect u in 
interior points. 

COROLLARY. Given a collineation which (a) carries the oval Ë into itself 
(b) is not of order 2, (c) leaves fixed a proper subplane with ni + 1 points on 
each line, (d) leaves at least one point of S fixed, then n = n± (mod 4). 

Proof. The fixed points of E form an oval in the subplane. If n is not equal 
to 2, a secant is fixed if and only if its absolute points are fixed. A fixed exterior 
point of 6 is an exterior point of the oval and is the pole of a fixed secant 
which will also be a secant of the oval Si. Sets harmonic with respect to Si 
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are harmonie with respect to 6, and a point of the subplane is respectively 
interior, exterior or an absolute point of Si if and only if it is an interior, 
exterior or absolute point of Ë, as the case may be. Thus if the fourth harmonic 
point is always exterior or always interior in one case, it must be so in the other 
case also. 

DEFINITION. A triangle consisting of an exterior point U and two absolute 
points A and B such that U is the pole of the secant AB will be called a funda­
mental triangle. 

THEOREM 2.3 Let A, B, A\, B\ be four points on the harmonic oval S. Let 
C and Ci respectively be the poles of the secants AB and AiBi. Then if AB and 
AiBi intersect in an exterior point U, the fundamental triangles ABC and 
AiBiCi are perspective from a point. If AAi and BB\ also intersect in an exterior 
point, the triangles are also perspective from a line. 

Proof. Since U is on the polar AB of the exterior point C, C is on the polar 
of U. Similarly, C\ is on the polar of U. Let E and E\ be the respective points 
of intersection of CCi with AB and A&L Then {AB:UE} and {AiBi. UEX} 
are harmonic sets. Therefore, AAi, BB\ and EE± = CC\ are concurrent in a 
point V and the triangles are perspective from V. Let D and D\ be the respec­
tive poles of the secants A A i and BB\. Then the fundamental triangles AA\D 
and BBiDi are perspective from the line CC\. Similarly, if V is an exterior 
point, the triangles ABC and AiBiCi are perspective from the line DF. 

THEOREM 2.4 Let A,B, C,Ai,Bi, C\ be six distinct absolute points of an 
harmonic oval 6. If AAi, BB\, and CC\ intersect in an exterior point V, and if 
P, Q, R are the respective points of intersection of the pairs of lines AB\, A\B; 
BCi, B\C\ AC\, A\C; then P, Q, and R are collinear. 

Proof. Let {AAÛ VE) and {BBX\ VD) be harmonic sets. Then AAiVE -
BiBVD, i.e., lines ABi, A\B, and ED are concurrent, where the line ED is 
the polar of V. Thus P is on the polar of V. Similarly, Q and R are on the polar 
of V. 

COROLLARY. If two harmonic ovals have five points A, B, C, A\, and B\ in 
common, and if AA\ and BB\ intersect in a point U exterior to both, then either 
the line UC is a common tangent or contains another point C\ common to both. 

Remark. Qvist (10) has shown that if two ovals have half of their points 
in common, they are identical. Our Corollary suggests that five points may 
determine an harmonic oval if there are no proper subplanes. 

THEOREM 2.5. Let A, B, C be three points on a secant, and let A2, B2, C2 

be three points on another secant, where A, B, A2, B2 are absolute points of the 
harmonic oval S and the two secants intersect in an exterior point. Then A, B, 
and C can be carried into A2, B2, C2 by the product of at most two perspectivities 
on Ë. 
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Proof. Suppose that CA2 is not a tangent. Then the line CA2 contains 
another absolute point Bi. Let BBi and A A2 intersect in Ox. Then 

ABC - A2BXC- A2B2C2. 

If CA2 is a tangent, a similar argument can be made using one of the lines 
CB2, C2A, or C2B unless all of these lines are also tangents. In this case, C is 
the pole of A2B2, while C2 is the pole of AB. Then, by Theorem 2.3, the 
fundamental triangles A2B2C and ABC2 are perspective from some point 0, 
and ABC - A2B2C2. 

DEFINITION. A point to point transformation from a secant onto a secant 
will be called projective with respect to 6 (or merely, projective) if it carries 
sets harmonic with respect to the harmonic oval Ë into sets harmonic with 
respect to E. 

THEOREM 2.6. A collineation which carries 6 into itself induces a projective 
mapping between the points of a secant and its image. 

DEFINITION. If n = 1 (mod 4), a triangle UVW such that each of the exterior 
points U, V, W is the pole with respect to the oval £ of the opposite side of 
the triangle will be called a self polar triangle with respect to E. If V and W are 
on the line Z, the triangle will be said to be a self polar triangle on I. 

THEOREM 2.7. Let n = 1 (mod 4). Let I and l\ be two secants of the oval 6, 
intersecting in an exterior point. Then a perspectivity from I onto l\ will be pro-
jective with respect to 6 if and only if self polar triangles on I are perspective to 
self polar triangles on l\. If the center of perspectivity is an exterior point V, the 
triangles are also perspective from the polar of V. 

Proof. A perspectivity on S carries absolute points into absolute points. 
If C is the pole of I and C\ is the pole of h, it follows from Theorem 2.3 that 
the center of perspectivity is on the line CC\. If CDE is a self polar triangle, 
then {AB: DE} is a harmonic set, where A and B are the absolute points on L 
The image {AiBi: DiEi} of {AB'.DE} will be a harmonic set if and only if 
Di and Ei are on each other's polars, i.e., CiDiEi is a self polar triangle. 
The last part of the Theorem follows from Theorem 2.1. 

Assumption Al does not tell us much about interior points. If n = — 1 
(mod 4), it is natural to extend this assumption in the following manner: 

ASSUMPTION A2. If {AB: UE) and {AiBx: UiE} are harmonic sets with 
respect to the oval Ê, where the point E is an interior point, then 

ABUE-x AxBxUxE, ABUE T B^AJJxE. 

We shall also make use of another Assumption. (Note Theorem 2.3.) 

ASSUMPTION B: Given two fundamental triangles ABC and AiBiCi, where 
A, B, Ai, Bi are absolute points of the oval Ê, then the triangles are perspective 
from the intersection of the secants AA\, and BB\ and also from the point of 
intersection of the secants AB\ and A\B. 
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LEMMA 2.2. Ifn = — 1 (mod 4), and Assumptions Al , A2, B are satisfied 
for the oval S, then the poles of the secants through each interior point 0 are 
collinear. 

Proof. Given any secant, corresponding to each exterior point on that secant 
there is an interior point which is its harmonic conjugate. Since the number of 
exterior points on a secant is equal to the number of interior points, it is 
likewise true that for every interior point on a secant there is an exterior point 
on the secant which is its harmonic conjugate. Let AB be a secant through 0, 
and let U be an exterior point such that {AB: UO] is a harmonic set. Let U\ 
be the pole of the secant AB. We shall show that the pole of every secant 
through 0 lies on the line UU\. 

Let CD be any other secant through 0 and let {CD: VO) be a harmonic 
set. Let Vi be the pole of CD. Then, by Assumption A2, the lines A C, BD, and 
UV are concurrent. Thus the line UV connects the point of intersection 
of the lines AC and BD with the point of intersection of AD and BC. Now 
consider the fundamental triangles ABUi and CDV\. The two sets of lines 
AC, BD, V\V\ and AD, BC, U\V\ are respectively concurrent. The lines 
UV and UiVi must be the same, i.e., V\ lies on the line UU±. 

THEOREM 2.8. If n = — 1 (mod 4), and Assumptions Al , A2, and B are 
satisfied for the oval S, then S determines a polarity. 

Proof. The polar of an interior point 0 can be taken as the line containing 
the poles of the secants through 0. We have completely determined a corres­
pondence between points and lines. This correspondence will be a polarity 
if, for any two points U and V such that V is on the polar of U, then U is 
on the polar of V. Theorem 2.1 takes care of the case where both U and V 
are exterior. The case where U is exterior and V is interior is taken care of 
by the way in which we defined the polar of an interior point. U interior and 
V exterior can be handled in a similar manner. The case where both U and 
V are interior is readily handled by an argument similar to those used in 
Theorems 2.1 and 2.3. 

3. Conies in projective planes. As remarked before, Baer (1) has shown 
that the absolute points of a polarity form an oval unless n is even 
or a square. In §2, we had a sort of quasi-polarity but were restricted by the 
fact that the relation of pole and polar was restricted to exterior points and 
secants. 

DEFINITION. A set of n + 1 points will be called a quasi-conic if (1) no 
three of them are collinear, and (2) they are the absolute points of a polarity. 

DEFINITION. A set of four collinear points {AB: CD] will be said to be 
harmonic with respect to the quasi-conic Ê if (1) A and B belong to S, (2) C 
and D are conjugate points of the polarity. 

https://doi.org/10.4153/CJM-1955-046-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-046-7


OVALS, DUALITIES, AND DESARGUES'S THEOREM 425 

ASSUMPTION A. Let {AB: UE] and {AiBi: UEi} be harmonic sets with 
respect to the quasi-conic S. Then ABUE — AiBiUEiand ABUE ^ B1A1UE1. 

DEFINITION. If Assumption A is satisfied for every pair of sets harmonic 
with respect to the quasi-conic Ê, then Ë will be said to be a conic. 

We will be able to put some of the theorems of §2 in a simpler form and to 
obtain some new ones. Many of the proofs are similar to those of §2, so we 
shall give the proofs only for those theorems which have no counterpart in 
§2. We shall number the theorems to facilitate cross-reference —e.g., Theorem 
3.3 will be analogous to Theorem 2.3. Theorems which carry over unchanged 
will be omitted. This will cause some gaps in the numbering of theorems. 

THEOREM 3.3. For a quasi-conic S, the following propositions are equivalent: 

(a) Assumption A. 

(b) Given two fundamental triangles ABC and AiBiCi, where A, B, A\, 
and Bi are absolute points, the triangles are perspective from the intersection of the 
secants AAi, and BB\, and also from the point of intersection of the secants 
AB1 and AXB. 

(c) The triangles in (b) are perspective from the polars of the points which are 
the centers of perspectivity in (b). 

(d) If the points of a complete quadrangle are all absolute points, then the 
diagonal points form a self polar triangle—i.e., each point is the pole of the 
opposite side. 

THEOREM 3.4. Let A, B, C, A i, Bi, C\ be six distinct absolute points of a conic. 
If A A i, BBi, and CC\ intersect in a point V, and if P, Q, and R are the respective 
points of intersection of the pairs of lines ABly A\B; BC\, B\C; and ACi, A\C; 
then P, Q and R are collinear. 

COROLLARY. If two conies have five points in common, then either they have 
a common tangent at one of these points or there is another point common to both. 

THEOREM 3.5. Let A, B, C be three points on a secant, and let A2, B2, C2 be 
three points on another secant, where A, B, A2, B2 are absolute points of a conic Ê. 
Then A, B, C can be carried into A2, B2, C2 by the product of at most two per-
spectivities on 6. 

THEOREM 3.5.1. Let {AB: UT] be a harmonic set with respect to the conic S, 
where U is an exterior point. Then there is a complete quadrangle such that U 
and T are diagonal points, while A and B lie on the other two sides of the quad-
rangle — i.e., {AB: UT} forms a harmonic set in the sense of the usual definition. 

Proof. Let U\ be the pole of the secant AB, so that U\A and U\B are 
tangents at A and B respectively. Let UA\ and UBi be tangents from U, 
tangent at the absolute points Ai and Bi. Since U is on AB, U and Z7i are 
conjugate so that U\ lies on A\B\. 
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Let UAi and UiA intersect in X, 
UA i and UiB intersect in F, 
UBi and UiA intersect in Z, 
UBi and U\B intersect in W. 

Then U and Ui are two of the diagonal points of the complete quadrangle 
XYZW. We shall show that T is the third diagonal point, i.e., XW and YZ 
intersect in T. 

Consider the fundamental triangles UAiBi and UiAB. By Theorem 3.3, 
they are perspective from the intersection of AB\ and A±B, and also from the 
polar of this point. The corresponding pairs of sides are UAi, UiB; UBU 

U\A\ and AB, AiBi. The points of intersection F, Z, and T are therefore 
collinear. Similarly, X, W, and T are collinear. Thus T is the third diagonal 
point. Since A and B lie on XZ and YW respectively, this completes our proof. 

THEOREM 3.7. A perspectivity on a conic S from a secant I onto a secant l\ 
will be projective with respect to Ë if and only if self polar triangles on I are 
perspective to self polar triangles on li. 

THEOREM 3.7.1. If perspectivities on 6 are projective with respect to the conic 
6, then any set harmonic with respect to the conic S can be carried into any set 
harmonic with respect to &by a product of perspectivities on C. 

The proof follows from Theorem 3.5. 

4. Ovals in transitive planes. A cyclic plane is a plane which possesses a 
cyclic group of collineations, transitive on the points of the plane. Zappa(12) has 
studied a more general class of transitive planes. The author is indebted to 
Professor B. Segre for suggesting that some of the results of this part might 
be applied to the more general class of transitive planes. 

A cyclic plane can be represented in the following manner: the points can 
be taken as a complete set of residues mod N = n2 + n + 1. Let a0, ai? . . . , an 

form a difference set mod N. That is, the set {at — af\,i ?* j (i,j = 0, 1 , . . . , n) 
contains each residue mod N exactly once. For any fixed s, the set {af — s} 
(i = 0, 1, . . . , n) will also be a difference set. The sets {at — s} can be taken 
as the lines of a projective plane and will be denoted by Is. In discussing cyclic 
planes, equations will denote congruences mod N. 

There are two known collineations in a cyclic plane: (1) the mapping 
x —> x + s, (2) for certain choices of m, the mapping x —> mx is a collineation. 
Such values of m are called multipliers. Hall (5) has showed that all factors of 
n are multipliers. There is at least one line which is left invariant by all 
multipliers. Take U to be such an invariant line. 

Now the mapping x —> lx forms a natural polarity (5). Two points x and y 
are conjugate points of the polarity if, for some i, x + y = atl since then 
x Ç ly and y Ç lx. The absolute points of the polarity will be the points x 
such that 2x = at (i = 0, 1, . . . , n) and will be the points of a quasi-conic. 
(If n is even, 2 is a multiplier and the absolute points all lie on l0. See (1, p. 83)). 
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More generally, x —> lx+2s forms a polarity in which x and 3; are conjugate 
if x + 3/ = a 1 — 2s. The absolute points are the points x such that 2# = at — 2s 
or x = Ja* — 5. Let E« denote the set \ax — s (i = 0, 1, . . . , n). S s then 
is a quasi-conic for each s, s = 0, 1, . . . , N. Now, the set 60 is a difference 
set mod N. The sets S5 form a projective plane x 1 in the same way that the 
sets lx formed the plane w. Moreover, So is invariant under the collineation 
x —> mx, m a multiplier. 

THEOREM 4.1. Given any three collinear points A, B, C, there exists a unique 
point D such that the set {AB: CD) is harmonic with respect to one of the quasi-
conics Ss. 

Proof. Since the conies 65 form the lines of a finite projective plane 7n, 
there is exactly one quasi-conic Es such that A and B are points on (£s. 
With respect to (£*, the point C has exactly one conjugate point D on the line 
containing A, B, and C. 

Next, consider the correlation x —> lmx, where m is a multiplier. (From here 
on, to avoid continual use of subscripts, we shall use small letters near the 
beginning of the alphabet to denote elements of U.) A point x will be an absolute 
point of the correlation if it lies on its image line lmx i.e., if x = a — mx for 
some a Ç /0. The absolute points of the correlation are thus the solutions of 
the equations (m + l)x = a, a £ l0. Now if m + 1 is a divisor of zero, then 
m is congruent to —1 modulo some factor of N. By Mann's theorem (7) on 
multipliers of even order, n must then be a square. If n is not a square, we 
have exactly n + 1 absolute points x = a{m + l)*"1, where a may take on 
any of the values ao, a±, . . . , an. 

If a(m + 1)_1 is an absolute point, its image line LaCm+i)"1 —him+i)'1 

is an absolute line, where b = ma Ç l0. 
We know that each absolute line contains at least one absolute point. 

Suppose that Za(m+i)_i contains the absolute point b(m + l)"1 . Then, for some 

01 b(m + l ) - 1 = c - a(m + l)"1 . 

Multiplying through by m + 1 and transposing, we get 

b — cm = c — a 

where a, b, c, cm Ç U. Since U is a difference set, this implies either 

(b = cm (b = c 
< or < 
\c = a [cm = a 

Therefore, either b = am or b = am~l. Conversely, if b = am or am -1 , then 
the absolute point b(m + l ) - 1 belongs to the absolute line 4(m+i)-1. 

Km = 1, we have the polarity x —> lx and each absolute line contains one 
absolute point. Even if m ^ 1, we may have ma = a for certain a Ç U if # 
is a fixed point under the collineation x —> wx. In all other cases, each absolute 
line L(W+D_1 contains the two absolute points aw_1(w + l ) " 1 and am(m + l ) - 1 

i.e., the image and inverse image of the absolute line. Hence 
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LEMMA 4.1. Each absoltue line of the correlation contains at most two absolute 
points. 

LEMMA 4.2. If (a) mis a multiplier, (b) n is not a square, (c) a G ï0, ma 9e a 
then (m + l)a does not belong to IG. 

Proof. An element of Jo multiplied by a multiplier gives an element of U. 
If (m + l)a G U, then m(m + l)a and m2{m + l)a also belong to U. If a, 
ma, m2a are distinct, we will be led to a contradiction of Lemma 4.1. If m2a = a, 
but ma 9* a, then (m — l)a ^ 0, (m — 1) (w + 1)& = 0 so that m + 1 
is a divisor of zero which implies that n is a square. 

THEOREM 4.2. Tf w is not a square and if m is a multiplier 9*1, then m + 1 
is not a multiplier. 

Proof. If m + 1 is a multiplier and a G I0 then (m + l)a> G ?o. By Lemma 
4.2, this can only happen if ma = a for every a Ç Z0. Let (m — 1, iV) = iVi. 
Let 7V2 = N/Ni. If (ra — l)a = 0, then a must contain N2 as a factor. If 
this be true for every a Ç Z0 then all differences between elements of U are 
multiples of iV2 and U cannot be a difference set. 

COROLLARY. If mi and mi are multipliers, then m\ + m2 is not a multiplier. 

Remark. These are strengthened versions of Mann's theorem 3 and Corol­
lary 1 in reference (7). The corresponding proposition for m = 1 is as follows: 
"2 is a multiplier if and only if n is even." This has already been noted by 
Hall (5). 

Of particular interest is the case where m = n. Now the set {at} of points 
£Ïo is the same as the set {n~1ai} ; the set at(n + 1)_ 1 of absolute points is 

the same as the set {— a^ since n(n + 1) = — 1 (mod N = n2 + n + 1). 

THEOREM 4.3. The absolute points of the correlation x —» lnxform an oval 6*. 

Proof. We have already proved that there are n + 1 absolute points. 
Now if a and b Ç I0 then the line la+b contains —a = b— (a + b) and 
— b = a — (a + b). Suppose that —a, —b, ~c are collinear, where a, b, 
c Ç U. Then la+b = Ia+C = I&+c so that a + ô = a + c = ô + c and a, b, and c 
are not distinct. 

THEOREM 4.4. Consider the collineation x —» x + a — b, which carries —a 
into —b, where a, b G IQ. The intersection of each line through —a and its image 
line through —b is a point of S*. 

Proof. The lines through —a can be written in the form Ja+C where c G U. 
(If c = a, we have the tangent line at —a.) The image line under the collinea­
tion is the line Ia+c_fl+& = lc+b which intersects la+c in the point —c. 

We have earlier remarked that in any plane with a polarity, self polar 
triangles which are perspective from a point are also perspective from a line. 
We shall proceed to demonstrate pairs of self polar triangles which are perspec­
tive from a point. 
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LEMMA 4.3. If a belongs to Z0 but is not equal to 0, N/3 or 2N/3, then —a, 
— na, — n2a are the vertices of a triangle which is self polar under the polarity 

X ' lx. 

Proof. Since a + na = — n2a, — n2a is the pole of la+na> the line through —a 
and — na. Similarly, —a and — na are the poles of the other two sides, — a, 
— na, —n2a are distinct unless a = 0, N/3 or 2N/3. We have already seen 
that they are not collinear (Theorem 4.3). 

THEOREM 4.5. If n is odd and not divisible by 3, then there exist pairs of self 
polar triangles which are perspective from 0 and therefore from U. 

Proof. 0 does not belong to Z0 unless n is divisible by 3 (3). If n = 1 (mod 3), 
N = 0 (mod 3) and there may be three lines invariant under all multipliers. 
If so, two of these will contain 0, but we can still take U as a line which does 
not contain 0.) Likewise, 0 does not belong to the oval S*. Consider a secant 
intersecting £* in the points — a, —b where a, b 6 ÏQ. Then the triangles 
— a, —na, —n2a and —b, —nb> —n2b are the desired triangles provided 
a ^ N/3 or 2N/3. 

Suppose that a projective plane T admits a group 2 of collineations which 
(a) is transitive on the points and lines of w, and (b) the only element of 2 
which leaves fixed a given point 0 is the identity. Zappa (12) calls such a 
plane a regular transitive plane. We shall need to require in addition that 
(c) 2 is abelian. 

Associated with each point x of TT will be the element ax of 2 which carries 0 
into x. Let Z0 denote one of the lines of w. Let lx be the image of Z0 under the 
collineation ax~

1. Then if x G Zy, vx = o"^ - 1 for some a 6 Z0. If 2 is abelian, 
<Ty — o-ao'x~1 and y Ç lx. Hence the mapping x —> lx is a polarity. The absolute 
points are the points x such that ax

2 = <ra for some a G U. 
Let —x denote the image of 0 under <rx~

l\ let x + y be the image of 0 under 
the collineation crxay. If a and b Ç I0 then Ia+6 contains —a and —6. As in 
Theorem 4.3, if a0, au • • • , an are the points of U it follows that —a0, — au • . . , 
— aw form an oval 6*. The analogue of Theorem 4.4 goes through. Let IJL be 
a collineation (not the identity) which leaves 0 and I0 fixed. Then JJ, will also 
carry Ê* into itself. Denote the image of x under /z by /z(x). Then the mapping 
x —» ïfx(x) is a correlation. If x is an absolute point of this collineation, then 
o~x = ^a^n{x)~l for some a G Zo and crxa^x) = aa. As in Lemma 4.2, it follows 
that we cannot have points a and b Ç Z0 such that cr&o-M(&) = cra unless ju(^) = & 
orM

2(Z>) = &. 
If /z is such that, for every point x, 

O'xO'fJi(x)^nHx) ~ 0*0 

then the absolute points of the correlation x —» Z^) satisfy the equation 

- l _ 
0"a — <?> 2(z) 

i.e., —a — fx2(x), fx~2( — a) = x where a G Z0, so that —a and n~2(—a) belong 
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to (S*. Thus fè* consists of the absolute points of the correlation x —> l^). 
For the analogue to Theorem 4.5 to go through, /x must be of order 3. 

5. The existence of Fano's configuration. In this part, we are concerned 
with the case where n is even. Here we shall not be concerned with ovals, 
which do not have the same properties as when n is odd. However, Theorem 
5.1 is, in a sense, the counterpart of Theorem 4.5. Recall that, if n is even, 
and not a square, the absolute points of a polarity are the points of a line. 

THEOREM 5.1. Let the absolute points of a polarity be the points on a line o, 
and let 0 be the pole of o. Let A, B, C be the vertices of a self polar triangle, where 
A, B, C are not absolute points and are all different from 0. Then the diagonal 
points of the complete quadrangle with vertices 0, A, B, C are all on o. 

Proof. First we show that the lines OA and B C must intersect in a point of o. 
Let D denote the intersection of the line BC with o. Since A is the pole of BC, 
A is conjugate to D. Therefore, the polar of D goes through 0 and A. But D 
is an absolute point, hence the polar of D goes through D, i.e., the line OA 
contains D. Thus D is a diagonal point of the quadrangle OA BC. Similarly, 
the other two diagonal points lie on o. 

Remark. Note that Theorem 5.1 does not require that the plane be finite. 

THEOREM 5.2. In a cyclic plane, if n is even and not a square, if a Ç U, 
then 0, — a, — 2a, —4a are the vertices of a complete quadrangle for which the 
diagonal points are collinear. 

Proof. For a cyclic plane, n cannot be divisible (5) by both 2 and 3. Now 
N = 0 (mod 3) if and only if n = 1 (mod 3). If N = 0 (mod 3), the multiplier 
2 is even order and n must be a square. Thus n = 1 (mod 3) ; 0 G U and 3 is 
not a divisor of zero. We conclude that 0, —a, —2a, —4a are distinct. Theorem 
4.3 applies as well when n is even, so —a, —2a, —4a are not collinear. It may 
be shown by similar methods that no three of the points 0, —a, —2a, —4a 
are collinear. 

Now, since 2 is a multiplier, U contains a, 2a, 4a, 8a. (8a does not necessarily 
differ from a). Hence l2a contains 2a — 2a = 0, a — 2a = — a, 4a — 2a = 2a. 
Similarly, Ua contains —4a, —2a, and 2a. Thus the lines 0, —a and —4a, 
— 2a intersect in 2a, i.e., 2a is one of the diagonal points. Similarly, the lines 
0, —2a and —a, —4a intersect in the point —3a. Now Ua is the line 0, —4a 
while ha is the line —a, —2a. If we denote by x the intersection of ha and Z3a 

then for some c, d Ç Zo, 
c — 8a = d — 3a = x. 

Then c and d are the elements of U such that 

c — d — 8a — 3a = 5a. 
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To show that the diagonal points 2a, —3a, x are collinear, consider the line 
ld+za. This line contains 

d - (d + 3a) = - 3a, c - (d + 3a) = 5a + d - (d + 3a) = 2a and 
2d - (d + 3a) = x. 

THEOREM 5.3. Suppose that a projective plane admits a collineation of order 
two such that every point on a line I is fixed and every line through a point P Ç lis 
fixed. If A and B are two non-fixed points not collinear with P, if Ai and B\ are 
the respective images of A and B> then the diagonal points of the quadrangle 
ABAi B\ all lie on I. 

Proof. A and A\ are collinear with P ; similarly, B and B\ are collinear with 
P. Hence P is one of the diagonal points. The line A\B\ is the image of AB; 
if Q is the intersection of AB with Z, A\B\ must also go through Q. Similarly, 
ABi and AiB must intersect in a point on Z, since AB\ *± Ax B. 
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