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1. Introduction

The Mayer–Vietoris spectral sequence, a generalization of the well-known
Mayer–Vietoris long exact sequence, is an effective and far-reaching construction
in algebraic topology. In its classical form, the Mayer–Vietoris spectral sequence is
built from the intersection patterns of a cover of a given topological space X. This
spectral sequence converges to the homology of X, thus providing a powerful tool in
various topological and combinatorial applications. First and foremost, it is related
to the classical Nerve lemma (cf. theorem 3.9). A proof of the Nerve lemma using
a spectral sequence argument appeared in [37, Section 5], and has since been gen-
eralized in several ways. More recently, the Nerve lemma and the Mayer–Vietoris
spectral sequence have been receiving increasing attention due to their applications
in persistent homology [5, 9, 25, 27, 35], bounded cohomology [21, 30], homol-
ogy of configuration spaces [14–16], and topological complexity of spaces [3, 34].
Classically, a description of the E2-page was used to infer properties of spherical
arrangements [31, 32], and to study hyperplane arrangements in general [4, 18, 19].
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The Nerve lemma holds for ‘good covers’ of simplicial complexes (or, more gen-
erally, topological spaces), i.e. covers whose elements and all of their possible finite
intersections are contractible. When such intersections are not contractible, nor
acyclic, the conclusion of the Nerve lemma does not generally hold. Regardless, the
Mayer–Vietoris spectral sequence eventually converges to the homology of X, and
the pages of the spectral sequence provide an increasingly accurate approximation
of this convergence. Therefore, subcomplexes of the pages of the spectral sequence
should contain interesting invariants – e.g. other homology theories, as for path
homology [2], or torsion, as in [31] – which suggests the following question:

Question. Let U be a cover of a topological space X. Which topological properties
of X, or combinatorial properties of the nerve of U , can be read from the second
page of the Mayer–Vietoris spectral sequence?

As stated, this question is rather vague, as it strongly depends on both the
cover U and the space X. In this paper, we focus on the cover Uast consisting
of anti-star subcomplexes astX(v) of a finite, connected, simplicial complex X;
here v runs across the vertices of X, and astX(v) is the complement of the star
of v in X (cf. definition 3.11). Our main result is that the second page of the
Mayer–Vietoris spectral sequence of X, with respect to the cover Uast, is related to
another combinatorial and homological invariant B̈(X) of simplicial complexes:

Theorem 1.1. Let X be a finite simplicial complex with m vertices. Then, for all
i � 0 and 0 � j � m, there exists an isomorphism of bigraded modules

E2
m−j−1,i

∼= B̈j
i (X)

between the second page of the augmented Mayer–Vietoris spectral sequence of X,
associated with the anti-star cover, and the 0-th degree überhomology of X.

The bigraded homology B̈j
i (X) is the zero-degree specialization of a more general

homology theory of simplicial complexes introduced in [12]. The latter theory is
called the überhomology of X. It was shown in [12] that überhomology contains
both topological and combinatorial information about finite simplicial complexes.
Theorem 1.1 clarifies that, when setting one of the degrees to 0, the überhomology
theory reads off combinatorial information of X from the second page of the asso-
ciated spectral sequence. It would be interesting to compare theorem 1.1 with the
results of [20]. In that paper, a cellular-type cohomology associated with Boolean
covers of a lattice is presented. A Mayer–Vietoris spectral sequence is used to relate
the homology of a Boolean cover to the homology of the underlying lattice. In
their case, the cover corresponds to the upper intervals containing the atoms of
the lattice, suggesting a parallel combinatorial interpretation of the Mayer–Vietoris
spectral sequence in that context.

Using the correspondence in theorem 1.1, we provide some computations, and
extend previous results of [10, 12] first obtained via direct computations or dis-
crete Morse theory techniques – cf. propositions 5.2 and 5.7. We investigate the
effect of coning and suspending. A further specialization of überhomology, called
bold homology, is related to connected dominating sets. We further prove that
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From the Mayer–Vietoris spectral sequence to überhomology 3

the 0-degree überhomology of flag complexes on triangle-free graphs is completely
determined by their bold homology (proposition 5.6).

Counting connected dominating sets in a graph is a NP-hard problem. It was
shown in [10] that bold homology yields a categorification of the connected dom-
ination polynomial. Denote by Dc(G) the connected domination polynomial of a
graph G (see equation (2.4)). The definition of the anti-star cover can be extended
to regular CW-complexes, and our main application of theorem 1.1 is the following:

Theorem 1.2. Let X �= Δn be a finite, connected, regular CW-complex. Assume
that the anti-star cover of X is a 1-Leray cover, and that the 1-skeleton of X is a
simple graph G. Then, we have

(−1)m−1Dc(G)(−1) = χ(X) − 1,

where m is the number of vertices in X.

Theorem 1.2, which is almost a straightforward consequence of theorem 1.1 in
the case of simplicial complexes, is less direct when considering CW-complexes. For
CW-complexes, a definition of überhomology and bold homology groups is missing,
and the bridge to dominating sets unclear. The role of theorem 1.2 is to clarify this
connection. For example, using the more general framework of CW-complexes, we
are able to infer that −1 is a root of the connected domination polynomial of grid
graphs (cf. corollary 5.4).

Our last application concerns chordal graphs. Recall that a chordal graph is a
graph G in which each induced cycle, i.e. a cycle that is an induced subgraph of G,
has exactly three vertices.

Corollary 1.3. Let G be a chordal graph on m � 3 vertices. Then, −1 is a root of
the connected domination polynomial Dc(G).

Examples of non-chordal graphs G for which −1 is a root ofDc(G) are, for example,
grid graphs (cf. corollary 5.4). In these cases, the converse of corollary 1.3 does not
hold. It would be interesting to further explore the relation between topological
properties of simplicial complexes and combinatorial properties of their 1-skeleta,
especially in relation with general notions of chordality [1].

2. Überhomology, its 0-degree, and bold homology

We start by recalling the definition of überhomology, following [10, 12].
Let X be a finite and connected simplicial complex with m vertices, say V (X) =

{v1, . . . , vm}. In what follows, we assume that the vertices of X are given a fixed
order. The choice of such ordering is auxiliary and will not affect the following
discussion.

A bicolouring ε on X is a map ε : V (X) → {0, 1}. As a visual aid, we will some-
times identify 0 with white and 1 with black. A bicoloured simplicial complex is a
pair (X, ε), consisting of a simplicial complex X equipped with the bicolouring ε.
Given a n-dimensional simplex σ in (X, ε), define its weight with respect to ε as
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the sum

wε(σ) := n+ 1 −
∑

vi∈V (σ)

ε(vi) . (2.1)

Equivalently, wε(σ) is the number of 0/white-coloured vertices in σ. For a fixed
bicolouring ε, the weight in equation (2.1) induces a filtration of the simplicial
chain complex C∗(X; Z2) associated with X. More explicitly, set

Fj(X, ε) := Z2〈 σ | wε(σ) � j 〉 ⊆ C∗(X; Z2) .

The simplicial differential ∂ respects this filtration; it can be decomposed as the sum
of two differentials (cf. [12, Lemma 2.1]); one which preserves the weight, denoted
by ∂h, and one which decreases the weight by one. Call (C(X, ε), ∂h) the bigraded
chain complex, whose underlying module is C(X; Z2); the first degree is given by
simplices’ dimensions, while the weight wε gives the second. The ε-horizontal homol-
ogy Hh(X, ε) of (X, ε) is the homology of the bigraded chain complex (C(X, ε), ∂h).
In other words, Hh(X, ε) is the homology of the graded object associated with the
filtration Fj(X, ε).

The next step towards the definition of the überhomology is to note that the
bicolourings on X can be canonically identified with elements of Boolean poset
B(m) on a set with m elements (partially ordered by inclusion). Let ε and ε′ be
two bicolourings on X differing only on a vertex vi; assume further that ε(vi) =
0 and ε′(vi) = 1. Denote by dε,ε′ the weight-preserving part of the identity map
Id: Hh(X, ε) → Hh(X, ε′). With a slight abuse of notation, dε,ε′ can be written as

dε,ε′(σ) =

{
σ if wε(σ) = wε′(σ)
0 otherwise

,

see [12, Section 6]. Note that the latter case can only occur if wε(σ) = wε′(σ) − 1.
For a given bicolouring ε on X, set �(ε) :=

∑
j ε(vj). The j-th über chain module

is then defined as follows:

C̈j(X; Z2) =
⊕

�(ε)=j

Hh(X, ε) . (2.2)

By [12, Proposition 6.2], the map

d̈j :=
∑

�(ε)=j

dε,ε′ : C̈j(X; Z2) → C̈j+1(X; Z2) (2.3)

is a differential of degree 1, turning (C̈∗(X; Z2), d̈) into a cochain complex. A
schematic summary for the construction of the über chain complex is presented
in figure 1.

Definition 2.1. The überhomology Ḧ∗(X) of a finite and connected simplicial
complex X is the homology of the complex (C̈∗(X; Z2), d̈).

Überhomology groups can be endowed with two extra gradings, yielding a triply
graded module. Indeed, the differential d̈ preserves both the simplices’ weight and
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Figure 1. Boolean poset B(3) with vertices decorated by the horizontal homologies of a
simplicial complex with 3 vertices, and its ‘flattening’ to the über chain

complex.

dimension. The notation for the three gradings on the überhomology is as fol-
lows: Ḧj

k,i(X) denotes the component of the homology generated by simplices of
dimension i, with k vertices of colour 0, and whose (über)homological degree is j.

The above definition can be rephrased in terms of poset homology [11, 13],
which allows extending the definition of überhomology from Z2 to more general
coefficients:

Proposition 2.2 [10, Proposition 2.14]. Let X be a connected simplicial complex
with m vertices, and ModR the category of R-modules over a commutative ring
R. Then, the überhomology of X with coefficients in R coincides with the poset
homology of B(m), with coefficients in a suitable functor H : B(m) → ModR.

We refer to [10] for the proof of proposition 2.2, and for a more detailed account
of the poset homology interpretation.

As mentioned above, the überdifferential d̈ preserves the (k, i)-bidegree. In par-
ticular, specializing to the component of überhomology of weight 0 yields a bigraded
homology.

Definition 2.3. For a simplicial complex X, define the 0-degree überhomology to
be the bigraded homology

B̈j
i (X) := Ḧj

0,i(X).

An alternative definition of B̈(X) is the following; for ε ∈ Z
m
2 define Xε to be the

simplicial subcomplex ofX induced by the 1-coloured vertices with respect to ε. The
homology B̈∗

i (X) is obtained by decorating each vertex ε in Boolean poset B(m)
with the i-th homology Hi(Xε) of Xε; the differentials associated with the cube’s
edges are induced by inclusion. This is to say that B̈∗

i (X) is the poset homology on
Boolean poset B(m) with coefficients in the functor given by simplicial homology
in dimension i.
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Figure 2. The 0-degree überchain complex of ∂Δ2. Here Z
d
(i) denotes a Z

d summand in

B̈∗
i .

Using proposition 2.2, the definition of B̈∗
∗ can be extended to encompass general

coefficients; set B̈j
i (X;R) for the 0-degree überhomology of X, with coefficients in

a commutative ring R.

Example 2.4. As an example, we can compute the homology B̈j
i (∂Δ2) of the

boundary of Δ2. The chain complex for is shown in figure 2. This complex is con-
centrated in homological degrees between 1 and 3, and simplicial degrees 0 and 1. In
degree i = 0, it is isomorphic to the simplicial chain complex associated with ∂Δ2,
while in degree i = 1 there are only trivial differentials, and a unique non-trivial
summand in degree j = 3. It follows that

B̈j
i (K3) =

{
Z if (j, i) ∈ {(1, 0), (3, 1)},
0 otherwise.

More explicitly, the generator in bidegree (1, 0) is spanned by the direct sum of the
three connected components identified by a single black vertex (see the first column
of figure 2). The other generator can instead be identified with the fundamental
class of ∂Δ2, regarded as a triangulation of S1.

2.1. Bold homology

The specialization of B̈∗
i (X) to i = 0 is known as bold homology, and is denoted

by H
∗(X). This homology was introduced in [12, Section 8], and it was shown to

contain non-trivial combinatorial information on simple graphs [10]. The relations
between the three homologies introduced so far can be schematically summarized
as follows:

Ḧj
k,i(X) restrict to−−−−−−→

k=0
B̈j

i (X) restrict to−−−−−−→
i = 0

H
j(X)

https://doi.org/10.1017/prm.2023.104 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.104


From the Mayer–Vietoris spectral sequence to überhomology 7

Let G be a connected simple graph, that is, a connected 1-dimensional simplicial
complex. A subset S ⊆ V (G) of the vertices of G is called

• dominating if each vertex in V (G) either belongs to S or shares an edge with
some element of S;

• connected if S spans a connected subcomplex.

The connected domination polynomial of a graph G is defined as

Dc(G)(t) =
∑
S

t|S| ∈ Z[t], (2.4)

where S ranges among connected dominating sets in V (G). Computing the con-
nected domination polynomial of a graph is known to be NP-hard [23]. In [10],
the authors prove the existence of a tight relation between connected domination
polynomials and the bold homology’s Euler characteristic:

Theorem 2.5 [10, Theorem 1.2]. The bold homology categorifies Dc(−1). More
precisely, H

∗ is functorial under inclusion of graphs, and its Euler characteristic is
Dc(−1).

From this result, some properties and computations of H can be deduced. For
example, the bold homology of trees is zero, and it detects complete graphs (see
[10] for the precise statements). Computations performed with bold homology can
be extended to simplicial complexes as well; indeed, the following can be deduced
at once from the definitions:

Lemma 2.6. Let X be a simplicial complex, and X(1) its 1-skeleton. Then, there
exists a graded isomorphism H

∗(X) ∼= H
∗(X(1)).

Proof. Connected components of 1-coloured subcomplexes in X(1) are in canonical
bijection with connected components inX. Then, the result follows by [10, Theorem
1.3]. �

3. Anti-star covers and spectral sequences

One of the main tools employed in (co)homology computations is the generalization
of the Mayer–Vietoris long exact sequence in terms of spectral sequences. To set the
notations, we start by recalling some basic definitions, referring to [36] for further
details.

We will focus on augmented first quadrant spectral sequences of homological
type, i.e. spectral sequences arising from first-quadrant augmented bicomplexes,
whose induced differentials have bidegree (−r, r − 1). By a first quadrant aug-
mented bicomplex (Cp,q, δp,q) of bidegree (a, b) we mean a bigraded R-module
Cp,q with differentials

δp,q : Cp,q −→ Cp+a,q+b ,

where Cp,q = 0 for p < −1 and q < 0. Spectral sequences arise naturally in the
context of filtered chain complexes. As customary, we say that a spectral sequence
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(Er, dr) converges to a graded module H∗, and write Ep,q ⇒ Hp+q, if there is a
filtration F on H∗ such that E∞

p,q
∼= Grp,qH∗ for all p, q, where E∞

p,q is the limit
term of the spectral sequence.

We now specialize to first quadrant augmented bicomplexes (C, δv, δh) where δv
and δh are differentials of bidegrees (0, −1) and (−1, 0), respectively, and δv ◦ δh =
δh ◦ δv. Consider the associated total complex

Tot(C)n :=
⊕

p+q=n

Cp,q,

with differential δ defined by setting δ(x) := δh(x) + (−1)pδv(x) for each x ∈ Cp,∗,
and each p. There are two natural filtrations on Tot(C). The first filtration F I is
defined by cutting the direct sum above at the p-level: F I

p (Tot(C))n :=
⊕

i�p Ci,n−i.
The second filtration F II is the complementary one: F II

q (Tot(C))n :=
⊕

j�q Cn−j,j .
In the special case of a first quadrant double chain complex, both filtrations are
bounded (from above and below), hence both the associated spectral sequences
converge to the homology of the total complex Tot(C). The 0-page of the spectral
sequence arising from the first filtration is

IE0
p,q := F I

p (Tot(C))p+q/F
I
p−1(Tot(C))p+q =

⊕
i�p

Ci,p+q−i/
⊕

i�p−1

Ci,p+q−i = Cp,q ,

and for the second filtration is:

IIE0
p,q := F II

p (Tot(C))p+q/F
II
p−1(Tot(C))p+q =

⊕
j�p

Cp+q−j,j/
⊕

j�p−1

Cp+q−j,j =Cq,p.

The differentials are respectively induced by δv and by δh. The first pages of the
associated spectral sequences are given by IE1

p,q = Hq(Cp,∗), with induced differen-

tial δ(2)h , and by IIE1
p,q = Hq(C∗,p), with induced differential δ(2)v , simply denoted

by δ(2) in the follow-up, respectively.

3.1. The Mayer–Vietoris spectral sequence

Following [8, Chapter VII.4] and [26, Sections I.3.3 and II.5], we briefly recall
the construction of the Mayer–Vietoris spectral sequence.

For a simplicial complex X, denote by P (X) the face poset of X, i.e. the poset of
non-empty simplices of X, ordered by inclusion. Let Xp be the set consisting of the
p-simplices in X, and assume that the set of vertices is always finite and ordered.
The results will not depend on the choice of ordering.

Let U = {Ui}i∈I be a simplicial cover of X, i.e. a family of subcomplexes of
X with the property that each Ui is non-empty and

⋃
i∈I Ui = X. For each non-

empty subset J of the set of indices I, denote by UJ the intersection
⋂

j∈J Uj of the
corresponding elements in the cover. From this data, we can associate to X another
simplicial complex:

Definition 3.1. Given a simplicial complex X and cover U = {Ui}i∈I , the nerve
N(U) is the simplicial complex on the family of non-empty finite subsets J ⊆ I, such
that UJ :=

⋂
j∈J Uj �= ∅.
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From the Mayer–Vietoris spectral sequence to überhomology 9

Consider the cover U = {Ui}i∈I of X. We can associate to each simplex σ with
N(U) a subset J of {1, . . . , |I|}. In particular, for a p-simplex σ of N(U), defined
by the indices j0, . . . , jp, we will denote by Uσ the intersection Uj0 ∩ · · · ∩ Ujp

.
Every poset is a category. In particular, this holds for the face poset P (X); its

objects are the simplices of X, and there is a morphism τ → σ whenever τ is a face
of σ. Denote the category obtained this way by P(X), and by Ab the category of
Abelian groups.

Definition 3.2. A coefficient system on X is a functor L : P(X)op → Ab.

More concretely, a coefficient system on X is a family of Abelian groups {Aσ},
indexed by the simplices σ of X, together with a map Aτ⊆σ : Aσ → Aτ whenever
τ is a face of σ, and such that Aτ⊆σ ◦Aμ⊆τ = Aμ⊆σ if μ ⊆ τ ⊆ σ.

Example 3.3. Let U be a cover of a simplicial complex X. For each q ∈ N and
σ ∈ N(U), define

Hq(σ) := Hq(Uσ)

as the q-th homology group of the subcomplex Uσ of X. If τ is a face of σ belong-
ing to N(U), then there is an inclusion Uσ ⊆ Uτ , hence an induced map between
the associated q-homology groups. It is straightforward to check that Hq yields a
coefficient system on the nerve N(U). Analogously, the group Cq(Uσ) of q-chains in
Uσ can be considered; this also yields a coefficient system Cq on N(U).

Given a simplicial complex X and a coefficient system L on X, it is possible to
define the homology groups of X with coefficients in L, cf. [26, Section I.3.3]. For
each n � 0, define the p-chains as the sum

Cp(X;L) :=
⊕

σ∈Xp

L(σ) .

If σ is the simplex [x0, . . . , xp], then set di(σ) := [x0, . . . , x̂i, . . . , xp] for its i-th
face. By functoriality of L, there are restriction maps

L(σ) → L(di(σ)) ↪→
⊕

τ∈Xp−1

L(τ)

for all σ ∈ Xp and 0 � i � p, extending to maps ∂i : Cp(X;L) → Cp−1(X;L) on
the whole chain complex Cp(X;L), for each i. The differential ∂ : Cp(X;L) →
Cp−1(X;L) is defined by setting ∂ :=

∑p
i=0(−1)i∂i. This is usually known as Čech

differential, and the resulting chain complex is usually called cosheaf complex (see
e.g. [7, Section 4]).

Definition 3.4. The homology of X with coefficients in the coefficient system L is
the homology of the chain complex (C∗(X;L), ∂).

We now turn to the construction of the Mayer–Vietoris spectral sequence. This
is the spectral sequence associated to a double chain complex, corresponding to a
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cover of a topological space. For a simplicial complex X and cover U , set

C0
p,q :=

⊕
σ∈Np(U)

Cq (Uσ) =
⊕

|J|=p+1

Cq (UJ) (3.1)

for the Z-module freely generated by the q-chains of the subcomplexes of X
obtained considering intersections of p+ 1 elements of the cover U . There are
two differentials, decreasing either the p or the q degree. Denote by δ0h : C0

p,q →
C0

p−1,q the horizontal differential decreasing the p-degree, and by δ0v : C0
p,q → C0

p,q−1

the vertical one decreasing the q-degree. As customary, we define the differen-
tial δ0v as the alternating sum over the faces: if τ = [v0, . . . , vq], then δ0v(τ) :=∑q

k=0(−1)k[v0, . . . , v̂k, . . . , vq]. This way, for all p � 0, we get chain complexes
(C0

p,∗, δ
0
v). In the horizontal direction instead, at a fixed q ∈ N, we define δ0h as

the differential of the chain complex Cp(N(U); Cq) of N(U) with coefficients in the
coefficient system Cq. More concretely, for each J appearing in the sum of equation
(3.1), and each j ∈ J , the subset J ′ := J \ {j} is a face of J in N(U). The inclusion
of J ′ in J induces a simplicial map UJ → UJ ′ (reversing the ordering), hence a map
on the level of q-chains. Then, the differential δ0h is defined on the basis elements of
Cq(UJ ) as the alternating sum of UJ\{j} over j ∈ J . This definition is then extended
to all sums by linearity.

Remark 3.5. The differentials δ0h and δ0v commute, i.e. δ0h ◦ δ0v = δ0v ◦ δ0h.

Endowing the groups C0
p,q with the differentials δ0h and δ0v , yields a double

chain complex. Both spectral sequences associated with the double chain com-
plex (C0

∗,∗, δ
0
h, δ

0
v) (corresponding to the vertical and horizontal filtration) converge

to the homology of the total chain complex TotX, since (C0
∗,∗, δ

0
h, δ

0
v) is a first

quadrant double chain complex. However, even though the two spectral sequences
abut to the same graded object H∗(TotX), they have different E∞-terms – seen
as bigraded objects. First, consider the spectral sequence IE obtained by taking
homology with respect to the p-degree. As, for s > 0 fixed, the chain complexes C0

∗,s

are acyclic [8, Section VII.4], its E1-page has non-trivial groups Cs(X) concentrated
in the first column. The differential is induced from δ0v . Hence, the second page con-
sists of the homology groups H∗(X). Therefore, this spectral sequence collapses at
the second page, yielding

H∗(TotX) ∼= H∗(X). (3.2)

The second spectral sequence IIE is called the Mayer–Vietoris spectral sequence.
From now on, we will simply write E instead of IIE.

Definition 3.6. The first page of the Mayer–Vietoris spectral sequence associated
with a simplicial complex X and cover U is given by

E1
p,q =

⊕
σ∈Np(U)

Hq(Uσ) (3.3)

with differential δ(1) : E1
p,q → E1

p−1,q induced by δ0h.
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Remark 3.7. The group E1
p,q in equation (3.3) coincides with the chain group

Cp(N(U);Hq), where Hq is the coefficient system described in example 3.3.

Then, the E2-page of IIE is given by

E2
p,q = Hp(E1

∗,q) = Hp(N(U);Hq) .

As previously remarked, this spectral sequence converges to the homology of the
total complex TotX. Therefore, we get convergence of the Mayer–Vietoris spectral
sequence to the homology of X by equation (3.2).

Remark 3.8. Assume that the elements of the cover of X have homology Hi(Uσ) =
0 for all σ and i � k. Then, the differential δi on the i-th page must be trivial for
i � k + 2. Thus, in such a case, the Mayer–Vietoris spectral sequence converges at
the page Ek+2.

As a consequence, if each Uσ is acyclic, the described spectral sequence collapses
at the second page (furthermore, it has non-zero groups only at q = 0), and we
recover the classical Nerve lemma – cf. [8, Theorem VII (4.4)]:

Theorem 3.9 (Nerve lemma). Let X be a finite simplicial complex, U a cover by
subcomplexes, and suppose that every non-empty intersection Uσ is acyclic. Then,
H∗(X) ∼= H∗(N(U)).

When the subcomplexes Uσ are not acyclic, the conclusion of the Nerve
lemma does not hold. Nonetheless, the Mayer–Vietoris spectral sequence eventually
converges to the homology of X.

Remark 3.10. The results outlined in this section are a special case of a more
general construction. Let F be a sheaf on a topological space X. If U is a cover of
X which is F-acyclic (i.e. F is acyclic on the finite intersections of U), then the
Čech cohomology of U with coefficients in F coincides with the sheaf cohomology
of X. Furthermore, if U consists of two open subsets of X, we recover the classical
Mayer–Vietoris sequence for the sheaf F .

3.2. The anti-star cover

For our purposes, it is particularly interesting to consider a special type of covers
of simplicial complexes. These covers are obtained from complements of vertex
stars, and are commonly known as anti-star covers. Let X be a simplicial complex
which is not the standard simplex Δm.

Definition 3.11. For each vertex v in X, denote by astX(v) the subcom-
plex of X spanned by the vertices in V (X) \ {v}. The associated cover Uast

X =
{astX(v)}v∈V (X) is called the anti-star cover of X.

Equivalently, each astX(v) is obtained from X by removing the open star of v.
When clear from the context, we will drop the dependency on X and simply write
ast(v) and Uast. Anti-star subcomplexes contain homotopical information about the
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Figure 3. The simplicial complex from example 3.13.

simplicial complex X. Indeed, if the inclusions in the (anti-)star is null-homotopic,
if astX(v) is homotopy equivalent to a wedge of n-dimensional spheres, and the
link lkX(v) is homotopy equivalent to a wedge of (n− 1)-dimensional spheres, then
X is homotopy equivalent to a wedge of n-dimensional spheres [40, Lemma 5].
Furthermore, if v is a (non-isolated) vertex of X, there is a Mayer–Vietoris long
exact sequence

· · · → H̃i+1(X) → H̃i(lkX(v)) → H̃i(astX(v)) → H̃i(X) → · · ·
relating the (reduced) homology of X, of the link of v and of the associated anti-
star complex. When multiple vertices are considered at once, long exact sequences
are not sufficient to determine the homology of X, and the Mayer–Vietoris spectral
sequence comes into play.

Remark 3.12. The nerve associated with the anti-star cover can be easily seen to
coincide with the standard simplex Δm.

In order to showcase some of the techniques used in §5, some sample computations
of the Mayer–Vietoris spectral sequence associated with the anti-star cover are
provided below.

Example 3.13. Let X = ∂Δ2, as shown in figure 3. Let Ui = ast(vi) be the anti-
star subcomplexes, so Ui = [vi+1, vi+2], with indices modulo 3. The intersection
Ui ∩ Ui+1 is given by the vertex vi+2. Adding to Uast the empty and the complete
intersections as well, produces the Boolean poset represented in figure 4. Applying
the homology functor Hq to each element of the poset, yields instead the decorated
cube in figure 5. The directions of the edges of the cube follow the inclusions; in
turn, the p-differentials, are directed from the p-simplices of the associated nerve
to the (p− 1)-simplices.

In order to get the double complex E0
p,q, for each q take the module generated

by the q-chains, and then sum them up:

E0
2,q = Cq(∅), E0

1,q =
3⊕

i=1

Cq({vi}), E0
0,q =

3⊕
i=1

Cq({[vi, vi+1]}) .

To turn to the first page, take the homology in the q-direction; for each q, this
results in the row shown at the bottom of figure 5.
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Figure 4. Boolean diagram associated with the nerve of the anti-star cover for ∂Δ2, with
the empty and complete intersections added (top and bottom elements, respectively); red
simplices denote the elements Ui = astX(vi) and their intersections (cf. with Fig. 2).

Figure 5. The coefficient system Hq on the nerve of ∂Δ2, augmented by adding the values
on the empty and complete intersections. The direct sum, columnwise, yields the q-th row
of E1 in the Mayer–Vietoris spectral sequence.

The only non-trivial row is at q = 0. The unique differential has a non-trivial
kernel of rank 1. Taking the homology again, yields non-trivial homology groups
E2

0,0, E
2
1,0, both isomorphic to Z; all other groups are zero. Concluding, the

Mayer–Vietoris spectral sequence converges at the second page (as all differen-
tials are zero), yielding non-trivial classes in homological dimension 0 and 1; this
corresponds to the fact that X is homotopic to S1.

Example 3.14. Consider the contractible simplicial complex X shown in figure 6,
i.e. the cone over a loop of length 4. Then, as the Mayer–Vietoris spectral sequence
converges to the homology of the disc, and all the subcomplexes ast(vi), but ast(v0),
are contractible, the first and second page of the Mayer–Vietoris spectral sequence
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Figure 6. The cone over a loop of length four.

are the following:

The differential δ(2) : E2
2,0

∼= Z → Z ∼= E2
0,1 is non-trivial, and it kills the Z-class at

E2
0,1. The third page contains only the homology of the point.

Example 3.15. Let Δn+1 be the standard (n+ 1)-simplex, considered with its
standard triangulation. Let Sn be the sphere obtained by removing from Δn+1 its
interior. Then, the associated anti-star cover consists of contractible subcomplexes.
Hence, the Mayer–Vietoris spectral sequence converges at the second page. As a
consequence, E2 contains a rank one component in degree (0, 0), and one in degree
(n, 0).

4. The overlap between Mayer–Vietoris and überhomology

The aim of this section is to prove theorem 1.1; or, more explicitly, to provide
the identification between the second page of the Mayer–Vietoris spectral sequence
associated with the anti-star cover and the 0-degree überhomology. To this end, the
first step is to extend the computational framework of the Mayer–Vietoris spectral
sequence to include the empty intersection of the elements of the cover as well.

Let X be a simplicial complex, and let Uast be its associated anti-star cover.
Assume that X is not the standard simplex. By equation (3.3), the first page of the
associated Mayer–Vietoris spectral sequence is

E1
p,q =

⊕
σ∈Np(Uast)

Hq(Uσ) .

In order to include the empty intersection U∅ := X, it is possible to augment both
the double chain complex E0

p,q and the first page of the spectral sequence in degree
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p = −1 with the homology of X, by setting

E1
−1,q := Hq(X).

The horizontal differential of the first page, induced by inclusions, naturally extends
to the (−1)-column as well.

Definition 4.1. The augmented Mayer–Vietoris spectral sequence of X rel-
ative to a cover U is the spectral sequence with E1-page given by E1

p,q =⊕
σ∈Np(Uast) Hq(Uσ), augmented in degree −1 with E1

−1,q := Hq(X), and differen-
tials induced by inclusions.

Remark 4.2. Consider the double chain complex E0
p,q, augmented in degree p = −1

with Cq(X); i.e. set E0
−1,q := Cq(X). As the rows of such augmented complex are

exact [8, Section VII.4], by the acyclic assembly lemma [41, Lemma 2.7.3], the
total complex associated with E0

∗,∗ is acyclic. Hence, the augmented Mayer–Vietoris
spectral sequence associated with (the second filtration of) E0

∗,∗ converges to an
acyclic complex.

We provide some examples, extending those already discussed in §3.2.

Example 4.3. In parallel with example 3.13, consider the spectral sequence
obtained by augmenting the first page in degree −1 with the homology of X. The
first and second page now become the following:

The unique differential δ(2) : E2
1,0 → E2

−1,1 is an isomorphism; hence, the third page
is trivial. Analogously, for the square of example 3.14, the second page is completely
trivial, except for the bidegrees (0, 1) and (2, 0), where it is Z.

Example 4.4. Consider the spheres from example 3.15. It is easy to see that the
second page of the augmented Mayer–Vietoris spectral sequence is completely triv-
ial, except for in degrees (−1, n) and (n, 0). The augmented spectral sequence
collapses at page n+ 1.

We can now proceed with the proof of theorem 1.1;
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Proof of theorem 1.1. For a given set of vertices {vi1 , . . . , vik
} ⊆ V (X), the induced

subcomplex

X〈vi1 , . . . , vik
〉 ⊆ X

they span can be regarded as the ‘1-coloured’ component of the complex (X, ε), ε
being the bicolouring on X assigning 1 to each vij

and 0 otherwise. Equivalently,
X〈vi1 , . . . , vik

〉 is obtained by intersecting the anti-star subcomplexes Us for all
s /∈ {i1, . . . , ik}.

Now observe that for a fixed q � 0, by the definition of the chains in equation
(2.2), restricted to the 0-degree, we obtain an identification of the groups E1

p,q with⊕
�(ε)=m−p−1 Hq(X, ε); this is the überhomological degree m− p− 1 component

of the 0-degree of the übercomplex. When restricting to the base field R = Z2,
the p-differential coincides with the differential in equation (2.3). Furthermore, the
agreement of the differentials extends to a general ring of coefficients R after choos-
ing a sign assignment on the appropriate Boolean poset [11]; the agreement does not
depend on the choice of the sign assignment by proposition 2.2 and [11, Theorem
3.16 and Corollary 3.18]. By definition 2.1, the homology of this chain complex is
the überhomology of X. On the other hand, it yields the second page of the aug-
mented Mayer–Vietoris spectral sequence. This gives the complete identification
E2

p,q
∼= B̈m−p−1

q (X) for p � −1 and q � 0. �

In other words, the 0-degree überhomology of X coincides with the homology
of the nerve of the anti-star cover, with coefficients in the functor H∗ defined in
example 3.3. Observe that the definition of anti-star cover can be extended verbatim
to regular CW-complexes. Furthermore, theorem 1.1 allows us to extend also the
definition of überhomology to regular CW-complexes. This will be used in example
5.3 and corollary 1.3.

Corollary 4.5. The überhomology groups B̈j
i (X) inherit a further differential

δ(2) : B̈j
i (X) → B̈j+2

i+1 (X)

for all i � 0 and 0 � j � m = V (X). Hence, (B̈j
i (X), δ(2)) is a chain complex.

Proof. The differential δ(2) : B̈j
i (X) → B̈j+2

i+1 (X) is precisely the differential δ(2) of
the second page E2

∗,∗ of the augmented Mayer–Vietoris spectral sequence. �

Note that the induced differential δ(2) is related to the connecting homomorphism
in the Mayer–Vietoris long exact sequence. Furthermore, the transgression of the
augmented Mayer–Vietoris spectral sequence induces a (partially defined) map

τ : H
k(X) = B̈k

0(X) −→ B̈m
m−k−1(X) ,

where m = |V (X)| and k = 0, . . . , m− 2.
As a consequence of theorem 1.1, the next computations of 0-degree

überhomology groups follow.

Example 4.6. The homology groups B̈j
i (X) of the simplicial complex in example

3.13 are all zero, except for B̈3
1(X) and B̈1

0(X), both isomorphic to Z. The two
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Figure 7. Suspension of the 1-simplex.

classes are paired by the differential δ(2) : B̈1
0(X) → B̈3

1(X), and the bold homology
class is paired with the fundamental class of X. In this case, δ(2) at B̈1

0(X) agrees
with the transgression τ , and is an isomorphism. Consider the square from example
3.14; it has non-trivial homology groups B̈4

1(X) and B̈2
0(X); these are again paired

by the differential (the transgression) δ(2), which is an isomorphism.

Example 4.7. The only non-trivial 0-degree überhomology groups of the standard
spheres ∂Δm of example 3.15 are B̈m+1

m−1(∂Δm) and B̈1
0(∂Δm). Note that, in such

case, the bold homology class and the class of B̈m+1
m−1(∂Δm) are still paired, but by

higher differentials in the augmented spectral sequence. However, the transgression
map still yields an isomorphism between the groups B̈m+1

m−1(∂Δm) and B̈1
0(∂Δm).

Example 4.8. Consider the simplicial complex X obtained from two 2-simplices,
glued together along one edge, with vertices as in figure 7. Call v0, v3 the exter-
nal vertices and v1, v2 the vertices of the common edge. Then, the subcomplexes
astX(vi) and all the possible intersections, except for astX(v1) ∩ astX(v2), are
contractible. The subcomplex astX(v1) ∩ astX(v2) = {v0, v3} is disconnected. The
spectral sequence converges at the second page, where it is completely trivial. Hence,
the homology groups B̈j

i (X) of X are all zero.

5. Applications

In this section, we provide some consequences and applications of theorem 1.1.
First, we recall the definition of d-Leray complexes.

Definition 5.1. A CW-complex X is d-Leray if the reduced homology of all induced
subcomplexes of X is trivial for all i � d. A cover U of X is d-Leray if all its
elements are d-Leray.

Equivalently, by [33, Proposition 3.1], a simplicial complex X is d-Leray if
H̃i(lkX(σ)) = 0 for all simplices σ in X and i � d. The property of being d-Leray
has consequences on the convergence of the Mayer–Vietoris spectral sequence. For
example, the following result can be readily deduced from theorem 1.1:

Proposition 5.2. Let X �= Δm be a connected, contractible, simplicial complex. If
the anti-star cover of X is 1-Leray, then all the homology groups B̈j

i (X) are zero.
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Proof. If the anti-star cover is 1-Leray, then the first page of the augmented
Mayer–Vietoris spectral sequence has non-trivial elements only for q = 0. The
spectral sequence converges to zero at the second page, since X is contractible. �

This proposition provides a generalization of [10, Theorem 5.1]: the bold homol-
ogy of a connected tree with at least three vertices is trivial. Indeed, in this case, the
anti-star cover is 1-Leray, and the bold homology is the 0-part of B̈∗

∗(X). Another
example is given by ‘polygonal neighbourhoods of trees’:

Example 5.3. Let T be a tree and choose an abstract full polygon P (i.e. a 2-cell)
on at least n edges, where n = maxv∈T deg(v) + 2. Then, for each vertex v of T take
a copy P v of P at v; for each edge (v, w), glue P v and Pw along a free face. As in T
there are no cycles, the construction yields a contractible CW-complex X(T) (it is a
simplicial complex only when P is a triangle). Note that the construction may yield
different complexes, even for a fixed choice of P . In any case, the anti-star cover
of X(T) is 1-Leray. Hence, if T �= Δ1, all the groups E2

∗,∗(X(T)) of the associated
augmented Mayer–Vietoris spectral sequence are trivial – by the same arguments of
proposition 5.2. Consider now the 1-skeleton of X(T), which is a connected graph,
and has homology in dimension 1 of rank |V (T)|. The anti-star cover associated with
such graph is not 1-Leray any more. However, observe that the (q = 0)-row of the
augmented Mayer–Vietoris spectral sequence is still trivial (whether the polygons
are boundary of 2-cells does not affect the number of connected components, nor the
induced p-differentials). Therefore, the bold homology of polygonal neighbourhoods
of trees (�= Δ1) is completely trivial.

Denote by Im the path graph on m vertices, and by � the Cartesian product of
graphs.

Corollary 5.4. If m � 3, then all graph products Im�I2 have trivial bold
homology.

Proof. Note that the product Im�I2 can be seen as a polygonal neighbourhood
of Im, by choosing the polygon P to be a square. The product Im�I2 is not
contractible, nor the anti-star cover is 1-Leray. However, the same reasoning as in
example 5.3 shows that the graph Im�I2 has trivial bold homology. �

As a consequence, the connected domination polynomial of Im�I2, evaluated at
−1, is trivial. We point out that, in general, counting connected dominating sets
for grids is not straightforward; see also [24, 38].

A priori, one can use properties of the anti-star cover of closed manifolds
to deduce properties of their 1-skeleton’s bold homology. For instance, assume
that M is a closed connected non-orientable n-manifold. Consider a m-vertex
triangulation T of M . If the anti-star cover is 1-Leray, then the first page of
the augmented Mayer–Vietoris spectral sequence E1

p,q is zero for all p � 0 and
q � 1, whereas E1

−1,n−1 = Hn−1(M ; Z) ∼= Z2, see [28, Corollary 3.28]. The spectral
sequence converges to an acyclic total complex, yielding an isomorphism:

δ(n) : En
n−1,0 −→ En

−1,n−1
∼= Z2.
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Since E2
n−1,0

∼= En
n−1,0, then B̈m

n−1(M ; Z) ∼= H
m−n(M ; Z) ∼= Z2, and the bold

homology would contain torsion. Unfortunately, the anti-star cover of a non-
orientable closed connected n-manifold is n-Leray. Therefore, we can not infer the
existence of torsion classes in bold homology.

Other 5.5. Is it possible to find torsion in the integral bold homology of a simplicial
complex?

Given a simple graph G, denote by Fl(G) its flag complex, i.e. the simplicial
complex whose simplices are given by the complete subgraphs of G. As remarked in
[39, Section 3.2], the only 0-Leray complexes are the standard simplices Δn, whereas
1-Leray complexes are flag complexes on chordal graphs. An example of 2-Leray and
3-Leray complexes is given by flag complexes of line graphs of complete bipartite
graphs, and complete graphs, respectively [29, Theorem 1.1]. A class generalizing
bipartite graphs is given by triangle-free graphs.

Proposition 5.6. Let G be a connected triangle-free graph on m vertices. Then,

(i) H
m(G; Z) = H

m−1(G; Z) = 0;

(ii) H
m−2(G; Z) and B̈m

1 (G; Z) are quotients of H1(G; Z);

(iii) H
j(G) ∼= B̈j+2

1 (G) for all 0 � j � m− 2.

Proof. As G is triangle-free, it follows that Fl(G) = G, and the anti-star cover of
Fl(G) = G is 2-Leray. An inspection of the spectral sequence, together with corollary
4.5, yields short sequences

0 → H
j(G) = B̈j

0(G)
δ(2)

−→ B̈j+2
1 (G) → 0

Since the spectral sequence must converge at the third page, δ(2) is an isomorphism.
The statements follow by theorem 1.1. �

In virtue of lemma 2.6, the above proposition implies that the 0-degree
überhomology of flag complexes on triangle-free graphs is completely determined
by their bold homology.

The effect of graph cones on bold homology of graphs was explored in [10, Propo-
sition 5.3]. Denote by Cone(X) the cone of a simplicial complex X. Recall that,
given two chain complexes (C∗, δC

∗ ), and (D∗, δD
∗ ), and a chain map ψ : C∗ → D∗

the mapping cone of ψ is the chain complex defined as follows:

Cone(ψ) = D∗ ⊕ C∗−1, ∂Cone =
(
δD
∗ −ψ∗
0 δC

∗−1

)
.

The following result is a partial generalization of both [10, Proposition 5.3] and
[12, Proposition 7.11].
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Proposition 5.7. Let X �= Δm−1 be a simplicial complex on m vertices. Then,
there is an isomorphism

B̈∗
∗(Cone(X)) ∼= B̈∗

∗(X)

of bigraded modules.

Proof. Denote by v1, . . . , vm the ordered vertices of X, and by v0 the coning ver-
tex in Cone(X). Set Ui = astX(vi), U ′

0 = astCone(X)(v0), and U ′
i = astCone(X)(vi) �

Cone(Ui). Note that all the U ′
i ’s, as well as their intersections, are non-empty

and contractible. Furthermore, U ′
0 = X, and under this identification, each Ui

corresponds to the intersection U ′
0 ∩ U ′

i . Therefore, we get the isomorphisms

E1
p,q(Cone(X)) ∼= E1

p−1,q(X) ⊕
⊕

i1<···<ip+1

Hq(U ′
i1 ∩ · · · ∩ U ′

ip+1
)

=

{
E1

p−1,q(X) ⊕ Z
( m

p+1 ) if q = 0
E1

p−1,q(X) otherwise

for all p � −1 and q, with the conventions that E1
−1,q(X) = Hq(X) and E1

−2,q(X) =
0. We claim that:

E1
p,q(Cone(X)) = Cone

(
φ : E1

p,q(X) → C̃p(Δm−1)
)
,

where φ is a graded chain map, Δm−1 = [1, . . . , m], and C̃p(Δm−1) is concen-
trated in q-degree 0. To see this, identify the group H0(U ′

i1
∩ · · · ∩ U ′

ip+1
) with the

summand in C̃p(Δm−1) spanned by the simplex [i1, . . . , ip+1]. This identification
provides the map φ. Since C̃∗(Δm−1) is acyclic, the statement follows. �

The above reasoning can be extended to suspensions of simplicial complexes:

Theorem 5.8. Let X be a connected simplicial complex on m vertices, and denote
by Σ(X) the suspension of X. Then, for q �= 1 the following isomorphisms exist

B̈j
q(Σ(X)) ∼=

⎧⎪⎨⎪⎩
B̈∗

q(X) ⊕ B̈∗+2
q−1(X) if q > 1,

B̈j
0(X) ⊕ Z(2) if q = 0 and X(1) �= Km,

0 if q = 0 and X(1) = Km,

where Z(2) indicates a copy of Z in überhomological degree 2.

Proof. Let v1, . . . , vm be the vertices of X and write Σ(X) = X ∗ {p1, p2}. For
each I ⊆ {1 . . . , k}, possibly empty, we shall write UI for the sub-complex of X
spanned by {vj}j /∈I . Similarly, given I ⊆ {1, . . . , m} and J ⊆ {1, 2}, we denote by
UJ

I the sub-complex of Σ(X) spanned by {vj}j /∈I ∪ {pr}r/∈J . Note that there are
identifications U∅

I = Σ(UI), U{1}
I = U{2}

I = Cone(UI), and U{1,2}
I = UI .
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By definition, the first page of the Mayer–Vietoris spectral sequence decomposes
as

E1
p,q = C0

p,q ⊕ C1
p−1,q ⊕ C2

p−2,q (5.1)

where

C0
p,q :=

⊕
|I|−1=p

Hq(U∅
I ), C1

p−1,q

:=
⊕

|I|−1=p−1

Hq(U{1}
I ) ⊕ Hq(U{2}

I ), C2
p−2,q

:=
⊕

|I|−1=p−2

Hq(U{1,2}
I ) .

For each q, the inclusions UJ
I\{i} ⊂ UJ

I with J ⊆ {1, 2}, induce differentials ∂0,
∂1, and ∂2 on C0

∗,q, C
1
∗,q, and C2

∗,q, respectively, endowing them with the struc-

ture of chain complexes. Similarly, the inclusions UJ
I ⊂ UJ\{j}

I , induce chain maps
φs : Cs

∗,q → Cs−1
∗,q , for s = 1, 2. The signs of φ1 and φ2 can be chosen so that the

differential on E1 can be written, with respect to the decomposition in equation
(5.1), as follows:

δ(1) =

⎛⎝∂0 −φ1 0
0 ∂1 −φ2

0 0 ∂2

⎞⎠
We can thus write (E1

∗,q, δ
(1)) as an iterated cone:

E1
∗,q = Cone((φ1, 0) : Cone(φ2 : C2

∗,q → C1
∗,q) → C0

∗,q) .

Using the identifications U∅
I = Σ(UI), U{1}

I = U{2}
I = Cone(UI), and U{1,2}

I = UI ,
we can obtain isomorphisms of chain complexes:

C0
∗,q

∼=
{
C∗(Δm−1) ⊕ Z(m−1) if q = 0
E1

∗,q−1(X) if q > 1
, C1

∗,q

∼=
{
C∗(Δm−1) ⊕ C∗(Δm−1) if q = 0
0 if q > 1

and

C2
∗,q

∼= E1
∗−2,q(X).

Therefore, for q = 0 we obtain strong deformation retracts (in the sense of [6,
Definition 4.3]) C0

∗,0 � Z(m−1) and C1
∗,0 � 0. In turn (cf. [6, Lemma 4.5]) these
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strong deformation retracts induce the following strong deformation retracts:

Cone(φ2 : C2
∗,q → C1

∗,q) � C2
∗−1,q

∼= E1
∗−1,q(X), q �= 1,

and thus

E1
∗,q �

{
Cone(ψ : E1

∗−1,0(X) → Z(m−1)) if q = 0
E1

∗−2,q(X) ⊕ E1
∗,q−1(X) if q > 1

for an appropriate chain map ψ. This proves the statement for q > 1. Now, if X(1) �=
Km then H1(X(1)) = B̈1

0(X) = 0 (see [10, Theorem 1.4]). In fact, we can prove that
E1

∗,0(X) (strongly) deformation retracts onto a complex C∗ supported in degrees
strictly lower than m, cf. [10, Alternative proof of Proposition 4.3]. This implies
that

E1
∗,0 � Cone(0 : C∗−1 → Z(m−1)) = C∗−2 ⊕ Z(m−1) .

Since C∗ is the chain complex whose homology is Hm−∗(X(1)) = B̈m−∗
0 (X), the

statement follows for q = 0 and X(1) �= Km. Finally, consider the case X(1) = Km.
By lemma 2.6, Hm+1(E1

∗,0) = Hm−∗−2((Σ(X))(1)) can be computed by considering
any simplicial complex Y such that Y (1) = (Σ(X))(1). For instance, we can take Y
to be ΣΔm−1. Since Y is contractible and its anti-star cover is 1-Leray, it follows
from proposition 5.2 that H∗((Σ(X))(1)) = 0. �

Observe that we cannot apply the same reasoning as in the proof of theorem
5.8 for q > 1 to obtain something about the case q = 1. This is due to the fact
that H1(ΣX) �= H0(X). We can see also that B̈∗

1(Σ(X)) is not necessarily trivial,
by taking X the linear graph with three vertices – cf. example 3.14.

To conclude, we provide the proof of theorem 1.2:

Proof of theorem 1.2. Let X be a finite connected CW-complex and denote by G its
1-skeleton. Since the anti-star cover of X is 1-Leray, the augmented Mayer–Vietoris
spectral sequence converges to the trivial group. Furthermore, the only non-trivial
groups in the E2-page are in bidegrees (∗, 0) and (−1, ∗). The überhomology groups
B̈j

i (X) are all zero, except for B̈m−p−1
0 (X) ∼= Hp(X) = B̈m

p (X). The isomorphism
between the groups B̈m−p−1

0 (X) and B̈m
p (X) is given by the transgression. As a

consequence, we have

(−1)m−1Dc(G)(−1) = χ(X) − 1, (5.2)

and the statement follows. �

Note that the 1-Leray assumption in theorem 1.2 is essential. Indeed, consider the
simplicial complex of example 3.14 shown in figure 6. The connected domination
polynomial of the underlying graph, evaluated at −1, is −1, whereas the Euler
characteristic of X is 1.

Corollary 1.3 follows immediately from theorem 1.2, after observing that flag
complexes of chordal graphs are contractible and 1-Leray [17, Lemma 3.1].
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Remark 5.9. Consider the graph I3�I2. By corollary 5.4, its bold homology is
trivial, and −1 is a root of its connected domination polynomial. Hence, the converse
of corollary 1.3 does not generally hold, as I3�I2 is not chordal.

We conclude with a perspective on higher chordality. From [1, Fact 3.1], the anti-
star cover Uast of a simplicial complex X is k-Leray, for k > 1, if and only if X is
resolution l-chordal for all l � k. Paralleling corollary 1.3, it would be interesting
to investigate properties of the connected domination polynomial of the 1-skeleton
of such complexes.
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9 Á. T. Casas. Distributing persistent homology via spectral sequences. ArXiv:1907.05228
(2019).

10 L. Caputi, D. Celoria and C. Collari. Categorifying connected domination via graph
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