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COMPARISON THEOREMS ON REGULAR POINTS
FOR MULTI-DIMENSIONAL MARKOV PROCESSES
OF TRANSIENT TYPEV

MAMORU KANDA

§1. Introduction

The study of regular points for the Dirichlet problem has a long history.
The probabilistic approach to regular points is originated by Doob [2] and [3]
for Brownian motion and the heat process. The extension to general Markov
processes is discussed in Dynkin [4] and [5]. They also clarified the relation
between the fine topology and regular points.

Regular points are by definition reflected in the behaviour of sample paths of
Markov processes. Further the inclusion relation of collections of regular points
for open sets determines the strength and the weakness of fine topologies between
two processes. Hence it is meaningful to compare the collections of regular
points for compact or open sets between two Markov processes apart from the
Dirichlet problem.

Our aim of this article is to give a certain answer to the following problem.
Given two Markov processes. Can we give any characteristic quantities which determine
whether a point is regular or not for one process provided that it is regular for the other
process?  This type of problem has been studied for a certain class of uniformly
elliptic differential operators of second order in R"(# =3) by many authors.
They have shown that regular points for operators of such a class are the
same as those for the Laplace operator by proving that there exist Green
functions with singularity »>-". The relation between singularities of Green
functions and regular points plays main roles in this article, too. Here we
note that certain answer to the above problem has been given for diffusion
processes by N.V. Krylov [17], [18], [19] and Markov processes having Green
functions with monotone and isotropic singularities by the author [13], [14],
[15].
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Now we state the outline of our results.

In §2 we will establish the basic notations and give some elementary
remarks.

In §3 and §4 we will show that a certain kind of order of singularities
of Green functions for two Markov processes is reflected in the inclusion relation
of sets of regular points for such processes. For example it will be proved that
a collection of regular points for one process coincides with that for the other
process if Green functions of two processes have the same singularity. The
results in § 3 includes the result of Theorem 5 in [14].

The converse of the above result will be discussed in §4 for a class of
Markov processes having Green functions with monotone and isotropic sin-
gularities. As a result of §4 we have the following. The singularity of a
Green function for a Markov process of the above class is 7", 0<a =<2,
if and only if regular points coincide with those of an isotropic stable pro-
cess of index a. This has been established in the previous paper [15] in
case 1< a=2.

In sections 5~8 we will deal with more concrete Markov processes on
R*. Using the results in §3 and §4, we will study another quantity which
decides whether a point is regular for one process or not provided that it is
regular for the other process.

In §5 we will consider diffusion processes corresponding to uniformly
elliptic differential operators of second order on R"(n =3) which are not of
divergence form. As mentioned before it is known that regular points for
the above processes coincide with those for Brownian motion provided that
the coeflicients are smooth. We will prove in this section that a point is regular
for diffusion processes with continuous coeflicients if it is regular for some iso-
tropic stable process of index a, 0 <a <2. We will also show the known
result by another method that regular points coincide with those for Brownian
motion if the coefficients are uniformly Dini continuous.

The object of §6 is a class of Markov processes subordinate to diffusion
processes with uniformly Hoélder continuous coefficients. Singularities of Green
functions for Markov processes of this class are monotone and isotropic, but
fairly abound in variety. We will introduce some inclusion relations of collec-
tions of regular points by comparing singularities at infinity of exponents of
subordinators.

In §7 and §8 we will deal with Markov processes with homogeneity.
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Our object in §7 is the class of Lévy processes with mixed homogeneous
exponents. It will be shown that, for two processes of the above class, regular
points for the one are also regular for the other provided that exponents are
sufficiently smooth and that they have same degree of mixed homogeneity.
If exponents are not smooth, there arises certain difficulty.

In §8 we will consider Markov processes with C~-homogeneous Lévy
measure xn(x, y)dy of degree o, 0<a <1 or 1<a<2. (That is, n(x, y) is
C"-homogeneous function of y of degree a for each fixed ). Under certain
regularity condition on n(x, y), we will show that there exists Green functions
with singularity 7«=» for the above processes. From this fact it follows that
regular points are the same as those for an isotropic stable process of index a.
For the construction of Green functions, the theory of pseudo-differential
operators plays essential roles.

Acknowledgement
The author has the pleasure of acknowledging a few of his debts. He benefited
from discussions with Professor N. Ikeda and Professor Y. Okabe at the
seminar. Professor H. Kunita read the manuscript and made useful com-

ments.

§2 Preliminaries

This section contains some preliminary materials that will appear in this
article. We will denote a Markov process® with state space E by X = (2,
M, M, %, 0, P,) on E or simply by X on E, where E is a locally com-
pact separable Hausdorff space. Throughout this paper Markov processes
are assumed to satisfy Hunt’s Hypothesis (A) (G.A. Hunt [9]) without special
mentioning. In other words they are Hunt processes in the sense of [1]. For

a subset 4 of E we define two functions
o4w) =1Inf {t >0, x,(0) € A}, 4lw)=inl{t =0, z,(0) € A},

where the infimum of the empty set is understood to be +c. A point z is
called a regular point (an irregular point) of a nearly Borel set A for X pro-
vided that P,(o, =0) =1 (resp. P.(c, =0) =0). If A is simply a subset of E,
we say that z is a regular point of A (an irregular point of A4) for X pro-
vided that z is a regular point of B (an irregular point of B) for X for every
nearly Borel set B containing A (resp. some nearly Borel set B contained in

2) We use the terminology in Blumenthal-Getoor [1].
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A). We denote the collection of all regular points of A (the collection of
all irregular points of A4) for X by A} (resp. AY). A set AcC E is called
finely open if A° is thin at each « in A. In other words, for each zx € A
there is a nearly Borel set D such that A°c D and # € D¥. Let ¢ be the
collection of all finely open subset of E. One checks that ¢ is a topology
on E. It is called the fine topology on E. For terminologies relative to
the fine topology we add the adverb “-finely”. Suppose that 2 is in A
and A° is thin at z. Then there exists a compact set K such that t e Kc A
and K¢ is thin at x. (See Blumenthal-Getoor [1], p. 85.) Hence the first
half of the following remark is proved.

Remark 1. Let 7, i =1, 2, be fine topologies induced by Markov pro-
cesses X;, { =1, 2, on E respectively. Then

a) Ak, < Ak, for every open subset A
implies
b) ¢ is stronger than (7.

Conversely, if X; has a reference measure, 6) implies a).

For the proof of the latter half we note that A is finely closed if and
only if A% c A and the fine closure of A is A U A% for a nearly Borel set A
(see. (4.9), p. 87, [1]). Further if X has a reference measure, the above state-
ment is also valid for any subset A. (See Prop. 1.8, p. 199, [1].) Let B
be open. Since B%, = B U B%,, Bk, is ¢%-finely closed , and accordingly B%,
is -finely closed by b). Hence it follows that By, C (B%,)%, C B%,.

Remark 2. If there exists a compact set B C E such that B, ¢ and
%, = ¢, then ¢ is not equivalent to ¢7, provided that Pi(sy, < +0) =0,
i =1, 2, for each z, y € E.

Indeed, if we set K = (E — B) U {x,} for some fixed 2, € B%,, we have
(E—K)Y,=B—{zby¥,=EDK,
and
(E — K)¥, = (B — 20)%;, = BY, ® ,.

Hence K is %-finely open but not £7-finely open.
Now we will list up some conditions which will be assumed on Markov
processes on E in theorems of §3 and §4. Let {G.}..o be a resolvent on E
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and {7;} be a semi-group of X.
M1) G, maps Cg(E) into C(E)® for each a >0
M2) SZ”Tt fdt is bounded on E for f & Cx(E).
M 3) For each points 2, %, € E, Pr (0@, < +) = 0.
Let us consider the following condition.

R1) For every compact set K and a sequence {Oy)}n-1.e,... of open sels such
that N O, = K, it holds that

lim Px(60n< +OO) = PZ(O'K < +OO), X QE K.

n—r-+oo
Then we have

LemMmA 1 Let X be a Markov process on E with the properties M 1) and M 2).
Then X satisfies R1).

Proof Since K is compact, it is sufficient to show that for each fixed
x, & K we can choose a sequence {O,}g-1,e,... of open sets such that 0, > K
and P o,, < +) | P (ox < +c0). Let {O,} be a sequence of open sets
such that O, | K and P.(0,,7ox) =1 (for the existence see (11.3) in [1]).
Let A be a compact set containing O, for all . Then it follows from M 1)
and M 2) that

P, (400 >35,4(w0) >0, t>d4w), z, & A) =1,
(See for example, (4.24), p. 89, [1].) Noting
( Q {00,(0) < +00}) N {og(w) = +0} C {nolw); Yr > ny(w),
o0 >0y (@) > d4(0)}; Pry— a.e.,
we have

P, (ox(w) = +00, N {oy,(w) < +co}) =0.

0

Hence it holds that

0

P, (0x < +o0) =P (N {o,, < +00}).

3) C(E), Cy(E) and Ck(E) denote the space of continuous functions on E which are
bounded, vanishing at infinity and of compact support respectively.
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We say that G(x, y) is a kernel on E if it is a universally measurable

function® on E x E. We will sometimes discuss a kernel G(z, y) on E with
the following properties:

GB) G(z, y) is bounded outside each neighborhood of the diagonal set of E X E;

GC) G(z, y) is continuous except at the diagonal set of E x E and lower semi-
continuous on E X E;

GS) for each z € E and a sequence {O,}n=1,2.... 0f open sets in E such that
N 0, = {2}, it holds that

lim inf G(z, y) = +oo.

n—-r+owo z,y=0,

In this article we will adopt the next definition of Green functions.

DeriniTiON 1. A nonnegative kernel G(z, y) is called a Green function
of a Markov process X on E if it satisfies:

Gi) G(w, y) is an excessive function of x relative to X for each fixed y € E;
Gii) there exists a o-finite measure dy on E such that
|6 wrwady = | Tor@)dt < 4o
for every f € Cg(E).

For a Green function G(z, y) we write Gf(«) instead of
SEG(x, ¥)f(y)dy for simplicity.

The next condition on Markov process X plays essential roles in later
discussions on regular points.

R2) There exists a kernel G(w, y) on E satisfying:

1)  G(=, y) is an excessive function of x relative to X for each fixed y € E;

i) For each compact set K C E there exists a finite measure px(dy) concentrated
on K such that

Pifox < +e0) = | Gla, Y)ux(dy), v < E.

For convenience we call G(x, y) in R2) the potential kernel of X and

4 In this paper a function on a set S may attain the value +c on S.
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1x(dy) the capacitary measure on K for (X, G). If we can choose Green func-
tion G(x, y) of X as a potential kernel of X, we call it a Green jfunction with
the property R 2). Note that M 3) holds provided X has a Green function
G(z, y) with R2) and GS). We will close this section with the remark that
Hunt’s condition F) and G) is sufficient for R2) (see G.A. Hunt [10]) and
another sufficient condition on R2) is given in [14], [15].

§3. Comparison theorems (I)

In this section we will show certain results on the comparison of regular
points and hitting probabilities. First we introduce some notations which are
convenient to state out results. As in §2 X is a Markov process on E.

DeriniTION 2 Let @ be an open set in E containing #, and Cy, k =1,
2 be constants such that 4o >C,=1=0C,>0. A universally measurable
function f on E is called C,-subharmonic (C,-superharmonic) at (x,, Q) relative
to X provided that for each open set S such that #,€ SC S c @ one has

E. f(x.)=Cif(x,) (resp. E; f(2.)=Cof(2)).

DeriniTioN 3 Let D be a subset of E. We say that two kernels G(z,
y), k=1, 2, have the same local singularity on D provided that for each point of
D there exists a neighborhood V € E and constants C, =C; > 0 such that

(1) CGy(z, ¥) = Gy, ¥y) =CiGy(w, y), xz, yeDNYV.
It is clear that the above inequality implies
(2) 1/C,G(x, y) < Gy(, ¥) =1/C,Gy(x, y), x, y €D N V.
Sometimes we will write
Gi(z, y) = Gy, y) on D,

if G, y), k =1, 2, have the same local singularity on D.
In the sequel we use following symbols for a kernel G(z, y) on A x A:
1) G¥(x) = Gz, y); i) GY|4 (%) =Gz, y) if x € A and G¥|,(x) =0 if © ¢ A

Remark 3 Let Gy, y) be a kernel on E which is an excessive function
of « relative to X; and G,(x, y) be a kernel satisfying (1) on an open set
V c E. Then GY|y is C,/C,-superharmonic at (x, V) relative to X, for each
fixed z,, y € V.

5 Cg, k=1, 2, may depend on V.
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Indeed we have
E} Glly(x%,) < C,EZ GYlv(22,) < CiGa(%0, ¥), 20, Y €V,
where S is an open set such that 2, € Sc ScV.

DEerinrTION 4. Let X,, k=1, 2, be Markov processes on E and 2, D
c E. We say that hitting probabilities of X, are Ci-dominated by those of X, at
(%o, D) provided that

P2(05 < +00) 2 CiPly(05 < +00)®

holds for each compact set B in D. We say that hitting probabilities of
X, k=1, 2, are (Cy, C,) dominated each other at (2,, D), if in addition hitting
probabilities of X, are C,-dominated by those of X; at (x,, D). Here Cy, k =
1, 2 denote positive constants.

Now we prepare the following preliminary but essential Lemmas in discuss-

ing regular points.

LemMmA 2. Let X be a Markov process on E with the properties R1) and M 3).
Then, for each mearly Borel set B,

i) « & By < n, Piosno, < +) =1;

i) 2 € BY & lim P.(ozno, < +) = 0;

N>+
where {On}nzse,... is a sequence of open sets in E such that 0,4, € O, and N O,
= {z}.
Proof Let us fix n, and denote O,, by O’. Then

}DI(O'BHO;c < +OO) = EI(P (UBﬂok < —}—OO), g > 70/)

.I'TO,

+ Pi(og = o1, drng, < +).
Combining M 3) with R1) we have

(3) kh? P.(opno, < +c0) = klir_l{l P.(og =< 701, 0Bno, < +0).

On the other hand. if 2 € BY, it holds

1=PI((TB>O)=PI(U (O<vt<1‘on, xLEEB)).

6 Precisely P},(0% < +)=C,P} (6 < 4+ ). We will remove the suffix of the hitting
time in the sequel without confusions.
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because P,( lim 7,, = 0) = 1. Hence, for each ¢ >0, we can choose 7, so that

n—-} o0

P, (0<Vt <7y, @, & B)>1—c¢. Accordingly, by (3), we have

lim Py(6sne, < +00) =&
k—+4o0

for every € >0 provided # € BY. It is clear that P.(ozn,, < +o0) =1 for
every n provided z € By. Consequently we can finish the proof of i) and
ii) if only we note E = B} U BY.

In the next Lemma 3 X;, & =1, 2, denote Markov processes on E with
properties M 3) and R1) without referring. Choose a point 2, € E and an
open set @ C E containing #, and fix them.

LemMmA 3a  Suppose further that X; has a potential kernel G.(x, y) satisfying
R2). If, for each fixed y € Q, Gi(x) (GY|qo()) ts Ci-subharmonic at (2, @ — {y}) (resp.
C,-superharmonic at (x,. Q)) relative to X,, where Cy (resp. C;) is independent of vy,
then x, € B, implies x, € B, (resp. ®y € Bk, implies x, € B%,) for each compact
or open set B in Q.

LemMa 3b  In addition to the assumption in Lemma 3a, suppose that X, has a
potential kernel Gy(, y) satisfying R2) and both G.(x, y) k=1, 2, have properties
GS) and GB). Then hitting probabilities of X, are Ci|2-dominated by those of X,
(resp. hitting probabilities of X, are 1/2C,-dominated by those of X:) at (2o, Q) for
a certain open set Q such that z, € @ C Q.

Proof of Lemma 3a We will divide the proof into two steps. Let us fix
an open set Q' in E such that 2, € Q' c Q' C Q.

step 1. We will show that

@ Pilou<+e0) ZCPLfox < +00) = | Pllaw < +00)P3, (a2, < d2)

TQr
(resp. (4') Pi oy < +00) < CoPj (oy < +c0) + SQ,,_.PE(aM < +o0)P; (2%, € dz))

TQr

for each compact or open set M in E such that M < Q’. We prove (4) at first
by breaking up the proof into three cases.

Case (I): M is compact in Q" and M x,. Choose an open set S in
E such that Mc ScSc @ and S x,, Then we have

(5) P (os < +o0) = Eio(P,l,-g (ox < 0), 05 <7or)
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= S_Pi(ﬁM < +o0)Pi (2%, _; € d2).
Combining (9) and (R 2) we get
®) Pifos<+o)= ([ Gue wipitan)Pi a2, < a2,

;SM{SEGI(Z’ ?/)Pazco(xz ?edz)] ni(dy) — SQ/CP;(GM < +00)P§o(x3

to/_

oz € d2).

Using C;-subharmonicity of GY at (x,, @ — {y}) and the fact that P} («%,
€ A)< P} (»?, € A) for Ac Q'¢, we have, by (6),

(7 Pilos < +H00) =C P} (o) < +00) — SQICPQ(GM < +o0)P; (22, € d2).
Since M is compact, we can get the inequality (4) for M by (R1).

Case (II): M is compact in Q and M>wx,. Choose a sequence
{O}i=1,2.... of open sets such that O.., c O, and QO,C = {x,} and set M, =

Mn 0. Then the inequality (4) holds for every M,, k=1, 2,... Since {oy, <
+oo} is monotone increasing as k — 4o, (4) also holds for M — {z,}. Noting
that o) = inf {oy_zy» 0wp} and M3), we see that (4) is valid for M.

Case (III): M is open in Q. Choose an increasing sequence of {M,},
k=1,2,.. of compact sets such that L’gM,c =M. Then it is clear that

P? (04, < +)1 P% (o4 < +00). Accordingly (4) holds.
Secondly we prove (4’). Let M be the set of the case (I).
Then we have

®) Pion <o) = | Pllos < +00)PL (vt € d2),

where S is an open set in @’ such that Mc ScSc @', S z,. Using (R2)
and C,-superharmonicity of G|, at (x, @), we have, by (8),

@ Piow<<o)=| | Gie nrdlan)Pi(at & de) S CoPLfos < +o0).
M Q-M

Since S is arbitrary, we get, by (9) and (R1),
(10) P?:O(O'M <7gr) éczpéo(O'M < +o0).

Noting that PZ(ox <tq) = Pl oy < +00) — EZ (P2, (o4 < +0), tq1 < +),
Tar
the inequality (4') holds for M in the case (I). The proof of (4') in other
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cases is similar to that of (4).

step 2. Suppose %, € Bk,. Then, by Lemma 2, P} (¢65n,, < +20) =1 for
all n, where {0,} is a sequence of open sets such that N O, = {z,}. On

the other hand lim Pl(ozn,, < +c0) =0 for z€ Q' by (R1) and M3).

n—>-4-o0

Combining this fact with the inequality (4), we get

lim P3 (ozn,, < +o)=Cy,

740

which implies z, € By, by Lemma 2. On the same way we can prove that
%, € By, implies 2, € B}, by using (4') provided Gi|, is C,-superharmonic at
(%o, Q). The proof is complete.

Proof of Lemma 3b Using GB) and GS) for G.(z, y), k=1, 2, we can
choose an open set @ such that z, € Qc Q' and

inf G (20, ¥) = 2/C, Sudf) Gilz, y) k=1, 2

v=@ -
y=Q

Then, for each compact set Mc @, it holds that

1) | PHow < +20)PL(a2, € d2) < sup Gulz, Yuh(M) = (C/2)Pk fou < +c0)

=

k=1, 2. Combining (11) with (4) ((4)), we get

Pl lon < +00) < (Cif2)Piylon < +0) (resp. (1 —Ci/2) P (oy < +0)
=GPl oy < +0))

for every compact set M §. The proof is complete.

Remark 4 Further suppose that G, y) in Lemma 3a satisfies GC).
Then the following conditions are equivalent.

i) Foreachfixed ye@, Gﬂé(x) is Cy-superharmonic at (x,, @) relative to X;.

ii)) For each fixed y € @, GY|o(x) is Cy-superharmonic at (2, @ — {y})
relative to X,.

We will prove that ii) implies i). Let S be an open set such that o, y €
Sc ScQ, and let {@,}.-1,.... be a sequence of open sets converging to ¥.
Then, setting S, = S — @, it holds for every n that

(12) EZ,Glle(22) = E2 Gllo(2l;) + EZ(P3,, (Gllo(22), 0q, < +o0)
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= C,GY(x,) + sup GYlg(z) + Pi (g, < +o0).

z=S°
Since sup GYlq(z) < +o by GC) and lim P3 (og, < +) =0 by M3) and R1),
zese n—4oco
it follows from (11) that
(13) EZ GYlo(x?,) = CGY(wy).

Next let us consider the case that z,e ScScQ but y& S, yS. Let
{¥n}n=1,2.... be a sequence converging to y such that y, & S for evrey .
Then it follows from the assumption (ii) that

(14) Ez G lo(2%,) < CGY(wo).

Combinig (14) with GC), we have (13) for the above case. Thus we have
proved (i). This remark will be used in §5.
Now we are ready to state our theorem. Let

o7 = {¢; ¢ is nonnegative, monotone decreasing function
on [0, +o] such that ¢(0) = +o and ¢(4o) = 0}.

Then we have

Tueorem 1 Let X, k=1,2 be Markov processes on E with M 1)~ M 3)
which have Green functions G.(®, y), k =1, 2, with R2). Suppose that there exists
an open set @ and a finite nonnegative kernel p(x, y) on Q such that

(15) Gi(z, y) = pulo(@, y) on Q, k=1, 2,
where ¢,(r) € o7, If

(16) @o(¥)[91(r) is monotone decreasing on (0, +o0),
then it follows that

17) K%, C K%,

Sor each compact or open set K < Q.

Proof Fix an arbitrary z, € Q. Let us choose a neighborhood V of z,
such that V ¢ @ and

(18) Covor(o(x, ¥) S Gilz, y) = Crave(o(x, ¥), 2, yeV,

where C;,, >0, l,k=1,2. For a fixed y eV we set V=V N {z; p(xo, ¥)
=p(z y)} and V., =V N {2; p(xo, y)> p(z, y)}. Then, for each open set S
such that z, € Sc ScV, it follows from (18) and (16) that
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19 E3GUy(at) = Cul eiele, v)Piat, € d2)
= Cuei(p(xo, ¥)) if p(20. y) =0
ei(p(20, ¥)) 2
= Cuoilp(xo, y) + mSVZGDZ(P(zy y))on(m%s € dz),
if p(x,, y) > 0.
Combining (19) with (18) we have
C

11 Gl(xoy y), if P(xo, y) = 0

2

(200 E:GUu(@2)={ Cu . CuCa . Crlza 1) o
0 Cay Gy(%0, y) + Gl ol ) SEGz(z, y)P:, (2% € dz),

lf p(xoy y) > 0-

Since G,(z, ¥) is an excessive function of # relative to X,, we have

2 Y 2 Cy EILCLL
(21) E3,Gllv(at) = (G + QL )Gulwa v)

In other words Gily is (Ci1/Cai + C11C21/C12Css)-superharmonic at (z,, V) relative
to X, for each y € V. Noting that X, k=1, 2, satisfy R1) by Lemma 1,
the conclusion follows from Lemma 3a immediately. The proof has been

finished.

CoroOLLARY 1 If Gz, y), k=1, 2, have the same local singularity on Q,
then

K% =K%,
holds for each compact or open set K C Q.

Indeed it suffices to choose p(x, y) = 1/Gy(z, y) and ¢, (r) =1/r, k=1, 2,
in Theorem 1. We note that Corollary 1 also follows immediately from
Remark 3 and Lemma 3a.

COROLLARY 2 Let ¢ € O be such that ro(r) is monotone increasing on (0,
+oo). If

Gz, y) = o(1/Gy(x, y)) on Q, Gu(x, y) >0 on Q,
then it follows that

K% DK%,
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Sor each compact or open set K C Q.

Indeed it is sufficient to choose p(z, ¥) = 1/Gy(x, y), ¢:(r) = ¢(r) and @u(r)
= 1/r in Theorem 1.

Next we will refine the above Theorem 1. A subset D of E is said to
have the property D)y provided

D)x D is closed and D = D,

THEOREM 1. If the assumption (15) holds for a subset D with D)y, k = 1,2,
instead of Q, then the conclusion (17) follows from (16) for each compact or relatively
open set K C D.

After this theorem is established, the refinement of Corollary 1, 2 will
be clear. We denote them by Corollary 1/, 2’ respectively.

To prove Theorem 1’ we will study the time changed process by a local
time on D introduced by M. Motoo [22]. Let us consider Markov process
X on E with a reference measure and a subset D with D)y. For eacha>0
fixed there exists a unique additive functional @.(¢, w) defined by

Ex<S;Ne“"‘dq),,(t)> = E1<S:De‘“‘d(z‘ ND) @€ E,

where ¢ is the killing time of X. It is called the a-th order sweeping-out
on D of inf{¢, &}, or the local time on D for X. Let « be the inverse of
®,. Then, choosing an adequate set 22 such that P,(2 —2?) =0 for every
x € E, we can construct a Markov process X? = (Q?, _#Z°, _#7, x2, 6%, P2)
on D, where 2%(w) = x.()(0) if t < 4o, 22(w) =4 if ¢+ =4+ and P2 is the
restriction of P, on 2?. (M. Motoo [22].) Moreover we have

Lemma 4 i) (M. Motoo [22]) P.(op < +0) = P26} < +o0) jfor each Borel
set Bin D and x = D. i) B% = By for each Borel set B in D.

Proof The statement i) is Lemma 6.13 of [22] itself?. For the proof
of ii) we note that =(¢) is right continuous and strictly increasing. (See [22]).
Now it is clear that # € By» implies # € By by the definition of X?. Sup-
pose ¢ € By. Then, for almost all » there is a sequence ¢, 0 such that
%, € B. Since %%, =, and lim 7(¢,) =0, it follows that x € By». The

#n— 400

proof is complete.

7) In Lemma 6.13 in [22] the statement is asserted for a closed set B. But it is valid
for a Borel set B. (See for example [1] p. 233, (4.13), ii).)
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Proof of theorem 1’ First we note that, if f is an excessive function of
X, where X = X, or X,, then it is an excessive function of X?. This is proved
as follows. Since f(x,) is right continuous on [0, ) almost surely P, (Theo-
rem 5.7, iii), [1]), it holds that

(22) lim EZf(2%,) = Ef(““i f (@) = f(2)

N—>~4-00 Nn-> 400
for each monotone decreasing sequence {#,},-1,2,... converging to 0. On the
other hand we have

(23) E2f(2?) = E.f(%.0) = f(®).

Combining (22) with (23), we see that f is an excessive function of X?.
Since from the above result G.(x,¥y), k =1,2, are excessive functions of z
relative to X2, k=1,2, we can choose them as potential kernels of X2,
k= 1.2 by using Lemma 41i). Itwill be clear by Lemma 41) that X7 satisfy R1),
k=1,2, because X, satisfy R1), k=1,2. Now let us note that Theorem 1
is also valid even if we replace the conditions A1) and M2) by R1).
Then, applying it to X7, k=1,2, we see that BxpCB%p. 'Therefore B;,cB%,
holds by Lemma 4 ii). The proof is complete.

Even if the state spaces E;, k=1,2, of X,, k=1,2, are different,
Theorem 1’ is also valid provided that both E, are subspaces of E and
DCE\NE, satisfying D)x,, k=1,2.

In the following we will discuss the converse of the above results. Let
X, k=1,2, be Markov processes on E with M1)~AM3). Suppose that
X,, k=1,2 have Green functions G.(x,y), k =1,2 with R2).

Let us consider the next three conditions.

i) For each point there exists a neighborhood V and positive constants
Ci, k=1,2 so that hitting probabilities of X;, k=1,2 are (C,,C;)-dominated
each other at (z,V) for every z&V.

ii) For each point there exists a neighborhood V and positive constants
L,>0, k=1,2such that Gi(z), k¥ =1,2 is L,-superharmonic at (x,V) for each
z, y € Vrelative to X, [ =1,2, [ #k.

iii) Gy(x,y), k=1,2, have the same local singularity on E.
Then we have the following
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THEOREM 2 Suppose that Gi(x,y), k=1,2, have the properties GB), GC)
and GS). Then 1), 1) and i) are equivalent each other.

Progf. The fact that iii) = ii) follows from Proposition 2. We can
prove that ii) => i) on the same way as in the proof of Lemma 3b. The
proof of i) =>iii) is as follows. Let us choose an open set V of E such

that inf;/_ Gy(z,y)>0 for k=1,2 and
z, Yy

(24) CiPi(oy <+ ) < Pioy < + ) = 1/Co Plloy < + )

for every compact set McV. Let Vy k=12 be open sets such that
V,cV,cV,cV,cV and set M =sup Gi(x,y) and M% =inf G, (»,y), where
the supremum and the infimum are taken over the set (V —V,)xV,. Then
it follows from (24) that

(25) CoMEIM Y- pf (M) < pi(M) < MC.M} - p3y(M)

for every compact set McV,, where p§(dy), k=1,2, denote the capacitary
measures on M for (X;,G,), k=1,2. Now let us fix arbitrary z, y € V,,
x #y, and choose a neighborhood U of y such that UcV, and sup Gi(z,z)<2

zeU
inf Gi(%,2), k=1,2. Then, substituting U in (24) and (25) instead of M, we
zeU
get
) 1 1
C—ﬁ%@ Gy(z, y) <G, (2, ) S_C";%A{Alfl—g Gy, y).

Consequently G.(2,y), ¥ =1,2 have the same local singularity on E. The
proof is complete.

Naturally i) implies that K% = K%, for each compact or open set KCE
by Lemma 2. But it is open whether the converse is valid. We will give
a certain converse to Theorem 1 concerning regular points within a rest-
ricted class of Markov processes on R" in the next section.

We close this section with the remark that the conclusions of Theorem 1
and its Corollaries are expressed in the strength and the weakness of the
fine topology by using Remark 1 of §2.

§4. Comparison theorems (II)

Throughout this section we will consider Markov processes in R" (2=>3).
We always assume that Markov processes satisfy AM1)~AM3) and have Green
functions with R2) without referring.

https://doi.org/10.1017/5S0027763000014616 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014616

MARKOV PROCESSES 181

Set

@ = {¢ ; ¢ is positive, continuous and monotone decreasing function on (0, )

]
for some 6 > Osuch that Sor"“so(r)dr <+ o and lim¢(») = + oo} ;
r—0
0, = {¢ ; o=@ and »?¢(r) is monotone on (0, 3)}.

We say that a kernel G(z,y) on R™ has an sotropic singularity ¢=®(9,)
provided that

Gx,y)= ¢(lx —y|) on R

Let X, be a Markov process on R™ which has a Green function G(x,y)
with isotropic singularity ¢,€®,-, for some 2=« > 0. Moreover let us assume
that X, satisfies Hunt’s condition (H)». In other words, K%,# ¢ for a
compact set K provided that Pl(ex < + o) >0 for some z=R".

Our aim is to show the following

THEOREM 39 Let X be a Markov process which has a Green function G(wx,y)
with isotropic singularity ¢<®.  Suppose that X satisfies Hunt’s condition (H) and

1) x = K%,
JSor every compact set K R". Then it follows that
) o(r) = polr), 70

For the proof of Theorem 2 we will prepare two lemmas.

LemmA 5 Let X, k=1,2 be Markov processes which have Green functions
G2, y), k=1,2 with isotropic singularities ¢, € @, k =1, 2, respectively. If we
suppose that

. . . 1 T
i) ¢,€0, and there exists a positive constant 2 such that Tr‘"sos"‘lgol(s)d S=4(r)
Jor 0 <s<4;

i) lim ¢4(7)/¢o(r) = 0,

r—0

then there exists a compact set K such that

8) The condition (H) holds for a fairly large class of Markov processes. See Remark 6.
9 In case 2= a>1 this theorem has been established in [15].
10 We write ¢1(r) =< ¢q(r), r—>a, if

0<lim () Jp1(r) < Tim y(7) (7)< +co.
r—a r—a
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(3) : rx(K)>0 and pi(K)=0,
where pi(dy), k =1,2, denote the capacitary measures on K for Xp, k=1,2.

This lemma follows immediately from Theorem 4 and Remark in S.J.
Taylor [29]. Indeed, if we choose # +1 as & in [29], ¢,(¢) satisfies (12) and

L) S:s""2g01(s)ds§2901(t) in Theorem 4 and Remark [29] respectively by the
condition (i). Hence, using Theorem 4 in [29], we see that there exists a
compact set KCR*!=R" such that C*y(K)> 0'» and h,-m(K) < + co'), where
ha(t) = 1/o4(¢) under the condition (i) and (ii). Now (4) follows from the fact
that C*«K) > 0 is equivalent to #£(K) >0, k = 1,2 and he-m(K) < 4 oo implies
C*(K) = 0.

LemMA 6. Let X be a Markov process which has a Green function G(x,y) with
isotropic singularity o=@ and B, be an isotropic stable process of index «, 0 < a=<2.
Suppose

(4) K%DKj3,
Jor every compact set KCR".  Then it holds
) Yo(r) > 0,(Q,) =X 1/@(r), r—0,

where Q, = {x ; |x| <r} and

(6) é(r) = 7""S:¢(s)s"'1ds.

Proof. Set Q(z,7) ={z ;| — x| <7} and Q,={z;r/2=<|z|<r}. Let
us fix a constant C such that 0 <C <1/2 and choose a sequence {7;}i,s....

decreasing to zero. Let {«;}x-1.... be a sequence of points such that
l2z] = r,(1 —=C). We define

Q= LkJ Q~T,¢U[0}, Q= %‘JQ(xk,'Crk)U{O}-
In the following discussions we will denote the total mass of finite measure

p(dy) by Z and denote various positive absolute constants by M, k=1,2,
3,-+-. Let #z(dy) be a capacitary measure on K relative to B,. Since

Papg,ry = M= (for example see [21], p. 204), we have

11) C¢(K) denotes the g-capacity of K and h-m(K) denote the h-measure of K in the sense
of [29].
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(7) B =, = 1o, = M

Hence it holds

(8) P05, <+ )= M; and Pi(og,.0ry < + 00) = Mj.
Combining Lemma 4.2 in [13] with (8), we have

) 0€Q5,N Q3.

Next we will prove that

(10) lim Py(og, < + o) = M; >0,
70

(11) lim Py(ogz,,cr < + ) = M§ >0,
r—0

where |2,| =(1—C)r. If (10) ((11)) did not hold, we can choose a sequence
{#1}x=1,2,... decreasing to zero such that

o0 o0
(12) ,Elpo("érk < + o) < 4 o (resp ]Z‘i Py(ogz, s ori) < 4 00) < + co).
Using the Borel-Cantelli lemma, it follows from (12) that

(13) 0Q % NQ%.

Since (13) contradicts to (9) and (4), both (10) and (11) must hold. From
(10), we get

(14) 1/@(r) = pg, = My/2+ 1]¢(r/2).
From (11) we get
(15) O((L = 20)7) prgp, = M§.1®

Since #q, =< My/¢(Cr), it follows from (15) that

o(1—2C)r) c

Combining (14) with (16), we have

(17) Ye(r) =< p3,, 7—0.

12) Note that tq, X#Q(xf,cn, 7= 0.
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Now, noting that

(18) la,s = Mio1)9(r[2) < My 13, = Mutte,,
it follows from (17) that

(19) Yeo(r) =< prq,, r—0.

Next we will prove

(20) L =%, roo
Kq,

Since we have

sup | o1z —yDdz = | e(lzhdz=2"jnf | e(lz—yldz,

Y=, L r

it holds that

Mif(r)+ g, =5~ | Pulog, < + 0)dz = Ma (1) - rq,,

Q. Jo,
where @, is the volume of @,. Hence (20) has been proved®. Combining
(19) with (20), we have (5). The proof is complete.

Remark 5. If we assume that (4) holds for each open set K instead of
each compact set, then (5) is also valid. For the proof we only need a
slight modification of the above.

Proof of theorem 3. Since ¢,&@,-,, it follows from Theorem 1 that the
condition (4) holds for X, and X. Hence ¢o7) = &(r), »r—>0 and ¢(r)==<
@(r), r—=0. Note that ,(r) and @(r) satisfy i) in Lemma 5. Since X and
X, satisfy Hunt’s condition (H), it follows from (1) that ¢q(r) = é(r), r >0
by using Lemma 5. Thus we have proved (2).

Using Remark 2 of §2 and Remark 5, we can prove

THEOREM 3. Let Ty, and Tx be fine topologies of X, and X respectively.
If Ty is equivalent to Tx, then ¢(r) = ¢4r), r—0.
Finally we note

Remark 6. Let X be a Markov process having a Green function G(z,y)
such that

13) Note that the second term of the above inequality equals to 1.
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G(z,y) = g(x —y) on R",
where g(x—y) is a Green function with GS) of some symmetric Lévy process
X. Then X satisfies the condition (H).

This is proved as follows. Note that it follows immediately from Proposi-
tion (4.10) in [1], p. 289 that X satisfies (H). Combining Lemma 3b with
Remark 3, we can choose a neighborhood V for each fixed point and
constants C; =C, > 0 such that hitting probabilities of X and X are (C,,Cy)-
dominated each other at V. On the other hand it holds by Corollary 1
of Theorem 1 that K% = K%, for each compact or open set K. Summing
up the above results, we can show that X satisfies (H).

§5. Regular points for diffusion processes with continuous
coeflicients

Throughout this section we let (a,,(x)) be a symmetric matrix such that
(1 12|E]2%j§10jk(x)535k =181, [&] +0, éeR",

where + o0 > 2,2=2,>0 and the entries a,,(x) are bounded, continuous on
R". For a differential operator A defined by

n2

@) () = 33 a;4(0) 5 g ula)

there exists a minimal diffusion process X, on a bounded domain D with a
smooth boundary 4D. X, satisfies
X, 1) the strong infinitesimal operator X of {T,} coincides with A on C¥D);
Xy 1) {T.} is strongly continuous on Co(D);
X, i) X, is of strongly Feller type;
Xa1v) X, satisfies M2).

(See[17], [27]and [28].) Hereafter we shall always deal with the above process
X,4. The property M3) does not always hold. But in case #=3 we can
prove M3) by using the next Lemma obtained by Girbarg-Serrin [7].

LemMa 7. Suppose n=3. Let u(x) be a non-constant function which is

14) We say that # is subharmonic (harmonic) in an open set @ if it holds that
E u(z,) = u(x) (resp. E u(x.)=u(x)) for every open set S such that xteScScQ.
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subharmonic'® in the punctured ball S, (= {x ;0<|x| <r,}) and continuous on
{z;0<|2]| <r). We set M= lrrllaxu(x),' Then, if
zl=7ry

u(x) = 0(|x]>"*) as |x| -0

Jor some >0, it follows that u <M in S,, and furthermore lim sup u(x) < M.

-0

The above Lemma is proved for #=C%S,) such that A#=0 in S, in
[7], but without any change of the proof the assertion is valid for the func-
tion # in the above Lemma 7.

Now, set #(x) = pi(cwy <+ ). Then u is harmonic'¥ in D — {z,}.
By X, iii) u(x) is continuous on D — {z,}. Further xlirngu(x) =0 by X, i)
and X, ii). Applying Lemma 5 to #, we have lim #(z) =0. Since u is

229

excessive relative to X,, it follows that #=0. Consequently we get
X, v) X4 satisfies M3) provided n=3.

In order to state our result we will prepare some notations. We let the
matrix (A;,(x)) be the inverse of the coeflicients matrix (a;,(x)). Set

L= sup [Ajul(x)| M= L*n*[2,,

7 k,xEDau

where D,, = {« ; distance (x,D) < 38,/2,}. We define

(3) a(r) = sup sup lajp(x + k) — a;i(x)]
gk |Bl<7/41
r&D;,
@ po@) = 131 Anw)e; — ) = Vo)l

We will denote F4(F,) the collection of positive continuous functions f on
(0, s,) for some 0 < s, < §, which saitsfies

(5) floys (=1 + n*(M+ Lia(p)

oL—wMap) 0 O SPSw

' (n —1) — n®(M+ L)a(p)
(resp. (5) flp) £ oL F n*Ma(p)) , 0<p <so.)

For a positive continuous function f on (0, s,) for some 0< s,<3d,, we
define

0 7ry = [Pexp ([ rto)dorar.

Let us consider the following conditions on a function ¢ on (0,s,) :
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(1)  for every fixed 0<t <1 it holds @(tr)/¢(r)<C,< + oo for every
0<7r<<so:

@2¢9) ((¢2) o) = F(r), r—>0, for some fEF, (resp. fEF,).

Set ga(¢4) = {9 ; ¢ is a positive function on (0, s,) for some 0 < s, <&, which
satisfies ¢1) and ¢2) (resp ¢2'))}. The sets ¢, and ¢, depend on the degree
of the continuity of the coeflicients of A.

Lemma 8. Suppose n=3. 1) For each 0<a <2, r*"ed, i) If the
coefficients of A are uniformly Dini continuous, that is,

@) 4 SZ° —(;’—> < + oo,

then r*=" belongs to both ¢, and ¢,

Proof. 1) For 0< a <2, if we choose sufficientely small s, >0, we see
that F(p) = (n+1—a)/pcF, It is clear that f(r) >=r"", r—0. ii) If
s, is sufficiently small, we can choose constants M, >0, k=1, 2, so that
(n —1)/p + Mya(p)/oc F, and (n —1)/p — Ma(p)/p€F4 Hence, using (7), »*™
belongs to both ¢, and ¢,.

Now we are ready to state our theorem.

THEOREM 4. Suppose n=3. Let X be a Markov process on R"™ with the
properties M1)~M3) which has a Green function G(%,y) with GC) and R2). If
G(2,y) has an isotropic singularity @€ g4(P4), then

®8) KycKy, (resp. 8)  Kjy,cK%)

Jor each compact or open set KcD.
Combining Theorem 4 with Lemma 8, we get the followings.®

CoroLLARY 1. For an isotropic stable process B, of index o, 0<a <2, it
Sollows that

K; CK%,

COROLLARY 2. Suppose that the coefficients of A are uniformly Dini con-
tinuous.  Then

K%, =Kj,

15) In the sequel we assume that » =3 and K is a compact or an open set in D.
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where B denotes the n-dimensional Brownian motion.

Proof of theorem 4. We define

A= (3 el SEx @) @) Ap o),

Bi@) =, 31 An(@)(@e = 3 Aen(®)@n — Vo)
Then we have
©  Ae) =
((1=1+ 31 (@@ =) AW 0y @) ~(Upy @)
pu(@ 31 (a5e(a)=a;u () Bhux)

31 (@,(2) =, () BYu()

1

and

(10) 33 [Bl(a)] < M, (o)

Combining (3), (9) and (10), we get

(n—1) — n*L + M)a(py()) (n—1) + n*(L + M)a(p,(%))
W = @) T nebate, ey @)~ = ) == i alp, @), @)

Let us choose feF,(F, and set F,(x) = f(p,(x)) for each fixed y, where f
is defined by (6). Since we have

12 AR@ = Hanu) gf;j () ggz ) exp (S p)dp{—Ay(%)+ £ (0, (@)}

for xz€Q, — {y}, where Q, = {x ; p,(®) <so}, it follows from (12) and (5)
(resp. (5')) that

AF,(x)=0 (resp. AF,(x) <0)

for x€Q, — {y}. Accordingly F,(-) is l-subharmonic (resp. l-superharmo-
nic) at (#,Q, — {y}) relative to X,. On the other hand, since p=g, (resp.
pe¢,), there exists constants C;, >0, k=1,2,3,4 and é >0 such that

Cif (0, (@) < Cp(p, (@) = @]z — y|) < Cop(p,(2) = C, f(py(2), 0<|z—y|<a.

Hence, setting Q=[x;|x xol<ﬁ] for a fixed z,€D, ¢(|- —y]|) is

C,/C,-subharmonic (resp. C,/Cs-superharmonic) at (x,, @ —{y}) for every yeQ.
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Since X, satisfies M1), M2) by X, ii), X, iv) respectively, R1) holds for
X, by Lemma 1. Now let us apply Lemma 3a (resp. Lemma 3a and
Remark 4) to X, and X. Then (8) (resp (8')) follows immediately. The
proof is complete.

§6. Regular points for Markov processes subordinate to the
diffusion process with uniformly Holder continuous coefficients.

Our object of this section is the class of Markov processes subordinate to the
diffusion processes with uniformly Hélder continuous coefficients. Singularities
of Green functions of Markov processes of such a class are fairly abound in the
variety, though they are isotropic.

Let 22 be the class of diffusion processes X'® on R" whose generator
is a uniformly elliptic partial differential operator A of second order with
bounded, uniformly Holder continuous coefficients. For convenience we will
denote by (B(¢), P’) the n-dimensional Brownian motion. A process (z(t), P)
is called a subordinator provided that it is one-sided Lévy process on [0, +)
starting at the origin which has increasing paths. It is known that for such
a process E{e W} = ¢~%® for all =0 and s=0, where

1) O(s) = bs + S:m(l — e*")p(du).

In (1), b is a nonnegative constant and v is a Borel measure on (0, + o)

satisfying Smu(l + u)"'y(du) < + c0. The function ¢ is called the exponent
0

of 2(¢) and v is called the Lévy measure of z(¢). We let 2" be a collection

of the subordiantors. If we set

oo

Pt x,dy) = So P(s, z, dy)P (z(1)eds)
(2)

00

(P2t,,dy) = | "P's, 2, dy Pt ds),

0

then there exists a Markov process on R"™ whose transition probability is
P,t,x,dy) (resp. Pi(¢,x,dy)) and the semi-group of such a process is strongly

16) X is of strongly Feller type and its semi-group is strongly continuous on Cy(R").
(For example see [11].)

17 P(s,x,dy) (P%s,%,dy)) denotes the transition probability of X (resp. B). It is known
that p(s,®,dy) (P%s,%,dy)) has a density »(s,%,y) (resp. p%(s,%,y)) with respect to the
Lebesque measure dy such that

pi)  (s,%,y) is positive, continuous on (0, +0)x R™ x R™.
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continuous on Cy(R™). (See, for example, N. Ikeda-S. Watanabe [11].) We
will denote it by X, (resp. B,) in the sequel. Set

3) Ult) = g+°°P (2(s) < t)ds

for 2(¢)e 2° with an exponent ¢(x). Then

) | 1/¢(u) = S:‘”e-de(t)m.
First note that

LemMmA 9. Suppose the Lévy measure »(du) of 2(t)€.2” is non-trival. Then,

for Ul) of the form (). wyg have -
; j%‘ —

b}

Jor every fixed a>0 and 5> 0.

Proof. Since v is non-trivial, we can choose constants K >0 and #, >0
so that for every 0 <s<u,

(6) $(s) = K.

Combining (6) with (4) it follows that

K- (" st = (seas (Teav 0 = [Tk av @[] o e av)

t1+a

for each fixed >0, which implies (5). The proof is complete.

For the transition probability density p(¢,z,¥) (p°(¢, %, y)) of XE 27 (resp.
B) we define

Gulz,9) = | pt,2,0)dU0), (resp. au(lo—y]) = | ', 2, 9)dU ).
Combining (5) with the following estimate:
p i) Mt™"? exp (— aoly — x[*t) Z p(t, %, ¥) =
Mt~ exp (— e,y — x|¥t) — Mpt~"**2 exp (— ax|y — |?[2),

where M, M, M, «, a;, a; and 1 are positive constants [12]; we get

b
18) In the following the integral sign S +dU(t) means that the Lebesgue-Stieltjes integral
a

on (a,b] in case a,b are finite. S:-dU(t) is defined as usual.
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Lemma 10, If n=3, G.&,y) is a Green function of X, which has the
properties GB) and GC).
Indeed, noting that for each fixed >0
sup p(¢, ®, y) < Mot~"/% exp (— a,d%/t),
|z—y|>a
GB) follows immediately and G,(x,y) is continuous on |z —y| >4 by Le-
besgue convergence theorem.
Hereafter we shall always assume that »= 3.
Let &Z be the class of continuous positive functions L on (0, + )
which vary slowly at zero, that is, %1_1}13 L(tx)/L(¢t) =1 for each fixed = >0.

The following relation is essential in our theorem.:
(7) 1/$(u)y~u=*L(1/u), w— + co!®

is equivalent to

8) U(t) N“T(TIT«E FL(t), -0,

where Le ¢ and U(t), ¢(¢) are the ones of (3) and (4) respectively. (See,
for example, W. Feller [6], Th. 3, p. 422.) Set & = {L({)€ < which is
monotone increasing on (0,4d) for some 6> 0} and & = {L(t)e_&¥ which is
monotone decreasing on (0,4d) for some §>0}. We define

Z (28 = {2(t)e 2" whose exponent ¢ satisfies (7) for L& & (resp. L€ )}

Remark 7. L(t)e_&# has the following representation:
- _ (" a)
(9) L(t) = b(¢t) exp { S:T du},
where a(u), b(u) are continuous such that 1in% a(u) = 0 and ling b(u) > 0. From
U u—>

(9) it is easily proved that "L(¢)/b(¢) (¢77L(t)/b(¢)), 7> 0, is monotone in-
creasing (resp. monotone decreasing) on some interval (0, o).

Now we are ready to state our results.

TaEOREM 5. Let Xe 27 and 2(t)e ZFUZY) for some 0<a=<1. Then it
Sollows that, for every o' such that a <a' <12 (resp. 0 <o’ < a),

19) We will write f(x)~g(%), *—a provided lim f (2)/g(x)=1
-
20) In this case we assume that 1>a>0.
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(10) K5, K% ,CK5g,,, (resp. Ki, ,cK% CKp, )

2

holds for each compact or open set KCR", where By, Ba. are isolropic stable pro-
cesses of index 2e, 2o’ respectively. Furthermore there exists compact set K, K such
that

(11) K;, £ K%, Ky, € K3, (resp. K;,, & K%, K¥, & K5,,)™
provided that }351 L(t) =0 (resp. }5? L(t) =4 o.)
TureorEM 6. Let X*e 27 and 2, ()€ 21 (£, k=12 for 0<a<l.
Suppose that
(12) $i(s) > als), s + oo,
where ¢.(s), & =1,2, are exponents of 2,(t), k=1,2, respectively. Then
13) K1 =Kk,
holds for each compact or open set K R™.

For the proof we will prepare two Lemmas.

Lemma 11.
(14) g.(r) = r**"L(r?), r—>0,
provided 2(t)e 2l or e for 0<a<1.

Proof. For simplicity we assume that L(#) is monotone on (0,2]. Let
us set

=B 002, 0, 2)aU(8).

J=]?

Ix) =

Then, by the formula of the integral by part and (8), we get

n 1 1
1 —__[l(_x)__ — —1—1_— '—'E—‘*‘C‘ —T_ -_2_ . B
(15) }cl_g)l G L([x]D] (2m)" 2 Ta+a) [2 e e 4K, Kz} = K,
where
K. =1 ~ G —l+s “717d Koo L (r, e _%d
I_TSlu € u, 2—‘7&% e u.

21) As we see from the proof below, we can choose K and K such that I~(§24=K§_=¢
(resp. K{;zu,:f(&z:q%).
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Now, replacing U(t) with ¢* in the integral I,(x), we have

(16) lim—1®) g
X

-0 l

On the other hand, in case U(¢) = ¢% it holds by changing the variable

n 1
2 -1
1

a7 I(x) = le“‘”as @ru) Zu*le ™ du,

Combining (16) with (17), we see that K;>0, which together with (15)

implies
(18) Ii(x) = |x]**"L(|=]?), || —0.
If we set

Lz) = S:lzp”(t,o, 2)dU(t),
then we have
(19) Lx) < Ki|z|**"L(|x[?),

for sufficiently small « and some constant K,, because I(x)=< p°(|2|% 0, z) x

U(lx]?) + n/2- (271)_7]90 ]“"S:u"“”‘l e 12l (|2 |2 du. Choose &€¢>0 so that
U(t) < 2t°L(t)/I(1 + @) for 0<t=<¢ and define

L) = Slexlzp”(t,o, 2)dU(t).

Then it holds that, for some constant Kj,

e/lelt —Z—14e —_L_
(20) Ij(x) = Ks + n(27)™"[I'(1 + a) - |2]| " Sl u * e " Lulz|)du.

If Le &4, we have from (20)
(21) Li(z) < Ky + Kg| x| ™2« L(|x|?).

In case Le & we will use the representation (9). Choose 7, such that
1<7,<mn/2. Then, by Remark 7, u~#/**7 L(u)/b(x) is monotone decreasing.
Hence, from (20) we have (21) for Le &. Since Iz(x)+13(x)+s+“p”(t,0, x) X
dU(t)=g,(|x|) = I,(x), we have (14) by combining (5), (19), (21) and (18).

The proof is complete.

Remark 8. g,(r) for 2(¢t)e 2t or Z'¢ satisfies
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(22) VC >0, 9K; >0, 450> 0, ¢,(Cr)/g,(r) <K, for 0<7r<de.
Lemma 12, For, 2z(t)e 2% or Z¢ it hqlds that

(23) Gilw,y) = g.(le —yl) on R™
Proof. For each fixed 6 >0 we have, by P ii),

@) G, = ('t 2,0)aU(0) = Lz, v) — M 0x) 20,020 12— y),

8

Lw,y) = M | £ exp (= auly — & 2/)aU (1),

On the other hand

(25) Ii(x, y) = M,(27)"%9,(/2a; |2 — y|) — M,I(3),
where 1(3)= S:wt‘"/sz(t). Let us choose d, >0, K(a,, ;) >0 such that

(26) 9.02a; |2 — y|) = K(ay, a)g.0/2a; |z —y])

for |¢ —y| <4,. This is possible by (22). Set

(M, 1 1/2
B = <4M2 K(ay, as) ) ’

Since I(3,) < 4+ o by (5) and limg.(|lx —y|) = + by (14), we can choose
Y
3, >0 so that

(27) MI(30) < M2+ (27)"%g,(/2a, |y — x])

for |y — x| <4d,. Combining (24) with (27), we get

28) Gulw, y) = M (2r) g, /20, |2 — y])

for 0 < |2 — y| <min (8, d,). Since it is clear that
(29) G, y) = M (27)"?g.(/2a |2 — y])
by P i), the proof of (23) is complete by using (22).

Proof aof theorem 5 and theorem 6. As mentioned before, the semi-group
of X, 'is strongly continuous on Cy(R"). Furthermore, G.(x,y) satisfies GB)
and GC) by Lemma 8 and has an isotropic singularity g,() by Lemma 9.

Therefore it follows immediately from Lemma 1 in [15] that R2) holds for
X.. Using Lemma 1 in §2, R1) follows from M1) and M2). M3) is clear
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from R2) and from the fact that limG.(z,y) = + . Consequently we can
apply the result in §3 to the aboz/:zy process X,. If we assume (12), then
9:,(r) =< g2,(r), r—0 by (14). Hence Gi (x,y) = Gi,(2,¥), | —y|—0 by (23),
where G} (x,y) and G%,(x,y) are Green functions of X} and X3 respecitvely.
This implies (13) by the Corollary 1 of Theorem 1. Thus Theorem 5 has
been proved. If z(t)e 27l (279, it follows immediately from Corollary 3 of
' Theorem 1 that K;, cKj, (resp. Ki, DKjz). Using the representation (9), we

have
e 2a=n ° alu)
g.(r) < r exp| — | =, duf, r—0,
3
and 7%= exp { ——S 2—”54L)du] is monotone increasing (monotone decreasing)

provided that & > o’ (resp. o’ < a). Accordingly K}, ¢ Kz, , (resp. Kz, » < K7)
holds for ze 27% (resp. 2°¢) provided a < o' (resp. @ > «’). Since K}, = K%,
by Lemma 12 and Corollary 1 of Theorem 1, we have proved (10). Noting
that X,, B;, and B, satisfy the condition (H) by Remark 6, (11) follows
from Theorem 3.

Using Remark 1 and Theorem 5, we get

THEOREM 5. Let (7, Tr. and o be fine topologies induced by X,, Bs, and
By, respectively.  Then

<O <L Coar (resp. Tra < 7 < T2a)??

Furthermore

Ca é g i Crary (18P Tt i 7 i )
provided that lim L(t) =0 (resp. lim L(#) = + oo).
Finally we will give simple examples. Consider
(30) o) = | stap, 1za>a =0,

Since ¢ has a completely monotone derivative and ¢(0) =0, it is an expo-
nent of some z(t)e.2” (for example, see W. Feller [6], Theorem 1, p. 425).
By a computation

2) 7 <L 7% (7 < ¢75) implies that 7, is stronger than (7, (resp. (¢7; is stronger
+
than 7, and (7, is not equivalent to /7).
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1/¢(s)~s"=log s, s—> -+ oo.
Hence

g.(r) > r*=" log 1/r, 7 —0.
If we set

oi(s) = | [99)1de, 1z a>a >0,
where ¢ is of the form (30), then it is also an exponent of some z,(t)= 2
and
1/y(s) ~ s™°* (log s)'*, s—>+ o,

Hence

gz, (r) > 12 (log 1/r)'*e, r—0.

§7. Green functions and regular points for a certain class of
Markov processes with homogeneity (I).

In this section we will study Lévy processes with homogeneity. Let &,
&', D, D', B, FB', D, etc. be the space of distributions or functions
in Schwartz’ sense [24]. For fe.&, FYR™ or _F2R" we denote the
Fourier transform. (the Fourier inverse transform.) by

F) = (et r@ae wesp. f@ = e f@)dn, du = @2n)"da),

and denote the extension of ~ (resp. v) to &' by & (resp. &# ~!) as usual.
Now we will summarize some elementary facts about Lévy processes on
R™, Let X be a Lévy process on R" such that

(1) Eo(e...kf.:m >) — e—t;l:(é), EE Rn

¢(¢) is called the exponent of X. It is known that ¢(¢) is a negative difinite
function on R". Suppose that & ~!(e=*¥)(x) is a bounded continuous func-
tion for each fixed ¢ >0. Then, setting p(¢, %) = & (e “)(x), p(t,x —y) is
a transition probability density of X. If in addition it holds that

(2) 1$(E)€ L foc(R"),

X has the Green function g(x — y) given by g(x—y)=5:mp(t,x——y)dt. More-

over g(x — y) satisfies GS) provided » =3 and symmetric. Indeed, since Re
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(&) =C|¢|® for large |£] and some constant C >0, we have

® limg(@) = [ “lim 7 e )@)dt = | | URep(@)d = + o,

-0 20

In the above case X satisfies R1) by Lemma 1 and also satisfies R2), because
Hunt’s conditions F) and G) hold for X (see G.A. Hunt [10]).

Let @ = (ay, a3, + + +, a,) and B=(8y,ps - * +, B.) be real vectors. We write
as a=p provided a; =8, for all k. If a, =a for all k¥, we write simply
as « instead of @. A function f on R" is called a homogeneous function
of degree a provided f(tV/=g, -+, tV=g,) =¢tf(€) for ¢ >0. If in addtion
feC(R" — {0}), we say that f is a C-homogeneous function of degree @. Define

(73 = {9(8) ; a homogeneous (resp. C™-homogeneous) function of degree a};
U o) = A (resp. Z2)N{P(E) ;5 a negative definite function} ;
SHSZTT) = T (resp. ZTT)N{P(E) 5 Re dls) >0 for ] +0}.

In this section we consider the following two types of Lévy processes
in R® (n=3)*, Let 2>a>0:

(I« Lévy process whose exponents belong to 73+ 20 and symmeiric,

(I, Lévy processes obtained by assuming that the coordinate processes are in-
dependent symmetric stable processes of index ay, k=1,++-,n in R.

Note that the exponent ¢(¢) of a Lévy process of type (II), has the
form

@) 9(e) = élckxsm, where C; > 0.

Hence ¢(¢)e it but ¢(&) & 7o,
Define

n
(5) 7 (y) = (Z‘iyﬁ“f)”2 for real vector @ = (ay, * * -, @,).
]=

Lemma 13, Let 2>a>0. Suppose that X is a Lévy process of type (I)a
or (Ig. Then X has Green function g(x —y) with GS) and R2). Furthermore

i) if X is of type (I),

23) We always assume 7 = 3 in the sequel without referring.

24) We do not discuss about the existence of such Lévy processes here. For the existence of
such process for certain @, see Proposition 1.
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n
1— % 1/e; n
©6) glx —y)=r(x —y) 71 " on R";
i) if X is of type (II), the following cases occur:

il. 1) in case n=5, g(x) is infinite on each coordinate axis;
n

. 2) in case n=3 and 1 — le/aj < —1 for some k, g(x) is infinite on
e

the x,-axis;
n .
. 3) incase n=3 or 4 and 1— Z}l/aj > —1 for every k, it jollows
7%k

that (6) holds.

Remark 9. If n=3 and 2>a>1, then 1— _ékl/aj>—l for all k.
iF

For the proof of Lemma 13 we will prepare some facts. Suppose
B=1B,pB, - ,B)>00r B8<0. Let pyy) be a positive C™-function on
R*-{0} uniquely defined by

2 B =

Then we can easily prove that

) Corp(y) < 0p(y) < Cirply), y #0
provided g>0, and

(9 Cor—p(y) < pp(y) 7 = Crrply), ¥y #0

provided B <0, where C;=C,>0 are absolute constants and 7, 7., are
functions defined by (5). Let us note that for a C*-homogeneous function
S of degree g it holds

2%

(10) ps| (i)”‘f(s)‘sMu 3 Uese)® &0,

0, j=1

where k is a positive integer and M, is a positive absolute constant.

Proof of Lemma 13. Let ¢ be the exponent of X. Then p(¢,z) =
F “Y(e~¥)(x) is a bounded continuous function of z for each fixed ¢>0.
Since ¢ satisfies (2) because n =3, there exists a Green function g(z — y) =
S:wp(t,x — y)dt with GS) and R) as mentioned before. We will first prove
(i). Note that
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(11) g(x) = 7 ~1Q¢)(x).
Combining (10) with (9), we have

_2k_y

n " 2k [ n
(12) % (5,) We@ | =Mi 2l ne) =, w0,
=1\ 0§; 7=1

Since n + 7,(8)2 = ﬁlléjl%o = (1/n)%|&[2%0 for e, = 1m.i<n «,, it follows from
i= <j<n
(12) that

(13)

E(agj) C1/9(8) {éMgklfl-kao/z

for large |¢|. Combining (11) with (13), we can show that g(z)eC~(R"-{0})
by the standard method. If we set

x/ — (xl/pa(x)lln, .., xn/pa(x)l/a,,) fOI’ X = 0’
it holds that

n
1— Ell/a,

(14) 9(@) = (ea(®)) 7 F 1) (")

by changing the variable of the coordinates in (11). Combining (8), GS)
and the fact that g(z)eC~(R"-{0}), it follows from (14) that (6) holds. Next
we will prove ii). For the estimate of g(x), we note the following : Let
p(t,« — y) be transition probability density of X of type (II),. Then

(15) p(t, 2 —y) =k[[1 Di(t, @ — Yi)y = (Ty, *+ +, %), Y= (Y1, * * *,Yn),
where p,(t, #; — y,) denotes the transition probability density of a symmetric

stable process #,(¢) of index a, on R'. We use the estimate [25] :
C=p(l,x)<C, for [x|<1
Gy < |a|ttap,(l,2) <C, for |a|=1

and
Dy (rt, r/ea)ri/es = p,(t,z) for each » >0,

where # € R' and C,;,j =1,2,3,4, are positive constants. Let us fix » =
0, «++,0, 2,0, « « +,0 where |2,]>d>0. Then we have®®

25) In the following M;, !=1,2,+.- denote positive absolute constants.
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5 1~ g 1/a
g(z) =M, Sot =y,
.. . . . 7 n—1 ..
Hence ii. 2) follows immediately. Since 1 — Zl}cl/a i=l=— ii. 1) also
JjF
holds. Now we will estimate g(x) on {|x| =1}. If 2 is on the z,-axis, we
have
n
+oo —-Z 1oy
9(@) = My | pell, 10y 1551 at,
0
(16)

n
T ey

11— 3 e, o —
gMas PR dt+M4S = g,
0 tl

Let 2 = (#;, %5, + + +,%,) be a point on {|z]| =1} such that z,+0, k=1,
vend, Ty =0 =2,=0 and [z, | - Z |2y|* where [ =2,

We define
[ETIE, "y ~1/ - g an ;
Ij = Slxj-ﬂ“j—lp(l’t alxl) ° 'p(l’t ale)t m=1 dt, j=1,---,1,
n
+oo — X 1ep
1=§ tTm=t Nt @y = 0.
EAL
Since
17) |2,]% = (1/n)0+1/02* = C, ay = min a;, @ = max aj,
1<j<n 1<j<n
we have
(18) I< M.
Combining (17) with
—m=21 Yan

! o (l=dley ! .
I, < My 11 |&m]™ “’“S t I *Vendt, j=1,+-+1
m=j 0 m=j

we get
) 7 &, 1- 3 1/ (G—p+'T ey
z, - m a;j(l—7 j/am
S A N e I A T Y
m=j 0
=1 a =)+ T afanf )2, 1~ 3 1am
(19) < MC 11 ] @] 717 |2 | mj SO ¢ Tme 0 gy
m=j

n
1 1— 3 1/epm
)

=M, Sot e g
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Combining (16) (18) and (19), it follows that
gx)< M, on |z| =1,
provided that 1 — é l/a; > —1 for all k. Noting that g(x — y) satisfies GS),
J
we can prove (6) by using the representation (14). The proof is complete.

TuEOREM 7. Let a, B be real vectors such that 2>a=CB> for some
C=1 and

(20) 1— él/aj > —1 for every k.
J¥k
Let Xi(X;) be a Lévy process of type (I). or type (II). (resp. type (I)s or type
(IT)s). Then
@1) Ky,cKy,

holds for every compact set KCR". If both X, and X, are of type (I), then
(21) holds without the assumption (20).

Proof. By Lemma 13 X,(X,) has Green function g¢,(x —y) (resp. g:(x—y))

such that
1-—_% 1/a; 1—,’% 1/8;
(22) g —y) T r(x —y) I (resp. go(x —y) T rp(x —y) =t
on R".

On the other hand it holds
(23) RO (@) = ry(@) Z (@),

) c- 3 18, - %18,
Hence, setting p(x,y) = ry(x —y), ¢:r) =7 1" and ¢x(r) =7 =17, it

follows from (22) and (23)

ge(x —y) = @r(o(2,¥) on R", k=12

Using Theorem 1, we can prove (21). The proof is complete.

Next we will construct Lévy processes of type (I) for a certain class of
a. Let X be a Lévy process on R and A be the generator of X. We
say that n(dy) is Lévy measure of X if for each f€<7 vanishing on a
neighborhood of the origin it holds

(24) [.r@mn@y = ar@).
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For convenience we introduce

N5 = {n(y) ; a C> homogeneous function of degree — (n+ 8) such that
n(y) >0 for y + 0}.

We define e/ by

l'\

(25) (o7, = [ [utw) — w0) = 35 Ovsfn)dy, we

0y
provided n(y)eNj for 2> g>1 and
(26) (,u) = _(ww) - wOnw)dy, ueF

provided n(y)eNj3 for 1>8>0. Set

27) Au(x) = Y *u(x), us ZF
and
(28) (&) = — F () (é).

Then it is known that there exists a Lévy process whose generator coincides

with A of (27) on % and exponent is ¢(&) defined by (28). Furthermore,
it we set

26)

(29) a= (1 3

it is a Lévy process of type (I), as is shown in the following proposition.

ProrosiTiON 1. Suppose 2<B <1 or 1>B8>0. Then, for each n(y)eNj
the function ¢(&) defined through (25) or (26) and (28) belongs to o7 3**, where a is
defined by (29).

Proof. Note that ¢(&) = — (.97, e~****), because €. Changing
the variable of the coordinates, we see that ¢(&) is homogeneous of degree
a. It is known that ¢(¢) is negative definite. Further

Reg(@d) S minn(y) | (1 — cosct, 1)0-n.p(v)dy

1

= MSR" (1 — cos<&, ¥) m

dy

26) If B=a, then @=«. If there exist j&k such that 8;%8x, then sup §;>e> inf 8;.
1<j<n 1<j<n
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by using (9), where M is positive constant. Hence ¢(¢)e o7i*. Next we
will prove that ¢(&)eC=(R* — {0}). Let Q(y)&C” such that Q(y) =0 for
lyl<1/2 and Q(y) =1 for |y| =1. Set

98 = [0 = QUL — 7= — Shiy & )nwidy, ¢6) = | Quinw)dy
Gyle) = — SRNQ(y)e-W-“n(y)dy, $u(8) = — SmQ(W ]éiyjém(y)dy,
in case 2>8>1 and

0@ = (1= Q1 — e nly)ay, ¢.(&)=0,

in case 1>8>0. Then it follows immediately that ¢,(&), ¢,(¢) and ¢,&)e
C*(R™ — {0}). On the other hand we have

_nk
=Mly|l "

A (52 ewnw)

A
oyj

for large y on the same way as in the proof of (13). Hence we can prove
4
that ¢,(6)eC”(R" — {0}) by the standard method. Since ¢(¢) = g‘_,lgb,,(&), it

follows that ¢(¢)eC*(R" — {0}). Consequently. ¢(¢&)e o77**. The proof is
complete. ‘
We will close this section with the following Remarks.

Remark 10.  Let a be a vector defined by (29) for 2>g>1. Then
there exists a Lévy process X, of class (/). on R® by Proposition 2. Fur-
thermore it follows from Theroem 7 that

K}x = K;fz

for every compact or open set KCR3 where X, is a Lévy process of type
(I, on R%. On the other hand the Lévy measures of X; and X, are

n(y)dy and M, *@?’[yll;;l X 6(dy.dys)+ My ‘Wfﬁiuz ><5(dyxdya)+MsW311W><5(dyzd%),

respectively, where n(y)eNj and 6(dy;dy,) denote the Dirac measure at the

origin on ¥; Xy,-space.

Remark 11, Using Corollary 2’ of Theorem 1/, we can show the follow-
ing. Let Xi(X;) be a Lévy process of type (I). (resp. type (I);) on R”
where 2> a,8>1. Suppose that (a;, « + +, az-1) =By, « * +, Pa-1) and a, = B,.
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Then
K% DK%,
holds for every compact or relatively open set K in (2, « + «, @,-1)-space.
§8. Green functions and regular points for Markov processes
with homogeneity (II).
Let us consider a function #n(zx,y) which satisfies:
nl)  n(x, )€ Y Zniay for each fixed x=R",
n2) for each multi-indices B,7, (D,)*(D,) n(x,y) is bounded on R"x{|y| = 1};
n3) for some constants C, =2 C, >0, C, < n(x,y) <C, on R"x{|y| =1};

nd) there exists L >0 and n(oo, y)E 7 2™ such that n(z,y) = n(w,y) for
x| = L.

For the above #n(z,y) we define a distribution &, by

) (o) = | {uw) —u0) = 33-2% O, }niz, viay
provided 1 < a <2 and

(@) (%0 = | _ () — wO)n(z, v)dy

provided 0 <a <1. We let A be a operator on Z'?*" defined by

(3) Au(x) = o7 * u(x).

We call n(z,y)dy the Lévy measure of A as usual. Our result is the
following

THEOREM 8. Suppose that n=3 and 2>a>1 or 1>a>0. Then there
exisis a Markov process X on R™*® which has a Green function G(x,y) with GB),
GC) and R2) such that

G(x9y)z lx_yla-n, on Rn’
(4)
AGf =—f, feg.

2 F( F) denotes the space of C=-functions whose derivatives of any order are

bounded (resp. vanishing at infinity). The topology in & ( &) is that introduced by L.
Schwartz [24].

28) It is known that there exists a Markov process on R™ whose generator is A [26]. Our
aim is to construct the kernel G(z, y) satisfying (4). But in our proof the existence of a Markov
process also follows in this connection.
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Furthermore {T.} of X s strongly continuous on Co(R™).
Combining (4) with R2), M3) holds for the above X. Hence, using
Corollary 1 of Theorem 1, we have

CoroLLARY. Let B, be an usotropic stable process in R"(n=3). Then
K% =Kg,
holds for every compact or open set KCR".

We will break up the proof of Theorem 6 into several Lemmas. Set

(5) a(z, &) = F (:)E).

Then we can prove the following on the similar way as in Lemma 10.
LemMmA 14.  a(x, &) of (5) satisfies:
al) —az, ey,
a2) for each multi-index B, 7, (D,)?(D;) a(x, &) is bounded on R"x{|&]| = 1};
a3)  for some constants My=M, >0, M,<—Re a(x,&) <M, on R"x{|&|=1};
ad) a(x,&) s independent of x for |x|=L.

we set a”(&) =a(x, &) for |x| =L.
Suppose u=.5”. Then, since & (W, *u) = F ()4, it holds

(6) Au() = SRne“’”'“a(x, eaEds, ue.

We call a(x, &) the symbol of A. Let ueﬁ'ﬁ and let {«#,} be a sequence
of functions belonging to & such that #, = # in ﬂ . Then, since F (u,)
> FZ (u) In & and Y *u,—~ V. +*u in &', it follows that & (% *u)
= lim F (% *u,) = a(x,8 F (u) in . Therefore we have

n—>-+oo
() Au(z) = F Va(x, )7 W)(@), uc F.

Next for our later use we will prepare some notations. For any real
number s we define the norm ||u|,:

laliz = |0+ lelr1a@1de, uss,

and denote by H; the Hilbert space obtained by the completion of .57 in this
norm. We let H. (H-.) be N H; (resp. U H;). Then H.cC #. A linear

operator L : & — & is said to have order », or to be of order 7, if for
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each real s there exists a constant C, such that
Lull, <Clullss, for all us .

Let a(z,8)e 975, =0, be the one with ¢2) and a4) in Lemma 14 and let
f(&) be a bounded measurable function. We define A(q, f) as follows.

® Ale, lutx) = | e <mPaw, o f@ads, nes,

If f=1 we will simply write A(a) instead of A(a,1). Especially, for a,(z, &)
€. 9% with a2) and a4), A(a,) has order zero. (See Kohn-Nirenberg [16],
Theorem 1 and Lemma 3.1). Hence A(a,) can be extended to the operator
mapping H, continuously into H, for every s. We use the same symbol
Ala) for such an extended operator. Further suppose that a,(x, &) satisfies 43).
Then A(a) is a Fredholm operator on ¢#*R"). This is proved as follows.
Set by(z, &) = 1/ay(x,8). Then Ala,)Aby) — I and A(by)Ala,) — I have order —1
where I denotes the identity operator. (See, [16], Lemma 5.1 and Lemma
3.1.) Let @ be a bounded set in ¢Z%R"). Then the set ¢ = (A(a,)A(bo)
— 10 or (A(by)Ala,) — I)® satisfies that for each fixed R >0 the collection
of the Fourier transform of the elements of ¢ are uniformly equicontinuous
on ¥*(|¢| < R). This can be proved on the same way as in the proof of
Theorem 7 in [16]. Hence ¢ is relatively compact in % R") by Lemma
8 in [16]. In other words A(a))A(b) — I and A(b)A(a,) —I are compact
operators “on 2R, which implies that A(a) is a Fredholm operator on
_Z%R™ by the definition. Next we define the quantity

K& ) =exp(— [ —9]01/t) —1]), 0<t<1,
K, = SS K.(8,7)da(8)®, S,_, ; the surface of a unit ball CR™,9€S,_4,
K, (¢, 77) = 1/Kz ° Kz('f’ 7}),

aiw, &) = | Kiell&], nase, dols),
@t @={_ Kiellel naleo, dot), aeo,8) = (o).

Set af’(x, &) = al(x, &) —dy' (6). Then, using the following estimate

Il Alas")ullo = Mllullo sup S,J[l - é(

£eS,1

ij ﬂpaé‘(x,é) |dx,

0

29) do(p) is the Lebesgue measure on S,_;.
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where p is the integer such that p > n/2 (Palais et al [23], Th. 4), we can
prove that {A(a})}es,«1* is a strongly continuous family of operators on &%(R")
by a computation. From this the index of A(a,) equals to that of A(a}) (see
[23], Th. 4). Since the index of A(a}) equals to zero, it follows that the
index of A(a,) is zero. Summing up the above results, we have

LemMa 15, Suppose that ay(x,8)€ 75 for each fixed « and satisfies a2)~ad)
in Lemma 14. Then the operator Ala,) ts a Fredholm operator on ¥ *R") whose
index is zero

A function ¢=C= is called a “patch function” if ¢ vanishes in a neigh-
borhood of zero and 1 — ¢ vanishes in a neighborhood of . The next two
properties®® will be used in the proof of Lemma 16.

Al)  Let a(x, &) o73%, a; real, be the one with a2) and a3). Suppose
that, A(a,0)u = f for f,ucH_ and fC*(U), where U is an open set. Then
usC(U). (See Hormander [8].)

A2)  Let a(x,8)e 7%, a;real, be the one with a2) and ad). Suppose that
usH .NC*(U) for some open set U. Then Ala,6)usC=(U). (S¢e Kohn-Nirenberg
[16]1, Corollary 9.2.)

Lemma 16,  Let ay(x,8)e o7 be the one with a2) ~ad).  Suppose tho'
us PR and Alayus S (H.). Then u can be represented in the form

© u) = 7 (Ll )e),
where g€ (resp. H..).

Proof. Set f = A(a)u. Since we can easily show that A(g,1—0u e
C*(R™)N _FUR™), Alay,Ou = f — Alay,1 — 0)ucsC*(R")N_¥2 Hence usC*)(R"™)
by Al). Set aj(z, &) =ay(x, &) — ap(0, &) and aj(é)=ay(c0,&). Then Ala))uc 2.
Indeed Alaj, )u € C*(R") by A2 and Alaj,1—0) € C(R"). Consequently
Aldu = f — Al@j)luc ¥ (resp. H.). Setting g=f—Alap)u, we get (9). The
proof is complete.

Remark 12. The above u belongs to H. by (9).

30) Here a(x,§)=a,®, §).
31) In the following we will always denote a patch function by 6.
32) Precisely a(x,§)e 7% for each fixed #. In the sequel we will simply write as

a(x,§)e 7 3.
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Now we will study the operator A defined by (3). First we give

Remark 13. (Maximum principle) Suppose that u(x,) = sup u(x)

zER"

(u(zxy) = iprgu(x)) for real function ueﬁ. Then #=0 or Au(z,) <0 (resp.
Au(x,) >0). From this we see that # =0 provided Au =0 for ueg.

Lemma 17.  Let A be a operator defined by (3) with a Lévy measure n(z,y)dy
satisfying nl)~nd) for 0<a <1 or 1<a <2. Then there exists a unique solution
ve,,%’ of the equation

(10) Av = f
Jor every fEH. provided n=3.
Proof. Let a(x,&) be the one defined by (5). Then a(z, &) satisfies al)~

a4) by Lemma 14. Hence, setting ay(x, &) = a(®, §)/|£]%, a(z,&)e 5 and
satisfies a2)~a4). We will prove this lemma dividing into steps.

step 1. Let u be a function of the form u(&)=_7 "Yg(-)/a5(+))(€), where
geH,.. Define

(11) F(n_“>/F< )SR"W— u(y)dy.

Then ve . Z. Indeed, since 5(¢) = a(&)/|£]°, we have v(x) = F “HQ(£)d(&)/
a()(x) + F 1 — Q§)§(6)/a™(§)(x), where Q)€ such that Q(¢) =1 on
some neighborhood of the origin. The first term belongs to Z using
Riemann-Lebesgue lemma repeatedly. The second term also belongs to
Hm(cfé’), because g H.. Hence vef%.

step 2. For every given f e F*R") there exists a unique solution
ue F%R" of the equation A(a)u = f. This is proved as follows. Since the
index of A(a) equals to zero by Lemma 15, we have only to prove
ker A(a,) = {0}. If A(a)u =0, then u(€) = & ~1g(:)/a3(+))(€) for some ge.&
by Lemma 16. Let v be a function defined by (11) for the above «#. Since
veg.? by the result of step 1, we have

(12) Av(x) = F a(2, +)F (v))(x)

by (7). Noting that & (v) &)/1¢e]%, it follows from (12) that Av(z) =
T Uay(x, £)a(8) = Alag)u(x) = 0. Therefore, using the remark 13, we have
»=0, which implies #=0. Hence ker A(a,) = {0}.
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step 3. For a given feH. we let us %R"™) be a solution of A(a)u=f

in the step 2. Then the function v(z) defined by (11) for u belongs to &
and satisfies Av = f, as is shown in step 2. Thus the proof of Lemma 15
is complete.

Remark 14. Let G be a operator: Hm—+jé"’ defined by
(13) G:feHweve‘f'é’,

where Av = — f. Then G maps H. into P continuously.

By the closed graph theorem we have only to show that G is closed.
Let {f,} and {v.} be sequences such that f,—=f in H. and v, —>v in ﬁ
respectively. Since we see that njiinmAvn(x) = Av(z) for every z=R", it fol-
lows that — f(z) = _nlirfoof"(x) = Av(z), which implies Gf = .

Next we will give a kernel representation of the above operator G.
For the symbol a(x, &) of A we choose a sequence {e;(x, &)} j-0,1,.... such that

e, &a(x, &) =1

7 WUrhore, @, D@, &) =1, T =(fy -+ -, 7a).

<.

Then e¢;(z, &) e 7,-; for each fixed # and satisfy @2). Let us fix a function
o(8)eC*(R™) such that ¢(¢) =0 for [¢] <1/2 and ¢(&) =1 for |¢]>1. We
choose a sequence 1 =t,<?t, <ty< »++—+ oo such that

a4 IDIDHp ([t )e;(w, )] < (1/27)]¢] =~/12
for |&] =2t;, |7]+ |fl=<j. Define

=

B¥(,8) = S1olelt e (@, 8), Erle,&) = 3 (et )es(@,d

J

E(®,§) = E*(w,£) + Ex(%, £).

Then, for a fixed patch function ¢, A(a, 8)A(E*)—I and A(E*)A(a,6) —I have
order —k—«a, k=0,1,2,+ -, + 0. (See Hormander [8].) Let us set

(15) Lyw,2) = €0t e, .

If we fix P()e < such that P(z) =1 on some neighborhood of the origin,
then we have

. . Irl
) 91f(6) implies a—gﬁ?:%gff(@
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where [i(z,2)e & %:;-, for each fixed z and /i(z, 2) € C*(R" X R* — {0}),
13z, 2)eC*(R"XR"). Moreover, for each multi-indices 7, 8, (D,)"(D,)?l%(z,2)
is bounded on R"xR". If we set

k
K(lk)(xy Z) = Z()Lj(xy Z);

J

we have

(17) A(E") f(2) = SRnK‘{”(w, r—y)flydy, feEF
On the other hand, if we set

(18) KPa,2) = | e Ey(x,0d8, k=n,

R

we can prove that K{(x,z)eC*"(R"xR") and bounded on R"xR", because
for each multi-indices 8, 7 there exists a constants C(, 8, ¥) such that
DIDIE,(x,&) <C(k,B,7)|&|™*"* for large [¢]. Moreover we have

(19) AE)f@)= | KP@,o—9f@dy, fes.

Next we will prove that A(e,1 —6) has order — «®. For ueS”, set
v, = Ald, 1—0)u and v, = A(a®, 1—0)u, where da'(z, £)—a>(€) and a”(&) = a(co &).
Since 0,(z) = a”(2)(1 — 6(2))d(z), it is clear that A(@", 1 —¢) has order — oo.
Set aj(x, &) =d'(x, &)/]€]* and let gj(x, &) be the Fourier transform of aj(x, &)
with respect to @. Then it holds, for each fixed real s, s’

e a+loram=| (LS di0—e, o EEO=E) 0t g9 racae,
1+l ?

Using Peetre’s inequality, we have

@) (FHYD)" 2w + 16 =i,

Because of the fact that dj(x,&) belongs to & uniformly in & we see that
for any power p

34) Since a(x, §) becomes irregular at the origin with respect to &, we cannot refer to the
result of pseudo-differential operators directly.
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S M
(22) lagin — &8 < 0+ [7—g[5?

where M is a constant which is independent of 7, & Combining (20), (21)
and (22) with p large, we get

Noills << M |lulsr,

which implies that A(a/, 1 —6) has order — oo,

Now, if we set L= = A(a,0)A(E) — I, L~ has order — o as mentioned
before. Since G maps H_.. into F continuously by Remark 14, GA(al—6,)A(E)
and GL® maps H. into % continuously. Hence, using Schwartz kernel

theorem, we see that there exists a bounded kernel K;(z,y)=C"(R"x R™) such
that

(23) (GL™ +GAle, 1 - OAE) @) = | Kz, 9)fwdy, feo.
Since A(@)A(E) = I+ L=+ Ala, 1 — 0)A(E), we have

(24) —Gf =(AE)+GL” + GAle, 1 —0)AE))f, fez.
Combining (17), (19) and (23), it follows from (24) that

(25) —Gf(x) = SR" {KP(x,x — y) + KP(x, 2 —y) + Ki(x, )} f(y)dy,

for every k= n.
Consequently we have

LemmMa 18%.  The operator G defined by (13) has a kernel representation
(26) Gfw=| Gawnrway, reo,

where G(x,y) satisfies GB), GC). Furthermore G(x,y) is C* except at the diagonal
set.

Next we are going to study the properties of the above G(z,y).
Lemma 19. Gz, y) satisfies

G1) if we set Gflz) = SRnG(ac,y) fW)dy, G maps Cx(R™ into Co(R™;
G2) for every nonnegative f&Cr(R™) such that f #0, Gf >0;

35) We assume # = 3.
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G3) G satisfies the weak principle of the positive maximum; in other words,
if m (= sup Gf(x)) is positive for real f Cx(R™), m equals to sup Gf(x), where
zsRn zeS

S={x; f(x)>0};
G4) G,y)=<|x—y|*™ on R".

Proof. G1) follows immediately from GC) and the fact that Gfe &
for fe=r by the definition. We prove G2). Let f be a nonnegative, non-
constant function belonging to &r. If xlerg” Gf(x) =G f(z,) for some z,=R",
then AGf(x,)>0. On the other hand AGf(z,) = — f(%,) =0. Hence Gf
cannot attain the infimum in R”, which implies Gf >0 everywhere. Here
let us note that G(x,y) =0 by using the continuity of G(z,y) except at the
diagonal set. Next we prove G3). Suppose that m >sup Gf(x) for fe.

zeS

Then, since GfeCy(R"), there exists a point 2,=S° such that m = Gf ().
Then AGf(x,) <0 by the maximum principle of A (see Remark 13), which
contradicts to the fact that AGf(z,) = — f(%)=0. Thus G3) holds for
fe=r. We can prove that G3) also holds for f e Cx(R"), because there
exists a sequence {f,} of functions in & such that f,—f and Gf,—>Gf
uniformly on R”. Finally we will prove. G4). Set

o) =7 (1) ).

a(x, +)

Then, for each fixed z, ¢°(z — y) is a Green function of a Lévy process on
R™ whose exponent ¢(§) is —a(x,£) and ¢°z—y)= |z —y|*™", |z—y|>0
asin Lemma 13. Moreover we can prove g°(z)eC*(R"X(R™ — {0})) on the same
way as in the proof of 42) in Lemma 14. Hence, using the homogeneity of
g°(z) with respect to 2, for each fixed compact set @ there exist constants
N; = N, > 0 such that

(27) Nelz|*™" < g"(2) < Nyle|* ™"

for every x€Q and zeR". Since —L,(z,2)=9"(2)+.F (1—¢(-)) X1/a(z, +))(z)
and the second term belongs to C*(R"XR"), we see that for some ¢ >0

(28) 5 Nolzl"" = — L@, 9) S 2N,z 1", %eQ, |2] <3

by (27). Combining (28) with (25), we get

G, y)= |z —yl*™", |z —y|—>0.
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Thus the proof is complete.

Proof of Theorem 8. By the properties G1)~G4) together with GB), GC)
we can construct a Markov process X on R™ whose Green function is G(z, )
in Lemma 17 by using Theorem 1.1 in [13]*®. Further it has been proved
in the above Theorem 1.1 that {7.} of X is strongly continuous on C,(R").
From the properties G1) G2), G4), GB) and GC) it follows that R2) holds
for X by Lemma 1 in [15]. The proof is complete.
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