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On unavoidable families of meromorphic
functions
Thierry Meyrath

Abstract. We prove several results on unavoidable families of meromorphic functions. For instance,
we give new examples of families of cardinality 3 that are unavoidable with respect to the set of
meromorphic functions on C. We further obtain families consisting of less than three functions that
are unavoidable with respect to certain subsets of meromorphic functions. In the other direction, we
show that for every meromorphic function f, there exists an entire function that avoids f on C.

1 Introduction and notation

For a domain D ⊂ C, we denote by H(D) and M(D) the spaces of holomorphic
and meromorphic functions on D, respectively, and further set M∞(D) ∶= M(D) ∪
{ f∞∣D}, where f∞ ≡ ∞. Given two functions f and g defined on D, we say that g avoids
f on D, if g(z) ≠ f (z) for every z ∈ D. A function f is called unavoidable with respect
to A ⊂ M∞(D), if there is no g ∈ A that avoids f on D. Furthermore, we say that a
family F of functions is unavoidable with respect to A ⊂ M∞(D), if there is no g ∈ A
that avoids every function f ∈ F on D, that is, if for every g ∈ A, there exists f ∈ F such
that the equation g(z) = f (z) has at least one solution in D (including the possibility
that both functions take the value∞).

Unavoidable families seem to first have been investigated by Rubel and Yang [12],
who proved that for two functions f1 and f2 ∈ M(C), the family { f1 , f2} is never
unavoidable with respect to M(C). On the other hand, they also showed that any
family consisting of three polynomials p1 , p2, and p3, such that p1 − p2 and p2 − p3
are not both constant, is unavoidable with respect to M(C). Thus, the minimum
cardinality of a family F ⊂ M(C) that is unavoidable with respect to M(C) is 3.
Hayman and Rubel [5] considered similar questions for general domains D ⊂ C and
proved that a family F ⊂ M(D) consisting of two functions cannot be unavoidable
with respect to M(D). In the other direction, it is shown in [5] that there exists a
function f ∈ H(D), such that for every function g ∈ M(D), at least one of the three
equations g(z) = f (z), g(z) = − f (z), and g(z) = ∞ has infinitely many solutions
in D. In particular, it follows that the family { f ,− f , f∞∣D} is unavoidable with respect
to M∞(D). Note that a result from [7] shows that if F ⊂ M∞(D) is a family of three
functions that is unavoidable with respect to M∞(D), the three functions cannot
avoid each other on D. The aforementioned result from [5] also implies that the
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On unavoidable families of meromorphic functions 115

family { f ,− f } is unavoidable with respect to the set of meromorphic functions in
D that have at most finitely many poles. In particular, { f ,− f } is unavoidable with
respect to H(D), and because for a function g ∈ H(D), the function g + 1 ∈ H(D)
avoids g on D, it follows that the minimum cardinality of a family F ⊂ H(D) that is
unavoidable with respect to H(D) is 2. Again, according to [7], the two functions
cannot avoid each other on D in this case. We further mention some results from [9],
where unavoidable families of rational functions are investigated. For example, it is
shown that the minimum cardinality of a family of rational functions, that no rational
function can avoid on C, is 2. On the other hand, given two rational functions r1 and
r2, and a bounded domain D ⊂ C, there is a rational function that avoids both r1 and
r2 on D. Finally, for any domain D ⊂ C, there exist two rational functions r1 and r2,
such that {r1∣D , r2∣D} is unavoidable with respect to H(D); hence, {r1∣D , r2∣D , f∞∣D}
is unavoidable with respect to M∞(D).

The abovementioned results show, in particular, that no single function f ∈ M(D)
is unavoidable with respect to M∞(D). However, a result of Lappan [8] shows that
for every simply connected domain D ⊂ C, there exists a continuous function on D
that is unavoidable with respect to M∞(D). In a previous paper [7], the same author
constructed a function continuous on the unit disk D, which is unavoidable with
respect to H(D). In a similar vein, there may exist single functions f ∈ M(D) that
are unavoidable with respect to certain subsets of M∞(D). For example, in [6], it was
proved that there exists a function f ∈ M(D) that is unavoidable with respect to the
set of all normal functions in M(D), and a corresponding result for H(D) is also
given.

In this note, we prove further results on unavoidable families of meromorphic
functions. We give new examples of families of cardinality 3 that are unavoidable with
respect to M∞(C) and further construct families containing less than three functions
that are unavoidable with respect to certain subsets of M∞(C).

2 Unavoidable functions and zero–one sets

Let (an) and (bn) be two (finite or infinite) disjoint sequences of complex numbers
having no finite limit point. We say that ((an), (bn)) is a zero–one set, if there exists
an entire function, whose zeros are exactly given by (an) and whose ones are exactly
given by (bn), where multiple occurrences of elements an and bn correspond to zeros
and ones of the corresponding multiplicity. This notation was introduced in [12],
where it was shown that given sequences (an) and (bn), the set ((an), (bn)) is not, in
general, a zero–one set. More precisely, [12, Theorem 1] states that given any infinite
sequence (an) inCwithout a finite limit point, there exists an infinite disjoint discrete
sequence (bn), such that ((an), (bn)) is not a zero–one set. For further results related
to zero–one sets, we refer the reader, for example, to [10, 11, 14].

In the following, we show how the existence of sequences (an) and (bn), such that
((an), (bn)) is not a zero–one set, can be used to obtain unavoidable functions. Note
that we always assume that (an) and (bn) are disjoint and have no finite limit point.

Proposition 1 Let be given sequences (an) and (bn) in C such that ((an), (bn)) is
not a zero–one set. Consider a function f ∈ H(C)whose zeros are exactly given by (an).
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116 T. Meyrath

Then, f is unavoidable with respect to the set of entire functions whose zeros are exactly
given by (bn).

Proof Assuming that the statement is not correct, there exists a function g ∈ H(C)
whose zeros are exactly given by (bn) such that f (z) ≠ g(z) for every z ∈ C. Then,
f (z) − g(z) ≠ 0, for all z ∈ C, and the function

F(z) ∶= f (z)
f (z) − g(z)

is an entire function, whose zeros are exactly given by (an) and whose ones are
exactly given by (bn). This contradicts the assumption that ((an), (bn)) is not a
zero–one set. ∎

To give an example, we recall that a classic result states that for two distinct rays L0
and L1 emanating from the origin, there is no transcendental entire function for which
all zeros lie on L0 and all ones lie on L1, while any (nonconstant) polynomial having
this property is of degree 1 (e.g., [1, 2]). Hence, given two sequences (an) ⊂ L0 and
(bn) ⊂ L1 having no finite limit point and such that (an) has at least two elements,
the set ((an), (bn)) is not a zero–one set. Thus, if f is an entire function having at
least two zeros and all whose zeros lie on a ray L0, we infer from Proposition 1 that
f is unavoidable with respect to any entire function, all whose zeros are located on a
ray that is different from L0.

Using a similar idea as in Proposition 1, we obtain the following result that gives
examples of families F ⊂ M(C) of cardinality 3 that are unavoidable with respect to
M∞(C).

Theorem 1 Let be given sequences (an) and (bn) in C such that ((an), (bn)) is not
a zero–one set. Consider functions f1 and f2 ∈ H(C), whose zeros are exactly given by
(an) and (bn), respectively. Then, the family { f1 , f2 , 2 f1 f2

f1+ f2
} is unavoidable with respect

to M∞(C).

Proof Let be given functions f1 and f2 ∈ H(C), such that the zeros of f1 are exactly
given by (an) and the zeros of f2 are exactly given by (bn). Let further g ∈ M(C), and
suppose that g avoids both f1 and f2 inC. Then, g(z) − f1(z) ≠ 0 and g(z) − f2(z) ≠ 0,
for every z ∈ C; in particular, g and f1, as well as g and f2, have no common zeros.
Consider now the function

F(z) ∶= f1(z)(g(z) − f2(z))
f1(z)(g(z) − f2(z)) + f2(z)(g(z) − f1(z))

.(1)

It follows from the assumptions that the zeros of F are exactly given by (an), whereas
its ones are exactly given by (bn). Because ((an), (bn)) is not a zero–one set, we must
have F ∈ M(C) /H(C). Thus, F must have at least one pole, implying that there exists
z0 ∈ C such that f1(z0)(g(z0) − f2(z0)) + f2(z0)(g(z0) − f1(z0)) = 0. It follows

g(z0)( f1(z0) + f2(z0)) = 2 f1(z0) f2(z0),
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and because f1 and f2 have no common zeros, we obtain

g(z0) =
2 f1(z0) f2(z0)
f1(z0) + f2(z0)

.

Hence, if the function g ∈ M(C) avoids f1 and f2, it cannot avoid 2 f1 f2
f1+ f2

, and the family
{ f1 , f2 , 2 f1 f2

f1+ f2
} is unavoidable with respect to M(C). By Proposition 1, the functions f1

and − f2 cannot avoid each other, and because they further have no common zeros,
there exists z1 ∈ C with f1(z1) + f2(z1) = 0 and f1(z1) ≠ 0 ≠ f2(z1). Thus, z1 is a pole
of 2 f1 f2

f1+ f2
, so that the family { f1 , f2 , 2 f1 f2

f1+ f2
} is unavoidable with respect to M∞(C). ∎

Remark If, in (1), we consider the function

F(z) ∶= f1(z)(g(z) − f1(z))
f1(z)(g(z) − f1(z)) + f2(z)(g(z) − f2(z))

,

we obtain that the family { f1 , f2 , f 2
1 + f 2

2
f1+ f2
} is unavoidable with respect to M∞(C).

Indeed, in this case, there exists z0 ∈ C such that f1(z0)(g(z0) − f1(z0)) +
f2(z0)(g(z0) − f2(z0)) = 0, and hence

g(z0)( f1(z0) + f2(z0)) = f 2
1 (z0) + f 2

2 (z0).

Because f1 and f2 have no common zeros, it follows

g(z0) =
f 2
1 (z0) + f 2

2 (z0)
f1(z0) + f2(z0)

.

3 Unavoidable functions with multiple zeros and poles

In the following, we will use some standard terminology from Nevanlinna Theory
(e.g., [3, 4, 15]), that is, for a nonconstant function f ∈ M(C), a value a ∈ C∞ ∶=
C ∪ {∞} and r ≥ 0, we denote by n(r, a, f ) and n(r, a, f ) the number of a-points
(counting multiplicity) and of distinct a-points of f, respectively, in {z ∶ ∣z∣ ≤ r}.
The corresponding integrated counting functions will be denoted by N(r, a, f ) and
N(r, a, f ), respectively. We write T(r, f ) for the characteristic function of f, and we
recall that the deficiency δ(a, f ) and the branching index Θ(a, f ) of a are defined by

δ(a, f ) = 1 − lim sup
r→∞

N(r, a, f )
T(r, f )

and Θ(a, f ) = 1 − lim sup
r→∞

N(r, a, f )
T(r, f )

.

Note that δ(a, f ) ≤ Θ(a, f ), and it is a consequence of the Second Fundamental
Theorem that∑a∈C

∞

Θ(a, f ) ≤ 2.
As mentioned in the introduction, a result from [5] states the existence of an entire

function f, such that for every g ∈ M(C) having at most finitely many poles, at least
one of the two equations g(z) = f (z) and g(z) = − f (z) has infinitely many solutions
in C. Using similar ideas as in [5], we show the following result.

Theorem 2 Let f ∈ M(C) have infinitely many zeros, of which at most finitely many
are simple. Suppose further that g ∈ M(C) has at most finitely many simple poles. Then,
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118 T. Meyrath

at least one of the two equations g(z) = f (z) and g(z) = − f (z) has infinitely many
solutions in C. In particular, the family { f ,− f } is unavoidable with respect to the set of
meromorphic functions having at most finitely many simple poles.

Proof Suppose that f ∈ M(C) has infinitely many zeros, of which at most finitely
many are simple. Assuming that the statement is not correct, there exists a function
g ∈ M(C) that has at most finitely many simple poles, such that both equations g(z) =
f (z) and g(z) = − f (z) have at most finitely many solutions in C. In particular, f and
g then have at most finitely many common zeros, and it follows from the assumptions
that the function

F(z) = f (z)
g(z)

has infinitely many zeros, of which at most finitely many are simple. Using the First
Fundamental Theorem, this implies

N (r, 0, F) ≤ 1
2

N (r, 0, F) +O(1) ≤ 1
2

T (r, F) +O(1),

and hence Θ(0, F) ≥ 1
2 . Furthermore, it follows that the equations F(z) = 1 and

F(z) = −1 have at most finitely many roots, so that we obtain Θ(1, F) = 1 and
Θ(−1, F) = 1, because F is transcendental. Finally, Θ(0, F) +Θ(1, F) +Θ(−1, F) > 2,
in contradiction to the Second Fundamental Theorem. ∎

Remark As previously mentioned, it was shown in [12] that a family consisting of
two meromorphic functions is never unavoidable with respect to M(C). In particular,
given f ∈ M(C), there exists g ∈ M(C) such that g(z) ≠ f (z) and g(z) ≠ − f (z), for
every z ∈ C. It follows from the above theorem that if f has infinitely many zeros,
of which at most finitely many are simple, then such a function g necessarily has
infinitely many simple poles.

The following is an immediate consequence of Theorem 2.

Corollary 1 Let f ∈ M(C) have infinitely many zeros, of which at most finitely many
are simple. Let further g ∈ M(C) and n, m ∈ N with m ≥ 2 be given. Then, the following
hold:
(i) At least one of the two equations g(n)(z) = f (z) and g(n)(z) = − f (z) has

infinitely many solutions in C.
(ii) At least one of the two equations gm(z) = f (z) and gm(z) = − f (z) has infinitely

many solutions in C.
In particular, for every n, m ∈ N with m ≥ 2, the family { f ,− f } is unavoidable with
respect to the sets {g(n) ∶ g ∈ M(C)} and {gm ∶ g ∈ M(C)}.

If we make stronger assumptions on the zeros and poles, we can also obtain single
functions f ∈ M(C) that are unavoidable with respect to certain subsets of M(C).
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Proposition 2 Let f ∈ M(C) be a meromorphic function having infinitely many zeros
and poles, at most finitely many of which have multiplicity less than 3. If g ∈ M(C)
has at most finitely many zeros and poles with multiplicity less than 3, the equation
g(z) = f (z) has infinitely many solutions in C.

Proof Let be given a function f ∈ M(C) having infinitely many zeros and poles, at
most finitely many of which have multiplicity less than 3. Assuming that the statement
does not hold, there exists a function g ∈ M(C) that has at most finitely many zeros
and poles with multiplicity less than 3, such that the equation g(z) = f (z) has at most
finitely many solutions in C. In particular, f and g then have at most finitely many
common zeros and poles, so that the function

F(z) = f (z)
g(z)

has infinitely many zeros and poles, at most finitely many of which have multiplicity
less than 3. As before, this implies

N (r, 0, F) ≤ 1
3

N (r, 0, F) +O(1) ≤ 1
3

T (r, F) +O(1),

and hence Θ(0, F) ≥ 2
3 . A similar argumentation gives Θ(∞, F) ≥ 2

3 , and because F
is a transcendental function taking at most finitely many times the value 1, we further
have Θ(1, F) = 1. Hence, Θ(0, F) +Θ(1, F) +Θ(∞, F) > 2, in contradiction to the
Second Fundamental Theorem. ∎

Corollary 2 Let f ∈ M(C) have infinitely many zeros and poles, and consider g ∈
M(C). Then, for every n, m ∈ N with n, m ≥ 3, the equation gn(z) = f m(z) has
infinitely many solutions in C.

Note that it follows from Theorem 2 that if f ∈ M(C) has infinitely many zeros,
then for g ∈ M(C) and every n, m ∈ N with n, m ≥ 2, at least one of the two equations
gn(z) = f m(z) and gn(z) = − f m(z) has infinitely many solutions in C.

It is easily seen that similar results can be obtained for entire functions.

Proposition 3 Let f ∈ H(C) be an entire function having infinitely many zeros, at
most finitely many of which have multiplicity less than 3. If g ∈ H(C) has at most finitely
many simple zeros, the equation g(z) = f (z) has infinitely many solutions in C.

Indeed, assuming that the statement does not hold, there exists a function
g ∈ H(C) that has at most finitely many simple zeros, such that the equation
g(z) = f (z) has at most finitely many solutions in C. The function F(z) = f (z)

g(z) is
then transcendental, and it follows as before that Θ(F , 0) ≥ 2

3 , Θ(F ,∞) ≥ 1
2 and

Θ(F , 1) = 1, which leads to a contradiction.

Corollary 3 Let f ∈ H(C) have infinitely many zeros, and consider g ∈ H(C). Then,
for every n, m ∈ N with n ≥ 2 and m ≥ 3, the equation gn(z) = f m(z) has infinitely
many solutions in C.
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In the following, we will show the existence of meromorphic functions that are
unavoidable with respect to functions in M(C) whose number of zeros and poles
are bounded in some sense. We therefore introduce the following notation. Given a
continuous increasing function φ ∶ [0,∞) → [1,∞) with φ(r) → ∞ for r →∞, we
denote by Mφ(C) the set of all functions f ∈ M(C) such that n(r, 0, f ) = O(φ(r))
and n(r,∞, f ) = O(φ(r)). Our result will be an immediate consequence of the
following more general statement.

Theorem 3 Let be given a continuous increasing function φ ∶ [0,∞) → [1,∞) with
φ(r) → ∞ for r →∞. There exists a function f ∈ M(C), such that for every function
g ∈ Mφ(C), we have Θ(a, f

g ) = 0 for every a ∈ C / {0}.

Proof Because Mφ1(C) ⊂ Mφ2(C) if φ1(r) ≤ φ2(r) for r ∈ [0,∞), we may assume
that r ≤ φ(r) for r ∈ [0,∞). We shall show that any function f ∈ M(C) with “suffi-
ciently few” distinct zeros and poles, but “sufficiently many” zeros and poles (counting
multiplicity) has the claimed property. We therefore consider a function f1 ∈ H(C)
such that for every n ∈ N, the function f1 has a zero at z = n with multiplicity
[φ(n + 2)]! and f1(z) ≠ 0 for z ∈ C /N, where, here and in the following, we denote
by [r] the integer part of the real number r. We then define f2(z) ∶= f1(−z) and set
f (z) = f1(z)

f2(z) . We claim that f satisfies the statement of the theorem.
Let therefore g ∈ Mφ(C) be given. There exist g1 and g2 ∈ H(C), such that g1

and g2 have no common zeros and such that g = g1
g2

. Because g ∈ Mφ(C), we have
n(r, 0, g1) = O(φ(r)) and n(r, 0, g2) = O(φ(r)), and considering the function

F(z) ∶= f (z)
g(z)

=
f1(z)
f2(z)

g2(z)
g1(z)

,

we obtain for r > 0 sufficiently large

n (r, 0, F) ≤ n(r, 0, f1) + n(r, 0, g2) ≤ [r] + c1 φ(r) ≤ c2 φ(r),(2)

where c1 > 0 and c2 > 0 are suitable constants. Moreover, for r > 0 sufficiently large,
we have

n (r, 0, F) ≥n(r, 0, f1)−n(r, 0, g1)≥
[r]+2

∑
i=3
[φ(i)]!− c3 φ(r)≥

[r]+1

∑
i=3
[φ(i)]!>[φ([r]+1)]!

(3)

for a suitable constant c3 > 0.
Let now ε > 0 be given. Then, there exists k ∈ N such that ε > 1

k > 0, and from (2)
and (3), we obtain that there exists Rk > 0, such that for r > Rk , we have

n (r, 0, F) ≤ 1
k

n (r, 0, F) ,

which, using the First Fundamental Theorem, implies

N (r, 0, F) ≤ 1
k

N (r, 0, F) +O(1) ≤ 1
k

T (r, F) +O(1).

This finally yields Θ(0, F) ≥ k−1
k > 1 − ε, and thus Θ(0, F) = 1.
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By a similar argumentation, we obtain that Θ(∞, F) = 1; hence, Θ(∞, F) +
Θ(0, F) = 2, so that Θ(a, F) = 0 for every a ∈ C / {0} by the Second Fundamental
Theorem. ∎

Corollary 4 Let be given a continuous increasing function φ ∶ [0,∞) → [1,∞) with
φ(r) → ∞ for r →∞. There exists a function f ∈ M(C), such that for every function
g ∈ Mφ(C) ∪ {0, f∞}, the equation g(z) = f (z) has infinitely many solutions in C. In
particular, f is unavoidable with respect to Mφ(C) ∪ {0, f∞}.

It is easily seen that the function f from the proof of Theorem 3 satisfies the
requirement, for, assuming this is not the case, there exists a function g ∈ Mφ(C) ∪
{0, f∞} such that the equation g(z) = f (z) has at most finitely many solutions in C.
Because f has infinitely many zeros and poles, we have that g ∈ Mφ(C), and the
function f

g takes at most finitely many times the value 1. Because f
g is transcendental,

this implies Θ(1, f
g ) = 1, which is in contradiction to Theorem 3.

Remark
(i) Note that if the function φ is such that for every n ∈ N, we have φ(r)

rn →∞ for
r →∞, the set Mφ(C) contains every meromorphic function g of the form g =
g1 e g2 , where g1 ∈ M(C) is of finite order of growth and g2 ∈ H(C).

(ii) We further mention that it is a consequence of a generalization of the Second
Fundamental Theorem (e.g., [4, Theorem 2.5]) that given a function f ∈ M(C)
and three functions g1 , g2, and g3 ∈ M(C) that are “small” with respect to f, that
is, functions satisfying T(r, g i) = o(T(r, f )) for r →∞, at least one of the three
equations g1(z) = f (z), g2(z) = f (z), and g3(z) = f (z) has infinitely many
solutions in C. Hence, a meromorphic function can avoid at most two small
functions; in particular, a meromorphic function of infinite order can avoid
at most two functions of finite order. Moreover, it follows from the deficiency
relation for small functions (e.g., [15, p. 41]) that if f ∈ M(C) is a function that
takes every value a ∈ C∞ infinitely many times and satisfies∑a∈C

∞

δ(a, f ) = 2,
the equation g(z) = f (z) has infinitely many solutions in C for every function
g ∈ M(C) that is small with respect to f. In particular, such a function f is
unavoidable with respect to the set of small functions.

4 No f ∈ M(C) is unavoidable with respect to H(C)

In the other direction, we have the following result.

Theorem 4 Given f ∈ M(C), there exists a function g ∈ H(C) that avoids f on C. In
particular, no f ∈ M(C) is unavoidable with respect to H(C).

Proof Let f ∈ M(C) be given. Then, there exist entire functions f1 and f2 that have
no common zeros such that f = f1

f2
. Denote by A the set of zeros of f2, and denote the

order of a zero a ∈ A by pa . We can assume that A ≠ ∅, because otherwise f is entire
and the function g = f + 1 avoids f onC. Because f1 and f2 have no common zeros, for
every a ∈ A, there exists εa > 0 such that f1(z) ≠ 0 in Da ∶= {z ∶ ∣z − a∣ < εa}. Hence,
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for every a ∈ A, there exists a function ga ∈ H(Da) such that e ga(z) = f1(z) holds for
every z ∈ Da . For a ∈ A and z ∈ Da , we have the expansion

ga(z) =
∞

∑
n=0

c(a)
n (z − a)n =

pa−1

∑
n=0

c(a)
n (z − a)n +

∞

∑
n=pa

c(a)
n (z − a)n .

According to a classic interpolation result (e.g., [13, p. 304]), there exists a function φ ∈
H(C) that has, at every a ∈ A, the same power series development up to (z − a)pa−1

as ga . Hence, for every a ∈ A and z ∈ Da , we obtain

φ(z) =
pa−1

∑
n=0

c(a)
n (z − a)n +

∞

∑
n=pa

d(a)
n (z − a)n

= ga(z) +
∞

∑
n=pa

(d(a)
n − c(a)

n )(z − a)n

= ga(z) + Qa(z),

where Qa has a zero of order pa at the point a. Thus, eφ(z) = f1(z) eQa(z) for a ∈ A
and z ∈ Da , so that the function f1 − eφ has a zero of order pa at the point a. It follows
that the function

g(z) ∶= f1(z) − eφ(z)

f2(z)

is entire, and because

f (z) − g(z) = f1(z)
f2(z)

−
f1(z) − eφ(z)

f2(z)
=

eφ(z)

f2(z)

is zero-free, the function g avoids f on C. ∎

Remark
(i) Because the interpolation result we use in the proof also holds for arbitrary

domains D ⊂ C, it follows that the result also holds in this case; hence, no
f ∈ M(D) is unavoidable with respect to H(D). In [7], it is shown that there
exists a continuous function f on D that is unavoidable with respect to H(D).
Theorem 4 shows that there exists no f ∈ M(D) with such a property.

(ii) As stated in the introduction, results from [5, 12] show that given f1 and f2 ∈
M(C), there exists g ∈ M(C) that avoids both f1 and f2 on C. The proof given
in [5, 12] does, however, not directly apply in case that f1 = f∞ or f2 = f∞, from
which Theorem 4 would immediately follow. Nevertheless, we use similar ideas
in our proof of Theorem 4.
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