
JFP 14 (5): 519–546, September 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796803004970 Printed in the United Kingdom

519

Linearization of the lambda-calculus and its
relation with intersection type systems

MÁRIO FLORIDO and LUÍS DAMAS

Department of Computer Science, Faculty of Science & LIACC, University of Porto,

R. do Campo Alegre 823, 4150-180 Porto, Portugal

(e-mail: {amf,luis}@ncc.up.pt)

Abstract

In this paper we present a notion of expansion of a term in the lambda-calculus which

transforms terms into linear terms. This transformation replaces each occurrence of a variable

in the original term by a fresh variable taking into account non-trivial implications in the

structure of the term caused by these simple replacements. We prove that the class of terms

which can be expanded is the same of terms typable in an Intersection Type System, i.e.

the strongly normalizable terms. We then show that expansion is preserved by weak-head

reduction, the reduction considered by functional programming languages.

Capsule Review

A lambda term is linear if any bound or free type variable occurs at least once in it.

Linear lambda terms are strongly normalizable and typable in Curry’ simple type system,

and their implementation can support various optimization techniques. This paper presents a

methodology based on intersection types to translate any strongly normalizable lambda term

in a linear one. The translation function (called Expansion in the paper) preserve meaning

in the sense that it commutes with head reduction for arbitrary terms and with general beta

reduction for terms of the lambda-l-calculus. Expansion is defined via the typing of a term in

the full intersection type system and is thereof undecidable. However, combined with some

proper decidable restriction of the intersection type system, it could provide a basis for some

program optimization techniques.

1 Introduction

Linear programs are simple. Concerning implementation issues, for linear programs

one may safely inline the term bound to any variable, or safely update structures in

place. Type inference for linear programs is easy and has nice properties which do

not hold in general. In this paper we show that linear programs (linear λ-terms) are

enough to fully characterize terms typable by Intersection Types. By linear λ-terms

we mean terms where every λ-abstraction binds at most one variable occurrence.

Intersection types originate in the works of Coppo & Dezani-Ciancaglini (1980)

and Barendregt et al. (1983). ITSs without the universal type ω, as presented in

Coppo & Dezani-Ciancaglini (1980), give a characterization of strongly normalizable

terms, in the sense that a term is typed in an intersection type system without ω

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

520 M. Florido and L. Damas

if and only if it is strongly normalizable. These systems type more terms than the

Curry type system (Curry, 1934) or the type system of pure ML (Damas & Milner,

1982). New attention was given to intersection type systems due to a result of Kfoury

& Wells (1982), which proved that these systems are decidable for restrictions of

finite rank, which correspond to a large class of typable terms. Although Kfoury

and Wells’s work made the technology of intersection types more accessible avoiding

the use of the complicated notion of type expansion, intersection type systems are

rather complex systems whose definitions can be quite difficult to understand.

ITSs are based on the idea of explicitly typing with a different type each different

occurrence of a variable. In this way they are capable of typing terms where sharing

of variables with non-unifiable types may cause non-typification in other type

systems. For example, in ITS λx.xx has type (α ∩ α → β) → β. A more interesting

example is the term T ≡ (λx.xx)I , where I is the identity function λx.x. This term

has type α → α which does not involve intersections, although it is not typable in

the Curry Type System, because it has a non-typable subterm. However notice that

there is a linear term, (λx1x2.x1x2)II , which has the same type in the Curry Type

System, and which is a linear version of (λx.xx)I in the sense that each occurrence

of a shared variable in (λx.xx)I corresponds to a distinct variable in (λx1x2.x1x2)II .

In this paper, we address the following problem: to which extent can we

approximate a typed term in the intersection type system by a linear term?

The first difficulty in answering this question is what is meant by linear version

of a term. Consider the following example: Suppose one wants to define the linear

version of the term (λxy.xy)(λz.zz)(λx.x). In this term the only variable which occurs

more than once is z. Thus we can expand (λz.zz) to get the term (λz1z2.z1z2). But

(λz.zz) will have y as an argument after one reduction step. Thus y in (λxy.xy) has

to be copied and we get the term

(λxy.xyy)(λz1z2.z2z2)(λx.x)

Now, a variable which occurred once in the original term occurs twice in the

expanded term, thus the expansion process has to go on, expanding (λxy.xyy) to

(λxy1y2.xy1y2). Notice that y will be replaced by λx.x in the original version of the

term, thus, as y was expanded to two new variables we have to duplicate (λx.x) in

the expanded term to get the final term:

(λxy1y2.xy1y2)(λz1z2.z1z2)(λx.x)(λx.x)

The main contributions of this paper are the following:

• A notion of term expansion. Under that notion we show that one can define

the linear version of a term if and only if the term is typable in an intersection

type system which types exactly the strongly normalizable terms.

• To show that every term typable in an intersection type system has an

expansion which is a linear term typable in the Curry type system (which

is the simplest type system for the λ-calculus).

• Linear versions are preserved by weak head reduction, a notion of reduction

considered by functional language compilers. This shows that expansion

preserves computational behaviors of programs.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 521

These results have theoretical implications because we fully characterize a large

class of functions (the functions definable by the strongly normalizable terms) with a

rather simple class: the linear λ-terms. They also have practical implications because,

although our notion of expansion is not decidable (because otherwise knowing if a

term is strongly normalizable would be decidable, which it is not) it characterizes the

same set of terms as intersection type systems for which there are decidable classes

with impact in programming language technology (van Bakel, 1993; Jim, 1996;

Kfoury & Wells, 1999). This suggests that decidable restrictions of our framework

may be successfully defined with applications in program transformation.

In this paper we assume that the reader is familiar with the λ-calculus and type

systems for the λ-calculus. Good surveys of the area are Barendregt (1992) and

Hindley (1997).

We start in section 2 defining the type systems that are going to be used later

in the paper. Section 3 defines the notion of expansion. In section 4 we show

that expansion characterizes strong normalization. In section 5 we show that linear

versions preserve types under a standard type transformation. In section 6 we show

that expansion is preserved by several notions of reduction. Finally, we present the

related work and point some directions for future work.

2 Types

Here we describe the type systems used in the rest of the paper.

2.1 Curry Types

The Curry type system (Curry, 1934) (sometimes called the Simple type system) is

the basis of every type system for the λ-calculus. Here we describe this system along

the lines presented in Hindley (1997). From now on terms of the λ-calculus are

considered module α-equivalence. We also assume that in a term M no variable is

bound more than once and no variable occurs both free and bound in M.

Definition 1

An infinite sequence of type-variables is assumed to be given. Simple types are

expressions defined thus:

1. each type-variable is a simple type;

2. if σ and τ are simple types then (τ → σ) is a simple type.

Definition 2

A finite set of pairs of the form x : τ, where x is a term variable and τ is a simple

type, is consistent if and only if the term variables are all distinct.

Definition 3

A basis is a consistent finite set of pairs of the form x : τ, where x is a term variable

and τ is a simple type.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

522 M. Florido and L. Damas

Simple type derivations are defined thus:

VAR {x : τ} �C x : τ

ABS − I
Γ ∪ {x : τ} �C M : σ
Γ �C λx.M : τ → σ

, if Γ ∪ {x : τ} is consistent

ABS − K Γ �C M : σ
Γ �C λx.M : τ → σ

, if x �∈ FV (M)

APP
Γ1 �C M : τ → σ,Γ2 �C N : τ

Γ1 ∪ Γ2 �C MN : σ
, if Γ1 ∪ Γ2 is consistent

M : σ is derivable from a basis Γ in the Curry type system, notation Γ �C M : σ, if

and only if it is obtained using the previous rules.

Usually the Curry type system is defined using the same basis in the application

rule and a variable rule of the form:

Γ � x : τ, if x : τ ∈ Γ

The definition presented here guarantees that every type in the basis is used in the

type derivation. This feature is going to be important in subsequent results.

Notice that the two definitions are equivalent in the sense that Γ1 �C M : σ if and

only if there is a basis Γ2 ⊇ Γ1 such that Γ2 � M : σ in the usual definition.

2.2 Intersection types

Intersection types were introduced in Coppo & Dezani-Ciancaglini (1980) as power-

ful type systems with the ability of typing different occurrences of the same variable

with different types. This makes it possible to type ‘dangerous’ self-applications such

as λx.xx. Notice that λx.xx is not typable in the Curry type system and in ML. Here

we define an intersection type system where every type declared in the environment

is used in the type derivation, a property which is going to be crucial in subsequent

results.

Definition 4

An infinite sequence of type-variables is assumed to be given. Intersection types are

expressions defined thus:

1. each type-variable is a type;

2. if σ and τ1 . . . τn are types (for n � 1) then (τ1 ∩ . . . ∩ τn → σ) is a type.

We treat ∩ in an associative and commutative manner. Note that in contrast with

the Coppo–Dezani type system ∩ is not idempotent. Thus α∩ α → β is not the same

as α ∩ α ∩ α → β. This property guarantees that if a variable x occurs free in a term

M then the types for x in the linearization of λx.M are in a one-to-one relation with

the number of occurrences of x in M.

Definition 5

A type environment is a finite set of pairs of the form x : τ1 ∩ . . . ∩ τn, where x is a

term variable, τ1 . . . τn are types, and the term variables are all distinct.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 523

Definition 6

Let Γ1 and Γ2 be two type environments. Then Γ1 ∧ Γ2 is the new environment

given by x : σ ∈ Γ1 ∧ Γ2 if and only if σ is defined thus

σ =




σ1 ∩ σ2 if x : σ1 ∈ Γ1 and x : σ2 ∈ Γ2

σ1 if x : σ1 ∈ Γ1 and ¬∃σ.x : σ ∈ Γ2

σ2 if x : σ2 ∈ Γ2 and ¬∃σ.x : σ ∈ Γ1

The intersection type system used in the rest of the paper is defined thus:

VAR {x : τ} � x : τ

ABS − I
Γ ∪ {x : τ1 ∩ . . . ∩ τn} � M : σ
Γ � λx.M : τ1 ∩ . . . ∩ τn → σ

ABS − K Γ � M : σ
Γ � λx.M : τ → σ

, if x �∈ FV (M)

APP
Γ0 � M : τ1 ∩ . . . ∩ τn → σ,Γ1 � N : τ1 . . .Γn � N : τn

Γ0 ∧ Γ1 ∧ . . . ∧ Γn � MN : σ

The two different ABS rules are necessary because in this system if there is a

derivation of Γ � M : σ and x �∈ FV (M) then there is not a type declaration for x in

Γ. The set of types for a given term M in this system is strictly included in the set of

types for M in the original intersection type system of Coppo & Dezani-Ciancaglini

(1980). For example the type (α1 ∩ α2) → α1 types λx.x in the Coppo–Dezani type

system, but not in the system used in this paper. The reason for this is that types in

intersections for free variables can only be introduced with the APP rule and thus

each element of the intersection corresponds to a type that is actually used in the

type derivation. However, the set of terms typable in both systems is the same and

corresponds to the strongly normalizable terms.

Theorem 1

A λ-term M is strongly normalizable (i.e. with no infinite reduction sequences starting

from M) if and only if M is typable in the intersection type system presented.

Proof (Sketch)

The if part is proved by transforming a derivation in our type system in a derivation

in the Coppo–Dezani type system (which types all strongly normalizable terms).

This can be done by induction in the length of the derivation tree. The only-if part

is similar to the proof of the same property for the Coppo–Dezani type system

presented in Amadio & Curien (1998). The technique used is to show that if a

term M[N/x] is typable in an intersection type system with type τ then the redex

(λx.M)N is also typable with the same type. The result follows by lifting this property

to arbitrary terms using induction on the size of the term and on the maximal length

of derivations starting in the term. �

One peculiarity of this type system is that it does not satisfy the property of

subject reduction as it is shown by the following example:

Example 1

In this system

{z : α2 → β} � λx.(λy.z)xx : α1 ∩ α2 → β

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

524 M. Florido and L. Damas

and

λx.(λy.z)xx→
β
λx.zx

but

{z : α2 → β} �� λx.zx : α1 ∩ α2 → β

The lack of subject reduction also happens in other restrictions of intersection

type systems which are relevant in the sense that every type in the environment has

to be used in the type derivation (Coppo & Giannini, 1995; Damiani & Giannini,

1994; Kfoury, 1996; Kfoury & Wells, 1999). This property will be crucial in our

work since type information will direct the transformation from terms into linear

terms.

3 Expansions

In this section we define the notion of expansion of a λ-term. Expansion consists of

replacing each occurrence of a variable in a term by a new variable. This operation

may involve other transformations in the term. For example if x is expanded k times

in (λx.M)N then N has to be copied k times. However if the expansion is inside N

then M may be changed, because possible arguments of x may have to be copied.

To define the expansion we face one key problem: the expansion of MN is a

term of the form M0N1 . . . Nk where M0 is the expansion of M and N1 . . . Nk are

expansions of N. The problem here is to find the right k. It is easy to determinate

the number of new arguments when M is of the form λx.M ′ (just check how many

fresh variables replace x), but if M is itself an application this information depends

on expansions made inside M. The best way to propagate this information is by

using types. As we need to explicitly count the number of types of each function

argument we use intersection types. If M has type τ1 ∩ . . .∩τk → σ in the intersection

type system we know that MN will be expanded to a term of the form M0N1 . . . Nk .

We now formalize these ideas by defining the expansion operation.

Let us first formalize the expansion of free variables.

Definition 7

A variable expansion is an expression of the form

x : S

where x is a variable and S is a set of pairs of the form y : τ where y is a variable

and τ an intersection type. (x : S should be read informally as “x expands to the

variables in S”.)

Definition 8

An expansion context A is any finite set of variable expansions

A = {x1 : S1, . . . , xn : Sn}

where the variables {x1 . . . xn} are all different and the Si are disjoint.

We now define an operation which appends two expansion contexts.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 525

Definition 9

Let A1 and A2 be two expansion contexts. Then A1
 A2 is a new context such that

x : S ∈ A1
 A2 if and only if

S =




S1 ∪ S2 if x : S1 ∈ A1 and x : S2 ∈ A2

S1 if x : S1 ∈ A1 and ¬∃S.x : S ∈ A2

S2 if x : S2 ∈ A2 and ¬∃S.x : S ∈ A1

From now on when we write A
 {x : S} we assume that x does not occur in A. We

are now able to formalize the notion of term expansion:

Definition 10

Given a pair M : σ, where M is a term and σ an intersection type, a term N and an

expansion context A we define a relation E(M : σ) � (N,A) called expansion. If A is

empty we shall write just E(M : σ) � N. Expansions are defined by

E(x : τ) � (y, {x : {y : τ}})
if x is a variable and y is a fresh variable

E(λx.M : τ1 ∩ . . . ∩ τn → σ) � (λx1 . . . xn.M
∗, A)

if x occurs in M and

E(M : σ) � (M∗, A ∪ {x : {x1 : τ1, . . . , xn : τn}})
E(λx.M : τ → σ) � (λy.M∗, A)

if x does not occur in M,

y is a fresh variable and

E(M : σ) � (M∗, A)

E(MN : σ) � (M0N1 . . . Nk, A0
 A1
 . . .
 An)

if for some k > 0 and τ1, . . . τk ,

E(M : τ1 ∩ . . . ∩ τk → σ) � (M0, A0) and

E(N : τi) � (Ni, Ai), (1 � i � k)

Remark: it is possible that in order to define E(M : σ) we must take a representation

of σ with some redundancy, e.g. instead of:

E(λx.x(xx) : ((α → α) ∩ α) → α)

we may require:

E(λx.x(xx) : ((α → α) ∩ (α → α) ∩ α) → α)

in order to get a number of types in the intersection which is the same as the free

occurrences of the parameter in the function body.

As we shall see, expansion relates λ-terms with their linear versions. By linear we

mean exactly the following set of terms:

Definition 11

A linear λ-term is a λ-term M such that:

1. for each subterm λx.N of M, x occurs free in N at most once,

2. each free variable of M has just one occurrence in M.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

526 M. Florido and L. Damas

This definition follows the definition of linear terms presented in Kfoury (2000).

Some people call this class of terms affine, and use the word linear for terms λx.M

where x occurs free exactly once in M.

Lemma 1

For all N, M : σ and A, if E(M : σ) � (N,A), then N is a linear term.

Proof

By structural induction on M. The cases where M is a variable and a term of

the form λx.N are trivial by structural induction. We just present the case where

M ≡ M1M2. In this case

E(M1M2 : σ) � (M0N1 . . . Nk, A0
 A1
 . . .
 An)

and

1. E(M1 : τ1 ∩ . . . ∩ τn → σ) � (M0, A0)

2. E(M2 : τi) � (Ni, Ai), (1 � i � k)

By the induction hypothesis M0 and N1, . . . , Nk are linear. Notice that the free

variables of M0, N1, . . . , Nk are all different, because the expansion of an occurrence

of a variable creates a fresh variable. Thus M0N1 . . . Nk is linear. �

Lemma 2

Let E(M : σ) � (N,A
 {x : {x1 : τ1, . . . , xk : τk}}). Then x occurs free in M k times.

Proof

By structural induction on M.

1. Base case: trivial by the definition of expansion.

2. Induction step:

(a) M ≡ λy.M1. In this case by the induction hypothesis x occurs free in M1

k times. Thus the same happens with λy.M1.

(b) M ≡ M1M2. The result follows applying the induction hypothesis to M1

and M2 and noticing that the variables {x1, . . . , xk} are all distinct, because

any occurrence of a variable in the expansion of a term has exactly one

occurrence.

�

From now on if E(M : σ) � (N,A) we will refer to N as one linear version of M.

We now present some examples.

Example 2

Let I ≡ λx.x and M ≡ λx.xx. Let us show step by step how to calculate an expansion

of (MI : α → α):

E(x : (α → α) → (α → α)) � (x1, {x : {x1 : (α → α) → (α → α)}})

and

E(x : α → α) � (x2, {x : {x2 : α → α}})

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 527

thus

E(xx : α → α) � (x1x2, {x : {x1 : (α → α) → (α → α), x2 : α → α}})
and

E(λx.xx : (((α → α) → (α → α)) ∩ (α → α)) → α → α) � λx1x2.x1x2

It easy to show that

E(I : α → α) � I

and

E(I : (α → α) → (α → α)) � I

thus

E(((λx.xx)I) : α → α) � (λx1x2.x1x2)II

Note that if

E(xx : α → α) � (x1x2, {x : {x1 : (α → α) → (α → α), x2 : α → α}})

it is also true that

E(xx : α → α) � (x1x2, {x : {x2 : α → α, x1 : (α → α) → (α → α)}})

because {x1 : (α → α) → (α → α), x2 : α → α} is a set and thus there is not a fixed

order among its elements. Thus we also have

E(λx.xx : ((α → α) ∩ ((α → α) → (α → α)))) → α → α) � λx2x1.x1x2

and consequently

E(((λx.xx)I) : α → α) � (λx2x1.x1x2)II

Example 3

Let M ≡ (λxy.xy)(λx.xx)z. Then

E(M : β) � ((λx1y1y2.x1y1y2)(λx2x3.x2x3)z1z2, {z : {z1 : α → β, z2 : α}})

Example 4

Let I ≡ λx.x and M ≡ (λf.f(λx.xx)(fI))I Then

E(M : α → α) � (λf1f2f3.f1(λx1x2.x1x2)(f2I)(f3I))III

Notice in this example the use of type information to control the number of

expansions. In(λf.f(λx.xx)(fI))I the fact that f is going to be the identity function

gives f three different types, one for the identity function applied to λx.xx, and two

more types, one for each type in the intersection in the argument type of f(λx.xx).

These three types give rise to the three new expansion variables f1, f2 and f3. The

intersection of two types in the argument type of f(λx.xx) gives rise to the two new

terms (f2I) and (f3I).

Example 5

Let M ≡ (λvxyz.v(y(vxz)))I . Then

E(M : (α → β) → (β → σ) → α → σ) � (λv1v2xyz.v1(y(v2xz)))II

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

528 M. Florido and L. Damas

This last example is used in Hindley’s book (Hindley, 1997) to show that a term M

may have a principal type in the Curry type system which is less general than the

principal type of its normal form. In fact, in the Curry type system, M has principal

type (α → β) → (β → α → β) → α → α → β and its normal form, λxyz.y(xz), has

principal type (α → β) → (β → σ) → α → σ. The reason for this is that in M the two

occurrences of v must have the same type, but when v is replaced by I during the

reduction process we drop that restriction. The interesting fact is that the expansion

of M, λv1v2xyz.v1(y(v2xz)))II , has type (α → β) → (β → σ) → α → σ in the Curry

type system, because when we expand v we do not have to impose the same type

for v1 and v2.

4 Strong normalization

Here we show that terms that we can expand are exactly the terms typable in an

Intersection Type System, i.e. the strongly normalizable terms. This result shows that

there is a clear connection between intersection type systems, which give different

types to different occurrences of the same variable and expansion where each

occurrence of a variable is replaced by a new variable.

Let us first define two functions which transform expansion contexts in type

environments and vice versa.

Definition 12

Let Γ be a type environment and {x1, . . . xn} be fresh term variables. e(Γ) is the

expansion context defined thus:

e(Γ) = {x : {x1 : τ1, . . . , xn : τn}|x : τ1 ∩ . . . ∩ τn ∈ Γ}

Definition 13

Let A be an expansion context. l(A) is the type environment defined thus:

l(A) = {x : τ1 ∩ . . . ∩ τn|x : {x1 : τ1, . . . , xn : τn} ∈ A}

Lemma 3

Let Γ1 and Γ2 be type environments. Then

e(Γ1)
 e(Γ2) = e(Γ1 ∧ Γ2)

Proof

By the definitions of ∧ and
. �

Lemma 4

Let A1 and A2 be two expansion contexts. Then

l(A1) ∧ l(A2) = l(A1
 A2)

Proof

By the definitions of ∧ and
. �

Lemma 5

Let M be a λ-term such that there is an environment Γ and an intersection type σ

such that Γ � M : σ. Then there is a linear term N such that E(M : σ) � (N, e(Γ)).

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 529

Proof

By structural induction on M.

1. Base case: M is a term-variable x. {x : τ} � x : τ. Then E(x : τ) � (y, {x : {y :

τ}}) where y is a fresh variable. The result follows noticing that {x : {y : τ}} =

e({x : τ}).
2. Induction step:

(a) M is of the form λx.N and x occurs in N. In this case Γ∪{x : τ1 ∩ . . .∩τn} �
N : σ. By the induction hypothesis,

E(N : σ) � (N ′, e(Γ) ∪ {x : {x1 : τ1, . . . , xn : τn}})

Thus by the definition of expansion

E(λx.N : τ1 ∩ . . . ∩ τn → σ) � (λx1 . . . xn.N
′, e(Γ))

(b) M is of the form λx.N and x does not occur in N. In this case Γ � N : σ.

By the induction hypothesis,

E(N : σ) � (N ′, e(Γ))

and by the definition of expansion

E(λx.N : τ → σ) � (λy.N ′, e(Γ))

(c) M is of the form M1M2. In this case we have

Γ0 ∧ Γ1 ∧ . . . ∧ Γn � M1M2 : σ

Thus

i Γ0 � M1 : τ1 ∩ . . . ∩ τn → σ

ii Γi � M2 : τi(1 � i � n)

By the induction hypothesis:

i E(M1 : τ1 ∩ . . . ∩ τn → σ) � (M0, e(Γ0))

ii E(M2 : τi) � (Ni, e(Γi)), (1 � i � n)

Thus, by the definition of expansion,

E(M1M2 : σ) � (M0N1 . . . Nn, e(Γ0)
 . . .
 e(Γn))

and finally by lemma 3

E(M1M2 : σ) � (M0N1 . . . Nn, e(Γ0 ∧ . . . ∧ Γn))

�

Lemma 6

Let M be a λ-term such that there is an expansion context A, an intersection type

σ, and a linear term N such that E(M : σ) � (N,A). Then l(A) � M : σ.

Proof

By structural induction on M.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

530 M. Florido and L. Damas

1. Base case: M is a term variable x. In this case E(x : τ) � (y, {x : {y : τ}}). We

have l({x : {y : τ}}) = {x : τ}. Finally {x : τ} � x : τ.

2. Induction step:

(a) M is of the form λx.N, and x occurs in N.

E(λx.N : (τ1 ∩ . . . ∩ τn → σ)) � (λx1 . . . xn.N
′, A)

where

E(N : σ) � (N ′, A ∪ {x : {x1 : τ1, . . . , xn : τn}})
By the induction hypothesis

l(A) ∪ {x : τ1 ∩ . . . ∩ τn} � N : σ

Thus

l(A) � λx.N : τ1 ∩ . . . ∩ τn → σ

(b) M is of the form λx.N and x does not occur in N.

E(λx.N : τ → σ) � (λy.N ′, A)

where

E(N : σ) � (N ′, A)

By the induction hypothesis

l(A) � N : σ

Thus

l(A) � λx.N : τ → σ

(c) M is of the form M1M2. In this case we have:

E((M1M2) : σ) � (M0N1 . . . Nk, A0
 . . .
 Ak)

and

i E(M1 : τ1 ∩ . . . ∩ τn → σ) � (M0, A0)

ii E(M2 : τi) � (Ni, Ai)(1 � i � n)

By the induction hypothesis

i l(A0) � M1 : τ1 ∩ . . . ∩ τn → σ

ii l(Ai) � M2 : τi(1 � i � n)

Thus

l(A0) ∧ . . . ∧ l(An) � M1M2 : σ

Finally, by lemma 4,

l(A0
 . . .
 An) � M1M2 : σ

�

Theorem 2

Let M be a λ-term. Then M is strongly normalizable if and only if there are a linear

term N, an expansion context A and a type σ such that E(M : σ) � (N,A).

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 531

Proof

By theorem 1 the stronlgy normalizable terms are the terms typable in the intersection

type system presented. The result follows by Lemmas 5 and 6. �

5 Expansion and types

In Bucciarelli et al. (1999), a translation from intersection types to Curry types

was given and used to show that derivations in an intersection type system with

idempotent intersections can be transformed into terms typed in the Curry type

system. Here we show that our definition of expansion preserves this translation.

In fact, let T be the translation from intersection types to Curry types defined in

Bucciarelli et al. (1999). Then, if M is typable in the intersection type system with

type σ, and E(M : σ) � (N,A) then N is typable in the Curry type system with type

T(σ).

Definition 14

T is a translation from intersection types to Curry types defined by:

1. T(α) = α, if α is a type variable;

2. T((τ1 ∩ . . . ∩ τn) → σ) = T(τ1) → . . . → T(τn) → T(σ).

The previous definition can be extended to expansion contexts:

Definition 15

Let Te be a translation from expansion contexts to bases defined thus:

1. Te(∅) = ∅;

2. Te(A ∪ {x : {x1 : τ1, . . . , xn : τn}}) = Te(A) ∪ {x1 : T(τ1), . . . , xn : T(τn)}.

Theorem 3

Let E(M : σ)�(N,A). Then Te(A) �C N : T(σ), where �C stands for type derivation

in the Curry type system.

Proof

By structural induction on M.

1. Base case. M is a term variable x. In this case E(x : τ) � (y, {x : {y : τ}}).
Te({x : {y : τ}}) = {y : T(τ)}. The result follows by the VAR rule for the

Curry type system.

2. Induction step:

(a) M is of the form λx.N. Suppose that x occurs free in M. Then

E(λx.N : τ1 ∩ . . . ∩ τn → σ) � (λx1 . . . xn.N
∗, A)

and thus

E(N : σ) � (N∗, A ∪ {x : {x1 : τ1 . . . xn : τn}})
By the induction hypothesis and the definition of Te:

Te(A) ∪ {x1 : T(τ1), . . . , xn : T(τn)} �C N∗ : T(σ)

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

532 M. Florido and L. Damas

Thus, by successive applications of the ABS-I rule:

Te(A) �C λx1 . . . xn.N
∗ : T(τ1) → . . . → T(τn) → T(σ)

The result follows by the definition of T. The case where x does not occur

in N is similar, thus we will omit it.

(b) M is of the form M1M2. In this case:

i E(M1 : τ1 ∩ . . . ∩ τn → σ) � (M0, A0)

ii E(M2 : τi) � (Ni, Ai)(1 � i � n)

By the induction hypothesis

i Te(A0) �C M0 : T(τ1) → . . . → T(τn) → T(σ)

ii Te(Ai) �C Ni : T(τi), for (1 � i � n).

Notice that the variables in A0, . . . , An are all distinct, because expan-

sion contexts are generated with expansions of occurrences of free vari-

ables, which always generate fresh variables. Thus the same happens

for Te(A0), . . . ,Te(An). This guarantees that in Te(A0) ∪ . . . ∪ Te(An) all

variables are distinct. Thus

Te(A0) ∪ . . . ∪ Te(An) �C M0N1 . . . Nn : T(σ)

�

Theorem 4

Let M be a λ-term such that Γ � M : σ in the intersection type system. Then there

is a basis ΓC and a linear term N such that ΓC �C N : T(σ), where �C stands for

type derivation in the Curry type system.

Proof

By lemma 5, Γ � M : σ ⇒ E(M : σ) � (N, e(A)). The result follows by theorem 3.

�

This theorem has, as a corollary, that if a term M is typable in the intersection

type system with a Curry type, then there is a linear term with the same type

derivable in the Curry type system. Just notice that T(σ) = σ when σ is a Curry

type.

6 Expansion and reductions

In this section we show that expansion is preserved by a notion of reduction which

is used in the implementation of functional programming languages: weak head

reduction. This guarantees that the weak head normal form of a term M has a

linear version which is a weak head normal form of a linear version of M.

We then show that expansion is preserved by β-reduction for the λI-calculus,

where in any term of the form λx.M, x has to occur free in M.

We first present one lemma which is going to be used in the study of the

preservation of expansion by reduction.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 533

Lemma 7

Let E(M : σ) � (M0, A0
 {x : {x1 : τ1, . . . , xk : τk}}) and E(N : τi) � (Ni, Ai) for

i ∈ {1, . . . , k}. Then

E(M[N/x] : σ) � (M0[N1/x1, . . . , Nk/xk], A0
 . . .
 Ak)

Proof

The proof will follow by structural induction on M. Notice that, by lemma 2, x

occurs free in M.

1. Base case: M ≡ x. In this case:

E(x : σ) � (y, {x : {y : σ}})

thus

E(x[N/x] : σ) � (y[N1/y], A1)

where

E(N : σ) � (N1, A1)

2. Induction step:

(a) M ≡ λy.M0. Assume that y occurs free in M0. The other case is simpler.

In this case:

E(λy.M0 : δ1 ∩ . . . ∩ δn → σ1) � (λy1 . . . yn.M
∗
0 , A0
 {x : {x1 : τ1, . . . xk : τk}})

by the definition of expansion we have

E(M0 : σ1) � (M∗
0 , A0
 {x : {x1 : τ1, . . . xk : τk}}
 {y : {y1 : δ1, . . . yn : δn}}

and

E(N : τi) � (Ni, Ai), i ∈ {1 . . . k}
By the induction hypothesis it follows:

E(M0[N/x]: σ1)�(M∗
0 [N1/x1, . . . , Nk/xk], A0
. . .
Ak
{y : {y1 : δ1, . . . yn : δn}}

thus

E(λy.M0)[N/x] : δ1 ∩ . . . ∩ δn → σ1)

� (λy1 . . . yn.M
∗
0 [N1/x1, . . . , Nk/xk], A0
 . . .
 Ak)

(b) M ≡ M1M2.

E(M1M2 : σ) � (P0P1 . . . Pn, B0
 B1
 . . .
 Bn
 {x : {x1 : τ1, . . . , xk : τk}})

and

E(N : τi) � (Ni, Ai), i ∈ {1, . . . , k}
Let X = {x : {x1 : τ1, . . . , xk : τk}} = X0
 . . .
 Xn where Xi = {x : {xi1 :

τi1, . . . , x
i
ki

: τiki}} and {xi1, . . . , xiki} is the subset of {x1, . . . , xk} whose elements

occur in Pi for i ∈ {0, . . . , n}. Now we have

E(M1 : δ1 ∩ . . . ∩ δn → σ) � (P0, B0
 X0)

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

534 M. Florido and L. Damas

and

E(M2 : δi) � (Pi, Bi
 Xi), i ∈ {1, . . . , n}
Let T = {N1, . . . , Nk} = T0 ∪ . . . ∪ Tn where Ti = {Ni

1, . . . , N
i
ki

} is the

subset of T whose elements occur in Pi[N1/x1, . . . , Nk/xk] and such that

E(N : τij) � (Ni
j , Aj) for i ∈ {1, . . . , n} and j ∈ {1, . . . , ki}. By the induction

hypothesis we have:

E(M1[N/x] : δ1 ∩ . . . ∩ δn → δ) �
(
P0

[
x0

1

/
N0

1 , . . . , x
0
k0

/
N0

k0

]
, B0

)

and

E(M2[N/x] : δi) �
(
Pi

[
xi1

/
Ni

1, . . . , x
i
ki

/
Ni

ki

]
, Bi

)
, i ∈ {1, . . . , n})

Thus

E((M1M2)[N/x] : σ) � ((P0P1 . . . Pn)[x1/N1, . . . , xk/Nk], B0
 B1
 . . .
 Bn)

�

6.1 Weak head reduction

Functional language compilers consider only weak-head reduction and stop evalu-

ation when a weak-head normal form (a constant or a λ-abstraction) is reached.

Weak-head normal forms are sufficient because printable results only belong to

basic domains. Details about this subject can be found in Peyton Jones (1987). The

following definition of weak head reduction appears in Fradet (1994):

Definition 16

Weak head reduction →
w

is defined by:

(λx.M)N →
w
M[N/x]

and

M →
w
M ′

MN →
w
M ′N

We denote by �
w

the reflexive and transitive closure of →
w

. Closed weak head normal

forms are abstractions λx.M.

We first define an inclusion relation between expansion contexts as follows:

Definition 17

Let A1 and A2 be two expansion contexts. A1 � A2 if and only if:

x : S1 ∈ A1 ⇒ x : S2 ∈ A2 and S1 ⊆ S2

Lemma 8

Let (λx.M)N be a redex in the λ-calculus. Let

E((λx.M)N : σ) � (N1, A1)

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 535

Then there is a term N2 such that

E(M[N/x] : σ) � (N2, A2)

,A2 � A1 and N1 �
β
N2.

Proof

We consider two cases:

1. x ∈ FV (M). By the definition of expansion:

E((λx.M)N : σ) � ((λx1 . . . xk.M0)N1 . . . Nk, A0
 . . .
 Ak)

where

E((λx.M) : τ1 ∩ . . . ∩ τk → σ) � (λx1 . . . xk.M0, A0)

and

E(N : τi) � (Ni, Ai)

Then we have

E(M : σ) � (M0, A0
 {x : {x1 : τ1 . . . xk : τk}})

By lemma 7 we have:

E(M[N/x] : σ) � (M0[N1/x1, . . . , Nk/xk], A0
 . . .
 Ak)

2. x �∈ FV (M). In this case

E((λx.M)N : σ) � ((λy.M0)N0, A0
 A1)

where

E(λx.M : τ → σ) � (λy.M0, A0)

and

E(N : τ) � (N0, A1)

Thus

E(M : σ) � (M0, A0)

and

E(M[N/x] : σ) = E(M : σ) � (M0, A0)

Note that A0 � A0
 A1.

�

To show that expansion is preserved by weak head reduction we need the concept

of context as a term containing one hole [].

Definition 18

Contexts C[] are described by

1. [] is a context;

2. If C[] is a context and M a λ-term, then C[]M, MC[] and λx.C[] are

contexts.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

536 M. Florido and L. Damas

If M is a λ-term and C[] a context then C[M] is the result of replacing the hole in

C[] with M. Note that this operation is different from that of substitution because

no renaming of bound variables is allowed.

Theorem 5

Let E(M1 : σ) � (N1, A1) and M1 →
w
M2. Then there is a term N2 such that E(M2 :

σ) � (N2, A2), N1 �
w
N2 and A2 � A1.

Proof

We use structural induction on the context C such that M1
R→
w
M2 and M1 ≡ C[R].

By M1
R→
w
M2 we mean that M1 reduces to M2 by reducing the redex R.

1. Base case: M1 is the w-redex R. The proof follows from Lemma 8.

2. Induction step:

(a) M1 ≡ C[R]W . In this case

E(C[R]W : σ) � (P0P1 . . . Pk, A0
 A1
 . . .
 Ak)

Thus

E(C[R] : τ1 ∩ . . . ∩ τn → σ) � (P0, A0)

and

E(W : τi) � (Pi, Ai)

By the induction hypothesis there is a term P ∗
0 such that

C[R] →
w
P

E(P : τ1 ∩ . . . ∩ τn → σ) � (P ∗
0 , B0)

B0 � A0

and

P0 �
w
P ∗

0

Thus

E(PW : σ) � (P ∗
0 P1 . . . Pk, B0
 A1
 . . .
 Ak)

and

P0P1 . . . Pk �
w
P ∗

0 P1 . . . Pk

Note that B0 � A0, thus B0
 A1
 . . .
 Ak � A0
 A1
 . . .
 Ak

�

Definition 19

Let t and u be w-reductions starting, respectively, by M0 and N0:

t : M0 →
w
M1 →

w
M2 →

w
· · ·

u : N0 �
w
N1 �

w
N2 �

w
· · ·

We say that u is an expansion of t if there are expansion contexts A0, . . . , Ak and a

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 537

type σ such that:

1. A0 � A1 � A2 · · ·,
2. E(Mi : σ) � (Ni, Ai) for i � 0.

The following corollary of Theorem 5 makes explicit the simple fact that every

finite w-reduction can be expanded.

Corollary 1 (of Theorem 5)

Every finite w-reduction t, can be expanded to another w-reduction (not necessarily

unique).

Proof

Apply successively Theorem 5 to every w-reduction step in t. �

We saw that expansion is preserved by weak head reduction. This does not happen

with β-reduction. In fact we may have M1 →
β
M2, E(M1 : σ) � (N1, A1) and there is

not a type τ such that E(M2 : τ) � (N2, A2) and N1 �
β
N2. Note that there is a linear

version, P , of M2 (because M1 is strongly normalizable thus M2 is also strongly

normalizable, and thus, by Theorem 2, it has a linear version). The point here is

that N1 ��
β
P for no linear version P of M2. To see this let M1 ≡ λx.(λy.z)xx and

M2 ≡ λx.zx. We have:

λx.(λy.z)xx→
β
λx.zx

E(λx.(λy.z)xx : α1 ∩ α2 → β) � (λx1x2.(λy1.z1)x1x2, {z : {z1 : α2 → β}})
and

λx1x2.(λy1.z1)x1x2 →
β
λx1x2.z1x2

Now note that, as x occurs in zx once, it follows from Lemma 2 that any expansion

of λx.zx is of the form λx1.M where M is one expansion of zx. Thus λx1x2.z1x2

cannot be an expansion of λx.zx for any type. In order to have preservation under

β-reduction λx1x2.z1x2 would have to be a linear version of λx.zx, which goes against

the initial intuition that if x occurs k times in M then the linear versions of λx.M

are of the form λx1 . . . xk.M
′ where each xi replaces one occurrence of x in M.

This property is related to the lack of subject reduction of the intersection

type system used to direct the expansion process. If preservation of expansion

by β-reduction is not viewed as a goal by itself, then the lack of this property

is not a problem, because it holds for a notion of reduction which is used

for functional programming languages. Thus expansion preserves computational

behavior of programs, and therefore can be used as the basis of a program

transformation technique for linearization. Expansion also preserves types under

the standard type transformation T and thus can be useful for type inference. The

feature which prevent preservation of expansion by β-reduction makes the definition

of linear versions much easier and intuitive.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

538 M. Florido and L. Damas

6.2 Expansions and the λI-calculus

The λI-calculus is a restriction of the λ-calculus where in terms of the form λx.M, x

occurs free in M. The lack of subject reduction happens in terms of the form λx.M

when x may be erased in the reduction of M. Here we show that β-reduction is

preserved for the λI-calculus, where erasing is not allowed.

Lemma 9

Let (λx.M)N be a redex in the λI-calculus. Let

E((λx.M)N : σ) � (N1, A)

Then there is a term N2 such that

E(M[N/x] : σ) � (N2, A)

and N1 �
β
N2.

Proof

The proof is identical to the case in the proof of Lemma 8 where x occurs free in

M. �

Theorem 6

Let M1 and M2 be two terms in the λI-calculus. Let E(M1 : σ) � (N1, A) and

M1 →
β
M2. Then there is a term N2 such that E(M2 : σ) � (N2, A) and N1 �

β
N2.

Proof

We use structural induction on the context C such that M1
R→
β
M2 and M1 ≡ C[R].

1. Base case: M1 is the β-redex R. The proof follows from Lemma 9.

2. Induction step:

(a) M1 = λx.C[R]. In this case:

E(λx.C[R] : δ1 ∩ . . . ∩ δk →) � (λx1 . . . xk.M
∗, A)

x occurs free in λx.C[R], thus

E(C[R] : δ) � (M∗, A
 {x : {x1 : δ1, . . . , xk : δk}})

By the induction hypothesis there is a term N2 such that

C[R] →
β
P

and

E(P : δ) � (N2, A
 {x : {x1 : δ1, . . . , xk : δk}}
and

M∗ �
β
N2

Thus

λx.C[R] →
β
λx.P

E(λx.P : δ1 ∩ . . . ∩ δk → δ) � (λx1 . . . xk.N2, A)

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 539

and

λx1 . . . xk.M
∗ �

β
λx1 . . . xk.N2

(b) M1 ≡ C[R]W . In this case

E(C[R]W : σ) � (P0P1 . . . Pk, A0
 A1
 . . .
 Ak)

Thus

E(C[R] : τ1 ∩ . . . ∩ τn → σ) � (P0, A0)

and

E(W : τi) � (Pi, Ai)

By the induction hypothesis there is a term P ∗
0 such that

C[R] →
β
P

E(P : τ1 ∩ . . . ∩ τn → σ) � (P ∗
0 , A0)

and

P0 �
β
P ∗

0

Thus

E(PW : σ) � (P ∗
0 P1 . . . Pk, A0
 . . .
 Ak)

and

P0P1 . . . Pk �
β
P ∗

0 P1 . . . Pk

(c) Suppose that M1C[R] →
β
M1N2. Thus

E(M1C[R]) � (P0P1 . . . Pk, A0
 . . .
 Ak)

Thus

E(M1 : τ1 ∩ . . . ∩ τk → σ) � (P0, A0)

and

E(C[R] : τi) � (Pi, Ai), i ∈ {1, . . . , k}
By the induction hypothesis for i ∈ {1, . . . , k} there are terms P ∗

i such that

E(N2 : τi) � (P ∗
i , Ai)

and

Pi �
β
P ∗
i

Thus

E(M1N2) � (P0P
∗
1 . . . P ∗

k , A0
 . . .
 Ak)

and

P0P1 . . . Pk �
β
P0P

∗
1 . . . P ∗

k

�

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

540 M. Florido and L. Damas

7 Related work

7.1 Other approaches to linearization

The linearization problem was the topic of one previous paper by Kfoury (2000),

where a new calculus was defined satisfying the linearity condition. This condition

states that in an abstraction λx.M the free occurrences of x in M are in one-

one correspondence with the arguments to which the function is applied. Kfoury

enlarged the λ-calculus with a new kind of terms of the form M.P1 ∧ . . . ∧ Pn (this

new calculus was denoted Λ∧) and a new reduction β∧, which, when the redex is

of the form (λx.M)P1 ∧ . . . ∧ Pn and x occurs free is M n times, replaces the ith

occurrence of x by Pi (1 � i � n). This reduction was made in parallel for every

Pi. Finally an intersection type system for this new calculus was defined and used

to give another proof of the well-known equivalence between strongly normalizing

λ-terms and terms typable in an intersection type system. The main differences in

our approach are:

1. Kfoury forced the linearity condition by changing the calculus and the

reduction rule. Our translation is inside the λ-calculus from non-linear terms

into linear ones and we continue to use β-reduction. Note that requiring the

linearity condition is weaker than requiring that a term is linear (the linearity

condition holds for point 1 of Definition 11).

2. Kfoury needs an intersection type system to type the expanded versions of

terms. In our framework expanded versions of terms belong to the linear

λ-calculus which is typable in the Curry type system.

3. We use type information to handle linearization. By choosing the right type

system the linearization process defined here becomes rather simple when

compared to the linearization presented in Kfoury (2000).

4. In Kfoury (2000), intersection was not commutative. As we saw before, this

means that some valid linear versions would be lost.

This last item, concerning non-commutative intersections, deserves further ex-

planation. Note that in Kfoury (2000), reduction was order-sensitive, in the sense

that when (λx.M).P1 ∧ . . . ∧ Pn reduces to M[P1/x
1, . . . , Pn/x

n], x1, . . . , xn are the

occurrences of x in M numbered when M is scanned from left to right. Thus, a

notion of expansion similar to ours corresponding to Kfoury’s calculus had to use

non-commutative intersections. For example the expansion of M ≡ (λx.xx)k would

be (λx1x2.x1x2)k1k2 and, without commutative intersections, we would not be able

to relate M with (λx2x1.x1x2)k2k1 which is also a valid linear version of M.

The lack of commutativity of the intersection operator has more serious implica-

tions concerning preservation of computational properties after expansion. Consider

the following example:

Example 6

Let M ≡ (λx.(λy.yx)x)z. M has weak head normal form zz, which expands to z1z2.

The expansion of M would be the linear term N ≡ (λx1x2.(λy.yx1)x2)z1z2. Note that

N has weak head normal form z2z1. Thus, without commutative intersections, we

loose preservation of weak head normal forms by expansion.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 541

Preservation of expansion by weak head reductions would still be possible for

non-commutative intersections if we considered terms modulo permutation of free

variables and expansion contexts modulo permutation of variables resulting from

expansion. However, this would unnecessarily complicate the proofs without gaining

anything with it (in fact we would loose valid linear versions as shown before).

A deeper consequence of the lack of commutative intersections is the lost of

preservation of expansion by β-reduction for the λI-calculus. Consider the following

example:

Example 7

In the λI-calculus, let M ≡ λx.(λy.yx)x. Without commutative intersections, M

expands to the term N ≡ λx1x2.(λy.yx1)x2. N has β-normal form λx1x2.x2x1 which,

without commutative intersections, is not the expansion of the normal form of M,

λx.xx.

These examples show that Kfoury’s calculus relates to a notion of linearization

inside the λ-calculus which does not correspond to our definition. It will be a useful

investigation (left to others) whether a suitable characterization of expanded terms

corresponding to Kfoury’s calculus (for example, based on linear terms modulo

certain properties) would keep the nice computational properties presented here.

7.2 Intersection types

A translation from derivations in a standard intersection type system (with associ-

ative, commutative and idempotent intersections) to terms typable in the Curry type

system was presented in Bucciarelli et al. (1999). The authors used this result to

prove that all functions uniformly defined using intersection types are also definable

using Curry types. Here we characterize terms typable in an intersection type system

with a more restrictive class of terms: the linear terms. In order to get linearization,

one cannot have idempotent intersections and every assumption must be used in

the type derivation process (otherwise, types would not give us information about

the number of variables which occur in a term). This difference has a drastic effect

in the computational behavior of expansion which is the lack of preservation of

expansion by β-reduction. We show that a correct definition of expansion is still

possible, when considered with respect to weak head reduction. Another difference

from the translation in Bucciarelli et al. (1999) is that our definition of expansion

uses induction on the terms, which quite simplifies the proofs.

Our definition of expansion is based on a type system where every assumption

is used in the type derivation process. Other intersection type systems with that

property were defined before. Particularly noteworthy are the systems defined in

Kfoury & Wells (1999) and Kfoury (1996). The main difference to our system is

that in Kfoury & Wells (1999) and Kfoury (1996), intersection is not commutative.

Concerning linearization, with a non-commutative ∩ we would loose some valid

linear versions of terms. As an example, we would not have (λx2x1.x1x2)II as a

linear version of (λx.xx)I (see example 2). Other type systems with the same property

are presented in Coppo & Giannini (1995) and Damiani & Giannini (1994). The

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

542 M. Florido and L. Damas

motivation in these systems was the definition of relevant decidable fragments of

intersection type systems where the definition of relevance is stronger than only

using all assumptions in derivations. This led to more complex systems than we

need for our purposes.

Finally, the linear λ-calculus was also studied in a different context by the linear

logic community (Abramsky, 1993; Lincoln & Mitchell, 1992; Wadler, 1990; Benton

et al., 1992). In these works, the linear λ-calculus is defined as the computational

interpretation of linear logic and the problem of transforming non-linear terms into

linear ones is not a central issue.

8 Conclusion

We have introduced the notion of expansion, developed its basic properties, estab-

lished its relationship with intersection type systems and used it to get a simple and

direct definition of linearization of the λ-calculus.

Despite not being decidable, expansion can be used as the basis of new program

transformation techniques for linearization. Our work suggests that these transform-

ations should be related to decidable restrictions of intersection types.

Acknowledgements

We are grateful to Sabine Broda, Nelma Moreira, Maribel Fernandez and Ian

Mackie for discussions on the subject of linearization. We also would like to thank

the anonymous referees for their comments and suggestions.

This work partially supported by funds granted to LIACC through the Programa

de Financiamento Plurianual, Fundação para a Ciência e Tecnologia and Programa

POSI.

A Strong normalization for intersection types

Here we present a proof of Theorem 1 and several definitions and lemmas needed

to the main proof.

Definition 20

The size of a term M is defined as:

1. size(x) = 1

2. size(MN) = size(M) + size(N) + 1

3. size(λx.M) = size(M) + 1

If M is strongly normalizable, the maximal length of a derivation starting from M

is called the reduction depth of M and is denoted depth(M).

Definition 21

Given two type environments Γ1 and Γ2, Γ1 ⊆ Γ2 if and only if ∃Γ3
.Γ2 = Γ1 ∧ Γ3.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 543

Definition 22

The size of a type σ, where α ranges over the set of type variables, is defined by:

1. size(α) = 1

2. size(σ → τ) = size(σ) + size(τ) + 1

Definition 23

Given a type environment Γ and a variable x, the set of declared types for x in Γ,

denoted by types(x,Γ), is defined by:

1. types(x,Γ) = {τ1, . . . , τn}, if x : τ1 ∩ . . . ∩ τn ∈ Γ

2. types(x,Γ) = ∅, otherwise

Definition 24

Given two type environments Γ1 and Γ2, Γ1 − Γ2 is the new environment where, for

each variable x in Γ1, x : τ1 ∩ . . . ∩ τn ∈ Γ1 − Γ2 where

{τ1, . . . , τn} = types(x,Γ1) \ types(x,Γ2)

(\ stands for the standard set difference)

Lemma 10

If ΓM � M[N/x] : τ and ΓN � N : σ for some type σ and environment ΓN , then

there is an environment Γ such that:

1. ΓM ⊆ Γ,

2. Γ � (λx.M)N : τ.

Proof

We may assume that x does not occur in ΓM . We will consider two cases:

1. x ∈ FV (M). Let Γ = ΓM . By obvious type derivations the statement follows

from the following claim:

There are types σ1, . . . , σn and environments Γ1, . . . ,Γn such that:

(a) Γ1 � N : σ1, . . . ,Γn � N : σn,

(b) (Γ − (Γ1 ∧ . . . ∧ Γn)) ∧ {x : σ1 ∩ . . . ∩ σn} � M : τ.

The claim is proved by induction on (size(M), size(τ)).

(a) M is a variable x. The assumption is Γ � N : τ. Take n = 1, σ1 = τ and

Γ1 = Γ.

(b) M is of the form λy.P (with y �∈ FV (N)). In this case τ = τ1 → τ2 and

Γ ∧ {y : τ1} � P [N/x] : τ2

By induction we have:

i ∃σ1 ,...,σn,Γ1 ,...,Γn
.(Γ1 � N : σ1, . . . ,Γn � N : σn)

ii Γ − (Γ1 ∧ . . . ∧ Γn) ∧ {x : σ1 ∩ . . . ∩ σn, y : τ1} � P : τ2

Then, by the rule ABS − I:

Γ − (Γ1 ∧ . . . ∧ Γn) ∧ {x : σ1 ∩ . . . ∩ σn} � λy.P : τ1 → τ2

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

544 M. Florido and L. Damas

(c) M is of the form M1M2. In this case we have:

i Γ = Γ0 ∧ Γ1 ∧ . . . ∧ Γn

ii Γ0 � M1[N/x] : τ1 ∩ . . . ∩ τn → τ

iii Γi � M2[N/x] : τi for (1 � i � n)

Let n1 and n2 be the number of occurrences of x in M1 and M2, respectively.

By induction we have:

i ∃σ1 ,...,σn1 ,Γ
∗
1 ,...,Γ

∗
n1
.(Γ∗

1 � N : σ1, . . . ,Γ
∗
n1

� N : σn1
)

ii ∃σ′
i1 ,...,σ

′
in2

,Γ′
i1 ,...,Γ

′
in2
.(Γ′

i1 � N : σ′
i1, . . . ,Γ

′
in2

� N : σ′
in2

), for (1 � i � n)

iii Γ0 − (Γ∗
1 ∧ . . . ∧ Γ∗

n1
) ∧ {x : σ1 ∩ . . . ∩ σn1

} � M1 : τ1 ∩ . . . ∩ τn → τ

iv Γi − (Γ′
i1 ∧ . . . ∧ Γ′

in2
) ∧ {x : σ′

i1 ∩ . . . ∩ σ′
in2

} � M2 : τi, for (1 � i � n)

Now let σ̄ = σ1 ∩ . . . ∩ σn1
and σ̄i = σ′

i1 ∩ . . . ∩ σ′
in2

. Let Γ̄ = Γ∗
1 ∧ . . . ∧ Γ∗

n1

and Γ̄i = Γ′
i1 ∧ . . . ∧ Γ′

in2
for (1 � i � n). By the APP rule we have:

Γ − (Γ̄ ∧ Γ̄1 ∧ . . . ∧ Γ̄n) ∧ {x : σ̄ ∩ σ̄1 ∩ . . . ∩ σ̄n} � M1M2 : τ

2. x �∈ FV (M). In this case ΓM � M[N/x] : τ is ΓM � M : τ. By hypothesis, there

are ΓN and σ such that ΓN � N : σ. Let Γ = ΓM ∧ ΓN . By application of the

ABS − K and APP rules we have:

Γ � (λx.M)N : τ

�

Theorem 7

If M is strongly normalizable, then there are Γ and σ such that Γ � M : σ.

Proof

We will use induction on (depth(M), size(M)). Note that any λ-term has exactly one

of the following forms:

1. λx1 . . . xn.xM1 . . .Mp, where x may or may not be one of the x′
is, (n � 0, p � 0),

2. λx1 . . . xn.(λx.M)M1 . . .Mp (n � 0, p � 1).

We now proceed by cases:

1. M ≡ λx1 . . . xn.xM1 . . .Mp, with x �= x1, . . . , xn. By induction we have:

Γ1 � M1 : σ1, . . . ,Γp � Mp : σp

By successive applications of the APP rule, we have:

Γ1 ∧ . . . ∧ Γp ∧ {x : σ1 → . . . → σp → σ} � xM1 . . .Mp : σ

Let xi : τi be the type assignment for xi in Γ1 ∧ . . . ∧ Γp and let Γ be

Γ1 ∧ . . . ∧ Γp where we remove the type assignments xi : τi, for (1 � i � n).

Then, by successive applications of the ABS − K and the ABS − I rules, we

have:

Γ � λx1 . . . xn.xM1 . . .Mp : τ1 → . . . → τn → σ

where τi is the type declared for xi in Γ1 ∧ . . . ∧ Γp if such declaration exists,

or a fresh type variable if it does not exist.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

Linearization of the lambda-calculus 545

2. M ≡ λx1 . . . xn.xiM1 . . .Mp. Similar to the previous case.

3. M ≡ λx1 . . . xm.(λx.N)PN1 . . . Nn. By induction:

Γ1 � P : σ

and

Γ2 � N[P/x]N1 . . . Nn : τ

We claim that there is a type environment Γ′ such that Γ2 ⊆ Γ′ and Γ′ �
(λx.N)PN1 . . . Nn : τ. Let Γ be Γ′ where we remove the type assignments xi : τi,

for (1 � i � m). By successive applications of the rules ABS − K and ABS − I

we have:

Γ � M : τ1 → . . . → τm → τ

where each τi is the type declared for xi in Γ′, if such declaration exists, or a

fresh variable if it does not exist. Our claim is proved by induction on n where

the base case is lemma 10.

�

Theorem 8

If M is such that there is an environment Γ and a type σ such that Γ � M : σ,

then M is typable in the Coppo-Dezani type system ((Coppo & Dezani-Ciancaglini,

1980)).

Proof

Easy by induction in the derivation tree for Γ � M : σ. �

Proof of Theorem 1

It follows directly from Theorems 7 and 8. �

References

Abramsky, S. (1993) Computational interpretations of linear logic. Theor. Comput. Sci. 111,

3–57.

Amadio, R. M. and Curien, P.-L. (1998) Domains and Lambda-Calculi. Cambridge University

Press.

Barendregt, H. (1992) Lambda calculi with types. In: Abramsky, S., Gabbay, D. M. and

Maibaum, T. S. E. (editors), Handbook of Logic in Computer Science, vol. 2, pp. 117–309.

Oxford Science Publications.

Barendregt, H., Coppo, M. and Dezani-Ciancaglini, M. (1983) A filter lambda model and the

completeness of type assignement. J. Symbolic Logic, 48(4), 931–940.

Benton, N., Bierman, G., de Paiva, V. and Hyland, M. (1992) Term assignement for intuitionistic

linear logic. Technical report, Computing Laboratory, University of Cambridge.

Bucciarelli, A., Lorenzis, S. De, Piperno, A. and Salvo, I. (1999) Some computational properties

of intersection types. 14th IEEE Symposium on Logic in Computer Science.

Coppo, M. and Dezani-Ciancaglini, M. (1980) An extension of the basic functionality theory

for the λ-calculus. Notre Dame J. Formal Logic, 21(4), 685–693.

Coppo, M. and Giannini, P. (1995) Principal types and unification for simple intersection type

systems. Infor. & Computation, 122(1).

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

546 M. Florido and L. Damas

Curry, H. B. (1934) Functionality in combinatory logic. Proc. Nat. Acad. Sci. U.S.A., 20,

584–590.

Damas, L. and Milner, R. (1982) Principal type schemes for functional languages. 9th ACM

Symposium on Principles of Programming Languages.

Damiani, F. and Giannini, P. (1994) A decidable intersection type system based on relevance.

Theoretical Aspects of Computer Science. Lecture Notes in Computer Science. Springer-

Verlag.

Fradet, P. (1994) Compilation of head and strong reduction. Proceedings 5th European

Symposium on Programming. Lecture Notes in Computer Science 788.

Hindley, R. (1997) Basic Simple Type Theory. Cambridge University Press.

Jim, T. (1996) What are principal typings and are they good for? ACM Symposium on

Principles of Programming Languages.

Kfoury, A. J. (1996) Beta-reduction as unification. Logic, Algebra and Computer Science

(H. Rasiowa Memorial Conference).

Kfoury, A. J. (2000) A linearization of the lambda-calculus. J. Logic & Computation 10(3),

411–436.

Kfoury, A. J. and Wells, J. B. (1999) Principality and decidable type inference for finite-rank

intersection types. Conference Record, POPL’99: 26th ACM Symposium on Principles of

Programming Languages.

Lincoln, P. and Mitchell, J. (1992) Operational aspects of linear lambda calculus. 7th

Symposium on Logic in Computer Science.

Peyton Jones, S. L. (1987) The Implementation of Functional Programming Languages. Prentice

Hall International.

van Bakel, S. (1993) Intersection type disciplines in lambda calculus and applicative term

rewriting systems. PhD thesis, Department of Computer Science, University of Nijmegen.

Wadler, P. (1990) Linear types can change the world! In: Broy, M. and Jones, C. (editors),

Programming Concepts and Methods. North Holland.

https://doi.org/10.1017/S0956796803004970 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004970

