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ON THE NONLINEARITY OF THE SEQUENCE OF
SIGNS OF KLOOSTERMAN SUMS

IGOR E. SHPARLINSKI

It is known that Kloosterman sums with prime denominator p take real values, so one
can define a sequence of signs of such sums. Several pseudorandom properties of this
sequence have recently been studied by Fouvry, Michel, Rivat and Sarkozy. Here we
use one of their results to estimate a certain important characteristic of this sequence
which is also of cryptographic interest.

1. INTRODUCTION

Let p be an odd prime. For an integer h we define the Kloosterman sum

where uu = 1 (mod p).
It is easy to show that K{h) takes real values for any integer h, it is also known that

K{h) j= 0. Thus, one can define the sequence of signs

(1) l - i .

Several results about the distribution of values and autocorrelation and some of
measures of pseudorandomess of this sequence have recently been obtained in [8]. Here
we show that one of the results of [8] allows us to estimate one more characteristic of
this sequence which also has an important cryptographic meaning. To be more precise
we define an integer n by the inequalities 2" ^ p < 2"+1 and denote by Bn the set of
n-bit integers,

Bn = { / i 6 Z : 0 < / i < 2 " - l } .

Throughout the paper we do not distinguish between n-bit integers h 6 Bn and their
binary expansions. Thus Bn can be considered as the n-dimensional Boolean cube
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Bn — {0,1}". In particular, for h,r € Bn, (h,r) denotes the inner product of h,r

considered as the binary vectors.

Given a Boolean function / : Bn -> {0,1} we define its Fourier coefficients as

Fourier coefficients are closely related to several complexity properties characterising the
Boolean function / , such as the circuit complexity, the average sensitivity, the formula
size, the average decision tree depth, the degrees of exact and approximate polynomial
representations over the reals and several others; see [1, 2, 9, 10, 11, 12] and references
therein.

Furthermore, we recall that

iV(/) = 2 n - 1 -2 ' l - 1 max | / ( r ) |

is called the nonlinearity of/, see [3, 4, 5, 6, 7, 14, 15] for the cryptographic significance
of this notion. The nonlinearity of / gives the smallest possible Hamming distance
between the vector of values of / and the vector of values of a linear function in n
variables over the F2, the field of two elements.

Here we use a certain result of [8] to obtain an upper bound on the nonlinearity of
a Boolean function which is naturally associated with the sequence (1).

2. MAIN RESULT

We define the Boolean function

ln\ r/i_\ J "> .1 S/, = 1 Of ft = I),f 0, if sh = 1 or

\ 1, if a* = - 1 ;

In particular,
sh = ( - i ) / ( h ) , he Bn, h?o.

THEOREM : The nonlinearity N(f) of the Boolean function f(h), given by (2), sat-
isfies the inequality

N(f) = 2—I(l

PROOF: We estimate the Fourier coefficients f(k) of / by using the result that for
any integers M, du d2 with 0 ^ M < M + di < M + d2 < 2" we have

M

(3) £ sh+dlsh+d2 - Ofc^Oogp)1'3) - O(25"/6nV3)i

which is a special case / = 2 of the result of [8, Theorem 1.1].
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We now fix some m ^ n and write / i , r € Bn as

h = k + 2mj and r = s + 2mt,

with 0 ^ k, s < 2m and 0 < j , t < 2n~m. In particular

Therefore,

— 1 2 " ~ m —1

Jfc=0 >=0

2 m — 1

* = 0

2 n ~ f n — 1

j=0

Furthermore, using the Cauchy inequality we obtain

^ 1

am i ow — n* 1

fc=0 jijj=O

2n —m j 2"* 1

2m-2r

2J2=0 k=0

i2 + 0(1)

where 0(1) takes care of the terms corresponding to k — ji = 0 or to k = j 2 = 0. For
2n~m choices of j i = j 2 the sums over k is equal to 2m. For the other choices of ji and j2

we can use the bound (3), getting

I f?fc l̂2 = (~)(iTn~2n(1n~rn27n 4- 22^n—m^2^n^n^3^

_ o(2m~n + 25ny'6~mn1/'3).

Defining m by the inequalities 2m < 2 l l n / 1 2n1 / 6 < 2 m + 1 , we conclude the proof. D

3. REMARKS

We recall, that the Legendre symbol satisfies
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and thus can be viewed as the "sign" of the Gauss sums

u=0 r

The Fourier coefficients of the Boolean function

0, if {-\ = 1 or h = 0;
9(h) ={ f he Bn,

has been estimated in [13, Theorem 10.1] which immediately yields the bound

N(g) = 2 n " 1 ( l + O(2- n / 8 n 1 / 4 ) ) .

Several other properties of g have been studied in [13] as well, for example its linear
complexity (that is, the length of the shortest linear recurrence over F2 satisfied by this
sequence). Obtaining analogues of these results for / , given by (2) would be of interest
too.

Certainly generating the sequence S/, is too complicated to lead to a practical pseu-
dorandom number generator. Nevertheless, a more detailed study of various properties
of this sequence is of ultimate interest.
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